-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTinkerJob.java
336 lines (301 loc) · 17 KB
/
TinkerJob.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
import com.google.common.collect.*;
import org.apache.commons.io.*;
import java.io.*;
/**
* This is an all purpose work unit for doing Tinker calculations with peptides.
*/
public class TinkerJob implements WorkUnit
{
/** The peptide to minimize. */
public final Peptide peptide;
/** The forcefield to use. */
public final Forcefield forcefield;
/** The maximum number of minimization iterations to do. Note that TinkerMinimizationJob.MAX_JOB_TIME also applies. */
public final int maxIterations;
/** Whether to use Tinker solvation during the minimization. */
public final boolean solvateDuringMinimization;
/** Whether we should add an approximate solvation correction at the end of the minimization. Cannot be turned of if analysis is turned on. */
public final boolean approximateSolvationSinglePoint;
/** Whether to break down the energies into residue-by-residue terms. */
public final boolean doAnalysis;
/** Whether to use Tinker solvation during the analysis, if any. If there's no analysis, this is ignored. */
public final boolean solvateDuringAnalyze;
/** Whether to do solvation with approximate OMNISOL surface tensions. If there's no analysis, this is ignored. */
public final boolean approximateSolvationDuringAnalyze;
/** See field comments for restrictions. */
public TinkerJob(Peptide peptide, Forcefield forcefield, int maxIterations, boolean solvateDuringMinimization,
boolean approximateSolvationSinglePoint, boolean doAnalysis, boolean solvateDuringAnalyze,
boolean approximateSolvationDuringAnalyze)
{
if ( peptide == null )
throw new NullPointerException("null peptide not allowed");
this.peptide = peptide;
if ( forcefield == null )
throw new NullPointerException("must specify a forcefield");
this.forcefield = forcefield;
if ( maxIterations < 1 )
throw new IllegalArgumentException("must have at least one iteration");
this.maxIterations = maxIterations;
if ( solvateDuringMinimization && approximateSolvationSinglePoint)
throw new IllegalArgumentException("approximate solvation single point is redundant");
if ( doAnalysis && approximateSolvationSinglePoint )
throw new IllegalArgumentException("can't do approximate solvation single point without a full analysis");
if ( doAnalysis && solvateDuringAnalyze && approximateSolvationDuringAnalyze)
throw new IllegalArgumentException("can't do two kinds of solvation at once");
if ( doAnalysis && forcefield == Forcefield.AMOEBA && solvateDuringAnalyze )
throw new IllegalArgumentException("unfortunately an analysis of AMOEBA-GK solvation does not work yet");
this.solvateDuringMinimization = solvateDuringMinimization;
this.approximateSolvationSinglePoint = approximateSolvationSinglePoint;
this.doAnalysis = doAnalysis;
this.solvateDuringAnalyze = solvateDuringAnalyze;
this.approximateSolvationDuringAnalyze = approximateSolvationDuringAnalyze;
}
/** Performs the composite tinker jobs. */
public TinkerResult call()
{
// set up parameters
String solvationString = null;
if ( forcefield == Forcefield.OPLS )
solvationString = "solvate gb\n";
else if ( forcefield == Forcefield.AMOEBA )
solvationString = "solvate gk\n";
else
throw new IllegalArgumentException("unknown forcefield");
solvationString += "\n";
// perform minimization
String parameters = String.format("maxiter %d\n", maxIterations);
if ( solvateDuringMinimization )
parameters += solvationString;
parameters += "\n";
TinkerMinimizationJob job = new TinkerMinimizationJob(peptide, forcefield, parameters);
TinkerMinimizationJob.TinkerMinimizationResult result = job.call();
Molecule minimizedMolecule = result.tinkerXYZOutputFile.molecule;
Peptide newPeptide = peptide.setPositions(minimizedMolecule);
// deal with energies
TinkerMinimizationJob.TinkerMinimizationLogFile tinkerMinimizationLogFile = result.tinkerMinimizationLogFile;
double potentialEnergy = tinkerMinimizationLogFile.energy;
double gradient = tinkerMinimizationLogFile.gradient;
int iterations = tinkerMinimizationLogFile.iterations;
// return result now if nothing else was requested
if ( !solvateDuringMinimization && !approximateSolvationSinglePoint && !doAnalysis )
{
EnergyBreakdown energyBreakdown = new EnergyBreakdown(null, potentialEnergy, 0.0, potentialEnergy, null, forcefield);
newPeptide = newPeptide.setEnergyBreakdown(energyBreakdown);
return new TinkerResult(newPeptide);
}
// debugging
//System.out.printf("Forcefield: %s\n", forcefield.toString());
//System.out.printf("Iterations: %d\n", iterations);
//System.out.printf("RMS Gradient: %.2f\n", gradient);
//System.out.printf("Potential Energy: %.2f\n", potentialEnergy);
// add approximate solvation single point if requested
if ( approximateSolvationSinglePoint )
