Given a reference of a node in a connected undirected graph.
Return a deep copy (clone) of the graph.
Each node in the graph contains a val (int) and a list (List[Node]) of its neighbors.
class Node { public int val; public List neighbors; }
Test case format:
For simplicity sake, each node's value is the same as the node's index (1-indexed). For example, the first node with val = 1, the second node with val = 2, and so on. The graph is represented in the test case using an adjacency list.
Adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.
Example 1:
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
Example 2:
Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
Example 3:
Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.
Example 4:
Input: adjList = [[2],[1]]
Output: [[2],[1]]
Constraints:
1 <= Node.val <= 100
Node.val is unique for each node.
Number of Nodes will not exceed 100.
There is no repeated edges and no self-loops in the graph.
The Graph is connected and all nodes can be visited starting from the given node.
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> neighbors;
public Node() {
val = 0;
neighbors = new ArrayList<Node>();
}
public Node(int _val) {
val = _val;
neighbors = new ArrayList<Node>();
}
public Node(int _val, ArrayList<Node> _neighbors) {
val = _val;
neighbors = _neighbors;
}
}
*/
class Solution {
public Node cloneGraph(Node node) {
//mapping old node and new node
if(node==null) return node;
Map<Node,Node> map=new HashMap<>();
//for bfs
Queue<Node> q=new LinkedList<>();
q.add(node);
map.put(node,new Node(node.val));
while(!q.isEmpty()){
Node curr=q.poll();
Node currCopy=map.get(curr);
for(Node n:curr.neighbors){
if(!map.containsKey(n)){
map.put(n,new Node(n.val));
q.offer(n);
}
currCopy.neighbors.add(map.get(n));
}
}
return map.get(node);
}
}