forked from google/lyra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
causal_convolutional_conditioning_test.cc
430 lines (380 loc) · 18.2 KB
/
causal_convolutional_conditioning_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "causal_convolutional_conditioning.h"
#include <algorithm>
#include <iterator>
#include <string>
#include <vector>
// Placeholder for get runfiles header.
#include "absl/types/span.h"
#include "exported_layers_test.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "include/ghc/filesystem.hpp"
#include "lyra_config.h"
#include "lyra_types.h"
#include "sparse_matmul/sparse_matmul.h"
namespace chromemedia {
namespace codec {
// Use a test peer to access the private transpose_conv_2_buffer_ and make the
// test independent of the projection layer of each architecture.
template <typename WeightTypeKind>
class CausalConvolutionalConditioningPeer {
public:
using ConditioningType = CausalConvolutionalConditioning<ConditioningTypes<
WeightTypeKind, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6>>;
static LayerParams Conv1DParams(int feature_depth, int num_cond_hiddens,
int num_threads,
const std::string& model_path,
const std::string& prefix) {
return ConditioningType::Conv1DParams(feature_depth, num_cond_hiddens,
num_threads, model_path, prefix);
}
static LayerParams DilatedParams(int num_cond_hiddens, int level,
int num_threads,
const std::string& model_path,
const std::string& prefix) {
return ConditioningType::DilatedParams(num_cond_hiddens, level, num_threads,
model_path, prefix);
}
static LayerParams TransposeParams(int num_cond_hiddens, int level,
int num_threads,
const std::string& model_path,
const std::string& prefix) {
return ConditioningType::TransposeParams(num_cond_hiddens, level,
num_threads, model_path, prefix);
}
static LayerParams ConvCondParams(int num_cond_hiddens, int num_hiddens,
int num_threads,
const std::string& model_path,
const std::string& prefix) {
return ConditioningType::ConvCondParams(num_cond_hiddens, num_hiddens,
num_threads, model_path, prefix);
}
static LayerParams ConvToGatesParams(int num_hiddens, int num_threads,
const std::string& model_path,
const std::string& prefix) {
return ConditioningType::ConvToGatesParams(num_hiddens, num_threads,
model_path, prefix);
}
CausalConvolutionalConditioningPeer(int feature_depth, int num_cond_hiddens,
int num_hiddens, int num_samples_per_hop,
int num_frames_per_packet,
int num_threads, const std::string& path,
const std::string& prefix)
: conditioning_stack_(feature_depth, num_cond_hiddens, num_hiddens,
num_samples_per_hop, num_frames_per_packet,
num_threads, 0.0f, path, prefix) {}
void Precompute(const csrblocksparse::FatCacheAlignedVector<float>& input,
int num_threads) {
conditioning_stack_.Precompute(input, num_threads);
}
std::vector<float> Transpose2() {
const auto output_from_transpose_2 =
conditioning_stack_.conv_cond_layer_->InputViewToUpdate();
return std::vector<float>(
output_from_transpose_2.data(),
output_from_transpose_2.data() +
output_from_transpose_2.rows() * output_from_transpose_2.cols());
}
private:
ConditioningType conditioning_stack_;
};
namespace {
static const int kCondUpsamplingRatio = 8;
static const int kNumSamplesPerHop = GetNumSamplesPerHop(16000);
static const int kNumSamplesPerCondOutput =
kNumSamplesPerHop / kCondUpsamplingRatio;
// For creating typed-tests. We want to test the template class,
// CausalConvolutionalConditioning, instantiated with different types:
// 1. float: C++'s generic floating point.
// 2. csrblocksparse::fixed16_type: a type that is used in our Lyra
// implementation. See the build rule for :wavegru_model_impl.
// Different types would require different tolerance, hence the template class
// Tolerance below.
template <typename ComputeType>
struct Tolerance {
// Unspecialized Tolerance class does not define |kTolerance|, so an attempt
// to test a ComputeType that is not one of
// {float, csrblocksparse::fixed16_type} will result in a compile error.
};
template <>
struct Tolerance<float> {
static constexpr float kTolerance = 1e-6f;
};
template <>
struct Tolerance<csrblocksparse::fixed16_type> {
// Fixed-point arithmetic is less accurate than floating-point; hence a higher
// tolerance.
