The answers here are given by the community. Be careful and double check the answers before using them. If you see an error, please create a PR with a fix |
The list is based on this post
Suppose we have the following schema with two tables: Ads and Events
- Ads(ad_id, campaign_id, status)
- status could be active or inactive
- Events(event_id, ad_id, source, event_type, date, hour)
- event_type could be impression, click, conversion
Write SQL queries to extract the following information:
1) The number of active ads.
SELECT count(*) FROM Ads WHERE status = 'active';
2) All active campaigns. A campaign is active if there’s at least one active ad.
SELECT DISTINCT a.campaign_id
FROM Ads AS a
WHERE a.status = 'active';
3) The number of active campaigns.
SELECT COUNT(DISTINCT a.campaign_id)
FROM Ads AS a
WHERE a.status = 'active';
4) The number of events per each ad — broken down by event type.
SELECT a.ad_id, e.event_type, count(*) as "count"
FROM Ads AS a
JOIN Events AS e
ON a.ad_id = e.ad_id
GROUP BY a.ad_id, e.event_type
ORDER BY a.ad_id, "count" DESC;
5) The number of events over the last week per each active ad — broken down by event type and date (most recent first).
SELECT a.ad_id, e.event_type, e.date, count(*) as "count"
FROM Ads AS a
JOIN Events AS e
ON a.ad_id = e.ad_id
WHERE a.status = 'active'
AND e.date >= DATEADD(week, -1, GETDATE())
GROUP BY a.ad_id, e.event_type, e.date
ORDER BY e.date ASC, "count" DESC;
6) The number of events per campaign — by event type.
SELECT a.campaign_id, e.event_type, count(*) as count
FROM Ads AS a
INNER JOIN Events AS e
ON a.ad_id = e.ad_id
GROUP BY a.campaign_id, e.event_type
ORDER BY a.campaign_id, "count" DESC
7) The number of events over the last week per each campaign and event type — broken down by date (most recent first).
-- for Postgres
SELECT a.campaign_id, e.event_type, e.date, count(*)
FROM Ads AS a
INNER JOIN Events AS e
ON a.ad_id = e.ad_id
WHERE e.date >= DATEADD(week, -1, GETDATE())
GROUP BY a.campaign_id, e.event_type, e.date
ORDER BY a.campaign_id, e.date DESC, "count" DESC;
8) CTR (click-through rate) for each ad. CTR = number of clicks / number of impressions.
-- for Postgres
SELECT impressions_clicks_table.ad_id,
(impressions_clicks_table.clicks * 100 / impressions_clicks_table.impressions)::FLOAT || '%' AS CTR
FROM
(
SELECT a.ad_id,
SUM(CASE e.event_type WHEN 'impression' THEN 1 ELSE 0 END) impressions,
SUM(CASE e.event_type WHEN 'click' THEN 1 ELSE 0 END) clicks
FROM Ads AS a
INNER JOIN Events AS e
ON a.ad_id = e.ad_id
GROUP BY a.ad_id
) AS impressions_clicks_table
ORDER BY impressions_clicks_table.ad_id;
9) CVR (conversion rate) for each ad. CVR = number of conversions / number of clicks.
-- for Postgres
SELECT conversions_clicks_table.ad_id,
(conversions_clicks_table.conversions * 100 / conversions_clicks_table.clicks)::FLOAT || '%' AS CVR
FROM
(
SELECT a.ad_id,
SUM(CASE e.event_type WHEN 'conversion' THEN 1 ELSE 0 END) conversions,
SUM(CASE e.event_type WHEN 'click' THEN 1 ELSE 0 END) clicks
FROM Ads AS a
INNER JOIN Events AS e
ON a.ad_id = e.ad_id
GROUP BY a.ad_id
) AS conversions_clicks_table
ORDER BY conversions_clicks_table.ad_id;
10) CTR and CVR for each ad broken down by day and hour (most recent first).
