-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
71 lines (54 loc) · 2.48 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# MIT License
# Copyright (c) 2021 alxyok
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import config
import data
import json
import model
import os.path as osp
import pytorch_lightning as pl
from pytorch_lightning.utilities.cli import LightningCLI
import torch
from typing import List
class Trainer(pl.Trainer):
def __init__(self,
accelerator: str = 'cpu',
devices: List[int] = None,
max_epochs: int = 1000,
gradient_clip_val: int = 1000,
fast_dev_run: int = False,
callbacks: List[pl.callbacks.Callback] = None):
if accelerator == 'cpu':
devices = None
logger = pl.loggers.TensorBoardLogger(config.logs_path, name=None, log_graph=True)
super().__init__(
default_root_dir=config.logs_path,
logger=logger,
accelerator=accelerator,
devices=devices,
max_epochs=max_epochs,)
def test(self, **kwargs):
results = super().test(**kwargs)[0]
with open(osp.join(config.artifacts_path, "results.json"), "w") as f:
json.dump(results, f)
torch.save(self.model, osp.join(config.artifacts_path, 'model.pth'))
def main():
cli = LightningCLI(trainer_class=Trainer)
cli.trainer.test(model=cli.model, datamodule=cli.datamodule)
if __name__ == '__main__':
torch.set_default_dtype(torch.double)
main()