forked from ymcui/Chinese-LLaMA-Alpaca
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradio_demo.py
166 lines (148 loc) · 6.03 KB
/
gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import sys
import gradio as gr
import argparse
import os
parser = argparse.ArgumentParser()
parser.add_argument('--base_model', default=None, type=str, required=True)
parser.add_argument('--lora_model', default=None, type=str,help="If None, perform inference on the base model")
parser.add_argument('--tokenizer_path',default=None,type=str)
parser.add_argument('--gpus', default="0", type=str)
parser.add_argument('--share', default=True, help='share gradio domain name')
parser.add_argument('--load_in_8bit',action='store_true', help='use 8 bit model')
parser.add_argument('--only_cpu',action='store_true',help='only use CPU for inference')
args = parser.parse_args()
share = args.share
load_in_8bit = args.load_in_8bit
if args.only_cpu is True:
args.gpus = ""
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer, GenerationConfig
from peft import PeftModel
generation_config = dict(
temperature=0.2,
top_k=40,
top_p=0.9,
do_sample=True,
num_beams=1,
repetition_penalty=1.1,
max_new_tokens=400
)
load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
if args.tokenizer_path is None:
args.tokenizer_path = args.lora_model
if args.lora_model is None:
args.tokenizer_path = args.base_model
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path)
base_model = LlamaForCausalLM.from_pretrained(
args.base_model,
load_in_8bit=load_in_8bit,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto',
)
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenzier_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
if model_vocab_size!=tokenzier_vocab_size:
assert tokenzier_vocab_size > model_vocab_size
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenzier_vocab_size)
if args.lora_model is not None:
print("loading peft model")
model = PeftModel.from_pretrained(base_model, args.lora_model,torch_dtype=load_type,device_map='auto',)
else:
model = base_model
if device==torch.device('cpu'):
model.float()
model.eval()
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], []
def generate_prompt(instruction):
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response: """
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def predict(
input,
chatbot,
history,
max_new_tokens=128,
top_p=0.75,
temperature=0.1,
top_k=40,
num_beams=4,
repetition_penalty=1.0,
max_memory=256,
**kwargs,
):
now_input = input
chatbot.append((input, ""))
history = history or []
if len(history) != 0:
input = "".join(["### Instruction:\n" + i[0] +"\n\n" + "### Response: " + i[1] + "\n\n" for i in history]) + \
"### Instruction:\n" + input
input = input[len("### Instruction:\n"):]
if len(input) > max_memory:
input = input[-max_memory:]
prompt = generate_prompt(input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
max_new_tokens=max_new_tokens,
repetition_penalty=float(repetition_penalty),
)
s = generation_output.sequences[0]
output = tokenizer.decode(s, skip_special_tokens=True)
output = output.split("### Response:")[-1].strip()
history.append((now_input, output))
chatbot[-1] = (now_input, output)
return chatbot, history
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">Chinese LLaMA & Alpaca LLM</h1>""")
current_file_path = os.path.abspath(os.path.dirname(__file__))
gr.Image(f'{current_file_path}/../../pics/banner.png', label = 'Chinese LLaMA & Alpaca LLM')
gr.Markdown("> 为了促进大模型在中文NLP社区的开放研究,本项目开源了中文LLaMA模型和指令精调的Alpaca大模型。这些模型在原版LLaMA的基础上扩充了中文词表并使用了中文数据进行二次预训练,进一步提升了中文基础语义理解能力。同时,中文Alpaca模型进一步使用了中文指令数据进行精调,显著提升了模型对指令的理解和执行能力")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(
0, 4096, value=128, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(
0, 1, value=0.7, step=0.01, label="Temperature", interactive=True)
history = gr.State([]) # (message, bot_message)
submitBtn.click(predict, [user_input, chatbot, history, max_length, top_p, temperature], [chatbot, history],
show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(share=share, inbrowser=True, server_name = '0.0.0.0', server_port=19324)