-- for Postgres
SELECT conversions_clicks_table.ad_id,
conversions_clicks_table.date,
conversions_clicks_table.hour,
(impressions_clicks_table.clicks * 100 / impressions_clicks_table.impressions)::FLOAT || '%' AS CTR,
(conversions_clicks_table.conversions * 100 / conversions_clicks_table.clicks)::FLOAT || '%' AS CVR
FROM
(
SELECT a.ad_id, e.date, e.hour,
SUM(CASE e.event_type WHEN 'conversion' THEN 1 ELSE 0 END) conversions,
SUM(CASE e.event_type WHEN 'click' THEN 1 ELSE 0 END) clicks,
SUM(CASE e.event_type WHEN 'impression' THEN 1 ELSE 0 END) impressions
FROM Ads AS a
INNER JOIN Events AS e
ON a.ad_id = e.ad_id
GROUP BY a.ad_id, e.date, e.hour
) AS conversions_clicks_table
ORDER BY conversions_clicks_table.ad_id, conversions_clicks_table.date DESC, conversions_clicks_table.hour DESC, "CTR" DESC, "CVR" DESC;
11) CTR for each ad broken down by source and day
-- for Postgres
SELECT conversions_clicks_table.ad_id,
conversions_clicks_table.date,
conversions_clicks_table.source,
(impressions_clicks_table.clicks * 100 / impressions_clicks_table.impressions)::FLOAT || '%' AS CTR
FROM
(
SELECT a.ad_id, e.date, e.source,
SUM(CASE e.event_type WHEN 'click' THEN 1 ELSE 0 END) clicks,
SUM(CASE e.event_type WHEN 'impression' THEN 1 ELSE 0 END) impressions
FROM Ads AS a
INNER JOIN Events AS e
ON a.ad_id = e.ad_id
GROUP BY a.ad_id, e.date, e.source
) AS conversions_clicks_table
ORDER BY conversions_clicks_table.ad_id, conversions_clicks_table.date DESC, conversions_clicks_table.source, "CTR" DESC;
1) FizzBuzz. Print numbers from 1 to 100
- If it’s a multiplier of 3, print “Fizz”
- If it’s a multiplier of 5, print “Buzz”
- If both 3 and 5 — “Fizz Buzz"
- Otherwise, print the number itself
Example of output: 1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, Fizz Buzz, 16, 17, Fizz, 19, Buzz, Fizz, 22, 23, Fizz, Buzz, 26, Fizz, 28, 29, Fizz Buzz, 31, 32, Fizz, 34, Buzz, Fizz, ...
for i in range(1, 101):
if i % 3 == 0 and i % 5 == 0:
print('Fizz Buzz')
elif i % 3 == 0:
print('Fizz')
elif i % 5 == 0:
print('Buzz')
else:
print(i)
2) Factorial. Calculate a factorial of a number
factorial(5)
= 5! = 1 * 2 * 3 * 4 * 5 = 120factorial(10)
= 10! = 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 = 3628800
def factorial(n):
result = 1
for i in range(2, n + 1):
result *= i
return result
We can also write this function using recursion:
def factorial(n: int):
if n == 0 or n == 1:
return 1
else:
return n * factorial(n - 1)
3) Mean. Compute the mean of number in a list
mean([4, 36, 45, 50, 75]) = 42
mean([]) = NaN
(usefloat('NaN')
)
def mean(numbers):
if len(numbers) > 0:
return sum(numbers) / len(numbers)
return float('NaN')
4) STD. Calculate the standard deviation of elements in a list.
std([1, 2, 3, 4]) = 1.29
std([1]) = NaN
(usefloat('NaN')
)std([]) = NaN
from math import sqrt
from statistics import mean
def std_dev(numbers):
if len(numbers) > 1:
avg = mean(numbers)
var = sum((i - avg) ** 2 for i in numbers) / (len(numbers) - 1)
std = sqrt(var)
return std
return float('NaN')
5) RMSE. Calculate the RMSE (root mean squared error) of a model. The function takes in two lists: one with actual values, one with predictions.
rmse([1, 2], [1, 2]) = 0
rmse([1, 2, 3], [3, 2, 1]) = 1.63
import math
def rmse(y_true, y_pred):
assert len(y_true) == len(y_pred), 'different sizes of the arguments'
squares = sum((x - y)**2 for x, y in zip(y_true, y_pred))
return math.sqrt(squares / len(y_true))
6) Remove duplicates. Remove duplicates in list. The list is not sorted and the order of elements from the original list should be preserved.