// We have a fixed number of bits to allocate to the
// integer/mantissa fixed point representation. When we use fixed
// representations clipping leads to unacceptable quality results, so we
// allocate more bits to the integer vs mantissa component to prevent
// clipping. This leads to much less precise results as compared to using full
// floats in calculations.
static constexpr float kTolerance = 2e-2f;
};
template <typename ComputeType>
class CausalConvolutionalConditioningTest : public ::testing::Test {
public:
CausalConvolutionalConditioningTest()
: testdata_dir_(ghc::filesystem::current_path() / "testdata") {}
protected:
const float kTolerance = Tolerance<ComputeType>::kTolerance;
const ghc::filesystem::path testdata_dir_;
};
using ComputeTypes = ::testing::Types<float, csrblocksparse::fixed16_type>;
TYPED_TEST_SUITE(CausalConvolutionalConditioningTest, ComputeTypes);
// This tests that the conditioning stack matches the results
// ConvConditioningStack produce when initialized with the same hyperparameters.
// The weight matrices are stored as .raw.gz in the testdata/ directory.
TYPED_TEST(CausalConvolutionalConditioningTest,
ConditioningStackMatchTensorflow) {
const int kNumFeatures = 3;
const int kNumCondHiddens = 8;
const int kNumHiddens = 4;
const int kNumThreads = 1;
const int kNumInvalidPaddedFrames = 8;
const int kNumTotalFrames = 10;
std::vector<float> features;
ASSERT_TRUE(csrblocksparse::ReadArrayFromFile("codec.gz", &features,
this->testdata_dir_.c_str())
.ok());
// Obtained from the TensorFlow architecture loaded with the weights used in
// testdata/ directory.
// These values were generated 1 in every 80 print outputs is selected and
// each row rearranged accordingly:
// python: r1 r2 u1 u2 e1 e2
// C++: r1 u1 e1 r2 u2 e2
// The weights that are loaded in the cpp impl are the transpose of the
// TensorFlow values.
// We do not expect the first |kNumInvalidPaddedFrames| to match this
// implementation because of the additional initial padding used in
// TensorFlow.
std::vector<float> expected_cond_out;
ASSERT_TRUE(csrblocksparse::ReadArrayFromFile("transpose_2.gz",
&expected_cond_out,
this->testdata_dir_.c_str())
.ok());
CausalConvolutionalConditioningPeer<TypeParam> conditioning_stack(
kNumFeatures, kNumCondHiddens, kNumHiddens, kNumSamplesPerHop,
kNumFramesPerPacket, kNumThreads, this->testdata_dir_.string(), "lyra");
csrblocksparse::FatCacheAlignedVector<float> input(kNumFeatures, 1);
// Run through |kNumInvalidPaddedFrames| without checking the results.
for (int i = 0; i < kNumInvalidPaddedFrames; ++i) {
std::copy(features.begin() + i * input.size(),
features.begin() + (i + 1) * input.size(), input.data());
conditioning_stack.Precompute(input, kNumThreads);
}
for (int i = kNumInvalidPaddedFrames; i < kNumTotalFrames; ++i) {
std::copy(features.begin() + i * input.size(),
features.begin() + (i + 1) * input.size(), input.data());
conditioning_stack.Precompute(input, kNumThreads);
const auto transpose_2_result = conditioning_stack.Transpose2();
const auto expected_transpose_2_result =
expected_cond_out.begin() +
(i - 1) * kCondUpsamplingRatio * kNumCondHiddens;
// For testing with csrblocksparse's fixed-point types, there is no
// overloaded arithmetic operators (e.g. operator+, operator<). So we cannot
// use testing::Pointwise(). Convert each element to float before
// comparison.