{
double solvationEnergy = 0.0;
List<Double> SASAlist = null;
try { SASAlist = new DCLMAreaCalculator(0.0).calculateSASA(newPeptide); }
catch (Exception e) { e.printStackTrace(); SASAlist = ShrakeRupleyCalculator.INSTANCE.calculateSASA(newPeptide); }
for (int i=0; i < SASAlist.size(); i++)
{
double surfaceArea = SASAlist.get(i);
double surfaceTension = peptide.contents.get(i).surfaceTension;
double energy = surfaceArea * surfaceTension;
//System.out.printf("%3d %8.2f %8.2f\n", i+1, surfaceArea, energy);
solvationEnergy += energy;
}
double totalEnergy = potentialEnergy + solvationEnergy;
//System.out.printf("Solvation Energy: %.2f\n", solvationEnergy);
//System.out.printf("Total Energy: %.2f\n", totalEnergy);
EnergyBreakdown energyBreakdown = new EnergyBreakdown(null, totalEnergy, solvationEnergy, potentialEnergy, SASAlist, forcefield);
return new TinkerResult(newPeptide.setEnergyBreakdown(energyBreakdown));
}
// perform analysis if requested
// note that if tinker solvation is used, the solvation energy will show up as 0.0 in the energy breakdown because it's assumed
// to be part of the potential energy
parameters = "\n";
if ( solvateDuringMinimization )
parameters += solvationString;
parameters += "\n";
TinkerAnalysisJob job2 = new TinkerAnalysisJob(newPeptide, forcefield, "\n\n");
TinkerAnalysisJob.TinkerAnalysisResult result2 = job2.call();
TinkerAnalyzeOutputFile outputFile2 = result2.tinkerAnalysisFile;
EnergyBreakdown energyBreakdown = new EnergyBreakdown(outputFile2.energyByResidue, outputFile2.totalEnergy,
0.0, outputFile2.totalEnergy, null, forcefield);
newPeptide = newPeptide.setEnergyBreakdown(energyBreakdown);
// return the peptide with an energy breakdown if we are finished
if ( !approximateSolvationDuringAnalyze )
return new TinkerResult(newPeptide);
else
{
// otherwise, compute approximate solvation
List<Double> SASAlist = null;
try { SASAlist = new DCLMAreaCalculator(0.0).calculateSASA(newPeptide); }
catch (Exception e) { e.printStackTrace(); SASAlist = ShrakeRupleyCalculator.INSTANCE.calculateSASA(newPeptide); }
List<Double> energies = new ArrayList<>(SASAlist.size());
double solvationEnergy = 0.0;
for (int i=0; i < SASAlist.size(); i++)
{
double surfaceArea = SASAlist.get(i);
double surfaceTension = newPeptide.contents.get(i).surfaceTension;
double energy = surfaceArea * surfaceTension;
energies.add(energy);
//System.out.printf("%3d %8.2f %8.2f\n", i+1, surfaceArea, energy);
solvationEnergy += energy;
}
//System.out.printf("Solvation energy: %.2f\n", solvationEnergy);
// write out debug file for OMNISOL
//String omnisolString = "SM5.0R\n& IOFR=1.4459 ALPHA=0.15 BETA=0.02 GAMMA=38.39\n& FACARB=0.00 FEHALO=0.75 SOLVNT=GENORG\npeptide (solvent : chloroform)\n\n";
//omnisolString += newPeptide.toOmnisolString();
//InputFileFormat.writeStringToDisk(omnisolString, "debug.dat");
// figure out which energies belong to which residues
double[] solvationEnergiesByResidue = new double[newPeptide.sequence.size()];
int numberOfAtoms = 0;
for (int i=0; i < newPeptide.sequence.size(); i++)
{
Residue residue = newPeptide.sequence.get(i);
for (Atom a : residue.atoms)
{
numberOfAtoms++;
int atomIndex = newPeptide.contents.indexOf(a);
if ( atomIndex == -1 )
throw new IllegalArgumentException("atom not in molecule");
solvationEnergiesByResidue[i] += energies.get(atomIndex);
}
}
if (numberOfAtoms != peptide.contents.size())
throw new IllegalArgumentException("failed to process solvation energies for all atoms");
// update energy breakdown
EnergyBreakdown oldEnergyBreakdown = newPeptide.energyBreakdown;
List<Double> energyByResidue = new ArrayList<>(oldEnergyBreakdown.energyByResidue);
//System.out.println("old: " + energyByResidue.toString());
//System.out.println("+: " + Arrays.toString(solvationEnergiesByResidue));
for (int i=0; i < energyByResidue.size(); i++)
{
double oldEnergy = energyByResidue.get(i);
double newEnergy = oldEnergy + solvationEnergiesByResidue[i];
energyByResidue.set(i, newEnergy);
}
energyByResidue = ImmutableList.copyOf(energyByResidue);
//System.out.println("new: " + energyByResidue.toString());
double totalEnergy = potentialEnergy + solvationEnergy;
//System.out.printf("Solvation Energy: %.2f\n", solvationEnergy);
//System.out.printf("Total Energy: %.2f\n", totalEnergy);
EnergyBreakdown newEnergyBreakdown = new EnergyBreakdown(energyByResidue, totalEnergy, solvationEnergy,
potentialEnergy, SASAlist, forcefield);
// return result
return new TinkerResult(newPeptide.setEnergyBreakdown(newEnergyBreakdown));
}
}
public static class TinkerResult implements Result
{
public final Peptide minimizedPeptide;
public TinkerResult(Peptide minimizedPeptide)
{
this.minimizedPeptide = minimizedPeptide;
}
}
/**
* Minimizes a single peptide using the specified parameters. Exceptions are not caught.
