forked from ottokart/punctuator2
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
346 lines (293 loc) · 14.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# coding: utf-8
from __future__ import division
from optparse import OptionParser
from collections import OrderedDict
import sys
import os
import numpy as np
from time import time
import yaml
import models
from models import PuncTensor
from utilities import *
import theano
import theano.tensor as T
from theano.compile.io import In
MAX_EPOCHS = 50
L2_REG = 0.0
CLIPPING_THRESHOLD = 2.0
PATIENCE_EPOCHS = 1
ADD_END_TOKEN_TO_PROSCRIPTS_WHILE_READING = True
def get_minibatch(sample_directory, vocabulary_dict, leveler_dict, batch_size, sequence_length, shuffle=False, input_feature_names = [], reduced_punctuation=True, output_label="punctuation_before"):
sample_file_list = os.listdir(sample_directory)
if shuffle:
np.random.shuffle(sample_file_list)
input_batches = {feature_name:[] for feature_name in input_feature_names}
output_batch = []
if len(sample_file_list) < batch_size:
print("WARNING: Not enough samples in '%s'. Reduce mini-batch size to %d or use a dataset with at least %d words."%(
file_name,
len(sample_file_list),
batch_size * sequence_length))
for sample_filename in sample_file_list:
proscript_file = os.path.join(sample_directory, sample_filename)
try:
proscript = read_proscript(proscript_file, add_end=ADD_END_TOKEN_TO_PROSCRIPTS_WHILE_READING, shift_punc_after_to_before=True)
except:
print("Couldn't read %s"%proscript_file)
continue
input_sample_layers = {}
for feature_name in input_feature_names:
if feature_name in vocabulary_dict.keys():
vocabulary = vocabulary_dict[feature_name]
sample_layer = [vocabulary.get(w, vocabulary[UNK]) for w in proscript[feature_name]]
elif feature_name in leveler_dict.keys():
get_level_func = leveler_dict[feature_name]
sample_layer = [get_level_func(v) for v in proscript[feature_name]]
#print(proscript[feature_name])
else:
sample_layer = proscript[feature_name]
input_length = len(sample_layer)
input_sample_layers[feature_name] = sample_layer
if reduced_punctuation:
output_sample_layer = [reducePuncCode(INV_PUNCTUATION_CODES[punc]) for punc in proscript[output_label]]
else:
output_sample_layer = [INV_PUNCTUATION_CODES[punc] for punc in proscript[output_label]]
#need padding for batch processing
if batch_size > 1:
for feature_name in input_sample_layers.keys():
if feature_name in vocabulary_dict.keys():
vocabulary = vocabulary_dict[feature_name]
input_sample_layers[feature_name] = pad(input_sample_layers[feature_name], sequence_length, vocabulary[EMP])
elif feature_name in leveler_dict.keys():
get_level_func = leveler_dict[feature_name]
input_sample_layers[feature_name] = pad(input_sample_layers[feature_name], sequence_length, get_level_func(0.0))
else:
input_sample_layers[feature_name] = pad(input_sample_layers[feature_name], sequence_length, 0.0)
output_sample_layer = pad(output_sample_layer, sequence_length, INV_PUNCTUATION_CODES[EMPTY])
input_length = sequence_length
# print(input_sample_layers)
# print(output_sample_layer)
# input("...")
#add sample to batch
for feature_name in input_sample_layers.keys():
input_batches[feature_name].append(input_sample_layers[feature_name])
output_batch.append(output_sample_layer[1:input_length])
#yield batch if batch size is reached
if len(output_batch) == batch_size:
input_tensors = {batch_name: np.array(input_batches[batch_name], dtype=np.int32).T for batch_name in input_batches.keys()}
output_tensor = np.array(output_batch, dtype=np.int32).T
yield input_tensors, output_tensor
input_batches = {feature_name:[] for feature_name in input_feature_names}
output_batch = []
def main(options):
if checkArgument(options.params_filename, isFile=True):
with open(options.params_filename, 'r') as ymlfile:
config = yaml.load(ymlfile)
else:
sys.exit("Parameters file missing")
if checkArgument(options.model_name):
model_name = options.model_name
else:
sys.exit("'Model name' (-m)missing!")
