-
Notifications
You must be signed in to change notification settings - Fork 2
/
basic-benchmark.cpp
544 lines (445 loc) · 12.6 KB
/
basic-benchmark.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
Testbed for empirical evaluation of KP-ABE schemes, according to Crampton, Pinto (CSF2014).
Code by: Alexandre Miranda Pinto
This file implements some basic time measurements, covering all the operations needed for the KP implementation
My tests with measuring time by counting clicks have shown that this
is not reliable. They usually give me half of the actual time
passed. Because of this, I will adopt the method of repeating the
experiment a large number of times and measuring the seconds via the
time function. This has the added benefit of smoothing out
variations in individual executions.
The operations to measure are the following:
- Sampling of a pseudo-random Big
- Creation of random elements in G1 and G2
- Creation of elements in G1 and G2 giving a generator and an exponent (multiplication)
- Exponentiation in GT
- Pairing of random elements in G1,G2
- Multiplication in GT
- Modular Division with Bigs
- Hash and XOR of message
*/
#include <ctime>
#include "utils.h"
void report_time(const string& description, long repeats, time_t initial, time_t final) {
double elapsed = final - initial;
cout << "--------------------------------------------------------------" << endl;
cout << "Task: " << description << endl;
cout << "Number of repetitions: " << repeats << endl;
cout << "Total time in seconds: " << elapsed << endl;
double average;
string unit;
double magnitude;
magnitude = 1000000;
if (repeats >= magnitude){
unit = "microseconds";
average = elapsed / (repeats / magnitude);
} else {
magnitude = 1000;
if (repeats >= magnitude){
unit = "milliseconds";
average = elapsed / (repeats / magnitude);
} else {
unit = "seconds";
average = elapsed / repeats;
}
}
cout << "Average execution time: " << average << " " << unit << endl;
cout << "--------------------------------------------------------------" << endl;
}
void report_action(const string& action, time_t *t){
time_t now = time(t);
char* dt = ctime(&now);
cout << action << dt;
}
void report_start(time_t *t){
report_action("Starting measurement at: ", t);
}
void report_finish(time_t *t){
report_action("Ending measurement at: ", t);
}
bool RndBig = false;
bool RndG1 = false;
bool RndG2 = false;
bool MultG1 = false;
bool MultG2 = false;
bool ExpGT = false;
bool PurePair = false;
bool FullPairWithExp = false;
bool MultGT = false;
bool ArithBig = false;
bool HashAndXor = false;
void parseInput(int argc, char* argv[]){
for (int i = 0; i < argc; i++) {
std::string arg = argv[i];
if (arg == "rb") RndBig = true;
if (arg == "rg1") RndG1 = true;
if (arg == "rg2") RndG2 = true;
if (arg == "mg1") MultG1 = true;
if (arg == "mg2") MultG2 = true;
if (arg == "egt") ExpGT = true;
if (arg == "pr") PurePair = true;
if (arg == "prxp") FullPairWithExp = true;
if (arg == "mgt") MultGT = true;
if (arg == "arit") ArithBig = true;
if (arg == "hx") HashAndXor = true;
if (arg == "all") {
RndBig = RndG1 = RndG2 = MultG1 = MultG2 = ExpGT = PurePair = FullPairWithExp = MultGT = ArithBig = HashAndXor = true;
}
}
}
int main(int argc, char* argv[] ) {
PFC pfc(AES_SECURITY); // initialise pairing-friendly curve
miracl *mip=get_mip(); // get handle on mip (Miracl Instance Pointer)
mip->IOBASE=16;
time_t seed; // crude randomisation. Check if this is the version that is crypto-secure.
time(&seed);
irand((long)seed);
long million = 1000000;
long thousand = 1000;
long repeats;
time_t t0;
time_t t1;
double elapsed = 0;
parseInput(argc, argv);
cout << endl;
// Sampling Random Bigs
if (RndBig) {
Big randomBig;
repeats = 5 * million;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(randomBig);
}
report_finish(&t1);
report_time("#1 Sampling Random Bigs", repeats, t0, t1);
}
// Sampling G1 elements
if (RndG1) {
G1 P;
repeats = 500 * thousand ;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(P);
}
report_finish(&t1);
report_time("#2 Sampling Random G1 elements", repeats, t0, t1);
}
// Sampling G2 elements
if (RndG2) {
G2 Q;
repeats = 50 * thousand ;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(Q);
}
report_finish(&t1);
report_time("#3 Sampling Random G2 elements", repeats, t0, t1);
}
// Creating G1 elements by multiplication with generator
if (MultG1) {
G1 P;
Big r;
pfc.random(P);
repeats = 100 * thousand ;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(r);
pfc.mult(P,r);
}
report_finish(&t1);
report_time("#4.1 Creating G1 elements with exponent", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.mult(P,r);
}
report_finish(&t1);
report_time("#4.2 Creating G1 elements using a fixed exponent", repeats, t0, t1);
}
// Creating G2 elements by multiplication with generator
if (MultG2) {
G2 Q;
Big r;
pfc.random(Q);
repeats = 100 * thousand ;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(r);
pfc.mult(Q,r);
}
report_finish(&t1);
report_time("#5.1 Creating G2 elements with exponent", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.mult(Q,r);
}
report_finish(&t1);
report_time("#5.2 Creating G2 elements using a fixed exponent", repeats, t0, t1);
}
// Exponentation in GT
if (ExpGT) {
Big r;
G1 P;
G2 Q;
GT Y;
pfc.random(P);
pfc.random(Q);
Y = pfc.pairing(Q,P);
repeats = 50 * thousand ;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.power(Y,r);
