forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrouting_search.h
1109 lines (988 loc) · 48.7 KB
/
routing_search.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_CONSTRAINT_SOLVER_ROUTING_SEARCH_H_
#define OR_TOOLS_CONSTRAINT_SOLVER_ROUTING_SEARCH_H_
#include <sys/types.h>
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <set>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_set.h"
#include "ortools/base/adjustable_priority_queue.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
#include "ortools/base/mathutil.h"
#include "ortools/constraint_solver/constraint_solver.h"
#include "ortools/constraint_solver/constraint_solveri.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/util/bitset.h"
namespace operations_research {
class IntVarFilteredHeuristic;
#ifndef SWIG
/// Helper class that manages vehicles. This class is based on the
/// RoutingModel::VehicleTypeContainer that sorts and stores vehicles based on
/// their "type".
class VehicleTypeCurator {
public:
explicit VehicleTypeCurator(
const RoutingModel::VehicleTypeContainer& vehicle_type_container)
: vehicle_type_container_(&vehicle_type_container) {}
int NumTypes() const { return vehicle_type_container_->NumTypes(); }
int Type(int vehicle) const { return vehicle_type_container_->Type(vehicle); }
/// Resets the vehicles stored, storing only vehicles from the
/// vehicle_type_container_ for which store_vehicle() returns true.
void Reset(const std::function<bool(int)>& store_vehicle);
/// Goes through all the currently stored vehicles and removes vehicles for
/// which remove_vehicle() returns true.
void Update(const std::function<bool(int)>& remove_vehicle);
int GetLowestFixedCostVehicleOfType(int type) const {
DCHECK_LT(type, NumTypes());
const std::set<VehicleClassEntry>& vehicle_classes =
sorted_vehicle_classes_per_type_[type];
if (vehicle_classes.empty()) {
return -1;
}
const int vehicle_class = (vehicle_classes.begin())->vehicle_class;
DCHECK(!vehicles_per_vehicle_class_[vehicle_class].empty());
return vehicles_per_vehicle_class_[vehicle_class][0];
}
void ReinjectVehicleOfClass(int vehicle, int vehicle_class,
int64_t fixed_cost) {
std::vector<int>& vehicles = vehicles_per_vehicle_class_[vehicle_class];
if (vehicles.empty()) {
/// Add the vehicle class entry to the set (it was removed when
/// vehicles_per_vehicle_class_[vehicle_class] got empty).
std::set<VehicleClassEntry>& vehicle_classes =
sorted_vehicle_classes_per_type_[Type(vehicle)];
const auto& insertion =
vehicle_classes.insert({vehicle_class, fixed_cost});
DCHECK(insertion.second);
}
vehicles.push_back(vehicle);
}
/// Searches a compatible vehicle of the given type; returns false if none was
/// found.
bool HasCompatibleVehicleOfType(
int type, const std::function<bool(int)>& vehicle_is_compatible) const;
/// Searches for the best compatible vehicle of the given type, i.e. the first
/// vehicle v of type 'type' for which vehicle_is_compatible(v) returns true.
/// If a compatible *vehicle* is found, its index is removed from
/// vehicles_per_vehicle_class_ and the function returns {vehicle, -1}.
/// If for some *vehicle* 'stop_and_return_vehicle' returns true before a
/// compatible vehicle is found, the function simply returns {-1, vehicle}.
/// Returns {-1, -1} if no compatible vehicle is found and the stopping
/// condition is never met.
std::pair<int, int> GetCompatibleVehicleOfType(
int type, std::function<bool(int)> vehicle_is_compatible,
std::function<bool(int)> stop_and_return_vehicle);
private:
using VehicleClassEntry =
RoutingModel::VehicleTypeContainer::VehicleClassEntry;
const RoutingModel::VehicleTypeContainer* const vehicle_type_container_;
// clang-format off
std::vector<std::set<VehicleClassEntry> > sorted_vehicle_classes_per_type_;
std::vector<std::vector<int> > vehicles_per_vehicle_class_;
// clang-format on
};
/// Returns the best value for the automatic first solution strategy, based on
/// the given model parameters.
operations_research::FirstSolutionStrategy::Value
AutomaticFirstSolutionStrategy(bool has_pickup_deliveries,
bool has_node_precedences,
bool has_single_vehicle_node);
/// Decision builder building a solution using heuristics with local search
/// filters to evaluate its feasibility. This is very fast but can eventually
/// fail when the solution is restored if filters did not detect all
/// infeasiblities.
/// More details:
/// Using local search filters to build a solution. The approach is pretty
/// straight-forward: have a general assignment storing the current solution,
/// build delta assignment representing possible extensions to the current
/// solution and validate them with filters.
/// The tricky bit comes from using the assignment and filter APIs in a way
/// which avoids the lazy creation of internal hash_maps between variables
/// and indices.
/// Generic filter-based decision builder using an IntVarFilteredHeuristic.
