forked from stm32duino/stm32flash
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstm32.c
1168 lines (1019 loc) · 33.3 KB
/
stm32.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
stm32flash - Open Source ST STM32 flash program for *nix
Copyright 2010 Geoffrey McRae <[email protected]>
Copyright 2012-2014 Tormod Volden <[email protected]>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include "stm32.h"
#include "port.h"
#include "utils.h"
#define STM32_ACK 0x79
#define STM32_NACK 0x1F
#define STM32_BUSY 0x76
#define STM32_CMD_INIT 0x7F
#define STM32_CMD_GET 0x00 /* get the version and command supported */
#define STM32_CMD_GVR 0x01 /* get version and read protection status */
#define STM32_CMD_GID 0x02 /* get ID */
#define STM32_CMD_RM 0x11 /* read memory */
#define STM32_CMD_GO 0x21 /* go */
#define STM32_CMD_WM 0x31 /* write memory */
#define STM32_CMD_WM_NS 0x32 /* no-stretch write memory */
#define STM32_CMD_ER 0x43 /* erase */
#define STM32_CMD_EE 0x44 /* extended erase */
#define STM32_CMD_EE_NS 0x45 /* extended erase no-stretch */
#define STM32_CMD_WP 0x63 /* write protect */
#define STM32_CMD_WP_NS 0x64 /* write protect no-stretch */
#define STM32_CMD_UW 0x73 /* write unprotect */
#define STM32_CMD_UW_NS 0x74 /* write unprotect no-stretch */
#define STM32_CMD_RP 0x82 /* readout protect */
#define STM32_CMD_RP_NS 0x83 /* readout protect no-stretch */
#define STM32_CMD_UR 0x92 /* readout unprotect */
#define STM32_CMD_UR_NS 0x93 /* readout unprotect no-stretch */
#define STM32_CMD_CRC 0xA1 /* compute CRC */
#define STM32_CMD_ERR 0xFF /* not a valid command */
#define STM32_RESYNC_TIMEOUT 35 /* seconds */
#define STM32_MASSERASE_TIMEOUT 35 /* seconds */
#define STM32_PAGEERASE_TIMEOUT 5 /* seconds */
#define STM32_BLKWRITE_TIMEOUT 1 /* seconds */
#define STM32_WUNPROT_TIMEOUT 1 /* seconds */
#define STM32_WPROT_TIMEOUT 1 /* seconds */
#define STM32_RPROT_TIMEOUT 1 /* seconds */
#define STM32_CMD_GET_LENGTH 17 /* bytes in the reply */
struct stm32_cmd {
uint8_t get;
uint8_t gvr;
uint8_t gid;
uint8_t rm;
uint8_t go;
uint8_t wm;
uint8_t er; /* this may be extended erase */
uint8_t wp;
uint8_t uw;
uint8_t rp;
uint8_t ur;
uint8_t crc;
};
/* Reset code for ARMv7-M (Cortex-M3) and ARMv6-M (Cortex-M0)
* see ARMv7-M or ARMv6-M Architecture Reference Manual (table B3-8)
* or "The definitive guide to the ARM Cortex-M3", section 14.4.
*/
static const uint8_t stm_reset_code[] = {
0x01, 0x49, // ldr r1, [pc, #4] ; (<AIRCR_OFFSET>)
0x02, 0x4A, // ldr r2, [pc, #8] ; (<AIRCR_RESET_VALUE>)
0x0A, 0x60, // str r2, [r1, #0]
0xfe, 0xe7, // endless: b endless
0x0c, 0xed, 0x00, 0xe0, // .word 0xe000ed0c <AIRCR_OFFSET> = NVIC AIRCR register address
0x04, 0x00, 0xfa, 0x05 // .word 0x05fa0004 <AIRCR_RESET_VALUE> = VECTKEY | SYSRESETREQ
};
static const uint32_t stm_reset_code_length = sizeof(stm_reset_code);
/* RM0360, Empty check
* On STM32F070x6 and STM32F030xC devices only, internal empty check flag is
* implemented to allow easy programming of the virgin devices by the boot loader. This flag is
* used when BOOT0 pin is defining Main Flash memory as the target boot space. When the
* flag is set, the device is considered as empty and System memory (boot loader) is selected
* instead of the Main Flash as a boot space to allow user to program the Flash memory.
* This flag is updated only during Option bytes loading: it is set when the content of the
* address 0x08000 0000 is read as 0xFFFF FFFF, otherwise it is cleared. It means a power
* on or setting of OBL_LAUNCH bit in FLASH_CR register is needed to clear this flag after
* programming of a virgin device to execute user code after System reset.
