From caad5c3a75d5ab0065f3bb56acaa454b24f03e96 Mon Sep 17 00:00:00 2001 From: Akshita Bhagia Date: Sun, 10 Nov 2024 23:48:34 -0800 Subject: [PATCH] flops script --- scripts/scaling/final_flops.py | 128 +++++++++++++++++++++++++++++++++ 1 file changed, 128 insertions(+) create mode 100644 scripts/scaling/final_flops.py diff --git a/scripts/scaling/final_flops.py b/scripts/scaling/final_flops.py new file mode 100644 index 000000000..09d9951cd --- /dev/null +++ b/scripts/scaling/final_flops.py @@ -0,0 +1,128 @@ +import json + +import matplotlib.pyplot as plt +import numpy as np +import seaborn as sns + +from olmo.scaling.scaling_laws.utils import ( + FinalConfig, + chinchilla_flops_fit, + chinchilla_fit, + get_flops_data_by_name, + get_coefficients_huber, + get_coefficients, + grad_chinchilla_flops_fit, + parse_args, +) + +MARKERS = ["s", "P", "p", "*"] + + +def main(): + args = parse_args() + + with open(args.config_path) as f: + configs = json.load(f) + configs = {name: FinalConfig(**config) for name, config in configs.items()} + + data_by_name = get_flops_data_by_name(configs, args.keys, num_to_avg=args.num_to_avg) + + sns.set_style("whitegrid") + + plt.figure(figsize=(6, 4.5)) + + train_fs, train_ys = [], [] + for name, data in data_by_name.items(): + config = configs[name] + if config.mode == "train": + train_fs += data["fs"] + train_ys += data["ys"] + + # fit the parameters + # coefficients = get_coefficients_huber( + # train_fs, + # train_ys, + # chinchilla_flops_fit, + # grad_chinchilla_flops_fit, + # p0=[-3.0, 0.09, 0.1], + # bounds=[(None, None), (None, None), (None, None)], + # max_iter=100000, + # ) + + coefficients = get_coefficients(train_fs, train_ys, chinchilla_fit, p0=[-3.0, 0.09, 0.1]) + + a, b, E = coefficients + + # make predictions + predicted_data_by_name = {} + plotted_predicted_data_by_name = {} + for name, data in data_by_name.items(): + config = configs[name] + predicted_data_by_name[name] = { + "fs": data["fs"], + "ys": [chinchilla_flops_fit(flops, coefficients) for flops in data["fs"]], + } + fs = np.linspace(min(data["fs"]), max(data["fs"]), 100) + plotted_predicted_data_by_name[name] = { + "fs": fs, + "ys": [chinchilla_flops_fit(flops, coefficients) for flops in fs], + } + + # plot the actual data + for name, data in data_by_name.items(): + config = configs[name] + # plt.scatter(data["ds"], data["ys"], color="white", edgecolors=config.color, label=config.label, s=10) + for i, (f, y) in enumerate(zip(data["fs"], data["ys"])): + plt.scatter(f, y, color=config.color, marker=MARKERS[i], s=50) + + predicted_data = predicted_data_by_name[name] + for f, y, y_pred in zip(data["fs"], data["ys"], predicted_data["ys"]): + rel_error = (y_pred - y) / y + plt.annotate( + f"{rel_error * 100:+.1f}%", + (f, y), + textcoords="offset points", + xytext=(6, 6), + ha="center", + fontsize=8, + color=config.color, + ) + + # plot the fitted curve + for name, data in plotted_predicted_data_by_name.items(): + config = configs[name] + plt.plot( + data["fs"], + data["ys"], + color=config.color, + linestyle="--", + linewidth=2.0, + label=f'{config.label} ({"fitted" if config.mode == "train" else "predicted"})', + ) + plt.text( + x=0.20, + y=0.55, + s=f"L(F) = {a:.2f} F ^ {b:.2f} + {E:.2f}", + fontsize=10, + transform=plt.gca().transAxes, + ) + + plt.xscale("log") + plt.legend(loc="upper right", ncols=1, fontsize=10) + plt.xlabel("Flops (F)") + plt.ylabel("Loss") + plt.title(args.key) + plt.savefig(args.output_path, dpi=300, bbox_inches="tight") + + # y_1b_3T = chinchilla_flops_fit([1176832000, 3e12], coefficients) + # print(f"Predicted final loss for 1b-3T: {y_1b_3T:.3f}") + # y_7b_2T = chinchilla_flops_fit([6682316800, 2e12], coefficients) + # print(f"Predicted final loss for 7b-2T: {y_7b_2T:.3f}") + # y_7b_3T = chinchilla_flops_fit([6682316800, 3e12], coefficients) + # print(f"Predicted final loss for 7b-3T: {y_7b_3T:.3f}") + # y_13b_5T = chinchilla_flops_fit([13e9, 5e12], coefficients) + # print(f"Predicted final loss for 13b-5T: {y_13b_5T:.3f}") + + +if __name__ == "__main__": + main()