// TODO(user): Eventually move this to the core CP solver library
/// when the code is mature enough.
class IntVarFilteredDecisionBuilder : public DecisionBuilder {
public:
explicit IntVarFilteredDecisionBuilder(
std::unique_ptr<IntVarFilteredHeuristic> heuristic);
~IntVarFilteredDecisionBuilder() override {}
Decision* Next(Solver* solver) override;
std::string DebugString() const override;
/// Returns statistics from its underlying heuristic.
int64_t number_of_decisions() const;
int64_t number_of_rejects() const;
private:
const std::unique_ptr<IntVarFilteredHeuristic> heuristic_;
};
/// Generic filter-based heuristic applied to IntVars.
class IntVarFilteredHeuristic {
public:
IntVarFilteredHeuristic(Solver* solver, const std::vector<IntVar*>& vars,
const std::vector<IntVar*>& secondary_vars,
LocalSearchFilterManager* filter_manager);
virtual ~IntVarFilteredHeuristic() {}
/// Builds a solution. Returns the resulting assignment if a solution was
/// found, and nullptr otherwise.
Assignment* const BuildSolution();
/// Returns statistics on search, number of decisions sent to filters, number
/// of decisions rejected by filters.
int64_t number_of_decisions() const { return number_of_decisions_; }
int64_t number_of_rejects() const { return number_of_rejects_; }
virtual std::string DebugString() const { return "IntVarFilteredHeuristic"; }
protected:
/// Resets the data members for a new solution.
void ResetSolution();
/// Virtual method to initialize the solution.
virtual bool InitializeSolution() { return true; }
/// Virtual method to redefine how to build a solution.
virtual bool BuildSolutionInternal() = 0;
/// Evaluates the modifications to the current solution. If these
/// modifications are "filter-feasible" returns their corresponding cost
/// computed by filters.
/// If 'commit' is true, the modifications are committed to the current
/// solution.
/// In any case all modifications to the internal delta are cleared before
/// returning.
std::optional<int64_t> Evaluate(bool commit);
/// Returns true if the search must be stopped.
virtual bool StopSearch() { return false; }
/// Modifies the current solution by setting the variable of index 'index' to
/// value 'value'.
void SetValue(int64_t index, int64_t value) {
if (!is_in_delta_[index]) {
delta_->FastAdd(vars_[index])->SetValue(value);
delta_indices_.push_back(index);
is_in_delta_[index] = true;
} else {
delta_->SetValue(vars_[index], value);
}
}
/// Returns the value of the variable of index 'index' in the last committed
/// solution.
int64_t Value(int64_t index) const {
return assignment_->IntVarContainer().Element(index).Value();
}
/// Returns true if the variable of index 'index' is in the current solution.
bool Contains(int64_t index) const {
return assignment_->IntVarContainer().Element(index).Var() != nullptr;
}
/// Returns the number of variables the decision builder is trying to
/// instantiate.
int Size() const { return vars_.size(); }
/// Returns the variable of index 'index'.
IntVar* Var(int64_t index) const { return vars_[index]; }
/// Returns the index of a secondary var.
int64_t SecondaryVarIndex(int64_t index) const {
DCHECK(HasSecondaryVars());
return index + base_vars_size_;
}
/// Returns true if there are secondary variables.
bool HasSecondaryVars() const { return base_vars_size_ != vars_.size(); }
/// Returns true if 'index' is a secondary variable index.
bool IsSecondaryVar(int64_t index) const { return index >= base_vars_size_; }
/// Synchronizes filters with an assignment (the current solution).
void SynchronizeFilters();
Assignment* const assignment_;
private:
/// Checks if filters accept a given modification to the current solution
/// (represented by delta).
bool FilterAccept();
Solver* solver_;
std::vector<IntVar*> vars_;
const int base_vars_size_;
Assignment* const delta_;
std::vector<int> delta_indices_;
std::vector<bool> is_in_delta_;
Assignment* const empty_;
LocalSearchFilterManager* filter_manager_;
int64_t objective_upper_bound_;
/// Stats on search
int64_t number_of_decisions_;
int64_t number_of_rejects_;
};
/// Filter-based heuristic dedicated to routing.
class RoutingFilteredHeuristic : public IntVarFilteredHeuristic {
public:
RoutingFilteredHeuristic(RoutingModel* model,
LocalSearchFilterManager* filter_manager,
bool omit_secondary_vars = true);
~RoutingFilteredHeuristic() override {}
/// Builds a solution starting from the routes formed by the next accessor.
const Assignment* BuildSolutionFromRoutes(
const std::function<int64_t(int64_t)>& next_accessor);
RoutingModel* model() const { return model_; }
/// Returns the end of the start chain of vehicle,
int GetStartChainEnd(int vehicle) const { return start_chain_ends_[vehicle]; }
/// Returns the start of the end chain of vehicle,
int GetEndChainStart(int vehicle) const { return end_chain_starts_[vehicle]; }
/// Make nodes in the same disjunction as 'node' unperformed. 'node' is a
/// variable index corresponding to a node.
void MakeDisjunctionNodesUnperformed(int64_t node);
/// Make all unassigned nodes unperformed.
void MakeUnassignedNodesUnperformed();
/// Make all partially performed pickup and delivery pairs unperformed. A
/// pair is partially unperformed if one element of the pair has one of its
/// alternatives performed in the solution and the other has no alternatives
/// in the solution or none performed.
void MakePartiallyPerformedPairsUnperformed();
protected:
bool StopSearch() override { return model_->CheckLimit(); }
virtual void SetVehicleIndex(int64_t node, int vehicle) {}
virtual void ResetVehicleIndices() {}
bool VehicleIsEmpty(int vehicle) const {
return Value(model()->Start(vehicle)) == model()->End(vehicle);
}
private:
/// Initializes the current solution with empty or partial vehicle routes.
bool InitializeSolution() override;
RoutingModel* const model_;
std::vector<int64_t> start_chain_ends_;
std::vector<int64_t> end_chain_starts_;
};
class CheapestInsertionFilteredHeuristic : public RoutingFilteredHeuristic {
public:
/// Takes ownership of evaluator.