*/
static const uint8_t stm_obl_launch_code[] = {
0x01, 0x49, // ldr r1, [pc, #4] ; (<FLASH_CR>)
0x02, 0x4A, // ldr r2, [pc, #8] ; (<OBL_LAUNCH>)
0x0A, 0x60, // str r2, [r1, #0]
0xfe, 0xe7, // endless: b endless
0x10, 0x20, 0x02, 0x40, // address: FLASH_CR = 40022010
0x00, 0x20, 0x00, 0x00 // value: OBL_LAUNCH = 00002000
};
static const uint32_t stm_obl_launch_code_length = sizeof(stm_obl_launch_code);
/* RM0394, Empty check
* On STM32L452 (and possibly all STM32L45xxx/46xxx) internal empty check flag is
* implemented to allow easy programming of the virgin devices by the boot loader. This flag is
* used when BOOT0 pin is defining Main Flash memory as the target boot space. When the
* flag is set, the device is considered as empty and System memory (boot loader) is selected
* instead of the Main Flash as a boot space to allow user to program the Flash memory.
* This flag is updated only during Option bytes loading: it is set when the content of the
* address 0x08000 0000 is read as 0xFFFF FFFF, otherwise it is cleared. It means a power
* on or setting of OBL_LAUNCH bit in FLASH_CR register or a toggle of PEMPTY bit in FLASH_SR
* register is needed to clear this flag after after programming of a virgin device to execute
* user code after System reset.
* In STM32L45xxx/46xxx the register FLASH_CR could be locked and a special SW sequence is
* required for unlocking it. If a previous unsuccessful unlock has happened, a reset is
* required before the unlock. Due to such complications, toggling the PEMPTY bit in FLASH_SR
* seams the most reasonable choice.
* The code below check first word in flash and flag PEMPTY. If they do not match, then it
* toggles PEMPTY. At last, it resets.
*/
static const uint8_t stm_pempty_launch_code[] = {
0x08, 0x48, // ldr r0, [pc, #32] ; (<BASE_FLASH>)
0x00, 0x68, // ldr r0, [r0, #0]
0x01, 0x30, // adds r0, #1
0x41, 0x1e, // subs r1, r0, #1
0x88, 0x41, // sbcs r0, r1
0x07, 0x49, // ldr r1, [pc, #28] ; (<FLASH_SR>)
0x07, 0x4a, // ldr r2, [pc, #28] ; (<PEMPTY_MASK>)
0x0b, 0x68, // ldr r3, [r1, #0]
0x13, 0x40, // ands r3, r2
0x5c, 0x1e, // subs r4, r3, #1
0xa3, 0x41, // sbcs r3, r4
0x98, 0x42, // cmp r0, r3
0x00, 0xd1, // bne.n skip1
0x0a, 0x60, // str r2, [r1, #0]
0x04, 0x48, // skip1: ldr r0, [pc, #16] ; (<AIRCR_OFFSET>)
0x05, 0x49, // ldr r1, [pc, #16] ; (<AIRCR_RESET_VALUE>)
0x01, 0x60, // str r1, [r0, #0]
0xfe, 0xe7, // endless: b.n endless
0x00, 0x00, 0x00, 0x08, // .word 0x08000000 <BASE_FLASH>
0x10, 0x20, 0x02, 0x40, // .word 0x40022010 <FLASH_SR>
0x00, 0x00, 0x02, 0x00, // .word 0x00020000 <PEMPTY_MASK>
0x0c, 0xed, 0x00, 0xe0, // .word 0xe000ed0c <AIRCR_OFFSET> = NVIC AIRCR register address
0x04, 0x00, 0xfa, 0x05 // .word 0x05fa0004 <AIRCR_RESET_VALUE> = VECTKEY | SYSRESETREQ
};
static const uint32_t stm_pempty_launch_code_length = sizeof(stm_pempty_launch_code);
extern const stm32_dev_t devices[];
int flash_addr_to_page_ceil(uint32_t addr);
static void stm32_warn_stretching(const char *f)
{
fprintf(stderr, "Attention !!!\n");
fprintf(stderr, "\tThis %s error could be caused by your I2C\n", f);
fprintf(stderr, "\tcontroller not accepting \"clock stretching\"\n");
fprintf(stderr, "\tas required by bootloader.\n");
fprintf(stderr, "\tCheck \"I2C.txt\" in stm32flash source code.\n");
}
static stm32_err_t stm32_get_ack_timeout(const stm32_t *stm, time_t timeout)
{
struct port_interface *port = stm->port;
uint8_t byte;
port_err_t p_err;
time_t t0, t1;
if (!(port->flags & PORT_RETRY))
timeout = 0;
if (timeout)
time(&t0);
do {
p_err = port->read(port, &byte, 1);
if (p_err == PORT_ERR_TIMEDOUT && timeout) {
time(&t1);
if (t1 < t0 + timeout)
continue;
}
