-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomparing.nb
7847 lines (7793 loc) · 442 KB
/
comparing.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 452081, 7839]
NotebookOptionsPosition[ 448404, 7769]
NotebookOutlinePosition[ 448920, 7788]
CellTagsIndexPosition[ 448877, 7785]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.8329641297097187`*^9,
3.8329641409434233`*^9}},ExpressionUUID->"c37775f0-e8f9-4423-97f7-\
b83710aaa833"],
Cell[BoxData[
RowBox[{"Needs", "[", "\"\<NumericalCalculus`\>\"", "]"}]], "Input",
CellChangeTimes->{{3.833281793267824*^9, 3.8332817964137783`*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"67c58264-3094-4532-aef9-c9963507e66a"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"SetDirectory", "[",
RowBox[{"NotebookDirectory", "[", "]"}], "]"}], "\[IndentingNewLine]",
RowBox[{"<<", "HQSimulation`"}]}], "Input",
CellChangeTimes->{{3.832423323946178*^9, 3.832423357260474*^9}, {
3.8326800951664953`*^9, 3.8326801011874266`*^9}, {3.832963314317664*^9,
3.832963314893745*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"3482364d-489a-48b2-accc-d8fbff5a8d35"],
Cell[BoxData["\<\"/home/ampolloreno/repos/qfi\"\>"], "Output",
CellChangeTimes->{{3.832963291465652*^9, 3.832963315237265*^9}, {
3.8329641351084623`*^9, 3.832964160851572*^9}, {3.832964195009364*^9,
3.832964213106213*^9}, 3.833281802299999*^9, 3.842893039164747*^9,
3.842894266079217*^9, 3.842894494443715*^9, 3.8428955195841703`*^9,
3.8428956981710463`*^9, 3.842895736293541*^9, 3.842895774126754*^9,
3.842896136870035*^9, {3.842901683033149*^9, 3.8429017021598663`*^9},
3.851446357815506*^9, 3.851446406719265*^9, 3.851446439847958*^9,
3.852731669317149*^9, {3.8527317797271214`*^9, 3.85273179468176*^9}},
CellLabel->"Out[2]=",ExpressionUUID->"6e28d776-9dc6-469a-b0e7-bb3971694bb3"],
Cell[BoxData[
TemplateBox[{
"Get", "noopen",
"\"Cannot open \
\\!\\(\\*RowBox[{\\\"\\\\\\\"PhysicsConstants`\\\\\\\"\\\"}]\\).\"", 2, 3, 1,
32201583998876546574, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.832963291387104*^9, 3.832963315243923*^9}, {
3.832964135125944*^9, 3.8329641608535213`*^9}, {3.832964195031269*^9,
3.832964213122631*^9}, 3.833281802316473*^9, 3.842893039192327*^9,
3.8428942661115713`*^9, 3.842894494470955*^9, 3.8428955195864487`*^9,
3.842895698193521*^9, 3.8428957363191843`*^9, 3.8428957741472683`*^9,
3.842896136891292*^9, {3.84290168306686*^9, 3.842901702181673*^9},
3.8514463578173113`*^9, 3.851446406741003*^9, 3.851446439874071*^9,
3.8527316693546133`*^9, {3.852731779728937*^9, 3.852731794714171*^9}},
CellLabel->
"During evaluation of \
In[2]:=",ExpressionUUID->"9739fef0-ffd4-4371-b069-81ddd1952993"],
Cell[BoxData[
TemplateBox[{
"Needs", "nocont",
"\"Context \\!\\(\\*RowBox[{\\\"\\\\\\\"PhysicsConstants`\\\\\\\"\\\"}]\\) \
was not created when Needs was evaluated.\"", 2, 3, 2, 32201583998876546574,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.832963291387104*^9, 3.832963315243923*^9}, {