}
report_finish(&t1);
report_time("#6.1 Computing exponentiations on GT", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(r);
pfc.power(Y,r);
}
report_finish(&t1);
report_time("#6.2 Computing exponentiations on GT with fresh random exponent", repeats, t0, t1);
}
// Pairs of random elements from G1 and G2
if (PurePair) {
G1 P;
G2 Q;
pfc.random(P);
pfc.random(Q);
repeats = 10 * thousand ;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.pairing(Q,P);
}
report_finish(&t1);
report_time("#7.1 Computing pure pairings", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(P);
pfc.random(Q);
pfc.pairing(Q,P);
}
report_finish(&t1);
report_time("#7.2 Computing pure pairings with fresh random elements ", repeats, t0, t1);
}
// Pairs of random elements with exponentiation
if (FullPairWithExp) {
Big r;
GT Y;
G1 P;
G2 Q;
G1 Pr;
G2 Qr;
pfc.random(P);
pfc.random(Q);
repeats = 10 * thousand ;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(r);
pfc.random(P);
pfc.random(Q);
Y = pfc.pairing(Q,P);
pfc.power(Y,r);
}
report_finish(&t1);
report_time("#8.1 Computing pure pairings and then exponentiating", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(r);
pfc.random(P);
pfc.random(Q);
Pr = pfc.mult(P,r);
pfc.pairing(Q,Pr);
}
report_finish(&t1);
report_time("#8.2 Exponentiating in G1 and then pairing with G2", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(r);
pfc.random(P);
pfc.random(Q);
Qr = pfc.mult(Q,r);
pfc.pairing(Qr,P);
}
report_finish(&t1);
report_time("#8.3 Exponentiating in G2 and then pairing with G1", repeats, t0, t1);
}
// Exponentation in GT
if (ExpGT) {
Big r;
G1 P;
G2 Q;
GT Y;
pfc.random(P);
pfc.random(Q);
Y = pfc.pairing(Q,P);
repeats = 50 * thousand ;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.power(Y,r);
}
report_finish(&t1);
report_time("#9.1 Computing pairing exponentiations", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(r);
pfc.power(Y,r);
}
report_finish(&t1);
report_time("#9.2 Computing pairing exponentiations with fresh random exponent", repeats, t0, t1);
}
// Multiplication in GT
if (MultGT) {
Big r;
G1 P;
G2 Q;
GT M;
GT N;
pfc.random(P);
pfc.random(Q);
pfc.random(r);
M = pfc.pairing(Q,pfc.mult(P,r));
pfc.random(r);
N = pfc.pairing(Q,pfc.mult(P,r));
repeats = 1 * million;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
M = M * N;
}
report_finish(&t1);
report_time("#10.1 Multiplying fixed random elements of GT", repeats, t0, t1);
repeats = 5 * thousand;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(r);
N = pfc.pairing(Q,pfc.mult(P,r));
M = M * N;
}
report_finish(&t1);
report_time("#10.2 Multiplying fresh random elements of GT", repeats, t0, t1);
repeats = 1 * million;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
M = M / N;
}
report_finish(&t1);
report_time("#11.1 Dividing fixed random elements of GT", repeats, t0, t1);
repeats = 5 * thousand;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(r);
N = pfc.pairing(Q,pfc.mult(P,r));
M = M / N;
}
report_finish(&t1);
report_time("#11.2 Dividing fresh random elements of GT", repeats, t0, t1);
}
// Arithmetic with Bigs
if (ArithBig) {
Big a;
Big b;
Big r;
Big s;
Big order;
repeats = 5 * million;
order = pfc.order();
pfc.random(a);
pfc.random(b);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
a += b;
a %= order;
}
report_finish(&t1);
report_time("#13.1 Adding Fixed Random Bigs", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(b);
a += b;
a %= order;
}
report_finish(&t1);
report_time("#13.2 Adding distinct Random Bigs", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(a);
pfc.random(b);
a += b;
a %= order;
}
report_finish(&t1);
report_time("#13.3 Adding both distinct Random Bigs", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
a = modmult(a,b,order);
}
report_finish(&t1);
report_time("#14.1 Multiplying fixed Random Bigs", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(b);
a = modmult(a,b,order);
}
report_finish(&t1);
report_time("#14.2 Multiplying distinct Random Bigs", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(a);
pfc.random(b);
a = modmult(a,b,order);
}
report_finish(&t1);
report_time("#14.3 Multiplying both distinct Random Bigs", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
a = moddiv(a,b,order);
}
report_finish(&t1);
report_time("#15.1 Dividing fixed Random Bigs", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(b);
a = moddiv(a,b,order);
}
report_finish(&t1);
report_time("#15.2 Dividing distinct Random Bigs", repeats, t0, t1);
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(a);
pfc.random(b);
a = moddiv(a,b,order);
}
report_finish(&t1);
report_time("#15.3 Dividing both distinct Random Bigs", repeats, t0, t1);
}
// Hash and XOR
if (HashAndXor) {
Big r;
G1 P;
G2 Q;
Big M;
GT N;
pfc.random(P);
pfc.random(Q);
pfc.random(M);
pfc.random(r);
N = pfc.pairing(Q,pfc.mult(P,r));
repeats = 1 * million ;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
M = lxor(M,pfc.hash_to_aes_key(N));
}
report_finish(&t1);
report_time("#16.1 Hashing and Xoring fixed random elements of GT", repeats, t0, t1);
repeats = 5 * thousand ;
report_start(&t0);
for (int i = 0; i < repeats; i++) {
pfc.random(r);
N = pfc.pairing(Q,pfc.mult(P,r));
M = lxor(M,pfc.hash_to_aes_key(N));
}
report_finish(&t1);
report_time("#16.2 Hashing and Xoring fresh random elements of GT", repeats, t0, t1);
}
cout << "Nothing left to do";
return 0;
}