CheapestInsertionFilteredHeuristic(
RoutingModel* model,
std::function<int64_t(int64_t, int64_t, int64_t)> evaluator,
std::function<int64_t(int64_t)> penalty_evaluator,
LocalSearchFilterManager* filter_manager);
~CheapestInsertionFilteredHeuristic() override {}
protected:
struct NodeInsertion {
int64_t insert_after;
int vehicle;
int64_t value;
bool operator<(const NodeInsertion& other) const {
return std::tie(value, insert_after, vehicle) <
std::tie(other.value, other.insert_after, other.vehicle);
}
};
struct StartEndValue {
int64_t num_allowed_vehicles;
int64_t distance;
int vehicle;
bool operator<(const StartEndValue& other) const {
return std::tie(num_allowed_vehicles, distance, vehicle) <
std::tie(other.num_allowed_vehicles, other.distance,
other.vehicle);
}
};
typedef std::pair<StartEndValue, /*seed_node*/ int> Seed;
/// Computes and returns the distance of each uninserted node to every vehicle
/// in "vehicles" as a std::vector<std::vector<StartEndValue>>,
/// start_end_distances_per_node.
/// For each node, start_end_distances_per_node[node] is sorted in decreasing
/// order.
// clang-format off
std::vector<std::vector<StartEndValue> >
ComputeStartEndDistanceForVehicles(const std::vector<int>& vehicles);
/// Initializes the priority_queue by inserting the best entry corresponding
/// to each node, i.e. the last element of start_end_distances_per_node[node],
/// which is supposed to be sorted in decreasing order.
/// Queue is a priority queue containing Seeds.
template <class Queue>
void InitializePriorityQueue(
std::vector<std::vector<StartEndValue> >* start_end_distances_per_node,
Queue* priority_queue);
// clang-format on
/// Inserts 'node' just after 'predecessor', and just before 'successor' on
/// the route of 'vehicle', resulting in the following subsequence:
/// predecessor -> node -> successor.
/// If 'node' is part of a disjunction, other nodes of the disjunction are
/// made unperformed.
void InsertBetween(int64_t node, int64_t predecessor, int64_t successor,
int vehicle = -1);
/// Helper method to the ComputeEvaluatorSortedPositions* methods. Finds all
/// possible insertion positions of node 'node_to_insert' in the partial route
/// starting at node 'start' and adds them to 'node_insertions' (no sorting is
/// done).
void AppendInsertionPositionsAfter(
int64_t node_to_insert, int64_t start, int64_t next_after_start,
int vehicle, std::vector<NodeInsertion>* node_insertions);
/// Returns the cost of inserting 'node_to_insert' between 'insert_after' and
/// 'insert_before' on the 'vehicle', i.e.
/// Cost(insert_after-->node) + Cost(node-->insert_before)
/// - Cost (insert_after-->insert_before).
// TODO(user): Replace 'insert_before' and 'insert_after' by 'predecessor'
// and 'successor' in the code.
int64_t GetInsertionCostForNodeAtPosition(int64_t node_to_insert,
int64_t insert_after,
int64_t insert_before,
int vehicle) const;
/// Returns the cost of unperforming node 'node_to_insert'. Returns kint64max
/// if penalty callback is null or if the node cannot be unperformed.
int64_t GetUnperformedValue(int64_t node_to_insert) const;
std::function<int64_t(int64_t, int64_t, int64_t)> evaluator_;
std::function<int64_t(int64_t)> penalty_evaluator_;
};
/// Filter-based decision builder which builds a solution by inserting
/// nodes at their cheapest position on any route; potentially several routes
/// can be built in parallel. The cost of a position is computed from an
/// arc-based cost callback. The node selected for insertion is the one which
/// minimizes insertion cost. If a non null penalty evaluator is passed, making
/// nodes unperformed is also taken into account with the corresponding penalty
/// cost.
class GlobalCheapestInsertionFilteredHeuristic
: public CheapestInsertionFilteredHeuristic {
public:
struct GlobalCheapestInsertionParameters {
/// Whether the routes are constructed sequentially or in parallel.
bool is_sequential;
/// The ratio of routes on which to insert farthest nodes as seeds before
/// starting the cheapest insertion.
double farthest_seeds_ratio;
/// If neighbors_ratio < 1 then for each node only this ratio of its
/// neighbors leading to the smallest arc costs are considered for
/// insertions, with a minimum of 'min_neighbors':
/// num_closest_neighbors = max(min_neighbors, neighbors_ratio*N),
/// where N is the number of non-start/end nodes in the model.
double neighbors_ratio;
int64_t min_neighbors;
/// If true, only closest neighbors (see neighbors_ratio and min_neighbors)
/// are considered as insertion positions during initialization. Otherwise,
/// all possible insertion positions are considered.
bool use_neighbors_ratio_for_initialization;
/// If true, entries are created for making the nodes/pairs unperformed, and
/// when the cost of making a node unperformed is lower than all insertions,
/// the node/pair will be made unperformed. If false, only entries making
/// a node/pair performed are considered.
bool add_unperformed_entries;
};
/// Takes ownership of evaluators.