if (p_err != PORT_ERR_OK) {
fprintf(stderr, "Failed to read ACK byte\n");
return STM32_ERR_UNKNOWN;
}
if (byte == STM32_ACK)
return STM32_ERR_OK;
if (byte == STM32_NACK)
return STM32_ERR_NACK;
if (byte != STM32_BUSY) {
fprintf(stderr, "Got byte 0x%02x instead of ACK\n",
byte);
return STM32_ERR_UNKNOWN;
}
} while (1);
}
static stm32_err_t stm32_get_ack(const stm32_t *stm)
{
return stm32_get_ack_timeout(stm, 0);
}
static stm32_err_t stm32_send_command_timeout(const stm32_t *stm,
const uint8_t cmd,
time_t timeout)
{
struct port_interface *port = stm->port;
stm32_err_t s_err;
port_err_t p_err;
uint8_t buf[2];
buf[0] = cmd;
buf[1] = cmd ^ 0xFF;
p_err = port->write(port, buf, 2);
if (p_err != PORT_ERR_OK) {
fprintf(stderr, "Failed to send command\n");
return STM32_ERR_UNKNOWN;
}
s_err = stm32_get_ack_timeout(stm, timeout);
if (s_err == STM32_ERR_OK)
return STM32_ERR_OK;
if (s_err == STM32_ERR_NACK)
fprintf(stderr, "Got NACK from device on command 0x%02x\n", cmd);
else
fprintf(stderr, "Unexpected reply from device on command 0x%02x\n", cmd);
return STM32_ERR_UNKNOWN;
}
static stm32_err_t stm32_send_command(const stm32_t *stm, const uint8_t cmd)
{
return stm32_send_command_timeout(stm, cmd, 0);
}
/* if we have lost sync, send a wrong command and expect a NACK */
static stm32_err_t stm32_resync(const stm32_t *stm)
{
struct port_interface *port = stm->port;
port_err_t p_err;
uint8_t buf[2], ack;
time_t t0, t1;
time(&t0);
t1 = t0;
buf[0] = STM32_CMD_ERR;
buf[1] = STM32_CMD_ERR ^ 0xFF;
while (t1 < t0 + STM32_RESYNC_TIMEOUT) {
p_err = port->write(port, buf, 2);
if (p_err != PORT_ERR_OK) {
usleep(500000);
time(&t1);
continue;
}
p_err = port->read(port, &ack, 1);
if (p_err != PORT_ERR_OK) {
time(&t1);
continue;
}
if (ack == STM32_NACK)
return STM32_ERR_OK;
time(&t1);
}
return STM32_ERR_UNKNOWN;
}
/*
* some command receive reply frame with variable length, and length is
* embedded in reply frame itself.
* We can guess the length, but if we guess wrong the protocol gets out
* of sync.
* Use resync for frame oriented interfaces (e.g. I2C) and byte-by-byte
* read for byte oriented interfaces (e.g. UART).
*
* to run safely, data buffer should be allocated for 256+1 bytes
*
* len is value of the first byte in the frame.
*/
static stm32_err_t stm32_guess_len_cmd(const stm32_t *stm, uint8_t cmd,
uint8_t *data, unsigned int len)
{
struct port_interface *port = stm->port;
port_err_t p_err;
if (stm32_send_command(stm, cmd) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
if (port->flags & PORT_BYTE) {
/* interface is UART-like */
p_err = port->read(port, data, 1);
if (p_err != PORT_ERR_OK)
return STM32_ERR_UNKNOWN;
len = data[0];
p_err = port->read(port, data + 1, len + 1);
if (p_err != PORT_ERR_OK)
return STM32_ERR_UNKNOWN;
return STM32_ERR_OK;
}
p_err = port->read(port, data, len + 2);
if (p_err == PORT_ERR_OK && len == data[0])
return STM32_ERR_OK;
if (p_err != PORT_ERR_OK) {
/* restart with only one byte */
if (stm32_resync(stm) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
if (stm32_send_command(stm, cmd) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
p_err = port->read(port, data, 1);
if (p_err != PORT_ERR_OK)
return STM32_ERR_UNKNOWN;
}
fprintf(stderr, "Re sync (len = %d)\n", data[0]);
if (stm32_resync(stm) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
len = data[0];
if (stm32_send_command(stm, cmd) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
p_err = port->read(port, data, len + 2);
if (p_err != PORT_ERR_OK)
return STM32_ERR_UNKNOWN;
return STM32_ERR_OK;
}
/*
* Some interface, e.g. UART, requires a specific init sequence to let STM32
* autodetect the interface speed.
