-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocessing.py
487 lines (387 loc) · 21.5 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#--------------------Imported Modules-------------------
import ConfigParser
import bcidataset
import numpy as np
import eegtools
from scipy.signal import butter, lfilter
from scipy.fftpack import fft
import matplotlib.pyplot as plt
import pylab
#--------------------Class Definition start here---------------
class preprocessing:
'Performs the preprocessing functions for the BCI EEG data'
def __init__(self, ConfigFile = None, CovariancePeriod = None, SkipPeriod = None, NumFilters = None, Order = None, NumBinsPerDim = None, SamplingRate = None, Xfilternum = None, SubjectID = None):
self.config = ConfigParser.ConfigParser()
if ConfigFile is None:
self.config.readfp(open('bciconfig.txt'))
self.ConfigFile = 'bciconfig.txt'
else:
self.config.readfp(open(ConfigFile))
self.ConfigFile = ConfigFile
if CovariancePeriod is None:
self.CovariancePeriod = int(self.config.get('CSP', 'CovariancePeriod'))
else:
self.CovariancePeriod = int(CovariancePeriod)
if SkipPeriod is None:
self.SkipPeriod = int(self.config.get('CSP', 'SkipPeriod'))
else:
self.SkipPeriod = int(SkipPeriod)
if NumFilters is None:
self.NumFilters = int(self.config.get('CSP', 'NumFilters'))
else:
self.NumFilters = int(NumFilters)
if Order is None:
self.Order = int(self.config.get('Filtering', 'Order'))
else:
self.Order = int(Order)
if NumBinsPerDim is None:
self.NumBinsPerDim = int(self.config.get('ProbabilityDensity', 'NumBinsPerDim'))
else:
self.NumBinsPerDim = int(NumBinsPerDim)
if SamplingRate is None:
self.SamplingRate = int(self.config.get('BCIData', 'SamplingRate'))
else:
self.SamplingRate = int(SamplingRate)
if Xfilternum is None:
self.Xfilternum = int(self.config.get('MahmoudAlgorithm', 'Xfilternum'))
else:
self.Xfilternum = int(Xfilternum)
if SubjectID is None:
self.SubjectID = self.config.get('BCIData', 'SubjectID')
else:
self.SubjectID = SubjectID
def TrainCSPfilters(self, SampleInputArray, SampleClassArray):
[AverageCovarClassOneTrials, AverageCovarClassTwoTrials] = self.GetAverageCovar(SampleInputArray, SampleClassArray)
CSPfilters = eegtools.spatfilt.csp(AverageCovarClassOneTrials, AverageCovarClassTwoTrials, self.NumFilters)
return CSPfilters;
def GetAverageCovar(self, SampleInputArray, SampleClassArray):
NumChannels = SampleInputArray.shape[1]
AverageCovarClassOneTrials = np.zeros((NumChannels, NumChannels))
AverageCovarClassTwoTrials = np.zeros((NumChannels, NumChannels))
SampleData = np.zeros((NumChannels, self.CovariancePeriod))
NumTrialsOne = 0
NumTrialsTwo = 0
SampleIndex = 0
while SampleIndex <= SampleInputArray.shape[0] - self.CovariancePeriod:
if SampleClassArray[SampleIndex] == -1:
SampleIndex = SampleIndex + 1*self.SamplingRate
SampleData = SampleInputArray[SampleIndex : SampleIndex + self.CovariancePeriod, :].transpose()
SpatCovar = np.mat(SampleData) * np.mat(SampleData.transpose())
AverageCovarClassOneTrials = AverageCovarClassOneTrials + np.array(SpatCovar / (np.trace(SpatCovar)))
NumTrialsOne = NumTrialsOne + 1
SampleIndex = SampleIndex + self.CovariancePeriod
SampleData = SampleInputArray[SampleIndex : SampleIndex + self.CovariancePeriod, :].transpose()
SpatCovar = np.mat(SampleData) * np.mat(SampleData.transpose())
AverageCovarClassOneTrials = AverageCovarClassOneTrials + np.array(SpatCovar / (np.trace(SpatCovar)))
NumTrialsOne = NumTrialsOne + 1
SampleIndex = SampleIndex + self.CovariancePeriod
