-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathvisualize.py
99 lines (83 loc) · 3.55 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import argparse
import chainer
from chainer import Variable
import chainer.functions as F
from models.fcn8 import FCN8s
from chainercv.datasets import VOCSemanticSegmentationDataset
from chainer.iterators import SerialIterator
from chainer.serializers import load_npz
from chainer.backends.cuda import get_array_module
from chainercv.datasets.voc.voc_utils import voc_semantic_segmentation_label_names
from matplotlib import pyplot as plt
import numpy as np
import cupy as cp
def main()
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--pretrained', type=str, help='path to model that has trained classifier but has not been trained through GAIN routine')
parser.add_argument('--trained', type=str, help='path to model trained through GAIN')
parser.add_argument('--device', type=int, default=-1, help='gpu id')
parser.add_argument('--shuffle', type=bool, default=False, help='whether to shuffle dataset')
parser.add_argument('--whole', type=bool, default=False, help='whether to test for the whole validation dataset')
parser.add_argument('--no', type=int, default=10, help='if not whole, then no of images to visualize')
parser.add_argument('--name', type=str, help='name of the subfolder or experiment under which to save')
args = parser.parse_args()
pretrained_file = args.pretrained
trained_file = args.trained
device = args.device
shuffle = args.shuffle
whole = args.whole
name = args.name
N = args.no
dataset = VOCSemanticSegmentationDataset()
iterator = SerialIterator(dataset, 1, shuffle=shuffle, repeat=False)
converter = chainer.dataset.concat_examples
os.makedirs('viz/'+name, exist_ok=True)
no_of_classes = 20
device = 0
pretrained = FCN8s()
trainer = FCN8s()
load_npz(pretrained_file, pretrained)
load_npz(trained_file, trained)
if device >=0:
pretrained.to_gpu()
trained.to_gpu()
i = 0
while not iterator.is_new_epoch:
if not whole and i >= N:
break
image, labels = converter(iterator.next())
image = Variable(image)
if device >=0:
image.to_gpu()
xp = get_array_module(image.data)
to_substract = np.array((-1, 0))
noise_classes = np.unique(labels[0]).astype(np.int32)
target = xp.asarray([[0]*(no_of_classes)])
gt_labels = np.setdiff1d(noise_classes, to_substract) - 1
gcam1, cl_scores1, class_id1 = pretrained.stream_cl(image, gt_labels)
gcam2, cl_scores2, class_id2 = trained.stream_cl(image, gt_labels)
if device>-0:
class_id = cp.asnumpy(class_id)
fig1 = plt.figure(figsize=(20,10))
ax1= plt.subplot2grid((3, 9), (0, 0), colspan=3, rowspan=3)
ax1.axis('off')
ax1.imshow(cp.asnumpy(F.transpose(F.squeeze(image, 0), (1, 2, 0)).data) / 255.)
ax2= plt.subplot2grid((3, 9), (0, 3), colspan=3, rowspan=3)
ax2.axis('off')
ax2.imshow(cp.asnumpy(F.transpose(F.squeeze(image, 0), (1, 2, 0)).data) / 255.)
ax2.imshow(cp.asnumpy(F.squeeze(gcam1[0], 0).data), cmap='jet', alpha=.5)
ax2.set_title("For class - "+str(voc_semantic_segmentation_label_names[cp.asnumpy(class_id1[0])+1]), color='teal')
ax3= plt.subplot2grid((3, 9), (0, 6), colspan=3, rowspan=3)
ax3.axis('off')
ax3.imshow(cp.asnumpy(F.transpose(F.squeeze(image, 0), (1, 2, 0)).data) / 255.)
ax3.imshow(cp.asnumpy(F.squeeze(gcam2[0], 0).data), cmap='jet', alpha=.5)
ax3.set_title("For class - "+str(voc_semantic_segmentation_label_names[cp.asnumpy(class_id2[0])+1]), color='teal')
fig1.savefig('viz/'+name+'/'+str(i)+'.png')
plt.close()
print(i)
i += 1
if __name__ =="__main__":
main()