-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpscan.cpp
500 lines (448 loc) · 15.6 KB
/
pscan.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/* ******************************************************************************
* pscan.cpp
*
* paralell parsing algorithm for bwt construction of repetitive sequences based
* on prefix free parsing. See:
* Christina Boucher, Travis Gagie, Alan Kuhnle and Giovanni Manzini
* Prefix-Free Parsing for Building Big BWTs
* [Proc. WABI '18](http://drops.dagstuhl.de/opus/volltexte/2018/9304/)
*
* Usage:
* pscan.x wsize modulus file
*
* Accepts any kind of file that does not contain the chars 0x0, 0x1, 0x2
* which are used internally. If input file is gzipped use pscan.x which
* automatically extracts the content
*
* The parameters wsize and modulus are used to define the prefix free parsing
* using KR-fingerprints (see paper)
*
* The algorithm computes the prefix free parsing of
* T = (0x2)file_content(0x2)^wsize
* cresting a dictionary of words D and a parsing P of T in terms of the
* dictionary words. Consecutive words in the parsing overlap by wsize.
*
* Let d denote the number of words in D and p the number of phrases in
* the parsing P
*
* pscan outputs the following files:
*
* file.dict
* containing the dictionary words in lexicographic order with a 0x1 at the end of
* each word and a 0x0 at the end of the file. Size: |D| + d + 1 where
* |D| is the sum of the word lengths
*
* file.occ
* the number of occurrences of each word in lexicographic order.
* We assume the number of occurrences of each word is at most 2^32-1
* so the size is 4d bytes
*
* file.parse
* containing the parse P with each word identified with its 1-based lexicographic
* rank (ie its position in D). We assume the number of distinct words
* is at most 2^32-1, so the size is 4p bytes
*
* file.last
* contaning the charater in positon w+1 from the end for each dictionary word
* Size: d
*
* file.sai (if option -s is given on the command line)
* containing the ending position +1 of each dictionary word in the original
* text written using IBYTES bytes for each entry (IBYTES defined in utils.h)
* Size: d*IBYTES
*
* The output of pscan must be processed by bwtparse, which invoked as
*
* bwtparse file
*
* computes the BWT of file.parse and produces file.ilist of size 4p+4 bytes
* contaning, for each dictionary word in lexicographic order, the list
* of BWT positions where that word appears (ie i\in ilist(w) <=> BWT[i]=w).
* There is also an entry for the EOF word which is not in the dictionary
* but is assumed to be the smallest word.
*
* In addition, bwtparse permutes file.last according to
* the BWT permutation and generates file.bwlast such that file.bwlast[i]
* is the char from P[SA[i]-2] (if SA[i]==0 , BWT[i]=0 and file.bwlast[i]=0,
* if SA[i]==1, BWT[i]=P[0] and file.bwlast[i] is taken from P[n-1], the last
* word in the parsing).
*
* If the option -s is given to bwtparse, it permutes file.sai according
* to the BWT permutation and generate file.bwsai using again IBYTES
* per entry. file.bwsai[i] is the ending position+1 of BWT[i] in the
* original text
*
* The output of bwtparse (the files .ilist .bwlast) together with the
* dictionary itself (file .dict) and the number of occurrences
* of each word (file .occ) are used to compute the final BWT by the
* pfbwt algorithm.
