-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelpers_main_evals.cpp
253 lines (185 loc) · 7.67 KB
/
helpers_main_evals.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <sys/timeb.h>
#include <float.h>
#include "omp.h"
#include "helpers_main.h"
/****** forward ******/
void forward_convolutional_layer(LAYER *layer_, LAYER *layer, float *input, float *output, int Op, int dev_id, int num_dev) {
// shape
//int n;
//int N, M, K;
//int height, width, channels, ksize, stride, pad, height_col, width_col, channels_col;
// conv1 shape
int M = layer->n;
int K = layer->size*layer->size*layer->c;
int N = layer->out_w*layer->out_h;
int height = layer->h;
int width = layer->w;
int channels = layer->c;
int ksize = layer->size;
int stride = layer->stride;
int pad = layer->padding;
int height_col = (height+2*pad-ksize)/stride+1;
int width_col = (width+2*pad-ksize)/stride+1;
int channels_col = channels*ksize*ksize;
// init
int n = layer->outputs * layer->batch;
for (int i = 0; i < n; i++) layer->delta[i] = 0;
for (int i = 0; i < n; i++) output[i] = 0;
// inputs:
//
// M, K, N
// batch [network->layers[0]->batch]
// channels_col
// height_col
// width_col
// ksize
// stride
// channels
// height
// width
// pad
// *input [network->input]
// *output [network->layers[0]->output]
// *weights [network->layers[0]->weights]
// *T tensor, device-only data
// conv
conv(layer->batch, M, K, N, channels_col, height_col, width_col, ksize, stride, channels, height, width, pad, input, output, layer->weights, dev_id, num_dev);
// add bias
bias(layer->batch, M, N, output, layer->biases, dev_id, num_dev);
// relu
if (Op != 0) relu(layer->batch, M, N, output, dev_id, num_dev);
}
void forward_pooling_layer(LAYER *layer_, LAYER *layer, float *input, float *output, int Op, int dev_id, int num_dev) {
//int N = layer->out_h*layer->out_w*layer->out_c;
//int M = layer_->out_h*layer_->out_w*layer_->out_c;
int height = layer->h;
int width = layer->w;
int channels = layer->c;
int ksize = layer->size;
int stride = layer->stride;
int pad = layer->padding;
int height_out = layer->out_h;
int width_out = layer->out_w;
// init
int n = layer->outputs*layer->batch;
for (int i = 0; i < n; i++) layer->delta[i] = 0;
// max pooling
max_pool(layer->batch, height_out, width_out, ksize, stride, channels, height, width, pad, input, output, layer->indexes, dev_id, num_dev);
}
void forward_connected_layer(LAYER *layer_, LAYER *layer, float *input, float *output, int Op, int dev_id, int num_dev) {
int K = layer->inputs;
int N = layer->outputs;
// init
int n = layer->outputs*layer->batch;
for (int i = 0; i < n; i++) layer->delta[i] = 0;
for (int i = 0; i < n; i++) layer->output[i] = 0;
// connected
connect(layer->batch, K, N, input, output, layer->weights, dev_id, num_dev);
// add bias
bias(layer->batch, 1, N, output, layer->biases, dev_id, num_dev);
// relu
if (Op != 0) relu(layer->batch, 1, N, output, dev_id, num_dev);
}
void forward_softmax_layer(LAYER *layer_, LAYER *layer, float *input, float *output, int dev_id, int num_dev) {
int N = layer->inputs;
// init
int n = layer->outputs*layer->batch;
for (int i = 0; i < n; i++) layer->delta[i] = 0;
//printf("N: %d\n", N);
softmax(layer->batch, N, input, output, dev_id, num_dev);
}
/****** loss function ******/
float compute_loss_function(LAYER *layer, float *network_truth, int training_volume, int training_epoch) {
int N = layer->batch*layer->inputs;
// update cost
for(int i = 0; i < N; i++) {
int truth_index = i;