GlobalCheapestInsertionFilteredHeuristic(
RoutingModel* model,
std::function<int64_t(int64_t, int64_t, int64_t)> evaluator,
std::function<int64_t(int64_t)> penalty_evaluator,
LocalSearchFilterManager* filter_manager,
GlobalCheapestInsertionParameters parameters);
~GlobalCheapestInsertionFilteredHeuristic() override {}
bool BuildSolutionInternal() override;
std::string DebugString() const override {
return "GlobalCheapestInsertionFilteredHeuristic";
}
private:
class NodeEntry;
class PairEntry;
typedef absl::flat_hash_set<PairEntry*> PairEntries;
typedef absl::flat_hash_set<NodeEntry*> NodeEntries;
/// Inserts non-inserted single nodes or pickup/delivery pairs which have a
/// visit type in the type requirement graph, i.e. required for or requiring
/// another type for insertions.
/// These nodes are inserted iff the requirement graph is acyclic, in which
/// case nodes are inserted based on the topological order of their type,
/// given by the routing model's GetTopologicallySortedVisitTypes() method.
bool InsertPairsAndNodesByRequirementTopologicalOrder();
/// Inserts non-inserted pickup and delivery pairs. Maintains a priority
/// queue of possible pair insertions, which is incrementally updated when a
/// pair insertion is committed. Incrementality is obtained by updating pair
/// insertion positions on the four newly modified route arcs: after the
/// pickup insertion position, after the pickup position, after the delivery
/// insertion position and after the delivery position.
bool InsertPairs(
const std::map<int64_t, std::vector<int>>& pair_indices_by_bucket);
/// Returns true iff the empty_vehicle_type_curator_ should be used to insert
/// nodes/pairs on the given vehicle, i.e. iff the route of the given vehicle
/// is empty and 'all_vehicles' is true.
bool UseEmptyVehicleTypeCuratorForVehicle(int vehicle,
bool all_vehicles = true) {
return vehicle >= 0 && VehicleIsEmpty(vehicle) && all_vehicles;
}
/// Tries to insert the pickup/delivery pair on a vehicle of the same type and
/// same fixed cost as the pair_entry.vehicle() using the
/// empty_vehicle_type_curator_, and updates the pair_entry accordingly if the
/// insertion was not possible.
/// NOTE: Assumes (DCHECKS) that
/// UseEmptyVehicleTypeCuratorForVehicle(pair_entry.vehicle()) is true.
bool InsertPairEntryUsingEmptyVehicleTypeCurator(
const std::vector<int>& pair_indices, PairEntry* const pair_entry,
AdjustablePriorityQueue<PairEntry>* priority_queue,
std::vector<PairEntries>* pickup_to_entries,
std::vector<PairEntries>* delivery_to_entries);
/// Inserts non-inserted individual nodes on the given routes (or all routes
/// if "vehicles" is an empty vector), by constructing routes in parallel.
/// Maintains a priority queue of possible insertions, which is incrementally
/// updated when an insertion is committed.
/// Incrementality is obtained by updating insertion positions on the two
/// newly modified route arcs: after the node insertion position and after the
/// node position.
bool InsertNodesOnRoutes(
const std::map<int64_t, std::vector<int>>& nodes_by_bucket,
const absl::flat_hash_set<int>& vehicles);
/// Tries to insert the node_entry.node_to_insert on a vehicle of the same
/// type and same fixed cost as the node_entry.vehicle() using the
/// empty_vehicle_type_curator_, and updates the node_entry accordingly if the
/// insertion was not possible.
/// NOTE: Assumes (DCHECKS) that
/// UseEmptyVehicleTypeCuratorForVehicle(node_entry.vehicle(), all_vehicles)
/// is true.
bool InsertNodeEntryUsingEmptyVehicleTypeCurator(
const std::vector<int>& nodes, bool all_vehicles,
NodeEntry* const node_entry,
AdjustablePriorityQueue<NodeEntry>* priority_queue,
std::vector<NodeEntries>* position_to_node_entries);
/// Inserts non-inserted individual nodes on routes by constructing routes
/// sequentially.
/// For each new route, the vehicle to use and the first node to insert on it
/// are given by calling InsertSeedNode(). The route is then completed with
/// other nodes by calling InsertNodesOnRoutes({vehicle}).
bool SequentialInsertNodes(
const std::map<int64_t, std::vector<int>>& nodes_by_bucket);
/// Goes through all vehicles in the model to check if they are already used
/// (i.e. Value(start) != end) or not.
/// Updates the three passed vectors accordingly.
void DetectUsedVehicles(std::vector<bool>* is_vehicle_used,
std::vector<int>* unused_vehicles,
absl::flat_hash_set<int>* used_vehicles);
/// Inserts the (farthest_seeds_ratio_ * model()->vehicles()) nodes farthest
/// from the start/ends of the available vehicle routes as seeds on their
/// closest route.
void InsertFarthestNodesAsSeeds();
/// Inserts a "seed node" based on the given priority_queue of Seeds.
