-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
130 lines (105 loc) · 5.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import argparse
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import ignite.distributed as idist
from ignite.engine import Engine, Events
from ignite.utils import convert_tensor
import utils
import models
import datasets
def main(local_rank, args):
device = idist.device()
logger, tb_logger = utils.get_logger(args)
dataset = datasets.get_dataset(args.dataset, args.datadir, augmentations=args.aug)
loader = datasets.get_loader(args, dataset)
model = models.get_model(args, input_shape=dataset['input_shape'])
model = idist.auto_model(model, sync_bn=True)
optimizer = optim.SGD([p for p in model.parameters() if p.requires_grad],
lr=args.lr, momentum=0.9, weight_decay=args.wd)
optimizer = idist.auto_optim(optimizer)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.num_epochs*len(loader['train']))
def training_step(engine, batch):
model.train()
batch = convert_tensor(batch, device=device, non_blocking=True)
outputs = model(batch)
optimizer.zero_grad()
outputs['loss'].backward()
optimizer.step()
scheduler.step()
return outputs
trainer = Engine(training_step)
if logger is not None:
trainer.logger = logger
trainer.tb_logger = tb_logger
trainer.add_event_handler(Events.ITERATION_COMPLETED, utils.log)
if args.dataset not in datasets.FEWSHOT_BENCHMARKS:
@trainer.on(Events.EPOCH_COMPLETED(every=args.eval_freq))
def evaluation_step(engine):
acc = utils.evaluate_nn(model, loader['val'], loader['test'])
if idist.get_rank() == 0:
epoch = engine.state.epoch
engine.logger.info(f'[Epoch {epoch:4d}] [NN Acc {acc:.4f}]')
engine.tb_logger.add_scalar('nn', acc, epoch)
idist.barrier()
else:
@idist.one_rank_only()
@trainer.on(Events.EPOCH_COMPLETED(every=args.eval_freq))
def evaluation_step(engine):
metric = args.eval_fewshot_metric
val = utils.evaluate_fewshot(model, loader['val'], metric)
test = utils.evaluate_fewshot(model, loader['test'], metric)
if idist.get_rank() == 0:
epoch = engine.state.epoch
engine.logger.info(f'[Epoch {epoch:4d}] '
f'[FewShot {metric} {val[0]:.4f}±{val[1]:.4f}] | {test[0]:.4f}±{test[1]:.4f}]')
engine.tb_logger.add_scalar(f'fewshot_{metric}/val', val[0], epoch)
engine.tb_logger.add_scalar(f'fewshot_{metric}/test', test[0], epoch)
idist.barrier()
trainer.add_event_handler(Events.EPOCH_COMPLETED(every=args.save_freq), utils.save_checkpoint, args,
model=model, optimizer=optimizer, scheduler=scheduler)
trainer.run(loader['train'], max_epochs=args.num_epochs)
if tb_logger is not None:
tb_logger.close()
if __name__ == "__main__":
cudnn.benchmark = True
parser = argparse.ArgumentParser()
parser.add_argument('--logdir', type=str, required=True)
parser.add_argument('--dataset', type=str, default='miniimagenet')
parser.add_argument('--datadir', type=str, default='/data/miniimagenet')
parser.add_argument('--num-epochs', type=int, default=400)
parser.add_argument('--base-lr', type=float, default=0.03)
parser.add_argument('--wd', type=float, default=5e-4)
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--aug', type=str, default=['strong', 'weak'], nargs='+')
parser.add_argument('--save-freq', type=int, default=10)
parser.add_argument('--eval-freq', type=int, default=10)
parser.add_argument('--eval-fewshot-metric', type=str, default='supcon')
parser.add_argument('--model', type=str, default='psco')
parser.add_argument('--backbone', type=str, default='conv5')
parser.add_argument('--prediction', action='store_true')
parser.add_argument('--temperature', type=float, default=0.2)
parser.add_argument('--momentum', type=float, default=0.99)
parser.add_argument('--queue-size', type=int, default=16384)
parser.add_argument('--num-shots', type=int, default=4)
parser.add_argument('--shot-sampling', type=str, default='topk', choices=['topk', 'prob'])
parser.add_argument('--temperature2', type=float, default=1.)
parser.add_argument('--sinkhorn-iter', type=int, default=3)
# for evaluation
parser.add_argument('--N', type=int, default=5)
parser.add_argument('--K', type=int, default=1)
parser.add_argument('--Q', type=int, default=15)
parser.add_argument('--num-tasks', type=int, default=600)
# for multiprocessing
parser.add_argument('--master-port', type=int, default=2222)
args = parser.parse_args()
args.lr = args.base_lr * args.batch_size / 256
n = torch.cuda.device_count()
if n == 1:
with idist.Parallel() as parallel:
parallel.run(main, args)
else:
with idist.Parallel(backend='nccl', nproc_per_node=n, master_port=os.environ.get('MASTER_PORT', args.master_port)) as parallel:
parallel.run(main, args)