forked from DataTalksClub/mlops-zoomcamp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
orchestration.py
161 lines (124 loc) · 4.86 KB
/
orchestration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import pandas as pd
import pickle
from sklearn.feature_extraction import DictVectorizer
from sklearn.linear_model import LinearRegression, Lasso, Ridge
from sklearn.metrics import mean_squared_error
import mlflow
import xgboost as xgb
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
from hyperopt.pyll import scope
from prefect import flow, task
@task
def read_dataframe(filename):
df = pd.read_parquet(filename)
df.lpep_dropoff_datetime = pd.to_datetime(df.lpep_dropoff_datetime)
df.lpep_pickup_datetime = pd.to_datetime(df.lpep_pickup_datetime)
df['duration'] = df.lpep_dropoff_datetime - df.lpep_pickup_datetime
df.duration = df.duration.apply(lambda td: td.total_seconds() / 60)
df = df[(df.duration >= 1) & (df.duration <= 60)]
categorical = ['PULocationID', 'DOLocationID']
df[categorical] = df[categorical].astype(str)
return df
@task
def add_features(df_train, df_val):
df_train['PU_DO'] = df_train['PULocationID'] + '_' + df_train['DOLocationID']
df_val['PU_DO'] = df_val['PULocationID'] + '_' + df_val['DOLocationID']
categorical = ['PU_DO'] #'PULocationID', 'DOLocationID']
numerical = ['trip_distance']
dv = DictVectorizer()
train_dicts = df_train[categorical + numerical].to_dict(orient='records')
X_train = dv.fit_transform(train_dicts)
val_dicts = df_val[categorical + numerical].to_dict(orient='records')
X_val = dv.transform(val_dicts)
target = 'duration'
y_train = df_train[target].values
y_val = df_val[target].values
return X_train, X_val, y_train, y_val, dv
@task
def train_model_search(train, valid, y_val):
def _objective(params):
with mlflow.start_run():
mlflow.set_tag("model", "xgboost")
mlflow.log_params(params)
booster = xgb.train(
params=params,
dtrain=train,
num_boost_round=1000,
evals=[(valid, 'validation')],
early_stopping_rounds=50
)
y_pred = booster.predict(valid)
rmse = mean_squared_error(y_val, y_pred, squared=False)
mlflow.log_metric("rmse", rmse)
return {'loss': rmse, 'status': STATUS_OK}
search_space = {
'max_depth': scope.int(hp.quniform('max_depth', 4, 100, 1)),
'learning_rate': hp.loguniform('learning_rate', -3, 0),
'reg_alpha': hp.loguniform('reg_alpha', -5, -1),
'reg_lambda': hp.loguniform('reg_lambda', -6, -1),
'min_child_weight': hp.loguniform('min_child_weight', -1, 3),
'objective': 'reg:linear',
'seed': 42
}
best_result = fmin(
fn=_objective,
space=search_space,
algo=tpe.suggest,
max_evals=1,
trials=Trials()
)
return best_result
@task
def train_best_model(X_train, X_val, y_train, y_val, dv):
with mlflow.start_run():
train = xgb.DMatrix(X_train, label=y_train)
valid = xgb.DMatrix(X_val, label=y_val)
best_params = {
'learning_rate': 0.09585355369315604,
'max_depth': 30,
'min_child_weight': 1.060597050922164,
'objective': 'reg:linear',
'reg_alpha': 0.018060244040060163,
'reg_lambda': 0.011658731377413597,
'seed': 42
}
mlflow.log_params(best_params)
booster = xgb.train(
params=best_params,
dtrain=train,
num_boost_round=1000,
evals=[(valid, 'validation')],
early_stopping_rounds=50
)
y_pred = booster.predict(valid)
rmse = mean_squared_error(y_val, y_pred, squared=False)
mlflow.log_metric("rmse", rmse)
with open("models/preprocessor.b", "wb") as f_out:
pickle.dump(dv, f_out)
mlflow.log_artifact("models/preprocessor.b", artifact_path="preprocessor")
mlflow.xgboost.log_model(booster, artifact_path="models_mlflow")
@flow
def main_flow(train_path: str = './data/green_tripdata_2021-01.parquet',
val_path: str = './data/green_tripdata_2021-02.parquet'):
mlflow.set_tracking_uri("sqlite:///mlflow.db")
mlflow.set_experiment("nyc-taxi-experiment")
# Load
df_train = read_dataframe(train_path)
df_val = read_dataframe(val_path)
# Transform
X_train, X_val, y_train, y_val, dv = add_features(df_train, df_val).result()
# Training
train = xgb.DMatrix(X_train, label=y_train)
valid = xgb.DMatrix(X_val, label=y_val)
best = train_model_search(train, valid, y_val)
train_best_model(X_train, X_val, y_train, y_val, dv, wait_for=best)
# main_flow()
from prefect.deployments import Deployment
from prefect.orion.schemas.schedules import IntervalSchedule
from datetime import timedelta
Deployment.build_from_flow(
flow=main_flow,
name="model_training",
# schedule=IntervalSchedule(interval=timedelta(weeks=1)),
work_queue_name="ml",
)