-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_v2_crossattn.py
188 lines (153 loc) · 6.09 KB
/
train_v2_crossattn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import argparse
import wandb
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from accelerate import Accelerator
from tqdm.auto import tqdm
from zizi_pipeline import (
ZiziPipeline,
TrainingConfig,
get_unet,
get_unet_crossattn,
get_ddpm,
get_adamw,
get_lr_scheduler,
get_dataloader,
get_subset_dataloader,
)
from utils import make_grid
config = TrainingConfig(
"data/pink-cape-me/",
"output/pink-me-cross-attn-128/",
image_size=128,
train_batch_size=8,
save_model_epochs=10,
lr_warmup_steps=0,
num_epochs=100,
save_image_epochs=1,
)
def load_from_checkpoint(checkpoint_dir):
print(f"Resuming training from checkpoint {checkpoint_dir}")
pipeline = ZiziPipeline.from_pretrained(checkpoint_dir)
return pipeline.unet_cond, pipeline.scheduler
def evaluate(
config: TrainingConfig, epoch, pipeline: ZiziPipeline, condition: torch.FloatTensor
):
# Sample some images from random noise (this is the backward diffusion process).
# The default pipeline output type is `List[PIL.Image]`
images = pipeline(
condition,
batch_size=config.eval_batch_size,
generator=torch.manual_seed(config.seed),
num_inference_steps=50,
).images
wandb.log({"examples": [wandb.Image(img) for img in images]})
# Make a grid out of the images
image_grid = make_grid(images, rows=2, cols=2)
# Save the images
test_dir = os.path.join(config.output_dir, "samples")
os.makedirs(test_dir, exist_ok=True)
image_grid.save(f"{test_dir}/{epoch:04d}.png")
def train_loop(config, checkpoint_dir=None, epoch_offset=0):
# Initialize accelerator
accelerator = Accelerator(
log_with="wandb",
mixed_precision=config.mixed_precision,
gradient_accumulation_steps=config.gradient_accumulation_steps,
project_dir=os.path.join(config.output_dir, "logs"),
)
train_dataloader = get_dataloader(config)
if checkpoint_dir is not None:
model, noise_scheduler = load_from_checkpoint(checkpoint_dir)
else:
model = get_unet_crossattn(config)
noise_scheduler = get_ddpm()
optimizer = get_adamw(config, model)
lr_scheduler = get_lr_scheduler(config, optimizer, train_dataloader)
# from torch.optim.lr_scheduler import ConstantLR
# lr_scheduler = ConstantLR(optimizer, factor=1) # TEMP HACK
# Prepare everything
# There is no specific order to remember, you just need to unpack the
# objects in the same order you gave them to the prepare method.
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
global_step = 0
if accelerator.is_main_process:
os.makedirs(config.output_dir, exist_ok=True)
accelerator.init_trackers("zizi-pink-full-pose")
# Now you train the model
for raw_epoch in range(config.num_epochs):
epoch = raw_epoch + epoch_offset
progress_bar = tqdm(
total=len(train_dataloader), disable=not accelerator.is_local_main_process
)
progress_bar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["images"]
# Sample noise to add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bs = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.config.num_train_timesteps,
(bs,),
device=clean_images.device,
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
poses = batch["poses"].reshape((bs, 1, 411))
with accelerator.accumulate(model):
# Predict the noise residual
noise_pred = model(noisy_images, timesteps, poses, return_dict=False)[0]
loss = F.mse_loss(noise_pred, noise)
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
logs = {
"loss": loss.detach().item(),
"lr": lr_scheduler.get_last_lr()[0],
"step": global_step,
"epoch": epoch,
}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
global_step += 1
# After each epoch you optionally sample some demo images with evaluate() and save the model
if accelerator.is_main_process:
pipeline = ZiziPipeline(
unet_cond=accelerator.unwrap_model(model),
scheduler=noise_scheduler,
).to(accelerator.device)
if (
epoch + 1
) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:
evaluate(
config,
epoch,
pipeline,
train_dataloader.dataset[0]["poses"]
.unsqueeze(0)
.to(accelerator.device),
)
if (
epoch + 1
) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:
pipeline.save_pretrained(f"{config.output_dir}/checkpoint-{str(epoch)}")
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train zizi with cross attn")
parser.add_argument(
"--resume_from", type=str, help="Directory to resume a checkpoint from"
)
parser.add_argument("--offset", help="Previous epoch count", type=int, default=0)
args = parser.parse_args()
train_loop(config, args.resume_from, args.offset)