title | author | date | output |
---|---|---|---|
codebook |
Alvaro Aguado |
November 22, 2015 |
html_document |
this table contains the following 'data.frame': 35 obs. of 68 variables:
These 35 observations per variable come from the mean of the 10.299 observation grouped by Activity and Subject (variables 1 and 2) from which 7.352 records come from the train data and 2.947 records come from the test data.
The 68 variables were selected among the 561 original variables, from the Samsung study. Picking only those that were mean or standard deviation results. The final output of this data set contains the calculated average for each measurement of mean or standard deviation.
The variables included are the following
[1] "Activity" - Activity that the person was performing while using the phone
[2] "Subject" - Each row identifies the subject who performed the activity for each window sample. Its range is from 1 to 30
Signals signals were used to estimate variables of the feature vector for each pattern:
'-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.
the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag, tBodyGyroJerkMag).
[3] "timeBodyAccelerometer-mean()-X"
[4] "timeBodyAccelerometer-mean()-Y"
[5] "timeBodyAccelerometer-mean()-Z"
[6] "timeBodyAccelerometer-std()-X"
[7] "timeBodyAccelerometer-std()-Y"
[8] "timeBodyAccelerometer-std()-Z"
[9] "timeGravityAccelerometer-mean()-X"
[10] "timeGravityAccelerometer-mean()-Y"
[11] "timeGravityAccelerometer-mean()-Z"
[12] "timeGravityAccelerometer-std()-X"
[13] "timeGravityAccelerometer-std()-Y"
[14] "timeGravityAccelerometer-std()-Z"
[15] "timeBodyAccelerometerJerk-mean()-X"
[16] "timeBodyAccelerometerJerk-mean()-Y"
[17] "timeBodyAccelerometerJerk-mean()-Z"
[18] "timeBodyAccelerometerJerk-std()-X"
[19] "timeBodyAccelerometerJerk-std()-Y"
[20] "timeBodyAccelerometerJerk-std()-Z"
[21] "timeBodyGyroscope-mean()-X"
[22] "timeBodyGyroscope-mean()-Y"
[23] "timeBodyGyroscope-mean()-Z"
[24] "timeBodyGyroscope-std()-X"
[25] "timeBodyGyroscope-std()-Y"
[26] "timeBodyGyroscope-std()-Z"
[27] "timeBodyGyroscopeJerk-mean()-X"
[28] "timeBodyGyroscopeJerk-mean()-Y"
[29] "timeBodyGyroscopeJerk-mean()-Z"
[30] "timeBodyGyroscopeJerk-std()-X"
[31] "timeBodyGyroscopeJerk-std()-Y"
[32] "timeBodyGyroscopeJerk-std()-Z"
[33] "timeBodyAccelerometerMagnitude-mean()"
[34] "timeBodyAccelerometerMagnitude-std()"
[35] "timeGravityAccelerometerMagnitude-mean()"
[36] "timeGravityAccelerometerMagnitude-std()"
[37] "timeBodyAccelerometerJerkMagnitude-mean()"
[38] "timeBodyAccelerometerJerkMagnitude-std()"
[39] "timeBodyGyroscopeMagnitude-mean()"
[40] "timeBodyGyroscopeMagnitude-std()"
[41] "timeBodyGyroscopeJerkMagnitude-mean()"
[42] "timeBodyGyroscopeJerkMagnitude-std()"
[43] "frequencyBodyAccelerometer-mean()-X"
[44] "frequencyBodyAccelerometer-mean()-Y"
[45] "frequencyBodyAccelerometer-mean()-Z"
[46] "frequencyBodyAccelerometer-std()-X"
[47] "frequencyBodyAccelerometer-std()-Y"
[48] "frequencyBodyAccelerometer-std()-Z"
[49] "frequencyBodyAccelerometerJerk-mean()-X"
[50] "frequencyBodyAccelerometerJerk-mean()-Y"
[51] "frequencyBodyAccelerometerJerk-mean()-Z"
