-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
37 lines (28 loc) · 1.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import cv2
thres = 0.5 #threshold to detect objects, anything less than this value will not be detected
cap = cv2.VideoCapture(0) #value can change dependending on the video device you use
cap.set(3, 640)
cap.set(4, 480)
classNames = []
classFile = 'coco.names'
with open(classFile, 'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightsPath = 'frozen_inference_graph.pb'
net = cv2.dnn_DetectionModel(weightsPath,configPath)
# configurations found on the official documentation
net.setInputSize(320, 320)
net.setInputScale(1.0/ 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
while True:
success, img = cap.read()
classIds, confs, bbox = net.detect(img, confThreshold=thres)
print(classIds, bbox)
if len(classIds)!=0:
for classId, confidence, box in zip(classIds.flatten(), confs.flatten(), bbox): #reduces the need for 3 separate for loops
cv2.rectangle(img, box, color=(0,255,0), thickness=3)
cv2.putText(img, classNames[classId-1], (box[0]+10, box[1]+30), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
cv2.putText(img, str(round(confidence*100,2)), (box[0]+200, box[1]+30), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
cv2.imshow("Output", img)
cv2.waitKey(1)