-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathiSeeBetterTest.py
198 lines (166 loc) · 8.54 KB
/
iSeeBetterTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from __future__ import print_function
import argparse
import os
import torch
from torch.autograd import Variable
from torch.utils.data import DataLoader
from rbpn import Net as RBPN
from data import get_test_set
import numpy as np
import utils
import time
import cv2
import math
import logger
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('-m', '--model', default="weights/netG_epoch_4_1.pth", help="Model")
#parser.add_argument('-m', '--model', default="weights/netG_epoch_4_1.pth", help="Model")
#parser.add_argument('-m', '--model', default="weights/RBPN_4x.pth", help="Model")
parser.add_argument('-o', '--output', default='Results/', help="Location to save test results")
parser.add_argument('-s', '--upscale_factor', type=int, default=4, help="Super-Resolution Scale Factor")
parser.add_argument('-r', '--residual', action='store_true', required=False, help="")
parser.add_argument('-c', '--gpu_mode', action='store_true', required=False, help="Use a CUDA compatible GPU if available")
parser.add_argument('--testBatchSize', type=int, default=1, help="Testing Batch Size")
parser.add_argument('--chop_forward', action='store_true', required=False, help="")
parser.add_argument('--threads', type=int, default=1, help="Dataloader Threads")
parser.add_argument('--seed', type=int, default=123, help="Random seed")
parser.add_argument('--gpus', default=1, type=int, help="How many GPU's to use")
parser.add_argument('--data_dir', type=str, default="./Vid4")
parser.add_argument('--file_list', type=str, default="foliage_test.txt")
parser.add_argument('--other_dataset', type=bool, default=True, help="Use a dataset that isn't vimeo-90k")
parser.add_argument('--future_frame', type=bool, default=True, help="Use future frame")
parser.add_argument('--nFrames', type=int, default=7, help="")
parser.add_argument('--model_type', type=str, default="RBPN", help="")
parser.add_argument('-d', '--debug', action='store_true', required=False, help="Print debug spew.")
parser.add_argument('-u', '--upscale_only', action='store_true', required=False, help="Upscale mode - without downscaling.")
args = parser.parse_args()
gpus_list=range(args.gpus)
print(args)
cuda = args.gpu_mode
if cuda:
print("Using GPU mode")
if not torch.cuda.is_available():
raise Exception("No GPU found, please run without --gpu_mode")
torch.manual_seed(args.seed)
if cuda:
torch.cuda.manual_seed(args.seed)
print('==> Loading datasets')
test_set = get_test_set(args.data_dir, args.nFrames, args.upscale_factor, args.file_list, args.other_dataset, args.future_frame, args.upscale_only)
testing_data_loader = DataLoader(dataset=test_set, num_workers=args.threads, batch_size=args.testBatchSize, shuffle=False)
print('==> Building model ', args.model_type)
if args.model_type == 'RBPN':
model = RBPN(num_channels=3, base_filter=256, feat = 64, num_stages=3, n_resblock=5, nFrames=args.nFrames, scale_factor=args.upscale_factor)
if cuda:
model = torch.nn.DataParallel(model, device_ids=gpus_list)
device = torch.device("cuda:0" if cuda and torch.cuda.is_available() else "cpu")
if cuda:
model = model.cuda(gpus_list[0])
def eval():
# Initialize Logger
logger.initLogger(args.debug)
# print iSeeBetter architecture
utils.printNetworkArch(netG=model, netD=None)
# load model
modelPath = os.path.join(args.model)
utils.loadPreTrainedModel(gpuMode=args.gpu_mode, model=model, modelPath=modelPath)
model.eval()
count = 0
upscale_only = args.upscale_only
if not upscale_only:
avg_psnr_predicted = 0.0
for batch in testing_data_loader:
input, target, neigbor, flow, bicubic = batch[0], batch[1], batch[2], batch[3], batch[4]
with torch.no_grad():
if cuda:
input = Variable(input).cuda(gpus_list[0])
bicubic = Variable(bicubic).cuda(gpus_list[0])
neigbor = [Variable(j).cuda(gpus_list[0]) for j in neigbor]
flow = [Variable(j).cuda(gpus_list[0]).float() for j in flow]
else:
input = Variable(input).to(device=device, dtype=torch.float)
bicubic = Variable(bicubic).to(device=device, dtype=torch.float)
neigbor = [Variable(j).to(device=device, dtype=torch.float) for j in neigbor]
flow = [Variable(j).to(device=device, dtype=torch.float) for j in flow]
t0 = time.time()
if args.chop_forward:
with torch.no_grad():
prediction = chop_forward(input, neigbor, flow, model, args.upscale_factor)
else:
with torch.no_grad():
prediction = model(input, neigbor, flow)
if args.residual:
prediction = prediction + bicubic
t1 = time.time()
print("==> Processing: %s || Timer: %.4f sec." % (str(count), (t1 - t0)))
save_img(prediction.cpu().data, str(count), True)
save_img(target, str(count), False)
prediction = prediction.cpu()
prediction = prediction.data[0].numpy().astype(np.float32)
prediction = prediction*255.