/// A "seed" is the node used in order to start a new route.
/// If the Seed at the top of the priority queue cannot be inserted,
/// (node already inserted in the model, corresponding vehicle already used,
/// or unsuccessful Commit()), start_end_distances_per_node is updated and
/// used to insert a new entry for that node if necessary (next best vehicle).
/// If a seed node is successfully inserted, updates is_vehicle_used and
/// returns the vehice of the corresponding route. Returns -1 otherwise.
template <class Queue>
int InsertSeedNode(
std::vector<std::vector<StartEndValue>>* start_end_distances_per_node,
Queue* priority_queue, std::vector<bool>* is_vehicle_used);
// clang-format on
/// Initializes the priority queue and the pair entries for the given pair
/// indices with the current state of the solution.
bool InitializePairPositions(
const std::vector<int>& pair_indices,
AdjustablePriorityQueue<PairEntry>* priority_queue,
std::vector<PairEntries>* pickup_to_entries,
std::vector<PairEntries>* delivery_to_entries);
/// Adds insertion entries performing the 'pickup' and 'delivery', and updates
/// 'priority_queue', pickup_to_entries and delivery_to_entries accordingly.
/// Based on gci_params_.use_neighbors_ratio_for_initialization, either all
/// contained nodes are considered as insertion positions, or only the
/// closest neighbors of 'pickup' and/or 'delivery'.
void InitializeInsertionEntriesPerformingPair(
int64_t pickup, int64_t delivery,
AdjustablePriorityQueue<PairEntry>* priority_queue,
std::vector<PairEntries>* pickup_to_entries,
std::vector<PairEntries>* delivery_to_entries);
/// Performs all the necessary updates after a pickup/delivery pair was
/// successfully inserted on the 'vehicle', respectively after
/// 'pickup_position' and 'delivery_position'.
bool UpdateAfterPairInsertion(
const std::vector<int>& pair_indices, int vehicle, int64_t pickup,
int64_t pickup_position, int64_t delivery, int64_t delivery_position,
AdjustablePriorityQueue<PairEntry>* priority_queue,
std::vector<PairEntries>* pickup_to_entries,
std::vector<PairEntries>* delivery_to_entries);
/// Updates all pair entries inserting a node after node "insert_after" and
/// updates the priority queue accordingly.
bool UpdatePairPositions(const std::vector<int>& pair_indices, int vehicle,
int64_t insert_after,
AdjustablePriorityQueue<PairEntry>* priority_queue,
std::vector<PairEntries>* pickup_to_entries,
std::vector<PairEntries>* delivery_to_entries) {
return UpdatePickupPositions(pair_indices, vehicle, insert_after,
priority_queue, pickup_to_entries,
delivery_to_entries) &&
UpdateDeliveryPositions(pair_indices, vehicle, insert_after,
priority_queue, pickup_to_entries,
delivery_to_entries);
}
/// Updates all pair entries inserting their pickup node after node
/// "insert_after" and updates the priority queue accordingly.
bool UpdatePickupPositions(const std::vector<int>& pair_indices, int vehicle,
int64_t pickup_insert_after,
AdjustablePriorityQueue<PairEntry>* priority_queue,
std::vector<PairEntries>* pickup_to_entries,
std::vector<PairEntries>* delivery_to_entries);
/// Updates all pair entries inserting their delivery node after node
/// "insert_after" and updates the priority queue accordingly.
bool UpdateDeliveryPositions(
const std::vector<int>& pair_indices, int vehicle,
int64_t delivery_insert_after,
AdjustablePriorityQueue<PairEntry>* priority_queue,
std::vector<PairEntries>* pickup_to_entries,
std::vector<PairEntries>* delivery_to_entries);
/// Deletes an entry, removing it from the priority queue and the appropriate
/// pickup and delivery entry sets.
void DeletePairEntry(PairEntry* entry,
AdjustablePriorityQueue<PairEntry>* priority_queue,
std::vector<PairEntries>* pickup_to_entries,
std::vector<PairEntries>* delivery_to_entries);
/// Creates a PairEntry corresponding to the insertion of 'pickup' and
/// 'delivery' respectively after 'pickup_insert_after' and
/// 'delivery_insert_after', and adds it to the 'priority_queue',
/// 'pickup_entries' and 'delivery_entries'.
void AddPairEntry(int64_t pickup, int64_t pickup_insert_after,
int64_t delivery, int64_t delivery_insert_after,
int vehicle,
AdjustablePriorityQueue<PairEntry>* priority_queue,
std::vector<PairEntries>* pickup_entries,
std::vector<PairEntries>* delivery_entries) const;
/// Updates the pair entry's value and rearranges the priority queue
/// accordingly.
void UpdatePairEntry(
PairEntry* const pair_entry,
AdjustablePriorityQueue<PairEntry>* priority_queue) const;
/// Computes and returns the insertion value of inserting 'pickup' and
/// 'delivery' respectively after 'pickup_insert_after' and
/// 'delivery_insert_after' on 'vehicle'.
int64_t GetInsertionValueForPairAtPositions(int64_t pickup,
int64_t pickup_insert_after,
int64_t delivery,
int64_t delivery_insert_after,
int vehicle) const;
/// Initializes the priority queue and the node entries with the current state
/// of the solution on the given vehicle routes.
bool InitializePositions(const std::vector<int>& nodes,
const absl::flat_hash_set<int>& vehicles,
AdjustablePriorityQueue<NodeEntry>* priority_queue,
std::vector<NodeEntries>* position_to_node_entries);
/// Adds insertion entries performing 'node', and updates 'priority_queue' and
/// position_to_node_entries accordingly.