3.832964135125944*^9, 3.8329641608535213`*^9}, {3.832964195031269*^9,
3.832964213122631*^9}, 3.833281802316473*^9, 3.842893039192327*^9,
3.8428942661115713`*^9, 3.842894494470955*^9, 3.8428955195864487`*^9,
3.842895698193521*^9, 3.8428957363191843`*^9, 3.8428957741472683`*^9,
3.842896136891292*^9, {3.84290168306686*^9, 3.842901702181673*^9},
3.8514463578173113`*^9, 3.851446406741003*^9, 3.851446439874071*^9,
3.8527316693546133`*^9, {3.852731779728937*^9, 3.852731794721609*^9}},
CellLabel->
"During evaluation of \
In[2]:=",ExpressionUUID->"de97790a-5460-4e0a-8235-f9a975b9ea50"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
StyleBox["SpinStates",
FontColor->GrayLevel[0]], "=",
RowBox[{"{", "2", "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
StyleBox["ModeCutoffs",
FontColor->RGBColor[1, 0, 0]], "=",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"GetOperators", "[",
RowBox[{"SpinStates", ",", "ModeCutoffs", ",",
RowBox[{"Display", "\[Rule]", "True"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.8324226748592854`*^9, 3.8324226773131113`*^9}, {
3.832423403424386*^9, 3.8324234128809147`*^9}},
CellLabel->"In[4]:=",ExpressionUUID->"25709df6-4c49-490d-897b-aa179d527937"],
Cell[BoxData[
TagBox[
TagBox[GridBox[{
{
StyleBox["\[Null]",
ShowStringCharacters->False],
TagBox["\<\"Operator\"\>",
HoldForm],
TagBox["\<\"Description\"\>",
HoldForm]},
{
TagBox[
StyleBox["\<\"\[Null]\"\>",
ShowStringCharacters->False],
StyleForm[#, ShowStringCharacters ->
False]& ], "\<\"OpId\"\>", "\<\"Identity operator\"\>"},
{
TagBox[
StyleBox["\<\"\[Null]\"\>",
ShowStringCharacters->False],
StyleForm[#, ShowStringCharacters ->
False]& ], "\<\"OpA\"\>", "\<\"OpA[j] is the annihilation operator \
for mode j=1,2,3,...\"\>"},
{
TagBox[
StyleBox["\<\"\[Null]\"\>",
ShowStringCharacters->False],
StyleForm[#, ShowStringCharacters ->
False]& ], "\<\"OpAdag\"\>", "\<\"OpAdag[j] is the creation operator \
for mode j=1,2,3,...\"\>"},
{
TagBox[
StyleBox["\<\"\[Null]\"\>",
ShowStringCharacters->False],
StyleForm[#, ShowStringCharacters ->
False]& ], "\<\"OpN\"\>", "\<\"OpN[j] is the number operator for mode \
j=1,2,3,...\"\>"},
{
TagBox[
StyleBox["\<\"\[Null]\"\>",
ShowStringCharacters->False],
StyleForm[#, ShowStringCharacters ->
False]& ], "\<\"OpSwap\"\>", \
"\<\"OpSwap[j,\[Alpha]=0,1,2,...,\[Beta]=0,1,2,...] is the transition \
operator |\[Beta]\[RightAngleBracket]\[LeftAngleBracket]\[Alpha]| for ion \
j=1,2,3,...\"\>"},
{
TagBox[
StyleBox["\<\"\[Null]\"\>",
ShowStringCharacters->False],
StyleForm[#, ShowStringCharacters ->
False]& ], "\<\"Hilbert space dimension\"\>", "\<\"HSdim=2\"\>"}
},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxDividers->{
"Columns" -> {False, True, {False}, False},
"Rows" -> {False, True, {False}, False}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[2.0999999999999996`]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}],
