@@ -56,7 +56,7 @@ The algorithm is a simple way to find the *greatest common divisor* (GCD) of two
56
56
{% sample lang="scala" %}
57
57
[ import:3-8, lang="scala"] ( code/scala/euclidean.scala )
58
58
{% sample lang="racket" %}
59
- [ import:3-14, lang="lisp "] ( code/racket/euclidean_algorithm.rkt )
59
+ [ import:3-14, lang="racket "] ( code/racket/euclidean_algorithm.rkt )
60
60
{% sample lang="ruby" %}
61
61
[ import:8-19, lang="ruby"] ( code/ruby/euclidean.rb )
62
62
{% sample lang="st" %}
@@ -146,7 +146,7 @@ Modern implementations, though, often use the modulus operator (%) like so
146
146
{% sample lang="scala" %}
147
147
[ import:10-14, lang="scala"] ( code/scala/euclidean.scala )
148
148
{% sample lang="racket" %}
149
- [ import:16-24, lang="lisp "] ( code/racket/euclidean_algorithm.rkt )
149
+ [ import:16-24, lang="racket "] ( code/racket/euclidean_algorithm.rkt )
150
150
{% sample lang="ruby" %}
151
151
[ import:1-6, lang="ruby"] ( code/ruby/euclidean.rb )
152
152
{% sample lang="st" %}
@@ -252,7 +252,7 @@ and modulo method:
252
252
{% sample lang="scala" %}
253
253
[ import, lang="scala"] ( code/scala/euclidean.scala )
254
254
{% sample lang="racket" %}
255
- [ import, lang="lisp "] ( code/racket/euclidean_algorithm.rkt )
255
+ [ import, lang="racket "] ( code/racket/euclidean_algorithm.rkt )
256
256
{% sample lang="ruby" %}
257
257
[ import, lang="ruby"] ( code/ruby/euclidean.rb )
258
258
{% sample lang="st" %}
0 commit comments