/// Based on gci_params_.use_neighbors_ratio_for_initialization, either all
/// contained nodes are considered as insertion positions, or only the
/// closest neighbors of 'node'.
void InitializeInsertionEntriesPerformingNode(
int64_t node, const absl::flat_hash_set<int>& vehicles,
AdjustablePriorityQueue<NodeEntry>* priority_queue,
std::vector<NodeEntries>* position_to_node_entries);
/// Updates all node entries inserting a node after node "insert_after" and
/// updates the priority queue accordingly.
bool UpdatePositions(const std::vector<int>& nodes, int vehicle,
int64_t insert_after, bool all_vehicles,
AdjustablePriorityQueue<NodeEntry>* priority_queue,
std::vector<NodeEntries>* node_entries);
/// Deletes an entry, removing it from the priority queue and the appropriate
/// node entry sets.
void DeleteNodeEntry(NodeEntry* entry,
AdjustablePriorityQueue<NodeEntry>* priority_queue,
std::vector<NodeEntries>* node_entries);
/// Creates a NodeEntry corresponding to the insertion of 'node' after
/// 'insert_after' on 'vehicle' and adds it to the 'priority_queue' and
/// 'node_entries'.
void AddNodeEntry(int64_t node, int64_t insert_after, int vehicle,
bool all_vehicles,
AdjustablePriorityQueue<NodeEntry>* priority_queue,
std::vector<NodeEntries>* node_entries) const;
/// Updates the given node_entry's value and rearranges the priority queue
/// accordingly.
void UpdateNodeEntry(
NodeEntry* const node_entry,
AdjustablePriorityQueue<NodeEntry>* priority_queue) const;
/// Computes the neighborhood of all nodes for every cost class, if needed and
/// not done already.
void ComputeNeighborhoods();
/// Returns true iff neighbor_index is in node_index's neighbors list
/// corresponding to neighbor_is_pickup and neighbor_is_delivery.
bool IsNeighborForCostClass(int cost_class, int64_t node_index,
int64_t neighbor_index) const;
/// Returns the neighbors of the given node for the given cost_class.
const std::vector<int64_t>& GetNeighborsOfNodeForCostClass(
int cost_class, int64_t node_index) const {
return gci_params_.neighbors_ratio == 1
? all_nodes_
: node_index_to_neighbors_by_cost_class_[node_index][cost_class]
->PositionsSetAtLeastOnce();
}
int64_t NumNonStartEndNodes() const {
return model()->Size() - model()->vehicles();
}
int64_t NumNeighbors() const {
return std::max(gci_params_.min_neighbors,
MathUtil::FastInt64Round(gci_params_.neighbors_ratio *
NumNonStartEndNodes()));
}
void ResetVehicleIndices() override {
node_index_to_vehicle_.assign(node_index_to_vehicle_.size(), -1);
}
void SetVehicleIndex(int64_t node, int vehicle) override {
DCHECK_LT(node, node_index_to_vehicle_.size());
node_index_to_vehicle_[node] = vehicle;
}
/// Function that verifies node_index_to_vehicle_ is correctly filled for all
/// nodes given the current routes.
bool CheckVehicleIndices() const;
/// Returns the bucket of a node.
int64_t GetBucketOfNode(int node) const {
return model()->VehicleVar(node)->Size();
}
/// Returns the bucket of a pair of pickup and delivery alternates.
int64_t GetBucketOfPair(const RoutingModel::IndexPair& index_pair) const {
int64_t max_pickup_bucket = 0;
for (int64_t pickup : index_pair.first) {
max_pickup_bucket = std::max(max_pickup_bucket, GetBucketOfNode(pickup));
}
int64_t max_delivery_bucket = 0;
for (int64_t delivery : index_pair.second) {
max_delivery_bucket =
std::max(max_delivery_bucket, GetBucketOfNode(delivery));
}
return std::min(max_pickup_bucket, max_delivery_bucket);
}
/// Checks if the search should be stopped (time limit reached), and cleans up
/// the priority queue if it's the case.
template <class T>
bool StopSearchAndCleanup(AdjustablePriorityQueue<T>* priority_queue) {
if (!StopSearch()) return false;
for (T* const entry : *priority_queue->Raw()) {
delete entry;
}
priority_queue->Clear();
return true;
}
GlobalCheapestInsertionParameters gci_params_;
/// Stores the vehicle index of each node in the current assignment.
std::vector<int> node_index_to_vehicle_;
// clang-format off
std::vector<std::vector<std::unique_ptr<SparseBitset<int64_t> > > >
node_index_to_neighbors_by_cost_class_;
// clang-format on
std::unique_ptr<VehicleTypeCurator> empty_vehicle_type_curator_;
/// When neighbors_ratio is 1, we don't compute the neighborhood matrix
/// above, and use the following vector in the code to avoid unnecessary
/// computations and decrease the time and space complexities.
std::vector<int64_t> all_nodes_;
};
/// Filter-base decision builder which builds a solution by inserting
/// nodes at their cheapest position. The cost of a position is computed
/// an arc-based cost callback. Node selected for insertion are considered in
/// decreasing order of distance to the start/ends of the routes, i.e. farthest
/// nodes are inserted first.
class LocalCheapestInsertionFilteredHeuristic
: public CheapestInsertionFilteredHeuristic {
public:
/// Takes ownership of evaluator.
