-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdataset.py
49 lines (40 loc) · 1.81 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torchvision.datasets as datasets
import torchvision.transforms as T
def get_dataset(dataset, normalize=True):
if dataset == 'mnist':
transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))]) if normalize else T.ToTensor()
train_dataset = datasets.MNIST('./dataset/mnist', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('./dataset/mnist', train=False, download=True, transform=transform)
elif dataset == 'fmnist':
transform = T.ToTensor()
train_dataset = datasets.FashionMNIST('./dataset/fmnist', train=True, download=True, transform=transform)
test_dataset = datasets.FashionMNIST('./dataset/fmnist', train=False, download=True, transform=transform)
elif dataset == 'cifar10':
transform_train = T.Compose([
T.RandomCrop(32, padding=4),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))],
)
transform_test = T.Compose([
T.ToTensor(),
T.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))],
)
train_dataset = datasets.CIFAR10('./dataset/cifar10', train=True, download=True, transform=transform_train)
test_dataset = datasets.CIFAR10('./dataset/cifar10', train=False, download=True, transform=transform_test)
elif dataset == 'tiny-imagenet':
transform_train = T.Compose([
T.RandomResizedCrop(64),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))],
)
transform_test = T.Compose([
T.ToTensor(),
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))],
)
train_dataset = datasets.ImageFolder('./data/tiny-imagenet-200/train', transform_train)
test_dataset = datasets.ImageFolder('./data/tiny-imagenet-200/val', transform_test)
else:
raise ValueError('Unknown dataset')
return train_dataset, test_dataset