for (int k = 0; k < transpose_2_result.size(); ++k) {
// Since we are inside a derived class template, C++ requires us to visit
// the members of CausalConvolutionalConditioningTest via 'this'. See
// https://isocpp.org/wiki/faq/templates#nondependent-name-lookup-members
EXPECT_NEAR(transpose_2_result[k], expected_transpose_2_result[k],
this->kTolerance);
}
}
}
TYPED_TEST(CausalConvolutionalConditioningTest,
MultipleThreadYieldsSameResult) {
using ConditioningType = CausalConvolutionalConditioning<ConditioningTypes<
TypeParam, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6>>;
const int kNumCondHiddens = 8;
const int kNumHiddens = 4;
const std::vector<std::vector<float>> kFeatures = {{0.0f, 0.0f, 0.0f},
{0.0f, 0.0f, 0.0f},
{1.0f, 1.0f, 1.0f},
{0.0f, 0.0f, 0.0f}};
ConditioningType no_multithreading(
kFeatures.at(0).size(), kNumCondHiddens, kNumHiddens, kNumSamplesPerHop,
kNumFramesPerPacket, 1, 0.0f, this->testdata_dir_.string(), "lyra");
ConditioningType two_threads(
kFeatures.at(0).size(), kNumCondHiddens, kNumHiddens, kNumSamplesPerHop,
kNumFramesPerPacket, 2, 0.0f, this->testdata_dir_.string(), "lyra");
csrblocksparse::FatCacheAlignedVector<float> input(kFeatures.at(0).size(), 1);
for (int i = 0; i < kFeatures.size(); ++i) {
std::copy(kFeatures.at(i).begin(), kFeatures.at(i).end(), input.data());
no_multithreading.Precompute(input, 1);
two_threads.Precompute(input, 2);
for (int j = 0; j < kCondUpsamplingRatio; ++j) {
auto no_multithreading_output =
no_multithreading.AtStep(j * kNumSamplesPerCondOutput);
auto two_threads_output =
two_threads.AtStep(j * kNumSamplesPerCondOutput);
for (int k = 0; k < no_multithreading_output.size(); ++k) {
EXPECT_FLOAT_EQ(static_cast<float>(no_multithreading_output[k]),
static_cast<float>(two_threads_output[k]));
}
}
}
}
TYPED_TEST(CausalConvolutionalConditioningTest,
MultipleFramesPerPacketYieldsSameResult) {
using ConditioningType = CausalConvolutionalConditioning<ConditioningTypes<
TypeParam, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6>>;
const int kNumCondHiddens = 8;
const int kNumHiddens = 4;
const int kNumThreads = 1;
const std::vector<std::vector<float>> kFeatures = {{0.0f, 0.0f, 0.0f},
{0.0f, 0.0f, 0.0f},
{1.0f, 1.0f, 1.0f},
{0.0f, 0.0f, 0.0f}};
ConditioningType one_frame_conditioning(
kFeatures.at(0).size(), kNumCondHiddens, kNumHiddens, kNumSamplesPerHop,
/*num_frames_per_packet=*/1, kNumThreads, 0.0f,
this->testdata_dir_.string(), "lyra");
ConditioningType two_frames_conditioning(
kFeatures.at(0).size(), kNumCondHiddens, kNumHiddens, kNumSamplesPerHop,
/*num_frames_per_packet=*/2, kNumThreads, 0.0f,
this->testdata_dir_.string(), "lyra");
csrblocksparse::FatCacheAlignedVector<float> input(kFeatures.at(0).size(), 1);
std::vector<float> one_frame_output_to_compare;
std::vector<float> two_frames_output_to_compare;
int one_frame_step = 0;
int two_frames_step = 0;
for (int i = 0; i < kFeatures.size(); ++i) {
std::copy(kFeatures.at(i).begin(), kFeatures.at(i).end(), input.data());
one_frame_conditioning.Precompute(input, kNumThreads);
two_frames_conditioning.Precompute(input, kNumThreads);
auto to_float = [](auto x) { return static_cast<float>(x); };
// For one frame per packet, collect the output every frame.
for (int j = 0; j < one_frame_conditioning.num_samples();
j += kNumSamplesPerCondOutput) {
const auto& one_frame_output =
one_frame_conditioning.AtStep(one_frame_step);
std::transform(one_frame_output.begin(), one_frame_output.end(),
std::back_inserter(one_frame_output_to_compare), to_float);
one_frame_step += kNumSamplesPerCondOutput;
}
// For two frames per packet, collect the output every 2 frames.
if (i % 2 == 1) {
for (int j = 0; j < two_frames_conditioning.num_samples();
j += kNumSamplesPerCondOutput) {
const auto& two_frames_output =
two_frames_conditioning.AtStep(two_frames_step);
std::transform(two_frames_output.begin(), two_frames_output.end(),
std::back_inserter(two_frames_output_to_compare),
to_float);
two_frames_step += kNumSamplesPerCondOutput;
}
}
}
EXPECT_THAT(
one_frame_output_to_compare,
testing::Pointwise(testing::FloatEq(), two_frames_output_to_compare));
}
// Test that exported layers with fixed-point and float weights produce
// matching results.