[1, 2, 3, 1]
⇒[1, 2, 3]
[1, 3, 2, 1, 5, 3, 5, 1, 4]
⇒[1, 3, 2, 5, 4]
def remove_duplicates(lst):
new_list = []
mentioned_values = set()
for elem in lst:
if elem not in mentioned_values:
new_list.append(elem)
mentioned_values.add(elem)
return new_list
# The above solution checks the values into a set and it is O(1) efficient using
# a few of lines.
# A shorter solution follows: it is O(n^2) but can be fine when lst has no "too
# many elements" - the quantity depends by the running box.
def remove_duplicates2(lst):
new_list = []
for elem in lst:
if elem not in new_list:
new_list.append(elem)
return new_list
7) Count. Count how many times each element in a list occurs.
[1, 3, 2, 1, 5, 3, 5, 1, 4]
⇒
- 1: 3 times
- 2: 1 time
- 3: 2 times
- 4: 1 time
- 5: 2 times
numbers = [1, 3, 2, 1, 5, 3, 5, 1, 4]
counter = dict()
for elem in numbers:
counter[elem] = counter.get(elem, 0) + 1
or
from collections import Counter
numbers = [1, 3, 2, 1, 5, 3, 5, 1, 4]
counter = Counter(numbers)
8) Palindrome. Is string a palindrome? A palindrome is a word which reads the same backward as forwards.
- “ololo” ⇒ Yes
- “cafe” ⇒ No
def is_palindrome(s):
return s == s[::-1]
or
def is_palindrome(s):
for i in range(len(s) // 2):
if s[i] != s[-i - 1]:
return False
return True
9) Counter. We have a list with identifiers of form “id-SITE”. Calculate how many ids we have per site.
def counter(lst):
ans = {}
for i in lst:
site = i[-2:]
ans[site] = ans.get(site, 0) + 1
return ans
10) Top counter. We have a list with identifiers of form “id-SITE”. Show the top 3 sites. You can break ties in any way you want.
def top_counter(lst):
site_dict = counter(lst) # using last problem's solution
top_keys = sorted(site_dict, reverse=True, key=site_dict.get)[:3]
return {key: site_dict[key] for key in top_keys}
11) RLE. Implement RLE (run-length encoding): encode each character by the number of times it appears consecutively.
'aaaabbbcca'
⇒[('a', 4), ('b', 3), ('c', 2), ('a', 1)]
- (note that there are two groups of 'a')
def rle(s):
ans, cur, num = [], None, 0
for i in range(len(s)):
if i == 0:
cur, num = s[i], 1
elif cur != s[i]:
ans.append((cur, num))
cur, num = s[i], 1
else:
num += 1
if i == len(s) - 1:
ans.append((cur, num))
return ans
Using itertools.groupby
import itertools
def rle(s):
return [(l, len(list(g))) for l, g in itertools.groupby(s)]
12) Jaccard. Calculate the Jaccard similarity between two sets: the size of intersection divided by the size of union.
jaccard({'a', 'b', 'c'}, {'a', 'd'}) = 1 / 4
def jaccard(a, b):
return len(a & b) / len(a | b)
13) IDF. Given a collection of already tokenized texts, calculate the IDF (inverse document frequency) of each token.
- input example:
[['interview', 'questions'], ['interview', 'answers']]
Where:
- t is the token,
- n(t) is the number of documents that t occurs in,
- N is the total number of documents
from math import log10
def idf1(docs):
docs = [set(doc) for doc in docs]
n_tokens = {}
for doc in docs:
for token in doc:
n_tokens[token] = n_tokens.get(token, 0) + 1
ans = {}
for token in n_tokens:
ans[token] = log10(len(docs) / (1 + n_tokens[token]))
return ans
import math
def idf2(docs):
n_docs = len(docs)
docs = [set(doc) for doc in docs]
all_tokens = set.union(*docs)
idf_coefficients = {}
for token in all_tokens:
n_docs_w_token = sum(token in doc for doc in docs)
idf_c = math.log10(n_docs / (1 + n_docs_w_token))
idf_coefficients[token] = idf_c
return idf_coefficients
14) PMI. Given a collection of already tokenized texts, find the PMI (pointwise mutual information) of each pair of tokens. Return top 10 pairs according to PMI.
