Skip to content

Latest commit

 

History

History
74 lines (48 loc) · 2.92 KB

ReadMe.md

File metadata and controls

74 lines (48 loc) · 2.92 KB

Creating a strategy

In the user_data folder there is a strategies directory. In there you can make different Strategies.

Running in Sandbox

There is a command in the docker compose file. When you do docker-compose up it will run that command. For sandbox use this -

    command: >
      trade
      --logfile /freqtrade/user_data/logs/freqtrade.log
      --db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
      --config /freqtrade/user_data/config.json
      --strategy BBRSINaiveStrategy

Then run

docker-compose up -d 
docker-compose logs -f 

Running Live

Change the config file to have the API Keys etc then define the Strategy in the Docker-Compose file under command `

Getting Pairs Data

The RM is used here as we don't want this container to stay built, we're simply using Freqtrade to download the pairs, then the container will stop because it's finished and we then remove it to free up space

docker-compose run --rm freqtrade download-data --exchange binance -t 15m --pairs-file ./user_data/data/binance/pairs.json

Backtesting

docker-compose run --rm freqtrade backtesting --datadir user_data/data/binance --export trades --stake-amount 100 -s BBRSINaiveStrategy -i 15m

Plotting

You can then plot these results docker-compose run --rm freqtrade plot-dataframe --strategy BBRSINaiveStrategy -p ALGO/USDT -i 15m

Once the plot is ready you will see the message Stored plot as /freqtrade/user_data/plot/freqtrade-plot-ALGO_USDT-15m.html which you can open in a browser window.

Optimising - Guide is outdated, need new HyperOpt Guide

To optimize the strategy we will use the Hyperopt module of freqtrade. First up we need to create a new hyperopt file from a template:

docker-compose run --rm freqtrade new-hyperopt --hyperopt BBRSIHyperopt

Now add desired definitions for buy/sell guards and triggers to the Hyperopt file. Then run the optimization like so (NOTE: set the time interval and the number of epochs to test using the -i and -e flags:

docker-compose run --rm freqtrade hyperopt --hyperopt BBRSIHyperopt --hyperopt-loss SharpeHyperOptLoss --strategy BBRSINaiveStrategy -i 15m

Alex way

Pull new strategies from here: https://github.com/freqtrade/freqtrade-strategies Run the TestAllStrategies.py file to See which is the best performing strat Then optimise it using HyperOpt docker-compose run --rm freqtrade hyperopt --hyperopt-loss SharpeHyperOptLoss --strategy GodStraNew -i 15m -e 500

Then

Misc Freqtrade Commands

Find Pairs Freqtrade has download

docker-compose run --rm freqtrade list-data --exchange binance

Resources

Very good video here: https://www.youtube.com/watch?v=wq3uLSDJxUQ with Github here : https://github.com/devbootstrap/optimize-trading-strategy-using-freqtrade/blob/main/README.md

Strategies

Github full of Strats here: https://github.com/freqtrade/freqtrade-strategies