*/
public static Peptide minimize(Peptide peptide, Forcefield forcefield, int maxIterations, boolean solvateDuringMinimization,
boolean approximateSolvationSinglePoint, boolean doAnalysis, boolean solvateDuringAnalyze,
boolean approximateSolvationDuringAnalyze)
{
TinkerJob job = new TinkerJob(peptide, forcefield, maxIterations, solvateDuringMinimization, approximateSolvationSinglePoint,
doAnalysis, solvateDuringAnalyze, approximateSolvationDuringAnalyze);
return job.call().minimizedPeptide;
}
/**
* Minimizes multiple peptides using the specified parameters. If a job runs into an exception, it will not be included in the final result.
*/
public static List<Peptide> minimize(List<Peptide> peptides, Forcefield forcefield, int maxIterations, boolean solvateDuringMinimization,
boolean approximateSolvationSinglePoint, boolean doAnalysis, boolean solvateDuringAnalyze,
boolean approximateSolvationDuringAnalyze)
{
List<Future<Result>> futures = new ArrayList<>(peptides.size());
for (Peptide p : peptides)
{
TinkerJob job = new TinkerJob(p, forcefield, maxIterations, solvateDuringMinimization,
approximateSolvationSinglePoint, doAnalysis, solvateDuringAnalyze, approximateSolvationDuringAnalyze);
Future<Result> f = GeneralThreadService.submit(job);
futures.add(f);
}
GeneralThreadService.waitForFutures(futures);
List<Peptide> results = new ArrayList<>(peptides.size());
for (Future<Result> f : futures)
{
try
{
TinkerResult result = (TinkerResult)f.get();
results.add(result.minimizedPeptide);
}
catch (Exception e)
{
//e.printStackTrace();
}
}
Collections.sort(results);
return results;
}
/**
* Performs an analysis and energy breakdown on all the specified peptides.
* Analyses will be done in the gas phase
* @param peptides the peptides to analyze
* @param forcefield the forcefield to use
* @return the analyzed peptides
*/
public static List<Peptide> analyze(List<Peptide> peptides, Forcefield forcefield)
{
Map<Future<Result>,Peptide> futureMap = new HashMap<>();
List<Future<Result>> futures = new ArrayList<>(peptides.size());
for (Peptide p : peptides)
{
TinkerAnalysisJob job = new TinkerAnalysisJob(p, forcefield, "\n\n");
Future<Result> f = GeneralThreadService.submit(job);
futures.add(f);
futureMap.put(f, p);
}
GeneralThreadService.silentWaitForFutures(futures);
List<Peptide> results = new ArrayList<>(peptides.size());
for (Future<Result> f : futures)
{
try
{
TinkerAnalysisJob.TinkerAnalysisResult result = (TinkerAnalysisJob.TinkerAnalysisResult)f.get();
TinkerAnalyzeOutputFile outputFile = result.tinkerAnalysisFile;
EnergyBreakdown energyBreakdown = new EnergyBreakdown(outputFile.energyByResidue, outputFile.totalEnergy,
0.0, outputFile.totalEnergy, null, forcefield);
Peptide oldPeptide = futureMap.get(f);
Peptide newPeptide = oldPeptide.setEnergyBreakdown(energyBreakdown);
results.add(newPeptide);
}
catch (Exception e) {}
}
return results;
}
/** For testing. */
public static void main(String[] args)
{
DatabaseLoader.go();
System.out.println("building");
List<ProtoAminoAcid> sequence = ProtoAminoAcidDatabase.getSpecificSequence("arg","met","standard_ala","gly","d_proline", "gly", "phe", "val", "hd", "l_pro");
Peptide peptide = PeptideFactory.createPeptide(sequence);
for (int i=0; i < peptide.sequence.size(); i++)
{
peptide = BackboneMutator.mutateOmega(peptide, i);
peptide = BackboneMutator.mutatePhiPsi(peptide, i);
peptide = RotamerMutator.mutateChis(peptide, i);
}
peptide = PeptideFactory.setHairpinAngles(peptide);
System.out.println("done");
peptide = minimize(peptide, Forcefield.OPLS, 1000, // max iterations
false, // do tinker solvation during the minimization
false, // correct minimization energy with an approximate solvation energy
false, // perform analysis
false, // use tinker solvation during the analysis
true); // use approximate solvation during the analysis
}
}