-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
239 lines (188 loc) · 8.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from typing import Tuple
import lightning.pytorch as pl
import scipy
import torch
import torch.utils.data
from lightning.pytorch.callbacks import EarlyStopping, RichProgressBar
from lightning.pytorch.utilities.types import OptimizerLRScheduler
from sklearn.model_selection import KFold
from torch import nn
from torch.optim import Adam
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader, SubsetRandomSampler
from torchmetrics import MetricCollection
from torchmetrics.classification import AUROC, Accuracy, F1Score, Precision, Recall
from torchvision import transforms
from hss.datasets.heart_sounds import DavidSpringerHSS
from hss.model.segmenter import HeartSoundSegmenter
from hss.transforms import FSST
class LitModel(pl.LightningModule):
def __init__(self, input_size: int, batch_size: int, device: torch.device) -> None:
super().__init__()
self.model = HeartSoundSegmenter(
input_size=input_size,
batch_size=batch_size,
device=device,
)
self.loss_fn = nn.CrossEntropyLoss()
self.batch_size = batch_size
num_classes = 4
self.train_metrics_per_class = MetricCollection(
{
"accuracy": Accuracy(task="multiclass", average=None, num_classes=num_classes),
"precision": Precision(task="multiclass", average=None, num_classes=num_classes),
"recall": Recall(task="multiclass", average=None, num_classes=num_classes),
"f1": F1Score(task="multiclass", average=None, num_classes=num_classes),
},
prefix="train_per_class_",
)
self.val_metrics_per_class = self.train_metrics_per_class.clone(prefix="val_")
self.test_metrics_per_class = self.train_metrics_per_class.clone(prefix="test_")
self.test_metrics_per_class.add_metrics(AUROC(task="multiclass", average=None, num_classes=num_classes))
self.train_metrics = MetricCollection(
{
"accuracy": Accuracy(task="multiclass", average="macro", num_classes=num_classes),
"precision": Precision(task="multiclass", average="macro", num_classes=num_classes),
"recall": Recall(task="multiclass", average="macro", num_classes=num_classes),
"f1": F1Score(task="multiclass", average="macro", num_classes=num_classes),
},
prefix="train_",
)
self.val_metrics = self.train_metrics.clone(prefix="val_")
self.test_metrics = self.train_metrics.clone(prefix="test_")
self.test_metrics.add_metrics(AUROC(task="multiclass", average="macro", num_classes=num_classes))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def training_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> torch.Tensor:
x, y = batch
outputs = self(x).permute((0, 2, 1))
loss = self.loss_fn(outputs, y)
metrics_per_class = self.train_metrics_per_class(outputs, y)
self.train_metrics_per_class.reset()
self.log("train_loss", loss, prog_bar=True, on_step=True, on_epoch=True)
self.log_dict(self.train_metrics(outputs, y), prog_bar=True, on_step=True, on_epoch=True)
for metric_name, metric_values in metrics_per_class.items():
for i, v in enumerate(metric_values):
self.log(f"{metric_name}_{i}", v)
return loss
def on_train_epoch_end(self) -> None:
self.train_metrics_per_class.reset()
self.train_metrics.reset()
def validation_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> torch.Tensor:
x, y = batch
outputs = self(x).permute((0, 2, 1))
loss = self.loss_fn(outputs, y)
metrics_per_class = self.val_metrics_per_class(outputs, y)
self.val_metrics_per_class.reset()
self.log("val_loss", loss, prog_bar=True, on_step=True, on_epoch=True)
self.log_dict(self.val_metrics(outputs, y), prog_bar=True, on_step=False, on_epoch=True)
for metric_name, metric_values in metrics_per_class.items():
for i, v in enumerate(metric_values):
self.log(f"{metric_name}_{i}", v)
return loss