* The sequence is only required one time after reset.
* stm32flash has command line flag "-c" to prevent sending the init sequence
* in case it was already sent before.
* User can easily forget adding "-c". In this case the bootloader would
* interpret the init sequence as part of a command message, then waiting for
* the rest of the message blocking the interface.
* This function sends the init sequence and, in case of timeout, recovers
* the interface.
*/
static stm32_err_t stm32_send_init_seq(const stm32_t *stm)
{
struct port_interface *port = stm->port;
port_err_t p_err;
uint8_t byte, cmd = STM32_CMD_INIT;
p_err = port->write(port, &cmd, 1);
if (p_err != PORT_ERR_OK) {
fprintf(stderr, "Failed to send init to device\n");
return STM32_ERR_UNKNOWN;
}
p_err = port->read(port, &byte, 1);
if (p_err == PORT_ERR_OK && byte == STM32_ACK)
return STM32_ERR_OK;
if (p_err == PORT_ERR_OK && byte == STM32_NACK) {
/* We could get error later, but let's continue, for now. */
fprintf(stderr,
"Warning: the interface was not closed properly.\n");
return STM32_ERR_OK;
}
if (p_err != PORT_ERR_TIMEDOUT) {
fprintf(stderr, "Failed to init device.\n");
return STM32_ERR_UNKNOWN;
}
/*
* Check if previous STM32_CMD_INIT was taken as first byte
* of a command. Send a new byte, we should get back a NACK.
*/
p_err = port->write(port, &cmd, 1);
if (p_err != PORT_ERR_OK) {
fprintf(stderr, "Failed to send init to device\n");
return STM32_ERR_UNKNOWN;
}
p_err = port->read(port, &byte, 1);
if (p_err == PORT_ERR_OK && byte == STM32_NACK)
return STM32_ERR_OK;
fprintf(stderr, "Failed to init device.\n");
return STM32_ERR_UNKNOWN;
}
/* find newer command by higher code */
#define newer(prev, a) (((prev) == STM32_CMD_ERR) \
? (a) \
: (((prev) > (a)) ? (prev) : (a)))
stm32_t *stm32_init(struct port_interface *port, const char init)
{
uint8_t len, val, buf[257];
stm32_t *stm;
int i, new_cmds;
stm = calloc(sizeof(stm32_t), 1);
stm->cmd = malloc(sizeof(stm32_cmd_t));
memset(stm->cmd, STM32_CMD_ERR, sizeof(stm32_cmd_t));
stm->port = port;
if ((port->flags & PORT_CMD_INIT) && init)
if (stm32_send_init_seq(stm) != STM32_ERR_OK)
return NULL;
/* get the version and read protection status */
if (stm32_send_command(stm, STM32_CMD_GVR) != STM32_ERR_OK) {
stm32_close(stm);
return NULL;
}
/* From AN, only UART bootloader returns 3 bytes */
len = (port->flags & PORT_GVR_ETX) ? 3 : 1;
if (port->read(port, buf, len) != PORT_ERR_OK)
return NULL;
stm->version = buf[0];
stm->option1 = (port->flags & PORT_GVR_ETX) ? buf[1] : 0;
stm->option2 = (port->flags & PORT_GVR_ETX) ? buf[2] : 0;
if (stm32_get_ack(stm) != STM32_ERR_OK) {
stm32_close(stm);
return NULL;
}
/* get the bootloader information */
len = STM32_CMD_GET_LENGTH;
if (port->cmd_get_reply)
for (i = 0; port->cmd_get_reply[i].length; i++)
if (stm->version == port->cmd_get_reply[i].version) {
len = port->cmd_get_reply[i].length;
break;
}
if (stm32_guess_len_cmd(stm, STM32_CMD_GET, buf, len) != STM32_ERR_OK)
return NULL;
len = buf[0] + 1;
stm->bl_version = buf[1];
new_cmds = 0;
for (i = 1; i < len; i++) {
val = buf[i + 1];
switch (val) {
case STM32_CMD_GET:
stm->cmd->get = val; break;
case STM32_CMD_GVR:
stm->cmd->gvr = val; break;
case STM32_CMD_GID:
stm->cmd->gid = val; break;
case STM32_CMD_RM:
stm->cmd->rm = val; break;
case STM32_CMD_GO:
stm->cmd->go = val; break;