- input example:
[['interview', 'questions'], ['interview', 'answers']]
PMI is used for finding collocations in text — things like “New York” or “Puerto Rico”. For two consecutive words, the PMI between them is:
The higher the PMI, the more likely these two tokens form a collection. We can estimate PMI by counting:
Where:
- N is the total number of tokens in the text,
- c(t1, t2) is the number of times t1 and t2 appear together,
- c(t1) and c(t2) — the number of times they appear separately.
import math
def pmi(docs):
n_pairs = {}
n_tokens = {}
docs = [tuple(doc) for doc in docs]
for doc in docs:
for token in doc:
n_tokens[token] = n_tokens.get(token, 0) + 1
n_pairs[doc] = n_pairs.get(doc, 0) + 1
ans = {}
for pair in n_pairs:
ans[pair] = math.log2(n_pairs[pair] * (sum(n_tokens.values())) / (n_tokens[pair[0]] * n_tokens[pair[1]]))
srt = sorted(ans.items(), key=lambda x: x[1], reverse=True)[:10]
return srt
1) Two sum. Given an array and a number N, return True if there are numbers A, B in the array such that A + B = N. Otherwise, return False.
[1, 2, 3, 4], 5
⇒True
[3, 4, 6], 6
⇒False
Brute force, O(n2):
def two_sum(numbers, target):
n = len(numbers)
for i in range(n):
for j in range(i + 1, n):
if numbers[i] + numbers[j] == target:
return True
return False
Linear, O(n):
def two_sum(numbers, target):
index = {num: i for (i, num) in enumerate(numbers)}
n = len(numbers)
for i in range(n):
a = numbers[i]
b = target - a
if b in index:
j = index[b]
if i != j:
return True
return False
Using itertools.combinations
from itertools import combinations
def two_sum(numbers, target):
for elem in combinations(numbers, 2):
if elem[0] + elem[1] == target:
return True
return False
2) Fibonacci. Return the n-th Fibonacci number, which is computed using this formula:
- F(0) = 0
- F(1) = 1
- F(n) = F(n-1) + F(n-2)
- The sequence is: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
def fibonacci1(n):
'''naive, complexity = O(2 ** n)'''
if n == 0 or n == 1:
return n
else:
return fibonacci1(n - 1) + fibonacci1(n - 2)
def fibonacci2(n):
'''dynamic programming, complexity = O(n)'''
base1, base2 = 0, 1
for i in range(n):
base1, base2 = base2, base1 + base2
return base1
def fibonacci3(n):
'''matrix multiplication, complexity = O(log(n))'''
def mx_mul(m1, m2):
ans = [[0 for i in range(len(m2[0]))] for j in range(len(m1))]
for i in range(len(m1)):
for j in range(len(m2[0])):
for k in range(len(m2)):
ans[i][j] += m1[i][k] * m2[k][j]
return ans
def pow(a, b):
ans = [[1, 0], [0, 1]]
while b > 0:
if b % 2 == 1:
ans = mx_mul(ans, a)
a = mx_mul(a, a)
b //= 2
return ans
ans = mx_mul(pow([[1, 1], [1, 0]], n), [[1], [0]])[1][0]
return ans
Memoization with a dictionary
memo = {0: 0, 1: 1}
def fibonacci4(n):
'''Top down + memorization (dictionary), complexity = O(n)'''
if n not in memo:
memo[n] = fibonacci4(n-1) + fibonacci4(n-2)
return memo[n]
Memoization with lru_cache
from functools import lru_cache
@lru_cache()
def fibonacci4(n):
if n == 0 or n == 1:
return n
return fibonacci4(n - 1) + fibonacci4(n - 2)
def fibonacci5(n):
'''Top down + memorization (list), complexity = O(n) '''
if n == 1:
return 1
dic = [-1 for i in range(n)]
dic[0], dic[1] = 1, 2
def helper(n, dic):
if dic[n] < 0:
dic[n] = helper(n-1, dic) + helper(n-2, dic)
return dic[n]
return helper(n-1, dic)
3) Most frequent outcome. We have two dice of different sizes (D1 and D2). We roll them and sum their face values. What are the most probable outcomes?
