Skip to content

Latest commit

 

History

History
92 lines (86 loc) · 3.76 KB

README.md

File metadata and controls

92 lines (86 loc) · 3.76 KB

CS5242 Project: Breakfast Actions Classifier

Results

Test Accuracy Notes
Segment To Label
A1. BiLSTM 49.610% Segment as input
A2. BiGRU 64.797% Entire video as input
A3. Stacked BiGRU 70.482% Entire video as input
Frame to Label
B1. DNN 23.286% Entire video as input
B2. BiLSTM 52.803% Entire video as input

Code

The best folder contains the Jupyter notebook with the code and results of our best performing model, A3. Stacked BiGRU. The model alone is shown in best_model(A3_stacked_bigru).py.

For reference, we also provide the other models discussed in our report.

  • The keras folder contains the code the baseline DNN and frame/segment to label LSTM models (B1., B2., A1.). Note that the models are stored in keras/runs.
  • The pytorch folder contains the Jupyter notebooks with the code for the GRU models (A2. and A3.), and the python script used for dataset generation.
.
├── README.md
├── best
│   ├── A3_stacked_bigru_video_model.ipynb
│   ├── A3_stacked_bigru_video_model.pth
│   └── best_model(A3_stacked_bigru).py
├── keras
│   ├── A1_lstm_segment.py
│   ├── B1_dnn_frame.py
│   ├── B2_lstm_frame.py
│   ├── README.md
│   ├── breakfast-actions-classifier-data
│   │   ├── README.md
│   │   ├── data
│   │   │   └── README.md
│   │   ├── groundTruth
│   │   ├── splits
│   │   │   ├── mapping_bf.txt
│   │   │   ├── test.split1.bundle
│   │   │   └── train.split1.bundle
│   │   ├── testing_segment.txt
│   │   └── training_segment.txt
│   ├── create_dataset_frame.py
│   ├── create_dataset_segment.py
│   ├── data
│   │   ├── README.md
│   │   ├── filename_to_segment_ids.csv
│   │   ├── frame_labels.csv
│   │   ├── frame_partition.csv
│   │   ├── segment_labels.csv
│   │   ├── segment_lengths.csv
│   │   ├── segment_partition.csv
│   │   ├── segments
│   │   └── vids
│   ├── dataset_generator_frame.py
│   ├── dataset_generator_segment.py
│   ├── requirements.txt
│   ├── results
│   │   ├── A1_lstm_segment_test_predictions.csv
│   │   ├── B1_dnn_frame_test_predictions.csv
│   │   └── B2_lstm_frame_test_predictions.csv
│   ├── runs
│   │   ├── A1_lstm_segment.hdf5
│   │   ├── B1_dnn_frame.hdf5
│   │   ├── B2_lstm_frame.hdf5
│   │   ├── figures
│   │   └── history
│   ├── test_frame_model.py
│   ├── test_segment_model.py
│   └── utils.py
└── pytorch
    ├── A2_bigru_video_model.ipynb
    ├── A2_bigru_video_model.pth
    ├── A3_stacked_bigru_video_model.ipynb
    ├── A3_stacked_bigru_video_model.pth
    ├── README.md
    ├── dataset_generator.py
    ├── groundTruth
    ├── results
    │   ├── A2_bigru_video_model.csv
    │   └── A3_stacked_bigru_video_model.csv
    ├── splits
    │   ├── mapping_bf.txt
    │   ├── test.split1.bundle
    │   └── train.split1.bundle
    ├── test_segment.txt
    └── training_segment.txt