case STM32_CMD_WM:
case STM32_CMD_WM_NS:
stm->cmd->wm = newer(stm->cmd->wm, val);
break;
case STM32_CMD_ER:
case STM32_CMD_EE:
case STM32_CMD_EE_NS:
stm->cmd->er = newer(stm->cmd->er, val);
break;
case STM32_CMD_WP:
case STM32_CMD_WP_NS:
stm->cmd->wp = newer(stm->cmd->wp, val);
break;
case STM32_CMD_UW:
case STM32_CMD_UW_NS:
stm->cmd->uw = newer(stm->cmd->uw, val);
break;
case STM32_CMD_RP:
case STM32_CMD_RP_NS:
stm->cmd->rp = newer(stm->cmd->rp, val);
break;
case STM32_CMD_UR:
case STM32_CMD_UR_NS:
stm->cmd->ur = newer(stm->cmd->ur, val);
break;
case STM32_CMD_CRC:
stm->cmd->crc = newer(stm->cmd->crc, val);
break;
default:
if (new_cmds++ == 0)
fprintf(stderr,
"GET returns unknown commands (0x%2x",
val);
else
fprintf(stderr, ", 0x%2x", val);
}
}
if (new_cmds)
fprintf(stderr, ")\n");
if (stm32_get_ack(stm) != STM32_ERR_OK) {
stm32_close(stm);
return NULL;
}
if (stm->cmd->get == STM32_CMD_ERR
|| stm->cmd->gvr == STM32_CMD_ERR
|| stm->cmd->gid == STM32_CMD_ERR) {
fprintf(stderr, "Error: bootloader did not returned correct information from GET command\n");
return NULL;
}
/* get the device ID */
if (stm32_guess_len_cmd(stm, stm->cmd->gid, buf, 1) != STM32_ERR_OK) {
stm32_close(stm);
return NULL;
}
len = buf[0] + 1;
if (len < 2) {
stm32_close(stm);
fprintf(stderr, "Only %d bytes sent in the PID, unknown/unsupported device\n", len);
return NULL;
}
stm->pid = (buf[1] << 8) | buf[2];
if (len > 2) {
fprintf(stderr, "This bootloader returns %d extra bytes in PID:", len);
for (i = 2; i <= len ; i++)
fprintf(stderr, " %02x", buf[i]);
fprintf(stderr, "\n");
}
if (stm32_get_ack(stm) != STM32_ERR_OK) {
stm32_close(stm);
return NULL;
}
stm->dev = devices;
while (stm->dev->id != 0x00 && stm->dev->id != stm->pid)
++stm->dev;
if (!stm->dev->id) {
fprintf(stderr, "Unknown/unsupported device (Device ID: 0x%03x)\n", stm->pid);
stm32_close(stm);
return NULL;
}
return stm;
}
void stm32_close(stm32_t *stm)
{
if (stm)
free(stm->cmd);
free(stm);
}
stm32_err_t stm32_read_memory(const stm32_t *stm, uint32_t address,
uint8_t data[], unsigned int len)
{
struct port_interface *port = stm->port;
uint8_t buf[5];
if (!len)
return STM32_ERR_OK;
if (len > 256) {
fprintf(stderr, "Error: READ length limit at 256 bytes\n");
return STM32_ERR_UNKNOWN;
}
if (stm->cmd->rm == STM32_CMD_ERR) {
fprintf(stderr, "Error: READ command not implemented in bootloader.\n");
return STM32_ERR_NO_CMD;
}
if (stm32_send_command(stm, stm->cmd->rm) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
buf[0] = address >> 24;
buf[1] = (address >> 16) & 0xFF;
buf[2] = (address >> 8) & 0xFF;
buf[3] = address & 0xFF;
buf[4] = buf[0] ^ buf[1] ^ buf[2] ^ buf[3];
if (port->write(port, buf, 5) != PORT_ERR_OK)
return STM32_ERR_UNKNOWN;
if (stm32_get_ack(stm) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
if (stm32_send_command(stm, len - 1) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
if (port->read(port, data, len) != PORT_ERR_OK)
return STM32_ERR_UNKNOWN;
return STM32_ERR_OK;
}
stm32_err_t stm32_write_memory(const stm32_t *stm, uint32_t address,
const uint8_t data[], unsigned int len)
{
struct port_interface *port = stm->port;
uint8_t cs, buf[256 + 2];
unsigned int i, aligned_len;
stm32_err_t s_err;
if (!len)
return STM32_ERR_OK;
if (len > 256) {
fprintf(stderr, "Error: READ length limit at 256 bytes\n");