def on_validation_epoch_end(self) -> None:
self.val_metrics_per_class.reset()
self.val_metrics.reset()
def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> torch.Tensor:
x, y = batch
outputs = self(x).permute((0, 2, 1))
loss = self.loss_fn(outputs, y)
metrics_per_class = self.test_metrics_per_class(outputs, y)
self.test_metrics_per_class.reset()
self.log("test_loss", loss)
self.log_dict(self.test_metrics(outputs, y))
for metric_name, metric_values in metrics_per_class.items():
for i, v in enumerate(metric_values):
self.log(f"{metric_name}_{i}", v)
return loss
def on_test_epoch_end(self) -> None:
self.test_metrics_per_class.reset()
self.test_metrics.reset()
def configure_optimizers(self) -> OptimizerLRScheduler:
optimizer = Adam(self.parameters(), lr=0.01)
# Reduce the learning rate 10% on every epoch
scheduler = LambdaLR(optimizer, lr_lambda=lambda epoch: 0.9**epoch)
return {"optimizer": optimizer, "lr_scheduler": scheduler}
def main() -> None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transform = transforms.Compose(
(
FSST(
1000,
window=scipy.signal.get_window(("kaiser", 0.5), 128, fftbins=False),
truncate_freq=(25, 200),
stack=True,
),
)
)
hss_dataset = DavidSpringerHSS(
"resources/data",
download=True,
framing=True,
in_memory=True,
transform=transform,
)
batch_size = 50
# First split dataset into train+val and test sets
test_size = int(0.15 * len(hss_dataset))
train_val_size = len(hss_dataset) - test_size
train_val_dataset, test_dataset = torch.utils.data.random_split(
hss_dataset, [train_val_size, test_size], generator=torch.Generator().manual_seed(68)
)
# Now do k-fold cross validation on the train+val portion
n_splits = 10
kfold = KFold(n_splits=n_splits, shuffle=True, random_state=68)
# Initialize lists to store metrics for each fold
fold_metrics = [
{
"accuracy": torch.zeros(n_splits),
"precision": torch.zeros(n_splits),
"recall": torch.zeros(n_splits),
"f1": torch.zeros(n_splits),
"MulticlassAUROC": torch.zeros(n_splits),
}
for _ in range(4)
]
for fold_idx, (train_idx, val_idx) in enumerate(kfold.split(range(train_val_size))):
# Create samplers for data loading
train_sampler = SubsetRandomSampler(train_idx)
val_sampler = SubsetRandomSampler(val_idx)
# Create data loaders
train_loader = DataLoader(
train_val_dataset, batch_size=batch_size, sampler=train_sampler, num_workers=19, drop_last=True
)
val_loader = DataLoader(
train_val_dataset, batch_size=batch_size, sampler=val_sampler, num_workers=19, drop_last=True
)
# Initialize model and training
model = LitModel(input_size=44, batch_size=batch_size, device=device)
early_stopping = EarlyStopping("val_loss", patience=6, check_finite=True)
trainer = pl.Trainer(
max_epochs=15,
accelerator="gpu" if torch.cuda.is_available() else "cpu",
gradient_clip_val=1,
gradient_clip_algorithm="norm",
callbacks=[early_stopping, RichProgressBar()],
)
# Train and validate for this fold
trainer.fit(model, train_loader, val_loader)
# Create test loader from held-out test set
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=19, drop_last=True)
# Test the model
test_results = trainer.test(dataloaders=test_loader, ckpt_path="best")[0]
# Loop through classes and metrics
metrics = ["accuracy", "precision", "recall", "f1", "MulticlassAUROC"]
for metric in metrics:
for i in range(4):
metric_key = f"test_{metric}_{i}"
fold_metrics[i][metric][fold_idx] = test_results[metric_key]
for i, metrics in enumerate(fold_metrics):
print(f"Class {i}")
print("---")
print(f"Accuracy: {torch.mean(metrics['accuracy'])}")
print(f"Precision: {torch.mean(metrics['precision'])}")
print(f"Recall: {torch.mean(metrics['recall'])}")
print(f"F1: {torch.mean(metrics['f1'])}")
print(f"AUROC: {torch.mean(metrics['MulticlassAUROC'])}\n")
if __name__ == "__main__":
main()