elif SampleClassArray[SampleIndex] == 1:
SampleIndex = SampleIndex + 1*self.SamplingRate
SampleData = SampleInputArray[SampleIndex : SampleIndex + self.CovariancePeriod, :].transpose()
SpatCovar = np.mat(SampleData) * np.mat(SampleData.transpose())
AverageCovarClassTwoTrials = AverageCovarClassTwoTrials + np.array(SpatCovar / (np.trace(SpatCovar)))
NumTrialsTwo = NumTrialsTwo + 1
SampleIndex = SampleIndex + self.CovariancePeriod
SampleData = SampleInputArray[SampleIndex : SampleIndex + self.CovariancePeriod, :].transpose()
SpatCovar = np.mat(SampleData) * np.mat(SampleData.transpose())
AverageCovarClassTwoTrials = AverageCovarClassTwoTrials + np.array(SpatCovar / (np.trace(SpatCovar)))
NumTrialsTwo = NumTrialsTwo + 1
SampleIndex = SampleIndex + self.CovariancePeriod
else:
SampleIndex = SampleIndex + 1
AverageCovarClassOneTrials = AverageCovarClassOneTrials / NumTrialsOne
AverageCovarClassTwoTrials = AverageCovarClassTwoTrials / NumTrialsTwo
return [AverageCovarClassOneTrials, AverageCovarClassTwoTrials];
def BandPassFilter(self, lowfreq, highfreq, UnfilteredData):
FilteredData = np.zeros(UnfilteredData.shape)
NumChannels = UnfilteredData.shape[1]
NyquistFrequency = 0.5 * float(self.SamplingRate)
normlowfreq = float(lowfreq) / NyquistFrequency
normhighfreq = float(highfreq) / NyquistFrequency
b, a = butter(self.Order, [normlowfreq, normhighfreq], btype = 'bandpass', analog = False)
for ChannelIter in xrange(0, NumChannels):
FilteredData[:, ChannelIter] = lfilter(b, a, UnfilteredData[:, ChannelIter])
return FilteredData;
def BandPassFilterDemo(self, lowfreq, highfreq):
bcidataobject = bcidataset.bcidataset(ConfigFile = self.ConfigFile, SamplingRate = self.SamplingRate, Xfilternum = self.Xfilternum, SubjectID = self.SubjectID)
[SampleInputVectorList, SampleClassList] = bcidataobject.ReadSubjectFile()
NumSamples = len(SampleInputVectorList)
UnfilteredData = np.zeros((NumSamples, len(SampleInputVectorList[0])))
FilteredData = np.zeros((NumSamples, len(SampleInputVectorList[0])))
for SampleIter in xrange(0, NumSamples):
UnfilteredData[SampleIter, :] = np.array(SampleInputVectorList[SampleIter])
NyquistFrequency = 0.5 * bcidataobject.SamplingRate
normlowfreq = lowfreq / NyquistFrequency
normhighfreq = highfreq / NyquistFrequency
print normhighfreq, normlowfreq
b, a = butter(self.Order, [normlowfreq, normhighfreq], btype = 'bandpass', analog = False)
FilteredData[:,13] = lfilter(b, a, UnfilteredData[:,13])
fftfilt = fft(FilteredData[:,13])
fftunfilt = fft(UnfilteredData[:,13])
print fftfilt[0:5]
print fftfilt[-4:]
plt.plot(20*np.log10(abs(fftunfilt)))
plt.show()
plt.plot(20*np.log10(abs(fftfilt)))
plt.show()
return;
def FilteredOutputDemo(self, BestFrequencyRange, CSPfilters):
print 'Reading Subject Data'
bcidataobject = bcidataset.bcidataset(ConfigFile = self.ConfigFile, SamplingRate = self.SamplingRate, Xfilternum = self.Xfilternum, SubjectID = self.SubjectID)
[SampleInputVectorList, SampleClassList] = bcidataobject.ReadSubjectFile()
SampleInputArray = np.array(SampleInputVectorList)
SampleClassArray = np.array(SampleClassList)
del SampleInputVectorList, SampleClassList
print 'Reading Completed'
print 'Preforming Frequency Filtering in the BFR'
FFSampleInputArray = self.BandPassFilter(BestFrequencyRange[0], BestFrequencyRange[1], SampleInputArray)
print 'Performing Spatial Filtering with the best Spatial Filters'
SFSampleInputArray = np.array(np.mat(FFSampleInputArray) * np.mat(CSPfilters.transpose()))
del FFSampleInputArray
NumPointsToPlot = 30000
