forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTensorAdvancedIndexing.cpp
204 lines (172 loc) · 9.31 KB
/
TensorAdvancedIndexing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include <ATen/ATen.h>
#include <ATen/MemoryOverlap.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/quantized/IndexKernel.h>
#include <ATen/native/TensorAdvancedIndexingUtils.h>
#include <ATen/NamedTensorUtils.h>
#include <c10/core/QScheme.h>
#include <ATen/native/TensorAdvancedIndexing.h>
namespace at::native {
DEFINE_DISPATCH(masked_fill_kernel_quantized_stub);
DEFINE_DISPATCH(index_put_kernel_quantized_stub);
DEFINE_DISPATCH(index_put_with_sort_quantized_stub);
namespace {
static TensorIterator make_index_put_iterator(const AdvancedIndex& info, const Tensor& value) {
TORCH_CHECK(is_expandable_to(value.sizes(), info.src.sizes()), "shape mismatch: value tensor of shape ", value.sizes(),
" cannot be broadcast to indexing result of shape ", info.src.sizes());
TensorIteratorConfig config;
// info.src is restrided by restride_src with 0 strided dimensions
config.set_check_mem_overlap(false);
config.resize_outputs(false);
config.check_all_same_dtype(false);
config.add_output(info.src);
config.add_input(value);
for (auto& index : info.indices) {
config.add_input(index);
}
return config.build();
}
static Tensor & masked_fill_impl_quantized_cpu(Tensor & self, const Tensor & mask, const Scalar& value) {
NoNamesGuard guard;
TORCH_CHECK(mask.dtype() == ScalarType::Bool, "masked_fill only supports boolean masks, "
"but got dtype ", mask.dtype());
if (at::has_internal_overlap(self) == MemOverlap::Yes) {
TORCH_WARN(
"Use of masked_fill_ on expanded tensors is deprecated. "
"Please clone() the tensor before performing this operation. "
"This also applies to advanced indexing e.g. tensor[mask] = scalar");
}
at::assert_no_partial_overlap(self, mask);
auto iter = TensorIteratorConfig()
.set_check_mem_overlap(false) // deprecated, but not a hard error
.check_all_same_dtype(false)
.resize_outputs(false)
.add_output(self)
.add_input(mask)
.build();
masked_fill_kernel_quantized_stub(iter.device_type(), iter, value, self.q_scale(), self.q_zero_point());
return self;
}
}
Tensor & masked_fill__quantized_cpu(Tensor& self, const Tensor & mask, const Scalar& value) {
TORCH_CHECK(self.qscheme() == c10::kPerTensorAffine, "masked_fill__quantized_cpu for quantized tensors is currently only supported for per tensor quantized tensors");
auto maybe_outnames = namedinference::broadcast_to_outnames(self, mask, "masked_fill_");
masked_fill_impl_quantized_cpu(self, mask, value);
namedinference::propagate_names_if_nonempty(self, maybe_outnames);
return self;
}
Tensor & masked_fill__quantized_cpu(Tensor& self, const Tensor & mask, const Tensor & value) {
TORCH_CHECK(self.qscheme() == c10::kPerTensorAffine, "masked_fill__quantized_cpu for quantized tensors is currently only supported for per tensor quantized tensors");
auto maybe_outnames = namedinference::broadcast_to_outnames(self, mask, "masked_fill_");
TORCH_CHECK(value.dim() == 0, "masked_fill_ only supports a 0-dimensional value tensor, but got tensor "
"with ", value.dim(), " dimension(s).");
masked_fill_impl_quantized_cpu(self, mask, value.item());
namedinference::propagate_names_if_nonempty(self, maybe_outnames);
return self;
}
static Tensor & masked_fill_impl_quantized_cuda(Tensor& self, const Tensor & mask, const Scalar& value) {
TORCH_CHECK(self.device() == mask.device(), "expected self and mask to be on the same device, but got mask on ",
mask.device(), " and self on ", self.device());
TORCH_CHECK(mask.scalar_type() == kBool, "masked_fill only supports boolean masks, "
"but got dtype ", mask.scalar_type());
TORCH_CHECK(self.qscheme() == c10::kPerTensorAffine, "masked_fill__quantized_cpu for quantized tensors is currently only supported for per tensor quantized tensors");
auto maybe_outnames = namedinference::broadcast_to_outnames(self, mask, "masked_fill_");
if (at::has_internal_overlap(self) == MemOverlap::Yes) {
TORCH_WARN(
"Use of masked_fill_ on expanded tensors is deprecated. "
"Please clone() the tensor before performing this operation. "
"This also applies to advanced indexing e.g. tensor[mask] = scalar");
}
at::assert_no_partial_overlap(self, mask);
c10::MaybeOwned<Tensor> b_mask = expand_inplace(self, mask, "masked_fill_");
auto iter = TensorIteratorConfig()
.set_check_mem_overlap(false)
.check_all_same_dtype(false)
.resize_outputs(false)
.add_output(self)
.add_input(self)
.add_input(*b_mask)
.build();
masked_fill_kernel_quantized_stub(iter.device_type(), iter, value, self.q_scale(), self.q_zero_point());