*
*/
#include <assert.h>
#include <errno.h>
#include <unistd.h>
#include <stdint.h>
#include <sys/stat.h>
#include <stdexcept>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <ctime>
#include <string>
#include <fstream>
#include <algorithm>
#include <random>
#include <vector>
#include <map>
extern "C" {
#include "utils.h"
#include "xerrors.h"
}
using namespace std;
//using namespace __gnu_cxx;
// =============== algorithm limits ===================
// maximum number of distinct words
#define MAX_DISTINCT_WORDS (INT32_MAX -1)
typedef uint32_t word_int_t;
// maximum number of occurrences of a single word
#define MAX_WORD_OCC (UINT32_MAX)
typedef uint32_t occ_int_t;
// values of the wordFreq map: word, its number of occurrences, and its rank
struct word_stats {
string str;
occ_int_t occ;
word_int_t rank=0;
};
// -------------------------------------------------------------
// struct containing command line parameters and other globals
struct Args {
string inputFileName = "";
int w = 10; // sliding window size and its default
int p = 100; // modulus for establishing stopping w-tuples
bool SAinfo = false; // compute SA information
bool compress = false; // parsing called in compress mode
int th=4; // number of helper threads
int verbose=0; // verbosity level
FILE *tmp_parse_file, *last_file, *sa_file;
};
// -----------------------------------------------------------
// struct containing the maps and the relative mutex
struct MTmaps {
int mt_ratio = 3; // ratio between #maps and #threads
int n; // number of maps
vector<map<uint64_t,word_stats>> maps; // maps
pthread_mutex_t *muts; // mutex for each map
// constructor
MTmaps(int numthreads) {
// init number of maps
n = mt_ratio*numthreads;
// init maps
maps.resize(n);
// init mutexes
muts = new pthread_mutex_t[n];
for(int i=0;i<n;i++)
xpthread_mutex_init(&muts[i], NULL, __LINE__,__FILE__);
}
// destructor
~MTmaps() {
delete[] muts;
}
// return the total size of the maps, ie total number of stored words
uint64_t size() {
uint64_t s=0;
for(int i=0;i<n;i++)
s += maps[i].size();
return s;
}
// return the rank of the string associated to hash h
word_int_t rank(uint64_t h) {
return maps[h%n].at(h).rank;
}
// add the association hash->w to the map hash%n
// using a mutex for exclusive write
void update(uint64_t hash, string &w);
};
void MTmaps::update(uint64_t hash, string &w)
{
int i = hash % n;
map<uint64_t,word_stats> *freq = &maps[i];
pthread_mutex_t *m = &muts[i];
xpthread_mutex_lock(m,__LINE__,__FILE__);
// update frequency table for current hash
if(freq->find(hash)==freq->end()) {
(*freq)[hash].occ = 1; // new hash
(*freq)[hash].str = w;
}
else {
word_stats *wfreq = &(*freq)[hash]; // pointer to the stats for w
wfreq->occ += 1; // known hash
if(wfreq->occ <=0) {
cerr << "Emergency exit! Maximum # of occurences of dictionary word (";
cerr<< MAX_WORD_OCC << ") exceeded\n";
exit(1);
}
if(wfreq->str != w) {
cerr << "Emergency exit! Hash collision for strings:\n";
cerr << wfreq->str << "\n vs\n" << w << endl;
exit(1);
}
}
xpthread_mutex_unlock(m,__LINE__,__FILE__);
}
// -----------------------------------------------------------------
// class to maintain a window in a string and its KR fingerprint
struct KR_window {
int wsize;
int *window;
int asize;
const uint64_t prime = 1999999973;
uint64_t hash;
uint64_t tot_char;
uint64_t asize_pot; // asize^(wsize-1) mod prime
KR_window(int w): wsize(w) {
asize = 256;
asize_pot = 1;
for(int i=1;i<wsize;i++)
asize_pot = (asize_pot*asize)% prime; // ugly linear-time power algorithm
// alloc and clear window
window = new int[wsize];
reset();
}
// init window, hash, and tot_char
void reset() {
for(int i=0;i<wsize;i++) window[i]=0;
// init hash value and related values
hash=tot_char=0;
}
uint64_t addchar(int c) {
