-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path00_build_datasets.py
54 lines (45 loc) · 1.64 KB
/
00_build_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from _datagen import get_dataset
from pandas import read_csv
import numpy as np
import os
from skimage import io
import sys
if len(sys.argv) != 4:
print('usage: python {} <csv_file> <n_channels> <target>'.format(
sys.argv[0]))
exit(1)
csv_file = sys.argv[1]
n_channels = int(sys.argv[2])
target = sys.argv[3]
if n_channels not in [3, 12]:
raise ValueError('n_channels must be: 3, 12')
if target not in ['class', 'magnitudes']:
raise ValueError('target must be: class, magnitudes')
base_dir = os.environ['DATA_PATH']
data_dir = 'crops_rgb32' if n_channels==3 else 'crops_calib'
data_dir = os.path.join(base_dir, data_dir)
output_dir = os.path.join(os.environ['HOME'], 'data')
dataset_name = csv_file.split('/')[-1][:-4]
dtype = 'uint8' if n_channels==3 else 'float32'
read_fn = io.imread if n_channels==3 else np.load
ext = '.png' if n_channels==3 else '.npy'
df = read_csv(csv_file)
for split in ['train', 'val', 'test']:
df_tmp = df[(df.split==split)]
ids, y, labels = get_dataset(df_tmp, target=target, n_bands=n_channels)
np.save(
os.path.join(
output_dir,
f'{dataset_name}_{n_channels}_y_{split}.npy'),
y)
print(f'saved {dataset_name}_{n_channels}_y_{split}.npy', y.shape)
im_paths = [os.path.join(data_dir, i.split('.')[0], i + ext) for i in ids]
X = np.zeros((len(ids),) + (32, 32, n_channels), dtype=dtype)
for i, path in enumerate(im_paths):
X[i, :] = read_fn(path)
np.save(
os.path.join(
output_dir,
f'{dataset_name}_{n_channels}_X_{split}.npy'),
X)
print(f'saved {dataset_name}_{n_channels}_X_{split}.npy', X.shape)