#NumParts should be able to integer divide NumPointsToPlot
NumParts = 10
PartLength = NumPointsToPlot / NumParts
for Part in xrange(0, NumParts):
fig = plt.figure()
for NewChannelIndex in xrange(0, SFSampleInputArray.shape[1]):
# #plot SFSampleInputArray[(Part*PartLength):((Part+1)*PartLength), NewChannelIndex] in color of SampleClassList[(Part*PartLength):((Part+1)*PartLength)]
# pylab.xlabel('Time Samples')
# pylab.ylabel('Filtered Value')
# pylab.title('Filtered Channel: ' + str(NewChannelIndex + 1))
ClassOneInd = [(index+1+Part*PartLength) for index, x in enumerate(SampleClassArray[(Part*PartLength):((Part+1)*PartLength)]) if x == -1]
ClassTwoInd = [(index+1+Part*PartLength) for index, x in enumerate(SampleClassArray[(Part*PartLength):((Part+1)*PartLength)]) if x == 1]
ax = fig.add_subplot(5,1,NewChannelIndex+1)
ax.plot(np.array(xrange(Part*PartLength, (Part+1)*PartLength)), SFSampleInputArray[(Part*PartLength):((Part+1)*PartLength), NewChannelIndex])
ax.plot(ClassOneInd, SFSampleInputArray[ClassOneInd, NewChannelIndex], color="red")
ax.plot(ClassTwoInd, SFSampleInputArray[ClassTwoInd, NewChannelIndex], color="green")
ax.set_title('Channel ' + str(NewChannelIndex + 1))
fig.tight_layout()
ImageDir = '/home/amit/data/BCI/VisualizeData/FilteredOutput/' + str(Part + 1) +'.jpg'
pylab.savefig(ImageDir, bbox_inches='tight')
# pylab.show()
return;
def FeatureDemo(self, FeatureVectors, OutputVector):
NumPointsToPlot = 30000
#NumParts should be able to integer divide NumPointsToPlot
NumParts = 10
PartLength = NumPointsToPlot / NumParts
for Part in xrange(0, NumParts):
fig = plt.figure()
for NewChannelIndex in xrange(0, FeatureVectors.shape[1]):
#plot FeatureVectors[(Part*PartLength):((Part+1)*PartLength), NewChannelIndex] in color of SampleClassList[(Part*PartLength):((Part+1)*PartLength)]
ClassOneInd = [(index+1+Part*PartLength) for index, x in enumerate(OutputVector[(Part*PartLength):((Part+1)*PartLength)]) if x == -1]
ClassTwoInd = [(index+1+Part*PartLength) for index, x in enumerate(OutputVector[(Part*PartLength):((Part+1)*PartLength)]) if x == 1]
ax = fig.add_subplot(FeatureVectors.shape[1], 1, NewChannelIndex+1)
ax.plot(np.array(xrange(Part*PartLength, (Part+1)*PartLength)), FeatureVectors[(Part*PartLength):((Part+1)*PartLength), NewChannelIndex])
ax.plot(ClassOneInd, FeatureVectors[ClassOneInd, NewChannelIndex], color="red")
ax.plot(ClassTwoInd, FeatureVectors[ClassTwoInd, NewChannelIndex], color="green")
ax.set_title('Channel ' + str(NewChannelIndex + 1))
fig.tight_layout()
ImageDir = '/home/amit/data/BCI/VisualizeData/FeatureOutput/' + str(Part + 1) +'.jpg'
pylab.savefig(ImageDir, bbox_inches='tight')
# pylab.show()
return;
def ComputeProbabilityDistribution(self, SelectedFilterData):
if SelectedFilterData.ndim == 1:
Histogram, BinEdges = np.histogram(SelectedFilterData, self.NumBinsPerDim)
elif SelectedFilterData.ndim == 2:
Histogram, xedges, yedges = np.histogram2d(SelectedFilterData[:, 0], SelectedFilterData[:, 1], self.NumBinsPerDim)
BinEdges = np.column_stack((xedges, yedges))
return Histogram.astype(float) / float(np.sum(Histogram)), BinEdges;
# def FindBin(self, PointComponent, EdgesDim):
# for edgeiter in xrange(0, EdgesDim.shape[0] - 1):
# if (PointComponent >= EdgesDim[edgeiter]) and (PointComponent < EdgesDim[edgeiter + 1]):
# return edgeiter;
# return edgeiter;
def ComputeMutualInformation(self, SelectedFilterData):
#SelectedFilterData is the data from one filter, it is one dimensional and has the class output in the second column.