int k = tot_char++ % wsize;
// complex expression to avoid negative numbers
hash += (prime - (window[k]*asize_pot) % prime); // remove window[k] contribution
hash = (asize*hash + c) % prime; // add char i
window[k]=c;
// cerr << get_window() << " ~~ " << window << " --> " << hash << endl;
return hash;
}
// debug only
string get_window() {
string w = "";
int k = (tot_char-1) % wsize;
for(int i=k+1;i<k+1+wsize;i++)
w.append(1,window[i%wsize]);
return w;
}
~KR_window() {
delete[] window;
}
};
// -----------------------------------------------------------
// compute 64-bit KR hash of a string
// to avoid overflows in 64 bit aritmethic the prime is taken < 2**55
// if collisions occur use a prime close to 2**63 and 128 bit variables
uint64_t kr_hash(string s) {
uint64_t hash = 0;
//const uint64_t prime = 3355443229; // next prime(2**31+2**30+2**27)
const uint64_t prime = 27162335252586509; // next prime (2**54 + 2**53 + 2**47 + 2**13)
for(size_t k=0;k<s.size();k++) {
int c = (unsigned char) s[k];
assert(c>=0 && c< 256);
hash = (256*hash + c) % prime; // add char k
}
return hash;
}
#include "pscan.hpp"
// function used to compare two string pointers
bool pstringCompare(const string *a, const string *b)
{
return *a <= *b;
}
// given the sorted dictionary and the frequency map write the dictionary and occ files
// also compute the 1-based rank for each hash
void writeDictOcc(Args &arg, MTmaps &mtmaps, vector<const string *> &sortedDict)
{
FILE *fdict;
// open dictionary and occ files
if(arg.compress)
fdict = open_aux_file(arg.inputFileName.c_str(),EXTDICZ,"wb");
else
fdict = open_aux_file(arg.inputFileName.c_str(),EXTDICT,"wb");
FILE *focc = open_aux_file(arg.inputFileName.c_str(),EXTOCC,"wb");
word_int_t wrank = 1; // current word rank (1 based)
for(auto x: sortedDict) {
const char *word = (*x).data(); // current dictionary word
int offset=0; size_t len = (*x).size(); // offset and length of word
assert(len>(size_t)arg.w);
if(arg.compress) { // if we are compressing remove overlapping and extraneous chars
len -= arg.w; // remove the last w chars
if(word[0]==Dollar) {offset=1; len -= 1;} // remove the very first Dollar
}
size_t s = fwrite(word+offset,1,len, fdict);
if(s!=len) die("Error writing to DICT file");
if(fputc(EndOfWord,fdict)==EOF) die("Error writing EndOfWord to DICT file");
uint64_t hash = kr_hash(*x);
auto& wf = (mtmaps.maps[hash%mtmaps.n]).at(hash);
assert(wf.occ>0);
s = fwrite(&wf.occ,sizeof(wf.occ),1, focc);
if(s!=1) die("Error writing to OCC file");
assert(wf.rank==0);
wf.rank = wrank++;
}
if(fputc(EndOfDict,fdict)==EOF) die("Error writing EndOfDict to DICT file");
if(fclose(focc)!=0) die("Error closing OCC file");
if(fclose(fdict)!=0) die("Error closing DICT file");
}
void remapParse(Args &arg, MTmaps &mtmaps)
{
// open parse files. the old parse can be stored in a single file or in multiple files
mFile *moldp = mopen_aux_file(arg.inputFileName.c_str(), EXTPARS0, arg.th);
FILE *newp = open_aux_file(arg.inputFileName.c_str(), EXTPARSE, "wb");
// recompute occ as an extra check
vector<occ_int_t> occ(mtmaps.size()+1,0); // ranks are zero based
uint64_t hash;
while(true) {
size_t s = mfread(&hash,sizeof(hash),1,moldp);
if(s==0) break;
if(s!=1) die("Unexpected parse EOF");
word_int_t rank = mtmaps.rank(hash);
occ[rank]++;
s = fwrite(&rank,sizeof(rank),1,newp);
if(s!=1) die("Error writing to new parse file");
}
if(fclose(newp)!=0) die("Error closing new parse file");
if(mfclose(moldp)!=0) die("Error closing old parse segment");
// check old and recomputed occ coincide
for(auto &m : mtmaps.maps)
for(auto& x : m)
assert(x.second.occ == occ[x.second.rank]);
}
void print_help(char** argv, Args &args) {
cout << "Usage: " << argv[ 0 ] << " <input filename> [options]" << endl;
