-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsoftmaxLBFGS.m
132 lines (114 loc) · 3.1 KB
/
softmaxLBFGS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
function [theta cost] = softmaxLBFGS(x, y, option)
% softmax Logistic Regression Solver: Limited-memory BFGS
% http://en.wikipedia.org/wiki/Limited-memory_BFGS
% x -- input data, size = [m, n], m:samples number, n:feature dimension;
% y -- labels data, size = [m, 1], values=[-1 1], m:samples number;
% theta -- parameters, size = [n+1, 1], n:elements nubmer;
% cost -- cost
% option -- option struct
% max_itr: max iterators
% min_eps: min eps
% C: penalty factor
% debug: show debug message
% author -- amadeuzou AT gmail
% date -- 11/19/2013, Beijing, China
if nargin == 2
option.C = 1;
option.max_itr = 100;
option.min_eps = 1e-3;
option.debug = 1;
end
if ~isfield(option, 'C')
option.C = 1;
end
if ~isfield(option, 'max_itr')
option.max_itr = 100;
end
if ~isfield(option, 'min_eps')
option.min_eps = 1e-3;
end
if ~isfield(option, 'debug')
option.debug = 1;
end
numClass = length(unique(y));
[m, n] = size(x);
x = [ones(m, 1), x];
theta = zeros(n+1, numClass);
%theta = 0.001 * randn(n+1, numClass);
theta_k = theta;
p = {};
q = {};
lambda0 = 0;
step0 = 0.1;
J = [];
itr = 0;
err = 0;
% hypothesis
%h = softmaxFunc(x, theta_k);
% gradient
[cost g] = softmaxCostFunc(x, y, theta, option.C);
% descent direction
d = -g;
while(1)
% linear search
param.x = x;
param.y = y;
param.theta = theta;
param.d = d;
param.C = option.C;
lamb = smLinearSearch(@softmaxCostFuncLambda, param, lambda0, step0);
theta_k = theta + lamb.*d;
%%
[cost gk] = softmaxCostFunc(x, y, theta_k, option.C);
pk = theta_k - theta;
qk = gk - g;
p = [p pk];
q = [q qk];
gg = gk;
alpha = zeros(itr);
for i = 1:itr
p_i = p{i};
q_i = q{i};
ruo = 1/dot(p_i(:), q_i(:));
alpha(i) = ruo*dot(p_i(:), gg(:));
gg = gg - alpha(i)*q_i;
end
r = gg;
for i = itr:-1:1
p_i = p{i};
q_i = q{i};
ruo = 1/dot(p_i(:), q_i(:));
beta = ruo*dot(q_i(:), r(:));
r = r + p_i*(alpha(i)-beta);
end
d = -r;
theta = theta_k;
g = gk;
itr = itr + 1;
%%
err = norm(pk(:));
J = [J; cost];
if(option.debug)
disp(['itr = ', num2str(itr), ', cost = ', num2str(cost), ', err = ', num2str(err)]);
end
if itr >= option.max_itr || err <= option.min_eps || norm(g)<=option.min_eps
break;
end
end
% draw cost cure
if(option.debug)
figure(1024)
plot(1:length(J), J, 'b-');
xlabel('iterators');
ylabel('cost');
end
function J = softmaxCostFuncLambda(param, lambda)
theta = param.theta + lambda.*param.d;
k = size(theta, 2);
m = size(param.x, 1);
H = exp(param.x*theta);
M = repmat(sum(H, 2), 1, k);
Y = repmat(param.y, 1, k);
I = repmat(1:k, m, 1);
J = (Y==I).*log(H./M);
J = (-1/m)*sum(J(:)) + 0.5*param.C*sum(theta(:).^2);