namedinference::propagate_names_if_nonempty(self, maybe_outnames);
return self;
}
Tensor & masked_fill__quantized_cuda(Tensor& self, const Tensor & mask, const Scalar& value) {
TORCH_CHECK(!self.device().is_cpu(), "masked_fill_: Expected inputs to be on same device")
return masked_fill_impl_quantized_cuda(self, mask, value);
}
Tensor & masked_fill__quantized_cuda(Tensor& self, const Tensor & mask, const Tensor & value) {
TORCH_CHECK(value.dim() == 0, "masked_fill_ only supports a 0-dimensional value tensor, but got tensor "
"with ", value.dim(), " dimension(s).");
TORCH_CHECK(!self.device().is_cpu(), "masked_fill_: Expected inputs to be on same device")
return masked_fill_impl_quantized_cuda(self, mask, value.item());
}
Tensor& _index_put_impl_quantized_cpu_(Tensor & self, const torch::List<std::optional<Tensor>>& indices, const Tensor & value, const bool accumulate, const bool unsafe) {
TORCH_CHECK_INDEX(indices.size() <= (size_t)self.dim(), "too many indices for tensor of dimension ", self.dim(), " (got ", indices.size(), ")");
TORCH_CHECK(!value.is_quantized(), "Value argument for quantized input_put should not be quantized");
TORCH_CHECK(self.qscheme() == c10::kPerTensorAffine, "index_put for quantized tensors is currently only supported for per tensor quantized tensors");
TORCH_CHECK(!accumulate, "index_put for quantized tensors is currently only supported for accumulate=False");
if (at::has_internal_overlap(self) == MemOverlap::Yes) {
TORCH_WARN(
"Use of index_put_ on expanded tensors is deprecated. "
"Please clone() the tensor before performing this operation. "
"This also applies to advanced indexing e.g. tensor[indices] = tensor");
}
auto masked_fill_dispatch = canDispatchToMaskedFill(self, indices, value);
if (std::get<0>(masked_fill_dispatch)) {
return self.masked_fill_(std::get<1>(masked_fill_dispatch), value.item());
}
auto value_ = value;
if (value.device() != self.device() && value.numel() == 1 && value.dim() == 0) {
value_ = value.to(self.device());
}
at::assert_no_overlap(self, value);
// NOLINTNEXTLINE(performance-implicit-conversion-in-loop)
for (const std::optional<Tensor>& index: indices) {
if (index.has_value()) {
at::assert_no_overlap(self, *index);
}
}
auto info = make_info(self, indices);
auto iter = make_index_put_iterator(info, value_);
index_put_kernel_quantized_stub(iter.device_type(), iter, info.indexed_sizes, info.indexed_strides, accumulate, self.q_scale(), self.q_zero_point());
return self;
}
Tensor& _index_put_impl_quantized_cuda_(Tensor & self, const torch::List<std::optional<Tensor>>& indices, const Tensor & value, const bool accumulate, const bool unsafe) {
TORCH_CHECK_INDEX(indices.size() <= (size_t)self.dim(), "too many indices for tensor of dimension ", self.dim(), " (got ", indices.size(), ")");
TORCH_CHECK(!value.is_quantized(), "Value argument for quantized input_put should not be quantized");
TORCH_CHECK(self.qscheme() == c10::kPerTensorAffine, "index_put for quantized tensors is currently only supported for per tensor quantized tensors");
TORCH_CHECK(!accumulate, "index_put for quantized tensors is currently only supported for accumulate=False");
if (at::has_internal_overlap(self) == MemOverlap::Yes) {
TORCH_WARN(
"Use of index_put_ on expanded tensors is deprecated. "
"Please clone() the tensor before performing this operation. "
"This also applies to advanced indexing e.g. tensor[indices] = tensor");
}
auto masked_fill_dispatch = canDispatchToMaskedFill(self, indices, value);
if (std::get<0>(masked_fill_dispatch)) {
return self.masked_fill_(std::get<1>(masked_fill_dispatch), value.item());
}
auto value_ = value;
if (value.device() != self.device() && value.numel() == 1 && value.dim() == 0) {
value_ = value.to(self.device());
}
TORCH_CHECK(value.device() == self.device(), "expected device ", self.device(), " but got device ", value.device(), " for value tensor");
at::assert_no_overlap(self, value);
// NOLINTNEXTLINE(performance-implicit-conversion-in-loop)
for (const std::optional<Tensor>& index: indices) {
if (index.has_value()) {
at::assert_no_overlap(self, *index);
}
}
// See Note [Enabling Deterministic Operations]
if (self.device().type() == DeviceType::CUDA && globalContext().deterministicAlgorithms()) {
index_put_with_sort_quantized_stub(self.device().type(), self, indices, value_, self.q_scale(), self.q_zero_point(), unsafe);
return self;
}
auto info = make_info(self, indices);
auto iter = make_index_put_iterator(info, value_);
index_put_kernel_quantized_stub(iter.device_type(), iter, info.indexed_sizes, info.indexed_strides, accumulate, self.q_scale(), self.q_zero_point());
return self;
}
}