cout << " Options: " << endl
<< "\t-w W\tsliding window size, def. " << args.w << endl
<< "\t-p M\tmodulo for defining phrases, def. " << args.p << endl
<< "\t-t M\tnumber of helper threads, def. 4 " << endl
<< "\t-h \tshow help and exit" << endl
<< "\t-s \tcompute suffix array info" << endl;
exit(1);
}
void parseArgs( int argc, char** argv, Args& arg ) {
int c;
extern char *optarg;
extern int optind;
puts("==== Command line:");
for(int i=0;i<argc;i++)
printf(" %s",argv[i]);
puts("");
string sarg;
while ((c = getopt( argc, argv, "p:w:sht:vc") ) != -1) {
switch(c) {
case 's':
arg.SAinfo = true; break;
case 'c':
arg.compress = true; break;
case 'w':
sarg.assign( optarg );
arg.w = stoi( sarg ); break;
case 'p':
sarg.assign( optarg );
arg.p = stoi( sarg ); break;
case 't':
sarg.assign( optarg );
arg.th = stoi( sarg ); break;
case 'v':
arg.verbose++; break;
case 'h':
print_help(argv, arg); exit(1);
case '?':
cout << "Unknown option. Use -h for help." << endl;
exit(1);
}
}
// the only input parameter is the file name
if (argc == optind+1) {
arg.inputFileName.assign( argv[optind] );
}
else {
cout << "Invalid number of arguments" << endl;
print_help(argv,arg);
}
// check algorithm parameters
if(arg.w <4) {
cout << "Windows size must be at least 4\n";
exit(1);
}
if(arg.p<10) {
cout << "Modulus must be at leas 10\n";
exit(1);
}
if(arg.th<=0) {
cout << "There must be at least one helper thread\n";
exit(1);
}
}
int main(int argc, char** argv)
{
// translate command line parameters and store them to arg
Args arg;
parseArgs(argc, argv, arg);
cout << "Windows size: " << arg.w << endl;
cout << "Stop word modulus: " << arg.p << endl;
// measure elapsed wall clock time
time_t start_main = time(NULL);
time_t start_wc = start_main;
// init multithread maps
MTmaps mtmaps(arg.th);
uint64_t totChar;
// ------------ parsing input file
try {
totChar = mt_process_file(arg,mtmaps);
}
catch(const std::bad_alloc&) {
cout << "Out of memory (parsing phase)... emergency exit\n";
die("bad alloc exception");
}
// first report
uint64_t totDWord = mtmaps.size();
cout << "Total input symbols: " << totChar << endl;
cout << "Found " << totDWord << " distinct words" <<endl;
cout << "Parsing took: " << difftime(time(NULL),start_wc) << " wall clock seconds\n";
// check # distinct words
if(totDWord>MAX_DISTINCT_WORDS) {
cerr << "Emergency exit! The number of distinct words (" << totDWord << ")\n";
cerr << "is larger than the current limit (" << MAX_DISTINCT_WORDS << ")\n";
exit(1);
}
// -------------- second pass
start_wc = time(NULL);
// create array of dictionary words
vector<const string *> dictArray;
dictArray.reserve(totDWord);
// fill array
uint64_t sumLen = 0;
uint64_t totWord = 0;
// copy words from all maps to the dictionary
for(auto& wordFreq: mtmaps.maps) {
for(auto& x: wordFreq) {
sumLen += x.second.str.size();
totWord += x.second.occ;
dictArray.push_back(&x.second.str);
}
}
assert(dictArray.size()==totDWord);
cout << "Sum of lenghts of dictionary words: " << sumLen << endl;
cout << "Total number of words: " << totWord << endl;
// sort dictionary
sort(dictArray.begin(), dictArray.end(),pstringCompare);
// write plain dictionary and occ file, also compute rank for each hash
cout << "Writing plain dictionary and occ file\n";
writeDictOcc(arg, mtmaps, dictArray);
dictArray.clear(); // reclaim memory
cout << "Dictionary construction took: " << difftime(time(NULL),start_wc) << " wall clock seconds\n";
// remap parse file
start_wc = time(NULL);
cout << "Generating remapped parse file\n";
remapParse(arg, mtmaps);
cout << "Remapping parse file took: " << difftime(time(NULL),start_wc) << " wall clock seconds\n";
cout << "==== Elapsed time: " << difftime(time(NULL),start_main) << " wall clock seconds\n";
return 0;
}