float t = network_truth[truth_index];
//printf("t: %f\n", t);
float p = layer->output[i];
//printf("p: %f\n", p);
// loss
if (t) {
layer->loss[i] = -log(p);
} else {
layer->loss[i] = 0;
}
//printf("-logp: %f\n", network->layers[7]->loss[i]);
layer->delta[i] = t-p;
//printf("t-p: %f\n", network->layers[7]->delta[i]);
}
float sum_cost = 0;
for (int i = 0; i < N; i++) {
sum_cost += layer->loss[i];
//printf("%f\n", network->layers[7]->loss[i]);
}
layer->cost = sum_cost;
//printf("%f\n", network->layers[7]->cost);
//printf("network->input size: %d\n", network->layers[7]->batch*network->layers[7]->outputs);
// calc network cost
float network_cost = layer->cost/(training_volume*training_epoch);
return network_cost;
}
/****** backward ******/
void backward_softmax_layer(LAYER *layer, LAYER *layer_, float *delta_in, float *delta_out, int dev_id, int num_dev) {
int N = layer->inputs;
//axpy
softmax_backward(layer->batch, N, delta_in, delta_out, dev_id, num_dev);
}
void backward_connected_layer(LAYER *layer, LAYER *layer_, float *delta_in, float *delta_out, int Op, int dev_id, int num_dev) {
int K = layer->inputs;
int N = layer->outputs;
//int n_in = layer->batch*N;
//int n_out = layer->batch*K;
// init
for(int i = 0; i < N; i++) layer->bias_updates[i] = 0;
for(int i = 0; i < N*K; i++) layer->weight_updates[i] = 0;
// gradient array
if (Op != 0) relu_backward(layer->batch, N, layer->output, delta_in, dev_id, num_dev);
// backward array
bias_backward(layer->batch, 1, N, delta_in, layer->bias_updates, dev_id, num_dev);
// backward connected
connect_backward(layer->batch, K, N, delta_in, layer_->output, layer->weight_updates, layer->weights, delta_out, dev_id, num_dev);
}
void backward_pooling_layer(LAYER *layer, LAYER *layer_, float *delta_in, float *delta_out, int Op, int dev_id, int num_dev) {
int N = layer->out_h*layer->out_w*layer->out_c;
int M = layer_->out_h*layer_->out_w*layer_->out_c;
int height = layer->h;
int width = layer->w;
int channels = layer->c;
int ksize = layer->size;
int stride = layer->stride;
int pad = layer->padding;
int height_out = layer->out_h;
int width_out = layer->out_w;
max_pool_backward(layer->batch, N, M, height_out, width_out, ksize, stride, channels, height, width, pad, layer->indexes, delta_in, delta_out, layer->output, layer_->output, dev_id, num_dev);
}
void backward_convolutional_layer(LAYER *layer, LAYER *layer_, float *delta_in, float *delta_out, int Op, int dev_id, int num_dev) {
int M = layer->n;
int K = layer->size*layer->size*layer->c;
int N = layer->out_w*layer->out_h;
int height = layer->h;
int width = layer->w;
int channels = layer->c;
int ksize = layer->size;
int stride = layer->stride;
int pad = layer->padding;
int height_col = (height+2*pad-ksize)/stride+1;
int width_col = (width+2*pad-ksize)/stride+1;
int channels_col = channels*ksize*ksize;
//int n_in = layer->batch*M*N;
//int n_out = layer->batch*height*width*channels;
// init
for(int i = 0; i < M; i++) layer->bias_updates[i] = 0;
for(int i = 0; i < K*M; i++) layer->weight_updates[i] = 0;
// gradient array
if (Op != 0) relu_backward(layer->batch, N*M, layer->output, delta_in, dev_id, num_dev);
// backward bias
bias_backward(layer->batch, N, M, delta_in, layer->bias_updates, dev_id, num_dev);
// conv backward
conv_backward(layer->batch, K, N, M, channels_col, height_col, width_col, ksize, stride, channels, height, width, pad, layer_->output, delta_in, layer->weight_updates, delta_out, layer->weights, dev_id, num_dev);
}