num_hidden = int(config["NUM_HIDDEN_OUTPUT"])
learning_rate = float(config["LEARNING_RATE"])
batch_size = int(config["BATCH_SIZE"])
sample_size = int(config["SAMPLE_SIZE"])
output_label = config["OUTPUT_LABEL"]
data_dir = config["DATA_DIR"]
input_feature_names = options.input_features
vocabulary_dict = {}
leveler_dict = {}
no_of_levels_dict = {}
if checkArgument(data_dir, isDir=True):
TRAINING_SAMPLES_DIR = os.path.join(data_dir, "train_samples")
if not checkArgument(TRAINING_SAMPLES_DIR, isDir=True):
sys.exit("TRAINING dir missing!")
DEV_SAMPLES_DIR = os.path.join(data_dir, "dev_samples")
if not checkArgument(DEV_SAMPLES_DIR, isDir=True):
sys.exit("DEV dir missing!")
else:
sys.exit("Data directory missing")
if options.build_on_stage_1:
stage1_model_file_name = options.build_on_stage_1
model_file_name = "Model_stage-2_%s.pcl"%(model_name)
elif options.continue_with_previous:
model_file_name = "%s_%s.pcl"%(options.continue_with_previous, model_name)
else:
model_file_name = "Model_single-stage_%s.pcl"%(model_name)
#check if model with name already exists
if checkArgument(model_file_name, isFile=True):
print(model_file_name)
answer = input("Model with same name exists. Overwrite? (y/n)")
if not answer.lower() == "y":
sys.exit("Change model name.")
print("model filename:%s"%model_file_name)
print("num_hidden:%i, learning rate:%.2f"%(num_hidden, learning_rate))
print("batch_size:%i, sample padding length:%i"%(batch_size, sample_size))
for feature_name in input_feature_names:
#Load vocabularies of vocabularized features
if feature_name in config["FEATURE_VOCABULARIES"].keys():
VOCAB_FILE = os.path.join(data_dir, config["FEATURE_VOCABULARIES"][feature_name])
if not checkArgument(VOCAB_FILE, isFile=True):
sys.exit("%s vocabulary file missing!"%feature_name)
vocabulary = read_vocabulary(VOCAB_FILE)
vocabulary_dict[feature_name] = vocabulary
print("%s vocabulary file: %s"%(feature_name, VOCAB_FILE))
#Load bins of leveled features
if config["LEVELED_FEATURES"]:
if feature_name in config["LEVELED_FEATURES"].keys():
LEVELS_FILE = os.path.join(data_dir, config["LEVELED_FEATURES"][feature_name])
if not checkArgument(LEVELS_FILE, isFile=True):
sys.exit("%s levels file missing!"%feature_name)
get_level_func, no_of_levels = get_level_maker(LEVELS_FILE)
leveler_dict[feature_name] = get_level_func
no_of_levels_dict[feature_name] = no_of_levels
if options.reduced_punctuation:
y_vocabulary_size = len(REDUCED_PUNCTUATION_VOCABULARY)
print("Using reduced punctuation set. (Size:%i)"%y_vocabulary_size)
else:
y_vocabulary_size = len(PUNCTUATION_VOCABULARY)
print("Using full punctuation set. (Size:%i)"%y_vocabulary_size)
#prepare the tensors
lr = T.scalar('lr')
y = T.imatrix('y')
#build model
if options.continue_with_previous:
net, input_PuncTensors, input_feature_names, state = models.load(options.continue_with_previous, batch_size)
gsums, learning_rate, validation_ppl_history, starting_epoch, rng = state
best_ppl = min(validation_ppl_history)
training_inputs = [i for i in input_PuncTensors] + [y, lr]
validation_inputs = [i for i in input_PuncTensors] + [y]
print(input_feature_names)
else:
rng = np.random
rng.seed(1)
input_PuncTensors = []
if options.build_on_stage_1:
p = T.matrix('pause_before')
stage1_net, stage1_inputs, stage1_input_feature_names, _ = models.load(stage1_model_file_name, batch_size)
x = stage1_inputs[0]
vocabulary_size = len(vocabulary_dict["word"])