#It is selected based on FilterScoringFunction
MI = 0
ProbabilityDensityXY, BinEdgesXY = self.ComputeProbabilityDistribution(SelectedFilterData)
ProbabilityDensityX, BinEdgesX = self.ComputeProbabilityDistribution(SelectedFilterData[:, 0])
ProbabilityDensityY, BinEdgesY = self.ComputeProbabilityDistribution(SelectedFilterData[:, 1])
for xbin in xrange(0, ProbabilityDensityXY.shape[0]):
for ybin in xrange(0, ProbabilityDensityXY.shape[1]):
if ProbabilityDensityXY[xbin, ybin] != 0:
MI = MI + (ProbabilityDensityXY[xbin, ybin] * np.log2(ProbabilityDensityXY[xbin, ybin] / (ProbabilityDensityX[xbin] * ProbabilityDensityY[ybin])))
# for SampleIter in xrange(0, SelectedFilterData.shape[0]):
# X = SelectedFilterData[SampleIter, 0]
# Y = SelectedFilterData[SampleIter, 1]
# pX = ProbabilityDensityX[self.FindBin(X, BinEdgesX)]
# pY = ProbabilityDensityY[self.FindBin(Y, BinEdgesY)]
# pXY = ProbabilityDensityXY[self.FindBin(X, BinEdgesXY[:, 0]), self.FindBin(Y, BinEdgesXY[:, 1])]
# MI = MI + (pXY * np.log2(pXY / (pX * pY)))
return MI;
def FilterScoringFunction(self, FilterData):
#FilterData has two clomuns. First is the filtered data. Second is the output class.
ClassOneData = FilterData[FilterData[:, 1] == -1]
ClassTwoData = FilterData[FilterData[:, 1] == 1]
IdleClassData = FilterData[FilterData[:, 1] == 0]
MIscore = self.ComputeMutualInformation(np.concatenate((ClassOneData, ClassTwoData), axis = 0)) + max(self.ComputeMutualInformation(np.concatenate((ClassOneData, IdleClassData), axis = 0)), self.ComputeMutualInformation(np.concatenate((ClassTwoData, IdleClassData), axis = 0)))
return MIscore;
def GetMIFeatureVector(self, SFSampleInputArray):
VarianceWidth = int(self.CovariancePeriod / 2)
NumSamples = SFSampleInputArray.shape[0] - (2 * VarianceWidth)
MIFeatureVector = np.zeros((NumSamples, SFSampleInputArray.shape[1]))
for SampleIndex in xrange(VarianceWidth, NumSamples - VarianceWidth):
SampleData = np.zeros((SFSampleInputArray.shape[1], self.CovariancePeriod))
SampleData = SFSampleInputArray[(SampleIndex - VarianceWidth):(SampleIndex + VarianceWidth + 1), :].transpose()
SampleVariance = np.var(SampleData, axis = 1)
MIFeatureVector[SampleIndex - VarianceWidth, :] = np.log10(SampleVariance / np.sum(SampleVariance))
return MIFeatureVector;
def ComputeBestXFilters(self, SFSampleInputArray, SampleClassArray):
VarianceWidth = int(self.CovariancePeriod / 2)
MIFeatureVector = self.GetMIFeatureVector(SFSampleInputArray)
OutputArray = SampleClassArray[VarianceWidth:-VarianceWidth]
FilterScores = np.zeros(MIFeatureVector.shape[1])
#print 'Scoring Filters : '
for FilterIndex in xrange(0, MIFeatureVector.shape[1]):
#print (FilterIndex + 1)
FilterScores[FilterIndex] = self.FilterScoringFunction(np.column_stack((MIFeatureVector[:, FilterIndex], OutputArray)))
ChosenFilters = np.argsort(FilterScores)[-self.Xfilternum:]
#print 'Filter Scores'
#print FilterScores
return ChosenFilters;
def ComputeFrequencyRangeScore(self, SFSampleInputArray, SampleClassArray):
VarianceWidth = int(self.CovariancePeriod / 2)
MIFeatureVector = self.GetMIFeatureVector(SFSampleInputArray)
OutputArray = SampleClassArray[VarianceWidth:-VarianceWidth]
FilterScores = np.zeros(MIFeatureVector.shape[1])
#print 'Scoring Filters for BestFrequencyRange: '
for FilterIndex in xrange(0, MIFeatureVector.shape[1]):
#print (FilterIndex + 1)
FilterScores[FilterIndex] = self.FilterScoringFunction(np.column_stack((MIFeatureVector[:, FilterIndex], OutputArray)))
return np.sum(FilterScores);
def ComputeBestFrequencyRange(self, SampleInputArray, SampleClassArray, CSPfilters):
VarianceWidth = int(self.CovariancePeriod / 2)
FrequencyRanges = np.array([[6,11], [7,12], [8,13], [9,14], [10,15], [11,16], [12,17], [17,25], [25,32]]).astype(float)
FrequencyScores = np.zeros(FrequencyRanges.shape[0])
for FreqIter in xrange(0, FrequencyRanges.shape[0]):