[52] "frequencyBodyAccelerometerJerk-std()-X"
[53] "frequencyBodyAccelerometerJerk-std()-Y"
[54] "frequencyBodyAccelerometerJerk-std()-Z"
[55] "frequencyBodyGyroscope-mean()-X"
[56] "frequencyBodyGyroscope-mean()-Y"
[57] "frequencyBodyGyroscope-mean()-Z"
[58] "frequencyBodyGyroscope-std()-X"
[59] "frequencyBodyGyroscope-std()-Y"
[60] "frequencyBodyGyroscope-std()-Z"
[61] "frequencyBodyAccelerometerMagnitude-mean()"
[62] "frequencyBodyAccelerometerMagnitude-std()"
[63] "frequencyBodyAccelerometerJerkMagnitude-mean()"
[64] "frequencyBodyAccelerometerJerkMagnitude-std()"
[65] "frequencyBodyGyroscopeMagnitude-mean()"
[66] "frequencyBodyGyroscopeMagnitude-std()"
[67] "frequencyBodyGyroscopeJerkMagnitude-mean()"
[68] "frequencyBodyGyroscopeJerkMagnitude-std()"
Each variable is presented as follows as follows
$ Activity : Factor w/ 6 levels "LAYING","SITTING",..: 1 1 1 1 1 1 2 2 2 2 ... $ Subject : int 10 12 13 18 20 24 22 23 25 26 ... $ timeBodyAccelerometer-mean()-X : num 0.277 0.274 0.276 0.276 0.268 ... $ timeBodyAccelerometer-mean()-Y : num -0.017 -0.0183 -0.0177 -0.0173 -0.0176 ... $ timeBodyAccelerometer-mean()-Z : num -0.111 -0.107 -0.109 -0.108 -0.108 ... $ timeBodyAccelerometer-std()-X : num -0.392 -0.584 -0.625 -0.695 -0.605 ... $ timeBodyAccelerometer-std()-Y : num -0.386 -0.522 -0.449 -0.627 -0.369 ... $ timeBodyAccelerometer-std()-Z : num -0.499 -0.699 -0.587 -0.702 -0.635 ... $ timeGravityAccelerometer-mean()-X : num 0.741 0.699 0.71 0.717 0.628 ... $ timeGravityAccelerometer-mean()-Y : num -0.2072 0.03 -0.0421 -0.0158 -0.0373 ... $ timeGravityAccelerometer-mean()-Z : num 0.1084 0.033 0.0443 0.09 0.1072 ... $ timeGravityAccelerometer-std()-X : num -0.965 -0.967 -0.967 -0.98 -0.958 ... $ timeGravityAccelerometer-std()-Y : num -0.955 -0.961 -0.954 -0.97 -0.953 ... $ timeGravityAccelerometer-std()-Z : num -0.928 -0.947 -0.939 -0.959 -0.941 ... $ timeBodyAccelerometerJerk-mean()-X : num 0.0795 0.0704 0.0794 0.0775 0.0798 ... $ timeBodyAccelerometerJerk-mean()-Y : num 0.01694 0.00531 0.00388 0.01289 0.00221 ... $ timeBodyAccelerometerJerk-mean()-Z : num -0.016237 0.000308 -0.012349 0.000849 -0.004506 ... $ timeBodyAccelerometerJerk-std()-X : num -0.388 -0.582 -0.639 -0.735 -0.627 ... $ timeBodyAccelerometerJerk-std()-Y : num -0.446 -0.571 -0.57 -0.733 -0.527 ... $ timeBodyAccelerometerJerk-std()-Z : num -0.683 -0.793 -0.728 -0.847 -0.747 ... $ timeBodyGyroscope-mean()-X : num -0.0151 -0.0629 -0.0562 -0.0374 -0.0242 ... $ timeBodyGyroscope-mean()-Y : num -0.0917 -0.0592 -0.0617 -0.0678 -0.0789 ... $ timeBodyGyroscope-mean()-Z : num 0.0852 0.0961 0.0989 0.0908 0.0856 ... $ timeBodyGyroscope-std()-X : num -0.589 -0.728 -0.715 -0.805 -0.685 ... $ timeBodyGyroscope-std()-Y : num -0.465 -0.735 -0.646 -0.777 -0.574 ... $ timeBodyGyroscope-std()-Z : num -0.497 -0.671 -0.643 -0.746 -0.527 ... $ timeBodyGyroscopeJerk-mean()-X : num -0.112 -0.0731 -0.0881 -0.0944 -0.095 ... $ timeBodyGyroscopeJerk-mean()-Y : num -0.0398 -0.0437 -0.0441 -0.0442 -0.0414 ... $ timeBodyGyroscopeJerk-mean()-Z : num -0.0573 -0.0575 -0.0583 -0.0568 -0.0543 ... $ timeBodyGyroscopeJerk-std()-X : num -0.633 -0.71 -0.716 -0.843 -0.698 ... $ timeBodyGyroscopeJerk-std()-Y : num -0.708 -0.811 -0.719 -0.884 -0.684 ... $ timeBodyGyroscopeJerk-std()-Z : num -0.607 -0.749 -0.713 -0.839 -0.637 ... $ timeBodyAccelerometerMagnitude-mean() : num -0.357 -0.56 -0.54 -0.658 -0.517 ... $ timeBodyAccelerometerMagnitude-std() : num -0.424 -0.574 -0.597 -0.69 -0.572 ... $ timeGravityAccelerometerMagnitude-mean() : num -0.357 -0.56 -0.54 -0.658 -0.517 ... $ timeGravityAccelerometerMagnitude-std() : num -0.424 -0.574 -0.597 -0.69 -0.572 ... $ timeBodyAccelerometerJerkMagnitude-mean() : num -0.462 -0.63 -0.625 -0.754 -0.62 ... $ timeBodyAccelerometerJerkMagnitude-std() : num -0.409 -0.566 -0.61 -0.745 -0.589 ... $ timeBodyGyroscopeMagnitude-mean() : num -0.388 -0.632 -0.581 -0.715 -0.517 ... $ timeBodyGyroscopeMagnitude-std() : num -0.523 -0.685 -0.636 -0.776 -0.58 ... $ timeBodyGyroscopeJerkMagnitude-mean() : num -0.666 -0.777 -0.713 -0.86 -0.684 ... $ timeBodyGyroscopeJerkMagnitude-std() : num -0.715 -0.786 -0.712 -0.889 -0.684 ... $ frequencyBodyAccelerometer-mean()-X : num -0.392 -0.579 -0.639 -0.714 -0.613 ... $ frequencyBodyAccelerometer-mean()-Y : num -0.385 -0.523 -0.493 -0.664 -0.426 ... $ frequencyBodyAccelerometer-mean()-Z : num -0.555 -0.727 -0.63 -0.761 -0.665 ... $ frequencyBodyAccelerometer-std()-X : num -0.393 -0.587 -0.621 -0.688 -0.603 ... $ frequencyBodyAccelerometer-std()-Y : num -0.426 -0.553 -0.463 -0.633 -0.382 ... $ frequencyBodyAccelerometer-std()-Z : num -0.512 -0.71 -0.599 -0.695 -0.648 ... $ frequencyBodyAccelerometerJerk-mean()-X : num -0.412 -0.599 -0.66 -0.75 -0.652 ... $ frequencyBodyAccelerometerJerk-mean()-Y : num -0.463 -0.591 -0.603 -0.744 -0.558 ... $ frequencyBodyAccelerometerJerk-mean()-Z : num -0.646 -0.775 -0.711 -0.833 -0.733 ... $ frequencyBodyAccelerometerJerk-std()-X : num -0.419 -0.603 -0.65 -0.743 -0.635 ... $ frequencyBodyAccelerometerJerk-std()-Y : num -0.467 -0.579 -0.562 -0.739 -0.526 ... $ frequencyBodyAccelerometerJerk-std()-Z : num -0.721 -0.809 -0.745 -0.86 -0.761 ... $ frequencyBodyGyroscope-mean()-X : num -0.524 -0.661 -0.659 -0.788 -0.626 ... $ frequencyBodyGyroscope-mean()-Y : num -0.545 -0.745 -0.647 -0.816 -0.591 ... $ frequencyBodyGyroscope-mean()-Z : num -0.458 -0.657 -0.62 -0.756 -0.518 ... $ frequencyBodyGyroscope-std()-X : num -0.612 -0.75 -0.735 -0.812 -0.704 ... $ frequencyBodyGyroscope-std()-Y : num -0.43 -0.733 -0.651 -0.76 -0.568 ... $ frequencyBodyGyroscope-std()-Z : num -0.557 -0.708 -0.686 -0.766 -0.575 ... $ frequencyBodyAccelerometerMagnitude-mean() : num -0.389 -0.559 -0.59 -0.698 -0.56 ... $ frequencyBodyAccelerometerMagnitude-std() : num -0.536 -0.651 -0.665 -0.734 -0.648 ... $ frequencyBodyAccelerometerJerkMagnitude-mean(): num -0.385 -0.564 -0.607 -0.742 -0.585 ... $ frequencyBodyAccelerometerJerkMagnitude-std() : num -0.447 -0.572 -0.617 -0.75 -0.597 ... $ frequencyBodyGyroscopeMagnitude-mean() : num -0.573 -0.717 -0.652 -0.816 -0.607 ... $ frequencyBodyGyroscopeMagnitude-std() : num -0.574 -0.719 -0.692 -0.79 -0.636 ... $ frequencyBodyGyroscopeJerkMagnitude-mean() : num -0.711 -0.79 -0.712 -0.885 -0.693 ... $ frequencyBodyGyroscopeJerkMagnitude-std() : num -0.741 -0.797 -0.733 -0.902 -0.695 ...