{OutputFormsDump`HeadedRows, OutputFormsDump`HeadedColumns}],
Function[BoxForm`e$,
TableForm[
BoxForm`e$, TableHeadings -> {{}, {"Operator", "Description"}}]]]], "Print",\
CellChangeTimes->{3.851446440875342*^9, 3.852731795824997*^9},
CellLabel->
"During evaluation of \
In[4]:=",ExpressionUUID->"6601acd2-5ea5-4eb3-8036-e8ec7759e99d"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"X", "=",
RowBox[{
RowBox[{"OpSwap", "[",
RowBox[{"1", ",", "0", ",", "1"}], "]"}], "+",
RowBox[{"OpSwap", "[",
RowBox[{"1", ",", "1", ",", "0"}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Y", "=",
RowBox[{"\[ImaginaryI]",
RowBox[{"(",
RowBox[{
RowBox[{"OpSwap", "[",
RowBox[{"1", ",", "0", ",", "1"}], "]"}], "-",
RowBox[{"OpSwap", "[",
RowBox[{"1", ",", "1", ",", "0"}], "]"}]}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Z", "=",
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"OpSwap", "[",
RowBox[{"1", ",", "1", ",", "1"}], "]"}], "-",
RowBox[{"OpSwap", "[",
RowBox[{"1", ",", "0", ",", "0"}], "]"}]}], ")"}]}]}], ";"}]}], "Input",\
CellChangeTimes->{{3.832422683103942*^9, 3.8324227270331287`*^9}, {
3.832423451553463*^9, 3.832423484720772*^9}, {3.83242360521623*^9,
3.832423615043036*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"552f6641-07a9-45af-af65-2e0b81a96e69"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"H", "[",
RowBox[{"B_", ",", "\[Omega]_", ",", "t_"}], "]"}], "=",
RowBox[{
RowBox[{"\[Pi]", "*",
RowBox[{"X", "/", "2"}]}], "+",
RowBox[{"B", "*",
RowBox[{"Cos", "[",
RowBox[{"\[Omega]", " ", "t"}], "]"}], "Z"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"vec0", "=",
RowBox[{"Normalize", "[",
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}], "]"}]}]}], "Input",
CellChangeTimes->{{3.832422734327313*^9, 3.832422772402519*^9}, {
3.8324232568752813`*^9, 3.8324232569518557`*^9}, {3.832423508370371*^9,
3.832423520256*^9}, {3.832423901100058*^9, 3.832423903582636*^9}, {
3.842894235247575*^9, 3.842894247302129*^9}, 3.842894484884532*^9, {
3.8527317658552713`*^9, 3.852731768964241*^9}, {3.852731889631068*^9,
3.852731890093581*^9}},
CellLabel->"In[20]:=",ExpressionUUID->"8655a585-2f87-419f-a013-e027479768b6"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["2"]], ",",
FractionBox["1",
SqrtBox["2"]]}], "}"}]], "Output",
CellChangeTimes->{
3.832963318116508*^9, {3.8329641982233152`*^9, 3.832964216914653*^9},
3.833281810346888*^9, 3.842893042817004*^9, {3.842894247609358*^9,
3.842894268611751*^9}, 3.842894495981052*^9, 3.842895587826426*^9,
3.842895702457666*^9, 3.842895738623659*^9, 3.842895776655952*^9, {
3.8428960767817574`*^9, 3.842896102031106*^9}, 3.842896140830965*^9, {
3.8429016873472757`*^9, 3.842901705492053*^9}, {3.8514463891657457`*^9,
3.85144641193062*^9}, 3.851446442845139*^9, {3.852731771340618*^9,
