forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFusedAdamWKernel.cu
170 lines (164 loc) · 4.64 KB
/
FusedAdamWKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/TypeDefault.h>
#include <ATen/native/ForeachUtils.h>
#include <c10/util/Exception.h>
#include <ATen/native/cuda/fused_adamw_amsgrad_impl.cuh>
#include <ATen/native/cuda/fused_adamw_impl.cuh>
namespace at::native {
// note(crcrpar): To observe the CI rules, i.e. 20 minutes per file to compile,
// defensively split instantiations into _impl files. this is only for CUDA 11.3
// for which it took about 20 minutes and 28 minutes in my workstation and CI,
// respectively. As a data point, it took about 20 seconds for CUDA 11.7
// installed in my environment. See
// https://github.com/pytorch/pytorch/pull/81705 for details.
void _fused_adamw_kernel_cuda_(
at::TensorList params,
at::TensorList grads,
at::TensorList exp_avgs,
at::TensorList exp_avg_sqs,
at::TensorList max_exp_avg_sqs,
at::TensorList state_steps,
const double lr,
const double beta1,
const double beta2,
const double weight_decay,
const double eps,
const bool amsgrad,
const bool maximize,
const std::optional<at::Tensor>& grad_scale,
const std::optional<at::Tensor>& found_inf) {
if (amsgrad) {
TORCH_CHECK(
at::native::check_fast_path_restrictions(
{params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs}),
"params, grads, exp_avgs, exp_avg_sqs, and max_exp_avg_sqs must have same dtype, device, and layout");
_fused_adamw_amsgrad_cuda_impl_(
params,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
lr,
beta1,
beta2,
weight_decay,
eps,
maximize,
grad_scale,
found_inf);
} else {
TORCH_CHECK(
at::native::check_fast_path_restrictions(
{params, grads, exp_avgs, exp_avg_sqs}),
"params, grads, exp_avgs, and exp_avg_sqs must have same dtype, device, and layout");
_fused_adamw_cuda_impl_(
params,
grads,
exp_avgs,
exp_avg_sqs,
state_steps,
lr,
beta1,
beta2,
weight_decay,
eps,
maximize,
grad_scale,
found_inf);
}
}
// The following overload simply has a Tensor lr
void _fused_adamw_kernel_cuda_(
at::TensorList params,
at::TensorList grads,
at::TensorList exp_avgs,
at::TensorList exp_avg_sqs,
at::TensorList max_exp_avg_sqs,
at::TensorList state_steps,
const at::Tensor& lr,
const double beta1,
const double beta2,
const double weight_decay,
const double eps,
const bool amsgrad,
const bool maximize,
const std::optional<at::Tensor>& grad_scale,
const std::optional<at::Tensor>& found_inf) {
if (lr.is_cpu()) {
_fused_adamw_kernel_cuda_(
params,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
lr.item<double>(),
beta1,
beta2,
weight_decay,
eps,
amsgrad,
maximize,
grad_scale,
found_inf);
return;
}
// Manually check devices since we specify no device check in
// native_functions.yaml
Device param_device = params[0].device();
if (grad_scale != std::nullopt) {
TORCH_CHECK(
grad_scale->device() == param_device,
"grad_scale must be on the same GPU device as the params");
}
if (found_inf != std::nullopt) {
TORCH_CHECK(
found_inf->device() == param_device,
"found_inf must be on the same GPU device as the params");
}
TORCH_CHECK(
lr.device() == param_device,
"lr must be on the same GPU device as the params");
if (amsgrad) {
TORCH_CHECK(
at::native::check_fast_path_restrictions(
{params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs}),
"params, grads, exp_avgs, exp_avg_sqs, and max_exp_avg_sqs must have same dtype, device, and layout");
_fused_adamw_amsgrad_cuda_impl_(
params,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
lr,
beta1,
beta2,
weight_decay,
eps,
maximize,
grad_scale,
found_inf);
} else {
TORCH_CHECK(
at::native::check_fast_path_restrictions(
{params, grads, exp_avgs, exp_avg_sqs}),
"params, grads, exp_avgs, and exp_avg_sqs must have same dtype, device, and layout");
_fused_adamw_cuda_impl_(
params,
grads,
exp_avgs,
exp_avg_sqs,
state_steps,
lr,
beta1,
beta2,
weight_decay,
eps,
maximize,
grad_scale,
found_inf);
}
}
} // namespace at::native