-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathqualitative.py
196 lines (164 loc) · 7.14 KB
/
qualitative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# adapted from http://cs231n.github.io/assignments2019/assignment3/
import random
from typing import Dict, List
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
from scipy.ndimage.filters import gaussian_filter1d
from torch import nn
import params
from pipeline import BuildDataset
class QualitativeAnalysis:
def __init__(self,
model: nn.Module,
img_size: int,
videos_and_frames: Dict[str, List[int]],
class_names: Dict[int, str]):
self.class_names = class_names
self.img_size = img_size
self.model = model
self.videos_and_frames = videos_and_frames
self.features = {
vid: BuildDataset.one_video_extract_audio_and_stills(vid)
for vid in self.videos_and_frames}
# method is adapted from stanford cs231n assignment 3 available at:
# http://cs231n.github.io/assignments2019/assignment3/
@staticmethod
def _compute_saliency_maps(A, I, y, model):
"""
Compute a class saliency map using the model for images X and labels y.
Input:
- A: Input audio; Tensor of shape (N, 1, 96, 64)
- I: Input images; Tensor of shape (N, 3, H, W)
- y: Labels for X; LongTensor of shape (N,)
- model: A pretrained CNN that will be used to compute the saliency map.
Returns:
- saliency: A Tensor of shape (N, H, W) giving the saliency maps for the input
images.
"""
# Make sure the model is in "test" mode
model.eval()
# Make input tensor require gradient
# A.requires_grad_()
I.requires_grad_()
scores = model(A, I).gather(1, y.view(-1, 1)).squeeze()
scores.backward(torch.ones(scores.size()))
saliency, _ = torch.max(I.grad.abs(), dim=1)
return saliency
# also adapted from cs231n assignment 3
def _show_saliency_maps(self, A, I, y):
# Convert X and y from numpy arrays to Torch Tensors
I_tensor = torch.cat([
BuildDataset.transformer(self.img_size)(Image.fromarray(i)).unsqueeze(0)
for i in I], dim=0)
A_tensor = torch.cat([a.unsqueeze(0) for a in A])
y_tensor = torch.LongTensor(y)
# Compute saliency maps for images in X
saliency = self._compute_saliency_maps(A_tensor, I_tensor, y_tensor, self.model)
# Convert the saliency map from Torch Tensor to numpy array and show images
# and saliency maps together.
saliency = saliency.numpy()
N = len(I)
for i in range(N):
plt.subplot(2, N, i + 1)
plt.imshow(I[i])
plt.axis('off')
plt.title(self.class_names[y[i]])
plt.subplot(2, N, N + i + 1)
plt.imshow(saliency[i], cmap=plt.cm.hot)
plt.axis('off')
plt.gcf().set_size_inches(12, 5)
plt.show()
@staticmethod
def _img_transform_reverse_to_np(x: torch.Tensor) -> np.array:
rev = BuildDataset.transform_reverse(x)
return np.array(rev)
def saliency_maps(self):
for vid, indices in self.videos_and_frames.items():
A = [self.features[vid][0][idx] for idx in indices]
I = [self._img_transform_reverse_to_np(self.features[vid][1][idx])
for idx in indices]
y = [1 if 'kissing' in vid else 0] * len(A)
self._show_saliency_maps(A, I, y)
print('=' * 10)
# next few methods taken from cs231n
@staticmethod
def jitter(X, ox, oy):
"""
Helper function to randomly jitter an image.
Inputs
- X: PyTorch Tensor of shape (N, C, H, W)
- ox, oy: Integers giving number of pixels to jitter along W and H axes
Returns: A new PyTorch Tensor of shape (N, C, H, W)
"""
if ox != 0:
left = X[:, :, :, :-ox]
right = X[:, :, :, -ox:]
X = torch.cat([right, left], dim=3)
if oy != 0:
top = X[:, :, :-oy]
bottom = X[:, :, -oy:]
X = torch.cat([bottom, top], dim=2)
return X
@staticmethod
def _blur_image(X, sigma=1):
X_np = X.cpu().clone().numpy()
X_np = gaussian_filter1d(X_np, sigma, axis=2)
X_np = gaussian_filter1d(X_np, sigma, axis=3)
X.copy_(torch.Tensor(X_np).type_as(X))
return X
def create_class_visualization(self, target_y, model, dtype, a, **kwargs):
"""
Generate an image to maximize the score of target_y under a pretrained model.
Inputs:
- target_y: Integer in the range [0, 1000) giving the index of the class
- model: A pretrained CNN that will be used to generate the image
- dtype: Torch datatype to use for computations
Keyword arguments:
- l2_reg: Strength of L2 regularization on the image
- learning_rate: How big of a step to take
- num_iterations: How many iterations to use
- blur_every: How often to blur the image as an implicit regularizer
- max_jitter: How much to gjitter the image as an implicit regularizer
- show_every: How often to show the intermediate result
"""
def deprocess(x):
return BuildDataset.transform_reverse(x.squeeze(0))
model.type(dtype)
l2_reg = kwargs.pop('l2_reg', 1e-3)
learning_rate = kwargs.pop('learning_rate', 25)
num_iterations = kwargs.pop('num_iterations', 100)
blur_every = kwargs.pop('blur_every', 10)
max_jitter = kwargs.pop('max_jitter', 16)
show_every = kwargs.pop('show_every', 25)
# Randomly initialize the image as a PyTorch Tensor, and make it requires gradient.
img = torch.randn(1, 3, 224, 224).mul_(1.0).type(dtype).requires_grad_()
for t in range(num_iterations):
# Randomly jitter the image a bit; this gives slightly nicer results
ox, oy = random.randint(0, max_jitter), random.randint(0, max_jitter)
img.data.copy_(self.jitter(img.data, ox, oy))
target = model(a, img)[0, target_y]
target.backward()
g = img.grad.data
g -= 2 * l2_reg * img.data
img.data += learning_rate * (g / g.norm())
img.grad.zero_()
# Undo the random jitter
img.data.copy_(self.jitter(img.data, -ox, -oy))
# As regularizer, clamp and periodically blur the image
for c in range(3):
lo = float(-params.mean[c] / params.std[c])
hi = float((1.0 - params.mean[c]) / params.std[c])
img.data[:, c].clamp_(min=lo, max=hi)
if t % blur_every == 0:
self._blur_image(img.data, sigma=0.5)
# Periodically show the image
if t == 0 or (t + 1) % show_every == 0 or t == num_iterations - 1:
plt.imshow(deprocess(img.data.clone().cpu()))
class_name = self.class_names[target_y]
plt.title('%s\nIteration %d / %d' % (class_name, t + 1, num_iterations))
plt.gcf().set_size_inches(4, 4)
plt.axis('off')
plt.show()
return deprocess(img.data.cpu())