x_PuncTensor = PuncTensor(name="word", tensor=x, size_hidden=config["FEATURE_NUM_HIDDEN"]["word"], size_emb=config["FEATURE_EMB_SIZE"]["word"], vocabularized=True, vocabulary_size=vocabulary_size, bidirectional=True)
p_PuncTensor = PuncTensor(name="pause_before", tensor=p, size_hidden=config["FEATURE_NUM_HIDDEN"]["pause_before"], size_emb=1, vocabularized=False, bidirectional=False)
input_PuncTensors.append(x_PuncTensor)
input_PuncTensors.append(p_PuncTensor)
net = models.GRU_stage2(rng=rng,
y_vocabulary_size=y_vocabulary_size,
minibatch_size=batch_size,
num_hidden_output = num_hidden,
x_PuncTensor=x_PuncTensor,
p_PuncTensor=p_PuncTensor,
stage1_net=stage1_net,
stage1_inputs=stage1_inputs,
stage1_input_feature_names=stage1_input_feature_names)
else:
for feature_name in input_feature_names:
stats = "Training with %s"%feature_name
if feature_name in config["BIDIRECTIONAL_FEATURES"]:
is_bidi = True
stats += " (bidirectional)"
else:
is_bidi = False
if feature_name in vocabulary_dict.keys():
vocabulary = vocabulary_dict[feature_name]
stats += " (vocabulary size: %i)"%len(vocabulary)
stats += " (embedded size: %i)"%config["FEATURE_EMB_SIZE"][feature_name]
tensor = T.imatrix(feature_name)
vocabulary_size = len(vocabulary_dict[feature_name])
feature_PuncTensor = PuncTensor(name=feature_name, tensor=tensor, size_hidden=config["FEATURE_NUM_HIDDEN"][feature_name], size_emb=config["FEATURE_EMB_SIZE"][feature_name], vocabularized=True, vocabulary_size=vocabulary_size, bidirectional=is_bidi)
elif feature_name in leveler_dict.keys():
#get_level_func = leveler_dict[feature_name]
no_of_levels = no_of_levels_dict[feature_name]
stats += " (%i levels)"%no_of_levels
tensor = T.imatrix(feature_name)
feature_PuncTensor = PuncTensor(name=feature_name, tensor=tensor, size_hidden=config["FEATURE_NUM_HIDDEN"][feature_name], size_emb=config["FEATURE_EMB_SIZE"][feature_name], vocabularized=True, vocabulary_size=no_of_levels, bidirectional=is_bidi)
else:
#continous values
stats += " (continous)"
tensor = T.matrix(feature_name)
feature_PuncTensor = PuncTensor(name=feature_name, tensor=tensor, size_hidden=config["FEATURE_NUM_HIDDEN"][feature_name], size_emb=1, vocabularized=False, bidirectional=is_bidi)
input_PuncTensors.append(feature_PuncTensor)
print(stats)
net = models.GRU_parallel(rng=rng,
y_vocabulary_size=y_vocabulary_size,
minibatch_size=batch_size,
num_hidden_output = num_hidden,
input_tensors=input_PuncTensors)
starting_epoch = 0
best_ppl = np.inf
validation_ppl_history = []
gsums = [theano.shared(np.zeros_like(param.get_value(borrow=True))) for param in net.params]
#assign inputs
training_inputs = [i.tensor for i in input_PuncTensors] + [y, lr]
validation_inputs = [i.tensor for i in input_PuncTensors] + [y]
#determine cost function
cost = net.cost(y) + L2_REG * net.L2_sqr
gparams = T.grad(cost, net.params)
updates = OrderedDict()
# Compute norm of gradients
norm = T.sqrt(T.sum([T.sum(gparam ** 2) for gparam in gparams]))
# Adagrad: "Adaptive subgradient methods for online learning and stochastic optimization" (2011)
for gparam, param, gsum in zip(gparams, net.params, gsums):
gparam = T.switch(
T.ge(norm, CLIPPING_THRESHOLD),
gparam / norm * CLIPPING_THRESHOLD,
gparam
) # Clipping of gradients
updates[gsum] = gsum + (gparam ** 2)
updates[param] = param - lr * (gparam / (T.sqrt(updates[gsum] + 1e-6)))
train_model = theano.function(
inputs=training_inputs,
outputs=cost,
updates=updates,
on_unused_input='warn'
)
validate_model = theano.function(
inputs=validation_inputs,
outputs=net.cost(y),
on_unused_input='warn'
)
print("Training...")