#print 'Frequency Range : '
#print FrequencyRanges[FreqIter]
FFSampleInputArray = self.BandPassFilter(FrequencyRanges[FreqIter, 0], FrequencyRanges[FreqIter, 1], SampleInputArray)
SFSampleInputArray = np.array(np.mat(FFSampleInputArray) * np.mat(CSPfilters.transpose()))
del FFSampleInputArray
FrequencyScores[FreqIter] = self.ComputeFrequencyRangeScore(SFSampleInputArray, SampleClassArray)
del SFSampleInputArray
#print 'Frequency Range Scores'
#print FrequencyScores
return FrequencyRanges[np.argmax(FrequencyScores)];
def GetFeatureVectorsTrain(self, BestFrequencyRange, CSPfilters):
#print '-----------------------------------'
#print 'Reading Subject Data'
bcidataobject = bcidataset.bcidataset(ConfigFile = self.ConfigFile, SamplingRate = self.SamplingRate, Xfilternum = self.Xfilternum, SubjectID = self.SubjectID)
[SampleInputVectorList, SampleClassList] = bcidataobject.ReadSubjectFile()
SampleInputArray = np.array(SampleInputVectorList)
SampleClassArray = np.array(SampleClassList)
del SampleInputVectorList, SampleClassList
#print 'Reading Completed'
#print 'Performing frequency and spatial filtering.'
FFSampleInputArray = self.BandPassFilter(BestFrequencyRange[0], BestFrequencyRange[1], SampleInputArray)
del SampleInputArray
SFSampleInputArray = np.array(np.mat(FFSampleInputArray) * np.mat(CSPfilters.transpose()))
del FFSampleInputArray
FeatureList = []
OutputList = []
SampleIndex = 0
while SampleIndex <= SFSampleInputArray.shape[0] - self.CovariancePeriod:
SampleData = np.zeros((SFSampleInputArray.shape[1], self.CovariancePeriod))
if (SampleClassArray[SampleIndex] == 0) and (SampleClassArray[SampleIndex + self.CovariancePeriod - 1] == 0):
SampleData = SFSampleInputArray[SampleIndex : SampleIndex + self.CovariancePeriod, :].transpose()
SampleEnergy = np.linalg.norm(SampleData, axis=1)
FeatureList.append(2 * np.log10(SampleEnergy))
OutputList.append(0)
SampleIndex = SampleIndex + self.CovariancePeriod
elif SampleClassArray[SampleIndex] == -1:
SampleIndex = SampleIndex + 1*self.SamplingRate
SampleData = SFSampleInputArray[SampleIndex : SampleIndex + self.CovariancePeriod, :].transpose()
SampleEnergy = np.linalg.norm(SampleData, axis=1)
FeatureList.append(2 * np.log10(SampleEnergy))
OutputList.append(-1)
SampleIndex = SampleIndex + self.CovariancePeriod
SampleData = SFSampleInputArray[SampleIndex : SampleIndex + self.CovariancePeriod, :].transpose()
SampleEnergy = np.linalg.norm(SampleData, axis=1)
FeatureList.append(2 * np.log10(SampleEnergy))
OutputList.append(-1)
SampleIndex = SampleIndex + self.CovariancePeriod
elif SampleClassArray[SampleIndex] == 1:
SampleIndex = SampleIndex + 1*self.SamplingRate
SampleData = SFSampleInputArray[SampleIndex : SampleIndex + self.CovariancePeriod, :].transpose()
SampleEnergy = np.linalg.norm(SampleData, axis=1)
FeatureList.append(2 * np.log10(SampleEnergy))
OutputList.append(1)
SampleIndex = SampleIndex + self.CovariancePeriod
SampleData = SFSampleInputArray[SampleIndex : SampleIndex + self.CovariancePeriod, :].transpose()
SampleEnergy = np.linalg.norm(SampleData, axis=1)
FeatureList.append(2 * np.log10(SampleEnergy))
OutputList.append(1)
SampleIndex = SampleIndex + self.CovariancePeriod
else:
SampleIndex = SampleIndex + 1
return [np.array(FeatureList), np.array(OutputList)];
def GetFeatureVectorsTest(self, BestFrequencyRange, CSPfilters):
#print '-----------------------------------'
#print 'Reading Subject Data'
bcidataobject = bcidataset.bcidataset(ConfigFile = self.ConfigFile, SamplingRate = self.SamplingRate, Xfilternum = self.Xfilternum, SubjectID = self.SubjectID)
[SampleInputVectorList, SampleClassList] = bcidataobject.ReadSubjectFileTest()
SampleInputArray = np.array(SampleInputVectorList)
SampleClassArray = np.array(SampleClassList)
del SampleInputVectorList, SampleClassList
#print 'Reading Completed'
#print 'Performing frequency and spatial filtering.'