target = target.squeeze().numpy().astype(np.float32)
target = target*255.
if not upscale_only:
psnr_predicted = PSNR(prediction, target, shave_border=args.upscale_factor)
print("PSNR Predicted = ", psnr_predicted)
avg_psnr_predicted += psnr_predicted
count += 1
if not upscale_only: # Otherwise the print will error on '-u'
print("Avg PSNR Predicted = ", avg_psnr_predicted/count)
def save_img(img, img_name, pred_flag):
save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0)
# save img
save_dir=os.path.join(args.output, args.data_dir, os.path.splitext(args.file_list)[0]+'_'+str(args.upscale_factor)+'x')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if pred_flag:
save_fn = save_dir +'/'+ img_name+'_'+args.model_type+'F'+str(args.nFrames)+'.png'
else:
save_fn = save_dir +'/'+ img_name+'.png'
cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
def PSNR(pred, gt, shave_border=0):
height, width = pred.shape[1:3]
pred = pred[:, 1+shave_border:height - shave_border, 1+shave_border:width - shave_border]
gt = gt[:, 1+shave_border:height - shave_border, 1+shave_border:width - shave_border]
imdff = pred - gt
rmse = math.sqrt(np.mean(imdff ** 2))
if rmse == 0:
return 100
return 20 * math.log10(255.0 / rmse)
def chop_forward(x, neigbor, flow, model, scale, shave=8, min_size=2000, nGPUs=args.gpus):
b, c, h, w = x.size()
h_half, w_half = h // 2, w // 2
h_size, w_size = h_half + shave, w_half + shave
inputlist = [
[x[:, :, 0:h_size, 0:w_size], [j[:, :, 0:h_size, 0:w_size] for j in neigbor], [j[:, :, 0:h_size, 0:w_size] for j in flow]],
[x[:, :, 0:h_size, (w - w_size):w], [j[:, :, 0:h_size, (w - w_size):w] for j in neigbor], [j[:, :, 0:h_size, (w - w_size):w] for j in flow]],
[x[:, :, (h - h_size):h, 0:w_size], [j[:, :, (h - h_size):h, 0:w_size] for j in neigbor], [j[:, :, (h - h_size):h, 0:w_size] for j in flow]],
[x[:, :, (h - h_size):h, (w - w_size):w], [j[:, :, (h - h_size):h, (w - w_size):w] for j in neigbor], [j[:, :, (h - h_size):h, (w - w_size):w] for j in flow]]]
if w_size * h_size < min_size:
outputlist = []
for i in range(0, 4, nGPUs):
with torch.no_grad():
input_batch = inputlist[i]#torch.cat(inputlist[i:(i + nGPUs)], dim=0)
output_batch = model(input_batch[0], input_batch[1], input_batch[2])
outputlist.extend(output_batch.chunk(nGPUs, dim=0))
else:
outputlist = [
chop_forward(patch[0], patch[1], patch[2], model, scale, shave, min_size, nGPUs) \
for patch in inputlist]
h, w = scale * h, scale * w
h_half, w_half = scale * h_half, scale * w_half
h_size, w_size = scale * h_size, scale * w_size
shave *= scale
with torch.no_grad():
output = Variable(x.data.new(b, c, h, w))
output[:, :, 0:h_half, 0:w_half] \
= outputlist[0][:, :, 0:h_half, 0:w_half]
output[:, :, 0:h_half, w_half:w] \
= outputlist[1][:, :, 0:h_half, (w_size - w + w_half):w_size]
output[:, :, h_half:h, 0:w_half] \
= outputlist[2][:, :, (h_size - h + h_half):h_size, 0:w_half]
output[:, :, h_half:h, w_half:w] \
= outputlist[3][:, :, (h_size - h + h_half):h_size, (w_size - w + w_half):w_size]
return output
##Eval Start!!!!
eval()