3.8527317969554863`*^9}, 3.8527318906070347`*^9},
CellLabel->"Out[21]=",ExpressionUUID->"bd492a7d-b87b-4242-86df-b97dfdd7e20e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"tmax", "=", "6"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"b", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"SEQSolve", "[",
RowBox[{
RowBox[{"H", "[",
RowBox[{"1", ",", "1", ",", "t"}], "]"}], ",", "vec0", ",",
RowBox[{"{",
RowBox[{"0", ",", "tmax"}], "}"}]}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{"SEQSolve", "[",
RowBox[{
RowBox[{"H", "[",
RowBox[{"0", ",", "1", ",", "t"}], "]"}], ",", "vec0", ",",
RowBox[{"{",
RowBox[{"0", ",", "tmax"}], "}"}], ",",
RowBox[{"FinalState", "\[Rule]", "True"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.832422762961605*^9, 3.832422817153911*^9}, {
3.832422881075008*^9, 3.8324228813035173`*^9}, {3.832422913166369*^9,
3.832422926913373*^9}, {3.832423517302515*^9, 3.832423524467167*^9}, {
3.8324374338988934`*^9, 3.832437451025194*^9}, {3.83243771955806*^9,
3.832437754855853*^9}, {3.8324383881302795`*^9, 3.8324383883926163`*^9}, {
3.8324384306598377`*^9, 3.8324384570700526`*^9}, {3.8428942246311483`*^9,
3.842894226438868*^9}, 3.84289552561839*^9, {3.842895564705179*^9,
3.84289556498402*^9}, {3.842896036132833*^9, 3.842896036227545*^9}, {
3.842901689731382*^9, 3.8429016905868683`*^9}, {3.851446385246406*^9,
3.85144638578204*^9}, {3.8527320146538258`*^9, 3.852732017148324*^9}, {
3.8527321121238728`*^9, 3.8527321140431557`*^9}, {3.852732311706067*^9,
3.852732314624887*^9}, {3.852732626470916*^9, 3.85273262658955*^9}},
CellLabel->"In[64]:=",ExpressionUUID->"25481e93-a5eb-4968-afa5-91cbb8e4ab9f"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "0.7071069190648002`"}], "-",
RowBox[{"1.2378582975541848`*^-7", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
RowBox[{"-", "0.7071069190648002`"}], "-",
RowBox[{"1.2378582975541848`*^-7", " ", "\[ImaginaryI]"}]}]}],
"}"}]], "Output",
CellChangeTimes->{3.852731797833191*^9, 3.8527318921598463`*^9,
3.852732018160906*^9, 3.852732114389456*^9, 3.8527323149130707`*^9,
3.852732627027017*^9},
CellLabel->"Out[67]=",ExpressionUUID->"93e66b04-7f30-4e7d-8d62-b348c326075e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"\[Psi]", "[",
RowBox[{
RowBox[{"B_", "?", "NumericQ"}], ",",
RowBox[{"\[Omega]_", "?", "NumericQ"}], ",",
RowBox[{"T_", "?", "NumericQ"}]}], "]"}], ":=", " ",
RowBox[{"SEQSolve", "[",
RowBox[{
RowBox[{"H", "[",
RowBox[{"B", ",", "\[Omega]", ",", "t"}], "]"}], ",", "vec0", ",",
RowBox[{"{",
RowBox[{"0", ",", "T"}], "}"}], ",",
RowBox[{"FinalState", "\[Rule]", "True"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "[",
RowBox[{
RowBox[{"B_", "?", "NumericQ"}], ",", " ",
RowBox[{"\[Omega]_", "?", "NumericQ"}], ",", " ",
RowBox[{"T_", "?", "NumericQ"}]}], "]"}], " ", ":=",
RowBox[{"ND", "[",
RowBox[{
RowBox[{"\[Psi]", "[", " ",
RowBox[{"x", ",", " ", "\[Omega]", ",", " ", "T"}], "]"}], ",", " ",
