forked from fpbarthel/GLASS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
296 lines (237 loc) · 13 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## Snakefile for GLASS-WG pipeline
## Authors: Floris Barthel, Samir Amin, Frederick Varn
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
import os
import pandas as pd
import itertools
## Import manifest processing functions
from python.glassfunc import dbconfig, locate
from python.PostgreSQLManifestHandler import PostgreSQLManifestHandler
from python.JSONManifestHandler import JSONManifestHandler
## Connect to database
## dbconf = dbconfig("/home/barthf/.odbc.ini", "VerhaakDB")
dbconf = dbconfig(config["db"]["configfile"], config["db"]["configsection"])
#print("Cohort set to ", str(config["cohort"]))
by_cohort = None
if len(str(config["cohort"])) > 0:
by_cohort = str(config["cohort"]).zfill(2)
## Instantiate manifest
manifest = PostgreSQLManifestHandler(host = dbconf["servername"], port = dbconf["port"], user = dbconf["username"], password = dbconf["password"], database = dbconf["database"],
source_file_basepath = config["data"]["source_path"], aligned_file_basepath = config["data"]["realn_path"], from_source = config["from_source"], by_cohort = by_cohort)
print(manifest)
## Set working directory based on configuration file
workdir: config["workdir"]
## GDC token file for authentication
KEYFILE = config["gdc_token"]
## Cluster metadata (memory, CPU, etc)
CLUSTER_META = json.load(open(config["cluster_json"]))
## List of scatterlist items to iterate over
## Each Mutect2 run spawns 50 jobs based on this scatterlist
WGS_SCATTERLIST = ["temp_{num}_of_50".format(num=str(j+1).zfill(4)) for j in range(50)]
## Load modules
## We do not want the additional DAG processing if not from source
#if(config["from_source"]):
# include: "snakemake/download.smk"
#include: "snakemake/align.smk"
# include: "snakemake/haplotype-map.smk"
#include: "snakemake/fingerprinting.smk"
include: "snakemake/telseq.smk"
#include: "snakemake/mutect2.smk"
include: "snakemake/mutect2-post.smk"
# include: "snakemake/varscan2.smk"
# include: "snakemake/cnvnator.smk"
# include: "snakemake/lumpy.smk"
# include: "snakemake/delly.smk"
# include: "snakemake/manta.smk"
#include: "snakemake/cnv.smk"
#include: "snakemake/sequenza.smk"
#include: "snakemake/optitype.smk"
#include: "snakemake/pvacseq.smk"
#include: "snakemake/cnv-post.smk"
include: "snakemake/titan.smk"
include: "snakemake/pyclone.smk"
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## Upload coverage to database
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
rule cov2db:
input:
metrics = lambda wildcards: expand("results/align/wgsmetrics/{aliquot_barcode}.WgsMetrics.txt", aliquot_barcode = manifest.getSelectedAliquots())
output:
tsv = "results/align/wgsmetrics.merged.tsv"
params:
mem = CLUSTER_META["cov2db"]["mem"]
threads:
CLUSTER_META["cov2db"]["ppn"]
#conda:
# "../envs/r.yaml"
log:
"logs/align/cov2db/cov2db.log"
benchmark:
"benchmarks/align/cov2db/cov2db.txt"
message:
"Merge coverage file and convert to TSV for easy database upload"
script:
"R/snakemake/cov2db.R"
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## Haplotype map creation rule
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
#rule build_haplotype_map:
# input:
# "data/ref/fingerprint.filtered.map"
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## Alignment rule
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
rule align:
input:
expand("results/align/bqsr/{aliquot_barcode}.realn.mdup.bqsr.bam", aliquot_barcode = manifest.getSelectedAliquots()),
expand("results/align/wgsmetrics/{aliquot_barcode}.WgsMetrics.txt", aliquot_barcode = manifest.getSelectedAliquots()),
expand("results/align/validatebam/{aliquot_barcode}.ValidateSamFile.txt", aliquot_barcode = manifest.getSelectedAliquots()),