LocalCheapestInsertionFilteredHeuristic(
RoutingModel* model,
std::function<int64_t(int64_t, int64_t, int64_t)> evaluator,
bool evaluate_pickup_delivery_costs_independently,
LocalSearchFilterManager* filter_manager);
~LocalCheapestInsertionFilteredHeuristic() override {}
bool BuildSolutionInternal() override;
std::string DebugString() const override {
return "LocalCheapestInsertionFilteredHeuristic";
}
private:
struct PickupDeliveryInsertion {
int64_t insert_pickup_after;
int64_t insert_delivery_after;
int64_t value;
int vehicle;
bool operator<(const PickupDeliveryInsertion& other) const {
return std::tie(value, insert_pickup_after, insert_delivery_after,
vehicle) <
std::tie(other.value, other.insert_pickup_after,
other.insert_delivery_after, other.vehicle);
}
};
/// Computes the possible insertion positions of 'node' and sorts them
/// according to the current cost evaluator.
/// 'node' is a variable index corresponding to a node.
std::vector<NodeInsertion> ComputeEvaluatorSortedPositions(int64_t node);
/// Like ComputeEvaluatorSortedPositions, subject to the additional
/// restrictions that the node may only be inserted after node 'start' on the
/// route. For convenience, this method also needs the node that is right
/// after 'start' on the route.
std::vector<NodeInsertion> ComputeEvaluatorSortedPositionsOnRouteAfter(
int64_t node, int64_t start, int64_t next_after_start, int vehicle);
/// Computes the possible simultaneous insertion positions of the pair
/// 'pickup' and 'delivery'. Sorts them according to the current cost
/// evaluator.
std::vector<PickupDeliveryInsertion> ComputeEvaluatorSortedPairPositions(
int64_t pickup, int64_t delivery);
std::vector<std::vector<StartEndValue>> start_end_distances_per_node_;
const bool evaluate_pickup_delivery_costs_independently_;
};
/// Filtered-base decision builder based on the addition heuristic, extending
/// a path from its start node with the cheapest arc.
class CheapestAdditionFilteredHeuristic : public RoutingFilteredHeuristic {
public:
CheapestAdditionFilteredHeuristic(RoutingModel* model,
LocalSearchFilterManager* filter_manager);
~CheapestAdditionFilteredHeuristic() override {}
bool BuildSolutionInternal() override;
private:
class PartialRoutesAndLargeVehicleIndicesFirst {
public:
explicit PartialRoutesAndLargeVehicleIndicesFirst(
const CheapestAdditionFilteredHeuristic& builder)
: builder_(builder) {}
bool operator()(int vehicle1, int vehicle2) const;
private:
const CheapestAdditionFilteredHeuristic& builder_;
};
/// Returns a vector of possible next indices of node from an iterator.
template <typename Iterator>
std::vector<int64_t> GetPossibleNextsFromIterator(int64_t node,
Iterator start,
Iterator end) const {
const int size = model()->Size();
std::vector<int64_t> nexts;
for (Iterator it = start; it != end; ++it) {
const int64_t next = *it;
if (next != node && (next >= size || !Contains(next))) {
nexts.push_back(next);
}
}
return nexts;
}
/// Sorts a vector of successors of node.
virtual void SortSuccessors(int64_t node,
std::vector<int64_t>* successors) = 0;
virtual int64_t FindTopSuccessor(int64_t node,
const std::vector<int64_t>& successors) = 0;
};
/// A CheapestAdditionFilteredHeuristic where the notion of 'cheapest arc'
/// comes from an arc evaluator.
class EvaluatorCheapestAdditionFilteredHeuristic
: public CheapestAdditionFilteredHeuristic {
public:
/// Takes ownership of evaluator.
EvaluatorCheapestAdditionFilteredHeuristic(
RoutingModel* model, std::function<int64_t(int64_t, int64_t)> evaluator,
LocalSearchFilterManager* filter_manager);
~EvaluatorCheapestAdditionFilteredHeuristic() override {}
std::string DebugString() const override {
return "EvaluatorCheapestAdditionFilteredHeuristic";
}
private:
/// Next nodes are sorted according to the current evaluator.
void SortSuccessors(int64_t node, std::vector<int64_t>* successors) override;
int64_t FindTopSuccessor(int64_t node,
const std::vector<int64_t>& successors) override;
std::function<int64_t(int64_t, int64_t)> evaluator_;
};
/// A CheapestAdditionFilteredHeuristic where the notion of 'cheapest arc'
/// comes from an arc comparator.
class ComparatorCheapestAdditionFilteredHeuristic
: public CheapestAdditionFilteredHeuristic {
public:
/// Takes ownership of evaluator.