for epoch in range(starting_epoch, MAX_EPOCHS):
t0 = time()
total_neg_log_likelihood = 0
total_num_output_samples = 0
iteration = 0
for INPUT_BATCHES, OUTPUT_BATCH in get_minibatch(TRAINING_SAMPLES_DIR, vocabulary_dict, leveler_dict, batch_size, sample_size, shuffle=True, input_feature_names=input_feature_names, reduced_punctuation=options.reduced_punctuation, output_label="punctuation_before"):
train_arguments = [INPUT_BATCHES[puncTensor.name] for puncTensor in input_PuncTensors] + [OUTPUT_BATCH, learning_rate]
total_neg_log_likelihood += train_model(*train_arguments)
total_num_output_samples += np.prod(OUTPUT_BATCH.shape)
iteration += 1
if iteration % 100 == 0:
sys.stdout.write("PPL: %.4f; Speed: %.2f sps\n" % (np.exp(total_neg_log_likelihood / total_num_output_samples), total_num_output_samples / max(time() - t0, 1e-100)))
sys.stdout.flush()
print("Total number of training labels: %d" % total_num_output_samples)
total_neg_log_likelihood = 0
total_num_output_samples = 0
for INPUT_BATCHES, OUTPUT_BATCH in get_minibatch(DEV_SAMPLES_DIR, vocabulary_dict, leveler_dict, batch_size, sample_size, shuffle=False, input_feature_names=input_feature_names, reduced_punctuation=options.reduced_punctuation, output_label="punctuation_before"):
validate_arguments = [INPUT_BATCHES[puncTensor.name] for puncTensor in input_PuncTensors] + [OUTPUT_BATCH]
total_neg_log_likelihood += validate_model(*validate_arguments)
total_num_output_samples += np.prod(OUTPUT_BATCH.shape)
print("Total number of validation labels: %d" % total_num_output_samples)
ppl = np.exp(total_neg_log_likelihood / total_num_output_samples)
validation_ppl_history.append(ppl)
print("Validation perplexity is %s"%np.round(ppl, 4))
if ppl <= best_ppl:
best_ppl = ppl
net.save(model_file_name, gsums=gsums, learning_rate=learning_rate, validation_ppl_history=validation_ppl_history, best_validation_ppl=best_ppl, epoch=epoch, random_state=rng.get_state())
elif best_ppl not in validation_ppl_history[-PATIENCE_EPOCHS:]:
print("Finished!")
print("Best validation perplexity was %s"%best_ppl)
break
if __name__ == "__main__":
usage = "usage: %prog [-s infile] [option]"
parser = OptionParser(usage=usage)
parser.add_option("-m", "--modelname", dest="model_name", default=None, help="output model filename", type="string")
parser.add_option("-f", "--input_features", dest="input_features", default=[], help="semitone features to train with", type="string", action='append')
parser.add_option("-r", "--reduced_punctuation", dest="reduced_punctuation", default=True, help="Use reduced punctuation vocabulary", action="store_true")
parser.add_option("-p", "--params_file", dest="params_filename", default=None, help="params filename", type="string")
parser.add_option("-t", "--build_on_stage_1", dest="build_on_stage_1", default=None, help="Use two stage approach. Input stage 1 model", type="string")
parser.add_option("-c", "--continue_with_previous", dest="continue_with_previous", default=None, help="Continue training from model", type="string")
(options, args) = parser.parse_args()
main(options)