return STM32_ERR_UNKNOWN;
}
/* must be 32bit aligned */
if (address & 0x3) {
fprintf(stderr, "Error: WRITE address must be 4 byte aligned\n");
return STM32_ERR_UNKNOWN;
}
if (stm->cmd->wm == STM32_CMD_ERR) {
fprintf(stderr, "Error: WRITE command not implemented in bootloader.\n");
return STM32_ERR_NO_CMD;
}
/* send the address and checksum */
if (stm32_send_command(stm, stm->cmd->wm) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
buf[0] = address >> 24;
buf[1] = (address >> 16) & 0xFF;
buf[2] = (address >> 8) & 0xFF;
buf[3] = address & 0xFF;
buf[4] = buf[0] ^ buf[1] ^ buf[2] ^ buf[3];
if (port->write(port, buf, 5) != PORT_ERR_OK)
return STM32_ERR_UNKNOWN;
if (stm32_get_ack(stm) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
aligned_len = (len + 3) & ~3;
cs = aligned_len - 1;
buf[0] = aligned_len - 1;
for (i = 0; i < len; i++) {
cs ^= data[i];
buf[i + 1] = data[i];
}
/* padding data */
for (i = len; i < aligned_len; i++) {
cs ^= 0xFF;
buf[i + 1] = 0xFF;
}
buf[aligned_len + 1] = cs;
if (port->write(port, buf, aligned_len + 2) != PORT_ERR_OK)
return STM32_ERR_UNKNOWN;
s_err = stm32_get_ack_timeout(stm, STM32_BLKWRITE_TIMEOUT);
if (s_err != STM32_ERR_OK) {
if ((port->flags & PORT_STRETCH_W)
&& stm->cmd->wm != STM32_CMD_WM_NS)
stm32_warn_stretching("write");
return STM32_ERR_UNKNOWN;
}
return STM32_ERR_OK;
}
stm32_err_t stm32_wunprot_memory(const stm32_t *stm)
{
struct port_interface *port = stm->port;
stm32_err_t s_err;
if (stm->cmd->uw == STM32_CMD_ERR) {
fprintf(stderr, "Error: WRITE UNPROTECT command not implemented in bootloader.\n");
return STM32_ERR_NO_CMD;
}
if (stm32_send_command(stm, stm->cmd->uw) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
s_err = stm32_get_ack_timeout(stm, STM32_WUNPROT_TIMEOUT);
if (s_err == STM32_ERR_NACK) {
fprintf(stderr, "Error: Failed to WRITE UNPROTECT\n");
return STM32_ERR_UNKNOWN;
}
if (s_err != STM32_ERR_OK) {
if ((port->flags & PORT_STRETCH_W)
&& stm->cmd->uw != STM32_CMD_UW_NS)
stm32_warn_stretching("WRITE UNPROTECT");
return STM32_ERR_UNKNOWN;
}
return STM32_ERR_OK;
}
stm32_err_t stm32_wprot_memory(const stm32_t *stm)
{
struct port_interface *port = stm->port;
stm32_err_t s_err;
if (stm->cmd->wp == STM32_CMD_ERR) {
fprintf(stderr, "Error: WRITE PROTECT command not implemented in bootloader.\n");
return STM32_ERR_NO_CMD;
}
if (stm32_send_command(stm, stm->cmd->wp) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
s_err = stm32_get_ack_timeout(stm, STM32_WPROT_TIMEOUT);
if (s_err == STM32_ERR_NACK) {
fprintf(stderr, "Error: Failed to WRITE PROTECT\n");
return STM32_ERR_UNKNOWN;
}
if (s_err != STM32_ERR_OK) {
if ((port->flags & PORT_STRETCH_W)
&& stm->cmd->wp != STM32_CMD_WP_NS)
stm32_warn_stretching("WRITE PROTECT");
return STM32_ERR_UNKNOWN;
}
return STM32_ERR_OK;
}
stm32_err_t stm32_runprot_memory(const stm32_t *stm)
{
struct port_interface *port = stm->port;
stm32_err_t s_err;
if (stm->cmd->ur == STM32_CMD_ERR) {
fprintf(stderr, "Error: READOUT UNPROTECT command not implemented in bootloader.\n");
return STM32_ERR_NO_CMD;
}
if (stm32_send_command(stm, stm->cmd->ur) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
s_err = stm32_get_ack_timeout(stm, STM32_MASSERASE_TIMEOUT);
if (s_err == STM32_ERR_NACK) {
fprintf(stderr, "Error: Failed to READOUT UNPROTECT\n");
return STM32_ERR_UNKNOWN;