using csrblocksparse::fixed16_type;
using FloatConditioningType =
CausalConvolutionalConditioning<ConditioningTypes<float>>;
using FixedConditioningType =
CausalConvolutionalConditioning<ConditioningTypes<fixed16_type>>;
static constexpr int kNumFeatures = 160;
static constexpr int kNumCondHiddens = 512;
static constexpr int kNumGruHiddens = 1024;
struct Conv1DLayerTypes {
using FloatLayerType = FloatConditioningType::Conv1DLayerType;
using FixedLayerType = FixedConditioningType::Conv1DLayerType;
static LayerParams Params(const std::string& model_path) {
return CausalConvolutionalConditioningPeer<float>::Conv1DParams(
kNumFeatures, kNumCondHiddens, 1, model_path, "lyra_16khz");
}
};
struct CondStack0LayerTypes {
using FloatLayerType = FloatConditioningType::CondStack0LayerType;
using FixedLayerType = FixedConditioningType::CondStack0LayerType;
static LayerParams Params(const std::string& model_path) {
return CausalConvolutionalConditioningPeer<float>::DilatedParams(
kNumCondHiddens, 0, 1, model_path, "lyra_16khz");
}
};
struct CondStack1LayerTypes {
using FloatLayerType = FloatConditioningType::CondStack1LayerType;
using FixedLayerType = FixedConditioningType::CondStack1LayerType;
static LayerParams Params(const std::string& model_path) {
return CausalConvolutionalConditioningPeer<float>::DilatedParams(
kNumCondHiddens, 1, 1, model_path, "lyra_16khz");
}
};
struct CondStack2LayerTypes {
using FloatLayerType = FloatConditioningType::CondStack2LayerType;
using FixedLayerType = FixedConditioningType::CondStack2LayerType;
static LayerParams Params(const std::string& model_path) {
return CausalConvolutionalConditioningPeer<float>::DilatedParams(
kNumCondHiddens, 2, 1, model_path, "lyra_16khz");
}
};
struct Transpose0LayerTypes {
using FloatLayerType = FloatConditioningType::Transpose0LayerType;
using FixedLayerType = FixedConditioningType::Transpose0LayerType;
static LayerParams Params(const std::string& model_path) {
return CausalConvolutionalConditioningPeer<float>::TransposeParams(
kNumCondHiddens, 0, 1, model_path, "lyra_16khz");
}
};
struct Transpose1LayerTypes {
using FloatLayerType = FloatConditioningType::Transpose1LayerType;
using FixedLayerType = FixedConditioningType::Transpose1LayerType;
static LayerParams Params(const std::string& model_path) {
return CausalConvolutionalConditioningPeer<float>::TransposeParams(
kNumCondHiddens, 1, 1, model_path, "lyra_16khz");
}
};
struct Transpose2LayerTypes {
using FloatLayerType = FloatConditioningType::Transpose2LayerType;
using FixedLayerType = FixedConditioningType::Transpose2LayerType;
static LayerParams Params(const std::string& model_path) {
return CausalConvolutionalConditioningPeer<float>::TransposeParams(
kNumCondHiddens, 2, 1, model_path, "lyra_16khz");
}
};
struct ConvCondLayerTypes {
using FloatLayerType = FloatConditioningType::ConvCondLayerType;
using FixedLayerType = FixedConditioningType::ConvCondLayerType;
static LayerParams Params(const std::string& model_path) {
return CausalConvolutionalConditioningPeer<float>::ConvCondParams(
kNumCondHiddens, kNumGruHiddens, 1, model_path, "lyra_16khz");
}
};
struct ConvToGatesLayerTypes {
using FloatLayerType = FloatConditioningType::ConvToGatesLayerType;
using FixedLayerType = FixedConditioningType::ConvToGatesLayerType;
static LayerParams Params(const std::string& model_path) {
return CausalConvolutionalConditioningPeer<float>::ConvToGatesParams(
kNumGruHiddens, 1, model_path, "lyra_16khz");
}
};
using LayerTypesList =
testing::Types<Conv1DLayerTypes, CondStack0LayerTypes, CondStack1LayerTypes,
CondStack2LayerTypes, Transpose0LayerTypes,
Transpose1LayerTypes, Transpose2LayerTypes,
ConvCondLayerTypes, ConvToGatesLayerTypes>;
INSTANTIATE_TYPED_TEST_SUITE_P(CausalConvolutionalConditioning,
ExportedLayersTest, LayerTypesList);
} // namespace
} // namespace codec
} // namespace chromemedia