ComparatorCheapestAdditionFilteredHeuristic(
RoutingModel* model, Solver::VariableValueComparator comparator,
LocalSearchFilterManager* filter_manager);
~ComparatorCheapestAdditionFilteredHeuristic() override {}
std::string DebugString() const override {
return "ComparatorCheapestAdditionFilteredHeuristic";
}
private:
/// Next nodes are sorted according to the current comparator.
void SortSuccessors(int64_t node, std::vector<int64_t>* successors) override;
int64_t FindTopSuccessor(int64_t node,
const std::vector<int64_t>& successors) override;
Solver::VariableValueComparator comparator_;
};
/// Filter-based decision builder which builds a solution by using
/// Clarke & Wright's Savings heuristic. For each pair of nodes, the savings
/// value is the difference between the cost of two routes visiting one node
/// each and one route visiting both nodes. Routes are built sequentially, each
/// route being initialized from the pair with the best available savings value
/// then extended by selecting the nodes with best savings on both ends of the
/// partial route. Cost is based on the arc cost function of the routing model
/// and cost classes are taken into account.
class SavingsFilteredHeuristic : public RoutingFilteredHeuristic {
public:
struct SavingsParameters {
/// If neighbors_ratio < 1 then for each node only this ratio of its
/// neighbors leading to the smallest arc costs are considered.
double neighbors_ratio = 1.0;
/// The number of neighbors considered for each node is also adapted so that
/// the stored Savings don't use up more than max_memory_usage_bytes bytes.
double max_memory_usage_bytes = 6e9;
/// If add_reverse_arcs is true, the neighborhood relationships are
/// considered symmetrically.
bool add_reverse_arcs = false;
/// arc_coefficient is a strictly positive parameter indicating the
/// coefficient of the arc being considered in the Saving formula.
double arc_coefficient = 1.0;
};
SavingsFilteredHeuristic(RoutingModel* model, SavingsParameters parameters,
LocalSearchFilterManager* filter_manager);
~SavingsFilteredHeuristic() override;
bool BuildSolutionInternal() override;
protected:
typedef std::pair</*saving*/ int64_t, /*saving index*/ int64_t> Saving;
template <typename S>
class SavingsContainer;
virtual double ExtraSavingsMemoryMultiplicativeFactor() const = 0;
virtual void BuildRoutesFromSavings() = 0;
/// Returns the cost class from a saving.
int64_t GetVehicleTypeFromSaving(const Saving& saving) const {
return saving.second / size_squared_;
}
/// Returns the "before node" from a saving.
int64_t GetBeforeNodeFromSaving(const Saving& saving) const {
return (saving.second % size_squared_) / Size();
}
/// Returns the "after node" from a saving.
int64_t GetAfterNodeFromSaving(const Saving& saving) const {
return (saving.second % size_squared_) % Size();
}
/// Returns the saving value from a saving.
int64_t GetSavingValue(const Saving& saving) const { return saving.first; }
/// Finds the best available vehicle of type "type" to start a new route to
/// serve the arc before_node-->after_node.
/// Since there are different vehicle classes for each vehicle type, each
/// vehicle class having its own capacity constraints, we go through all
/// vehicle types (in each case only studying the first available vehicle) to
/// make sure this Saving is inserted if possible.
/// If possible, the arc is committed to the best vehicle, and the vehicle
/// index is returned. If this arc can't be served by any vehicle of this
/// type, the function returns -1.
int StartNewRouteWithBestVehicleOfType(int type, int64_t before_node,
int64_t after_node);
// clang-format off
std::unique_ptr<SavingsContainer<Saving> > savings_container_;
// clang-format on
std::unique_ptr<VehicleTypeCurator> vehicle_type_curator_;
private:
/// Used when add_reverse_arcs_ is true.
/// Given the vector of adjacency lists of a graph, adds symmetric arcs not
/// already in the graph to the adjacencies (i.e. if n1-->n2 is present and
/// not n2-->n1, then n1 is added to adjacency_matrix[n2].
// clang-format off
void AddSymmetricArcsToAdjacencyLists(
std::vector<std::vector<int64_t> >* adjacency_lists);
// clang-format on
/// Computes saving values for node pairs (see MaxNumNeighborsPerNode()) and
/// all vehicle types (see ComputeVehicleTypes()).
/// The saving index attached to each saving value is an index used to
/// store and recover the node pair to which the value is linked (cf. the
/// index conversion methods below).
/// The computed savings are stored and sorted using the savings_container_.
/// Returns false if the computation could not be done within the model's
/// time limit.
bool ComputeSavings();
/// Builds a saving from a saving value, a vehicle type and two nodes.
Saving BuildSaving(int64_t saving, int vehicle_type, int before_node,
int after_node) const {
return std::make_pair(saving, vehicle_type * size_squared_ +
before_node * Size() + after_node);
}
/// Computes and returns the maximum number of (closest) neighbors to consider
/// for each node when computing Savings, based on the neighbors ratio and max
/// memory usage specified by the savings_params_.
int64_t MaxNumNeighborsPerNode(int num_vehicle_types) const;
const SavingsParameters savings_params_;
int64_t size_squared_;
friend class SavingsFilteredHeuristicTestPeer;
};
class SequentialSavingsFilteredHeuristic : public SavingsFilteredHeuristic {