}
if (s_err != STM32_ERR_OK) {
if ((port->flags & PORT_STRETCH_W)
&& stm->cmd->ur != STM32_CMD_UR_NS)
stm32_warn_stretching("READOUT UNPROTECT");
return STM32_ERR_UNKNOWN;
}
return STM32_ERR_OK;
}
stm32_err_t stm32_readprot_memory(const stm32_t *stm)
{
struct port_interface *port = stm->port;
stm32_err_t s_err;
if (stm->cmd->rp == STM32_CMD_ERR) {
fprintf(stderr, "Error: READOUT PROTECT command not implemented in bootloader.\n");
return STM32_ERR_NO_CMD;
}
if (stm32_send_command(stm, stm->cmd->rp) != STM32_ERR_OK)
return STM32_ERR_UNKNOWN;
s_err = stm32_get_ack_timeout(stm, STM32_RPROT_TIMEOUT);
if (s_err == STM32_ERR_NACK) {
fprintf(stderr, "Error: Failed to READOUT PROTECT\n");
return STM32_ERR_UNKNOWN;
}
if (s_err != STM32_ERR_OK) {
if ((port->flags & PORT_STRETCH_W)
&& stm->cmd->rp != STM32_CMD_RP_NS)
stm32_warn_stretching("READOUT PROTECT");
return STM32_ERR_UNKNOWN;
}
return STM32_ERR_OK;
}
static stm32_err_t stm32_mass_erase(const stm32_t *stm)
{
struct port_interface *port = stm->port;
stm32_err_t s_err;
uint8_t buf[3];
if (stm32_send_command(stm, stm->cmd->er) != STM32_ERR_OK) {
fprintf(stderr, "Can't initiate chip mass erase!\n");
return STM32_ERR_UNKNOWN;
}
/* regular erase (0x43) */
if (stm->cmd->er == STM32_CMD_ER) {
s_err = stm32_send_command_timeout(stm, 0xFF, STM32_MASSERASE_TIMEOUT);
if (s_err != STM32_ERR_OK) {
if (port->flags & PORT_STRETCH_W)
stm32_warn_stretching("mass erase");
return STM32_ERR_UNKNOWN;
}
return STM32_ERR_OK;
}
/* extended erase */
buf[0] = 0xFF; /* 0xFFFF the magic number for mass erase */
buf[1] = 0xFF;
buf[2] = 0x00; /* checksum */
if (port->write(port, buf, 3) != PORT_ERR_OK) {
fprintf(stderr, "Mass erase error.\n");
return STM32_ERR_UNKNOWN;
}
s_err = stm32_get_ack_timeout(stm, STM32_MASSERASE_TIMEOUT);
if (s_err != STM32_ERR_OK) {
fprintf(stderr, "Mass erase failed. Try specifying the number of pages to be erased.\n");
if ((port->flags & PORT_STRETCH_W)
&& stm->cmd->er != STM32_CMD_EE_NS)
stm32_warn_stretching("mass erase");
return STM32_ERR_UNKNOWN;
}
return STM32_ERR_OK;
}
static stm32_err_t stm32_pages_erase(const stm32_t *stm, uint32_t spage, uint32_t pages)
{
struct port_interface *port = stm->port;
stm32_err_t s_err;
port_err_t p_err;
uint32_t pg_num;
uint8_t pg_byte;
uint8_t cs = 0;
uint8_t *buf;
int i = 0;
/* The erase command reported by the bootloader is either 0x43, 0x44 or 0x45 */
/* 0x44 is Extended Erase, a 2 byte based protocol and needs to be handled differently. */
/* 0x45 is clock no-stretching version of Extended Erase for I2C port. */
if (stm32_send_command(stm, stm->cmd->er) != STM32_ERR_OK) {
fprintf(stderr, "Can't initiate chip mass erase!\n");
return STM32_ERR_UNKNOWN;
}
/* regular erase (0x43) */
if (stm->cmd->er == STM32_CMD_ER) {
buf = malloc(1 + pages + 1);
if (!buf)
return STM32_ERR_UNKNOWN;
buf[i++] = pages - 1;
cs ^= (pages-1);
for (pg_num = spage; pg_num < (pages + spage); pg_num++) {
buf[i++] = pg_num;
cs ^= pg_num;
}
buf[i++] = cs;
p_err = port->write(port, buf, i);
free(buf);
if (p_err != PORT_ERR_OK) {
fprintf(stderr, "Erase failed.\n");
return STM32_ERR_UNKNOWN;
}
s_err = stm32_get_ack_timeout(stm, pages * STM32_PAGEERASE_TIMEOUT);
if (s_err != STM32_ERR_OK) {
if (port->flags & PORT_STRETCH_W)
stm32_warn_stretching("erase");
return STM32_ERR_UNKNOWN;
}
return STM32_ERR_OK;
}
