-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlearnrate.py
127 lines (102 loc) · 4.42 KB
/
learnrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/bin/python
import os
import sys
path = os.path.split(os.path.realpath(__file__))[0]
sys.path.append(path)
from common import *
from active import *
from threshold import *
import numpy as np
import scipy.sparse as sp
import math
import pickle
import random
import logging, Logger
import types
class LearnRate:
def __init__(self, model):
##the w and b for instances
learnrate = float(model.params["r"])
self.rate_b = []
self.rate_w = []
self.nonzero = dict()
for idx in xrange(len(model.w)):
rate_w = (model.w[idx] - model.w[idx]) + learnrate
rate_b = (model.b[idx] - model.b[idx]) + learnrate
self.rate_w.append(rate_w)
self.rate_b.append(rate_b)
self.rate_lb = (model.lb - model.lb) + learnrate
self.rate_lw = (model.lw - model.lw) + learnrate
def compute_rate(self, model):
nocommand = 0
def update_before_paramupdate(self, model):
for i in xrange(len(model.grad_w)):
if sp.isspmatrix(model.grad_w[i]):
nonzero = model.grad_w[i].nonzero()
self.nonzero["%d"%i] = nonzero
#print type(model.grad_lw)
if sp.isspmatrix(model.grad_lw):
nonzero = model.grad_lw.nonzero()
#t1,t2 = model.grad_lw.shape
#print "grad_lw sparity",len(nonzero[0])*1.0/t1 /t2
self.nonzero['l'] = nonzero
def update_after_paramupdate(self, model):
nocommand = 0
##################The AdaGrad #################
class AdaGrad(LearnRate):
def __init__(self, model):
LearnRate.__init__(self, model)
#set the initial_rate
self.initial_rate = float(model.params["r"])
##the w and b for instances
self.ada_b = []
self.ada_w = []
for idx in xrange(len(model.w)):
ada_w = 1 + (model.w[idx] - model.w[idx])
ada_b = 1 + (model.b[idx] - model.b[idx])
self.ada_w.append(ada_w)
self.ada_b.append(ada_b)
self.ada_lb = np.ones((model.num_label))
self.ada_lw = np.ones((model.num_factor, model.num_label));
self.nonzero = dict()
def update_before_paramupdate(self, model):
for i in xrange(len(model.grad_w)):
if sp.isspmatrix(model.grad_w[i]):
nonzero = model.grad_w[i].nonzero()
#t1,t2 = model.grad_w[i].shape
#print "grad_w sparity",len(nonzero[0]) * 1.0 / t1 /t2
self.nonzero["%d"%i] = nonzero
grad_w = np.asarray(model.grad_w[i].data) + 2 * (model.l2_lambda) * model.w[i][nonzero]
self.ada_w[i][nonzero] = self.ada_w[i][nonzero] + grad_w * grad_w
else:
grad_w = model.grad_w[i] + 2 * (model.l2_lambda) * model.w[i]
self.ada_w[i] = self.ada_w[i] + grad_w * grad_w
grad_b = model.grad_b[i]
self.ada_b[i] = self.ada_b[i] + grad_b * grad_b
#print type(model.grad_lw)
if sp.isspmatrix(model.grad_lw):
nonzero = model.grad_lw.nonzero()
#t1,t2 = model.grad_lw.shape
#print "grad_lw sparity",len(nonzero[0])*1.0/t1 /t2
self.nonzero['l'] = nonzero
grad_lw = np.asarray(model.grad_lw.data) + 2 * model.l2_lambda * model.lw[nonzero]
self.ada_lw[nonzero] = self.ada_lw[nonzero] + grad_lw * grad_lw
else:
grad_lw = model.grad_lw + 2 * model.l2_lambda * model.lw
self.ada_lw = self.ada_lw + grad_lw * grad_lw
grad_lb = model.grad_lb
self.ada_lb = self.ada_lb + grad_lb * grad_lb
def compute_rate(self, model):
for i in xrange(len(model.grad_w)):
if sp.isspmatrix(model.grad_w[i]):
nonzero = self.nonzero['%d'%i]
self.rate_w[i][nonzero] = self.initial_rate / np.sqrt(self.ada_w[i][nonzero])
else:
self.rate_w[i] = self.initial_rate / np.sqrt(self.ada_w[i])
self.rate_b[i] = self.initial_rate / np.sqrt(self.ada_b[i])
if sp.isspmatrix(model.grad_lw):
nonzero = self.nonzero['l']
self.rate_lw[nonzero] = self.initial_rate / np.sqrt(self.ada_lw[nonzero])
else:
self.rate_lw = self.initial_rate / np.sqrt(self.ada_lw)
self.rate_lb = self.initial_rate / np.sqrt(self.ada_lb)