lambda wildcards: ["results/align/fastqc/{sample}/{sample}.{rg}.unaligned_fastqc.html".format(sample = aliquot_barcode, rg = readgroup)
for aliquot_barcode, readgroups in manifest.getSelectedReadgroupsByAliquot().items()
for readgroup in readgroups]
rule gencode:
input:
expand("results/align/gencode-coverage/{aliquot_barcode}.gencode-coverage.tsv", aliquot_barcode = manifest.getSelectedAliquots())
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## Get genic coverage given a BAM file
## URL: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
#rule gencode_coverage:
# input:
# "results/align/bqsr/{aliquot_barcode}.realn.mdup.bqsr.bam"
# output:
# "results/align/gencode-coverage/{aliquot_barcode}.gencode-coverage.tsv"
# params:
# mem = CLUSTER_META["gencode_coverage"]["mem"]
# conda:
# "envs/align.yaml"
# threads:
# CLUSTER_META["gencode_coverage"]["ppn"]
# log:
# "logs/align/gencode-coverage/{aliquot_barcode}.log"
# benchmark:
# "benchmarks/align/gencode-coverage/{aliquot_barcode}.txt"
# message:
# "Computing coverage using flattened gencode GTF\n"
# "Sample: {wildcards.aliquot_barcode}"
# shell:
# "set +o pipefail; /opt/software/helix/samtools/1.8/bin/samtools view -q 10 -b {input} | \
# /opt/software/helix/BEDtools/2.27.0/bin/bedtools coverage -a {config[gencode_gtf_flat]} -b stdin -d -sorted -g {config[bedtools_genome]} | \
# /opt/software/helix/BEDtools/2.27.0/bin/bedtools groupby -i stdin -g 1,2,3,4,5 -c 7 -o sum | \
# sort -k5,5 | \
# /opt/software/helix/BEDtools/2.27.0/bin/bedtools groupby -i stdin -g 5 -c 4,6 -o sum,sum | \
# awk -F\"[+\\t]\" 'BEGIN {{OFS=\"\\t\"}}{{for(i=1;i<(NF-1);i++){{split($i,g,\".\"); print g[1],$(NF-1),$NF}}}}' \
# > {output} 2> {log}"
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## Download only rule
## Run snakemake with 'snakemake download_only' to activate
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
#rule download_only:
# input: expand("{file}", file = ALIQUOT_TO_BAM_PATH.values())
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## QC rule
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
rule qc:
input:
"results/align/multiqc/multiqc_report.html"
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## SNV rule (Mutect2)
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
rule mutect2:
input:
expand("results/mutect2/m2filter/{case_barcode}.filtered.vcf.gz", case_barcode = manifest.getSelectedCases()),
expand("results/mutect2/ssm2filter/{pair_barcode}.filtered.vcf.gz", pair_barcode = manifest.getSelectedPairs())
rule ssmutect2:
input:
expand("results/mutect2/ssm2filter/{pair_barcode}.filtered.vcf.gz", pair_barcode = manifest.getSelectedPairs())
rule m2db:
input:
#"results/mutect2/consensusvcf/consensus.normalized.sorted.funcotated.tsv",
"results/mutect2/consensusvcf/consensus.normalized.sorted.vep.vcf",
expand("results/mutect2/geno2db/{case_barcode}.info.tsv", case_barcode = manifest.getSelectedCases()),
expand("results/mutect2/geno2db/{case_barcode}.geno.tsv", case_barcode = manifest.getSelectedCases())
rule sequenza:
input:
expand("results/sequenza/mergeseqz/{pair_barcode}.small.seqz.gz", pair_barcode = manifest.getSelectedPairs()),
expand("results/sequenza/seqzR/{pair_barcode}/{pair_barcode}_cellularity.ploidy.txt", pair_barcode = manifest.getSelectedPairs())
rule titancna:
input:
expand("results/cnv/titanfinal/seg/{pair_barcode}.seg.txt", pair_barcode = manifest.getSelectedPairs())