FFSampleInputArray = self.BandPassFilter(BestFrequencyRange[0], BestFrequencyRange[1], SampleInputArray)
del SampleInputArray
SFSampleInputArray = np.array(np.mat(FFSampleInputArray) * np.mat(CSPfilters.transpose()))
del FFSampleInputArray
NumSamples = SFSampleInputArray.shape[0] - self.CovariancePeriod + 1
FeatureVectors = np.zeros((NumSamples, SFSampleInputArray.shape[1]))
OutputVector = SampleClassArray[0:NumSamples]
for SampleIndex in xrange(0, NumSamples):
SampleData = np.zeros((SFSampleInputArray.shape[1], self.CovariancePeriod))
SampleData = SFSampleInputArray[SampleIndex:SampleIndex + self.CovariancePeriod, :].transpose()
SampleEnergy = np.linalg.norm(SampleData, axis=1)
FeatureVectors[SampleIndex, :] = 2 * np.log10(SampleEnergy)
return [FeatureVectors, OutputVector];
def MahmoudPreProcessingAlgorithm(self):
#print 'Reading Subject Data'
bcidataobject = bcidataset.bcidataset(ConfigFile = self.ConfigFile, SamplingRate = self.SamplingRate, Xfilternum = self.Xfilternum, SubjectID = self.SubjectID)
[SampleInputVectorList, SampleClassList] = bcidataobject.ReadSubjectFile()
SampleInputArray = np.array(SampleInputVectorList)
SampleClassArray = np.array(SampleClassList)
del SampleInputVectorList, SampleClassList
#print 'Reading Completed'
#print 'Initial Frequency Filtering'
FFSampleInputArray = self.BandPassFilter(8.0, 30.0, SampleInputArray)
#print 'Computing CSP Filters'
CSPfilters = self.TrainCSPfilters(FFSampleInputArray, SampleClassArray)
#print 'Applying CSP Filters'
SFSampleInputArray = np.array(np.mat(FFSampleInputArray) * np.mat(CSPfilters.transpose()))
del FFSampleInputArray
#print 'Computing Best X Filters'
ChosenFilters = self.ComputeBestXFilters(SFSampleInputArray, SampleClassArray)
del SFSampleInputArray
#print 'Computing Best Frequency Range'
BestFrequencyRange = self.ComputeBestFrequencyRange(SampleInputArray, SampleClassArray, CSPfilters[ChosenFilters])
del CSPfilters
#print 'Final Frequency Filtering'
FFSampleInputArray = self.BandPassFilter(BestFrequencyRange[0], BestFrequencyRange[1], SampleInputArray)
#print 'Re-computing CSP Filters'
CSPfilters = self.TrainCSPfilters(FFSampleInputArray, SampleClassArray)
#print 'Applying CSP Filters'
SFSampleInputArray = np.array(np.mat(FFSampleInputArray) * np.mat(CSPfilters.transpose()))
del FFSampleInputArray
#print 'Computing Best X Filters'
ChosenFilters = self.ComputeBestXFilters(SFSampleInputArray, SampleClassArray)
del SFSampleInputArray
#print 'The best frequency range obtained is : '
#print BestFrequencyRange
#print 'The best X filters for this range are : '
#print CSPfilters[ChosenFilters]
bcidataobject.StoreBestFrequencyRange(BestFrequencyRange)
bcidataobject.StoreBestXFilters(CSPfilters[ChosenFilters])
return;
# test = preprocessing()
# print test.MahmoudPreProcessingAlgorithm()
# test.TrainCSPfilters()
# test.BandPassFilterDemo(8,30)