/* extended erase */
buf = malloc(2 + 2 * pages + 1);
if (!buf)
return STM32_ERR_UNKNOWN;
/* Number of pages to be erased - 1, two bytes, MSB first */
pg_byte = (pages - 1) >> 8;
buf[i++] = pg_byte;
cs ^= pg_byte;
pg_byte = (pages - 1) & 0xFF;
buf[i++] = pg_byte;
cs ^= pg_byte;
for (pg_num = spage; pg_num < spage + pages; pg_num++) {
pg_byte = pg_num >> 8;
cs ^= pg_byte;
buf[i++] = pg_byte;
pg_byte = pg_num & 0xFF;
cs ^= pg_byte;
buf[i++] = pg_byte;
}
buf[i++] = cs;
p_err = port->write(port, buf, i);
free(buf);
if (p_err != PORT_ERR_OK) {
fprintf(stderr, "Page-by-page erase error.\n");
return STM32_ERR_UNKNOWN;
}
s_err = stm32_get_ack_timeout(stm, pages * STM32_PAGEERASE_TIMEOUT);
if (s_err != STM32_ERR_OK) {
fprintf(stderr, "Page-by-page erase failed. Check the maximum pages your device supports.\n");
if ((port->flags & PORT_STRETCH_W)
&& stm->cmd->er != STM32_CMD_EE_NS)
stm32_warn_stretching("erase");
return STM32_ERR_UNKNOWN;
}
return STM32_ERR_OK;
}
stm32_err_t stm32_erase_memory(const stm32_t *stm, uint32_t spage, uint32_t pages)
{
uint32_t n;
stm32_err_t s_err;
if (!pages || spage > STM32_MAX_PAGES ||
((pages != STM32_MASS_ERASE) && ((spage + pages) > STM32_MAX_PAGES)))
return STM32_ERR_OK;
if (stm->cmd->er == STM32_CMD_ERR) {
fprintf(stderr, "Error: ERASE command not implemented in bootloader.\n");
return STM32_ERR_NO_CMD;
}
if (pages == STM32_MASS_ERASE) {
/*
* Not all chips support mass erase.
* Mass erase can be obtained executing a "readout protect"
* followed by "readout un-protect". This method is not
* suggested because can hang the target if a debug SWD/JTAG
* is connected. When the target enters in "readout
* protection" mode it will consider the debug connection as
* a tentative of intrusion and will hang.
* Erasing the flash page-by-page is the safer way to go.
*/
if (!(stm->dev->flags & F_NO_ME))
return stm32_mass_erase(stm);
pages = flash_addr_to_page_ceil(stm->dev->fl_end);
}
/*
* Some device, like STM32L152, cannot erase more than 512 pages in
* one command. Split the call.
*/
while (pages) {
n = (pages <= 512) ? pages : 512;
s_err = stm32_pages_erase(stm, spage, n);
if (s_err != STM32_ERR_OK)
return s_err;
spage += n;
pages -= n;
}
return STM32_ERR_OK;
}
static stm32_err_t stm32_run_raw_code(const stm32_t *stm,
uint32_t target_address,
const uint8_t *code, uint32_t code_size)
{
uint32_t stack_le = le_u32(0x20002000);
uint32_t code_address_le = le_u32(target_address + 8 + 1); // thumb mode address (!)
uint32_t length = code_size + 8;
uint8_t *mem, *pos;
uint32_t address, w;
/* Must be 32-bit aligned */
if (target_address & 0x3) {
fprintf(stderr, "Error: code address must be 4 byte aligned\n");
return STM32_ERR_UNKNOWN;
}
mem = malloc(length);
if (!mem)
return STM32_ERR_UNKNOWN;
memcpy(mem, &stack_le, sizeof(uint32_t));
memcpy(mem + 4, &code_address_le, sizeof(uint32_t));
memcpy(mem + 8, code, code_size);
pos = mem;
address = target_address;
while (length > 0) {
w = length > 256 ? 256 : length;
if (stm32_write_memory(stm, address, pos, w) != STM32_ERR_OK) {
free(mem);
return STM32_ERR_UNKNOWN;
}
address += w;
pos += w;
length -= w;
}
free(mem);
return stm32_go(stm, target_address);
}
stm32_err_t stm32_go(const stm32_t *stm, uint32_t address)
{
struct port_interface *port = stm->port;
uint8_t buf[5];
if (stm->cmd->go == STM32_CMD_ERR) {