# rule mutect2post:
# input:
# expand("results/mutect2/m2post/{pair_barcode}.normalized.sorted.vcf.gz", pair_barcode = manifest.getSelectedPairs())
# rule genotypefreebayes:
# input:
# expand("results/mutect2/freebayes/{aliquot_barcode}.normalized.sorted.vcf.gz", aliquot_barcode = manifest.getSelectedAliquots())
# rule massfreebayes:
# input:
# expand("results/mutect2/freebayes/batch{batch}/{aliquot_barcode}.normalized.sorted.vcf.gz", batch = [str(i) for i in range(2,6)], aliquot_barcode = manifest.getSelectedAliquots())
# rule genotypevcf2vcf:
# input:
# expand("results/mutect2/genotypes/{aliquot_barcode}.normalized.sorted.vcf.gz", aliquot_barcode = manifest.getSelectedAliquots())
# rule finalfreebayes:
# input:
# expand("results/mutect2/batches2db/{aliquot_barcode}.normalized.sorted.tsv", aliquot_barcode = manifest.getSelectedAliquots())
# rule preparem2pon:
# input:
# expand("results/mutect2/mergepon/{aliquot_barcode}.pon.vcf", aliquot_barcode = manifest.getPONAliquots())
# rule genodb:
# input:
# expand("results/mutect2/geno2db/{aliquot_barcode}.normalized.sorted.tsv", aliquot_barcode = manifest.getSelectedAliquots())
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## PON rule (Mutect2)
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
# rule mutect2pon:
# input:
# "results/mutect2/pon/pon.vcf"
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## HLAtyping rule (OptiType)
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
rule call_hla:
input:
expand("results/optitype/HLA_calls/{aliquot_barcode}/{aliquot_barcode}_result.tsv", aliquot_barcode = manifest.getSelectedAliquots())
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## Neoantigen rule (pVACseq)
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
rule call_neoag:
input:
expand("results/pvacseq/neoantigens/{case_barcode}/MHC_Class_I/{case_barcode}.final.tsv", case_barcode = manifest.getSelectedCases())
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## SNV rule (VarScan2)
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
rule varscan2:
input:
expand("results/varscan2/fpfilter/{pair_barcode}.{type}.Somatic.hc.final.vcf", pair_barcode = manifest.getSelectedPairs(), type = ["snp", "indel"])
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## CNV calling pipeline
## Run snakemake with target 'svprepare'
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
rule cnv:
input:
expand("results/cnv/plots/{aliquot_barcode}.pdf", aliquot_barcode = manifest.getSelectedAliquots()),
expand("results/cnv/callsegments/{aliquot_barcode}.called.seg", aliquot_barcode = manifest.getSelectedAliquots())
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## Estimate TL using telseq
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
rule telseq:
input:
expand("results/telseq/{aliquot_barcode}.telseq.txt", aliquot_barcode = manifest.getSelectedAliquots())
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## Run PyClone
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
rule pyclone:
input:
lambda wildcards: expand("results/pyclone/run/{pyclone_short_name}/plots/loci/{plot_type}.pdf", pyclone_short_name = manifest.getPyCloneCases(), plot_type = ['density','parallel_coordinates','scatter','similarity_matrix','vaf_parallel_coordinates','vaf_scatter']),
lambda wildcards: expand("results/pyclone/run/{pyclone_short_name}/plots/clusters/{plot_type}.pdf", pyclone_short_name = manifest.getPyCloneCases(), plot_type = ['density','parallel_coordinates','scatter']),
lambda wildcards: expand("results/pyclone/run/{pyclone_short_name}/tables/{table_type}.tsv", pyclone_short_name = manifest.getPyCloneCases(), table_type = ['cluster','loci'])
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## Fingerprinting pipeline
## Check sample and case fingerprints
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
rule fingerprint:
input:
expand("results/fingerprinting/sample/{aliquot_barcode}.crosscheck_metrics", aliquot_barcode = manifest.getSelectedAliquots()),
expand("results/fingerprinting/case/{case_barcode}.crosscheck_metrics", case_barcode = manifest.getSelectedCases())
#"results/fingerprinting/GLASS.crosscheck_metrics",
## END ##