- 6, 6 ⇒ [7]
- 2, 4 ⇒ [3, 4, 5]
def most_frequent_outcome(d1, d2):
len_ans = abs(d1 - d2) + 1
mi = min(d1, d2)
ans = [mi + i for i in range(1, len_ans + 1)]
return ans
4) Reverse a linked list. Write a function for reversing a linked list.
- The definition of a list node:
Node(value, next)
- Example:
a -> b -> c
⇒c -> b -> a
def reverse_ll(head):
if head.next is not None:
last = None
point = head
while point is not None:
point.next, point, last = last, point.next, point
5) Flip a binary tree. Write a function for rotating a binary tree.
- The definition of a tree node:
Node(value, left, right)
def flip_bt(head):
if head is not None:
head.left, head.right = head.right, head.left
flip_bt(head.left)
flip_bt(head.right)
6) Binary search. Return the index of a given number in a sorted array or -1 if it’s not there.
[1, 4, 6, 10], 4
⇒1
[1, 4, 6, 10], 3
⇒-1
def binary_search(lst, num):
left, right = -1, len(lst)
while right - left > 1:
mid = (left + right) // 2
if lst[mid] >= num:
right = mid
else:
left = mid
if right < 0 or right >= len(lst) or lst[right] != num:
return -1
else:
return right
7) Deduplication. Remove duplicates from a sorted array.
[1, 1, 1, 2, 3, 4, 4, 4, 5, 6, 6]
⇒[1, 2, 3, 4, 5, 6]
def deduplication1(lst):
'''manual'''
ans = []
last = None
for i in lst:
if last != i:
ans.append(i)
last = i
return ans
def deduplication2(lst):
# order is not guaranteed unless call sorted(list(set(lst))) to sort again
return list(set(lst))
8) Intersection. Return the intersection of two sorted arrays.
[1, 2, 4, 6, 10], [2, 4, 5, 7, 10]
⇒[2, 4, 10]
def intersection1(lst1, lst2):
'''reserves duplicates'''
ans = []
p1, p2 = 0, 0
while p1 < len(lst1) and p2 < len(lst2):
if lst1[p1] == lst2[p2]:
ans.append(lst1[p1])
p1, p2 = p1 + 1, p2 + 1
elif lst1[p1] < lst2[p2]:
p1 += 1
else:
p2 += 1
return ans
def intersection2(lst1, lst2):
'''removes duplicates'''
# order is not guaranteed unless call sorted(...) to sort again
return list(set(lst1) & set(lst2))
9) Union. Return the union of two sorted arrays.
[1, 2, 4, 6, 10], [2, 4, 5, 7, 10]
⇒[1, 2, 4, 5, 6, 7, 10]
def union1(lst1, lst2):
'''reserves duplicates'''
ans = []
p1, p2 = 0, 0
while p1 < len(lst1) or p2 < len(lst2):
if lst1[p1] == lst2[p2]:
ans.append(lst1[p1])
p1, p2 = p1 + 1, p2 + 1
elif lst1[p1] < lst2[p2]:
ans.append(lst1[p1])
p1 += 1
else:
ans.append(lst2[p2])
p2 += 1
return ans
def union2(lst1, lst2):
'''removes duplicates'''
# order is not guaranteed unless call sorted(...) to sort again
return list(set(lst1) | set(lst2))
10) Addition. Implement the addition algorithm from school. Suppose we represent numbers by a list of integers from 0 to 9:
- 12 is
[1, 2]
- 1000 is
[1, 0, 0, 0]
Implement the “+” operation for this representation
[1, 1] + [1]
⇒[1, 2]
[9, 9] + [2]
⇒[1, 0, 1]
def addition(lst1, lst2):
def list_to_int(lst):
ans, base = 0, 1
for i in lst[::-1]:
ans += i * base
base *= 10
return ans
val = list_to_int(lst1) + list_to_int(lst2)
ans = [int(i) for i in str(val)]
return ans
# another solution without int() and str() should be helpful
def addition2(lst1, lst2):
if len(lst2) == 0 or lst2 == [0]:
return lst1[:]
elif len(lst1) == 0:
return lst2[:]
# lst1, lst2 not empty
digit1, lst1rest = lst1[-1], lst1[:-1]
digit2, lst2rest = lst2[-1], lst2[:-1]
digit, remainder = divmod(digit1 + digit2, 10)
lst = addition2(
addition2(lst1rest, [digit]), # recursively add digit to lst1
lst2rest) # and then continue to add lst2
ans = lst + [remainder] # add the remainder as last digit
return ans
11) Sort by custom alphabet. You’re given a list of words and an alphabet (e.g. a permutation of Latin alphabet). You need to use this alphabet to order words in the list.
Example:
- Words:
['home', 'oval', 'cat', 'egg', 'network', 'green']
- Dictionary:
'bcdfghijklmnpqrstvwxzaeiouy'
Output:
['cat', 'green', 'home', 'network', 'egg', 'oval']
def sort_by_custom_alphabet(dictionary, words):
words = sorted(words, key = lambda word: [dictionary.index(c) for c in word])
return words
12) Check if a tree is a binary search tree. In BST, the element in the root is:
- Greater than or equal to the numbers on the left
- Less than or equal to the number on the right
- The definition of a tree node:
Node(value, left, right)
def check_is_bst(head, min_val=None, max_val=None):
"""Check whether binary tree is binary search tree
Aside of the obvious node.left.val <= node.val <= node.right.val have to be
fulfilled, we also have to make sure that there is NO SINGLE leaves in the
left part of node have more value than the current node.
"""
check_val = True
check_left = True
check_right = True
if min_val:
check_val = check_val and (head.val >= min_val)
min_new = min(min_val, head.val)
else:
min_new = head.val
if max_val:
check_val = check_val and (head.val <= max_val)
max_new = max(max_val, head.val)
else:
max_new = head.val
if head.left:
check_left = check_is_bst(head.left, min_val, max_new)
if head.right:
check_right = check_is_bst(head.right, min_new, max_val)
return check_val and check_left and check_right
13) Maximum Sum Contiguous Subarray. You are given an array A
of length N
, you have to find the largest possible sum of an Subarray, of array A
.
[-2, 1, -3, 4, -1, 2, 1, -5, 4]
gives6
as largest sum (from the subarray[4, -1, 2, -1]
from sys import maxsize
def max_sum_subarr(list1, size):
"""Use Kadane's Algorithm for a optimal solution
Time Complexity: O(n)
Desciption: Use one variable for current sum, and one for Overall sum at an index.
So here, the global_max will keep on updating the max sum at any index-1,
and curr_max will check the max value at an index.
And finally after iterating through the list, return the value of global_max variable which contains Maximum sum.
"""
curr_max=list1[0]
global_max=list1[0]
for each in range(1, size):
curr_max = max(list1[each], curr_max+list1[each])
global_max = max(global_max, curr_max)
return global_max
n = int(input())
list1 = []
for i in range(0,n):
num = int(input())
list1.append(num)
print(max_sum_subarr(list1, len(list1)))
14) Three sum. Given an array, and a target value, find all possible combinations of three distinct numbers such that the sum of these three distinct numbers is equal to the target value.
Example:
Input: [12, 3, 1, 2, -6, 5, -8, 6], 0
Output: [[-8, 2, 6], [-8, 3, 5], [-6, 1, 5]]
def threeSum(array, target):
array.sort()
triplets = []
for i in range(len(array) - 2):
left = i + 1
right = len(array) - 1
while left < right:
currentSum = array[i] + array[left] + array[right]
if currentSum == target:
triplets.append([array[i], array[left], array[right]])
left += 1
right -= 1
elif currentSum > target:
right -= 1
elif currentSum < target:
left += 1
return triplets
15) Find Duplicate in array Given and array, find all duplicated value in the array
Example:
input: [1,2,3,4,3,4,5] output: [3,4]
a = [1,2,3,4,3,4,5]
def duplicates(a):
seen = set()
duplicated = set()
for i in a:
if i in seen:
duplicated.add(i)
else:
seen.add(i)
return duplicated