"x", ",", "B"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"QFI", "[",
RowBox[{
RowBox[{"B_", "?", "NumericQ"}], ",",
RowBox[{"\[Omega]_", "?", "NumericQ"}], ",",
RowBox[{"T_", "?", "NumericQ"}]}], "]"}], ":=",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"Norm", "[",
RowBox[{"\[Phi]", "[",
RowBox[{"B", ",", "\[Omega]", ",", "T"}], "]"}], "]"}], "2"], "+",
" ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"Conjugate", "[",
RowBox[{"\[Phi]", "[",
RowBox[{"B", ",", "\[Omega]", ",", "T"}], "]"}], "]"}], ".",
RowBox[{"\[Psi]", "[",
RowBox[{"B", ",", "\[Omega]", ",", "T"}], "]"}]}], ")"}], "2"]}],
")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"QFI", "[",
RowBox[{"b", ",", " ", "\[Omega]", ",", " ", "tmax"}], "]"}], "]"}], ",",
" ",
RowBox[{"{",
RowBox[{"\[Omega]", ",", "1", ",", "20"}], "}"}], ",", " ",
RowBox[{"PlotRange", "\[Rule]", "All"}]}],
"]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.832422951772292*^9, 3.832423112835183*^9}, {
3.8324248679370737`*^9, 3.8324248932602787`*^9}, {3.832436302200757*^9,
3.8324363757410593`*^9}, 3.8324364087686205`*^9, 3.8324365050586863`*^9,
3.8324365427775993`*^9, 3.832438307291053*^9, {3.832440172158608*^9,
3.8324401959072237`*^9}, {3.832963110201475*^9, 3.832963111095229*^9}, {
3.832963177985627*^9, 3.832963181251752*^9}, {3.833282114650949*^9,
3.8332821192155027`*^9}, {3.8428930661225033`*^9, 3.84289311025738*^9}, {
3.842893146177807*^9, 3.8428931894329967`*^9}, 3.842893595150262*^9, {
3.842893681008926*^9, 3.842893685439974*^9}, {3.8428937442293797`*^9,
3.842893750227046*^9}, {3.842894220641782*^9, 3.84289422894237*^9}, {
3.8428942756719*^9, 3.842894276067748*^9}, {3.8428957604078903`*^9,
3.8428957604862757`*^9}},
CellLabel->"In[68]:=",ExpressionUUID->"f042a25b-61fe-45de-b078-50995f28639d"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwUl3c8Fm4Xxu0Qkr03Scgm6xyz0rKSSqgUlZX8rCQiSUKi7OxkJyG7UEhF
IQkhaZC9V+/9/uXz/VxnXOfc9/M8N9EzbubnqCgoKDIYKCj+//eHBZcTBcU0
FDnKNCs5s6OC8NEXg9zT4P4++3nuAXb0+3OfsXb3NDCFnXhybyc7Nj//eDJp
7zTMOpq2fKVjR9ag7YW+dtNQcpjH9eYoG544aLp5zHsazJm53kY0smE2d9QR
tahpULp30mspiw2nR96lcTyeBj7m+wXNt9lQs4hpdrZuGnxUZQ4terBhiO8B
g86eaaBQmun2O82GHwzDY4snpyFw381v6lZsyMfa+uMu3QxkMW57vmHGhg5f
t6g7C82AX0Btz62jbFiUYxxmojYDuTuGfH1I/srlm1+kD8+AyeammpUXGxrq
NMlsOT8Do71er8Jj2TCSntr/x7UZ4HAZsLGtYcPeT3rvGuNmQMTIqW/jLxuK
PwoUyiicgbCgrmoPMr/rxXq3wOYZCGTz0811ZcdK1c0G24EZWKb19Ttfy45U
lDpsOgszkKPfp3KCkwMPtV89y888C4fVG88zeXHgyJkV2l7tWai79OORxxFO
lJXXOFZuOQt9a4pTr19zoveKV26s8yzMTi8pihhyIVP0vIlZ8ixI/Zx7d+gQ
N6rVTkW1rc2Cv7/kuaMBvBgYJj+cyz4HJtb/ydJv5cO3Fi5Kt3bNgfyda7YD
cXxo/+dPl8HJORjxcjtFl8GPec93SoldmQPNeuv7waICuBDo5E1xZw68rI2v
uCUJYDj3GG9t1RyUbx+ivXxVELtGJC4lfZyDfoH85+JDgihcdLbG988c7Lt2
QihIWwgv+mYwW1PNQ26ZZyVdtBCWGQ7bqvHNg8r83di9fUK4uU2khENpHnru
VYv84RPG/V9tKef2z0NBTZZzoZkwxuakmHeengc2DSH6cwHCOHi5P7PYdx6+
8r/zWUsTRmkd/oW79+bB3e7hd5cXwniF/oSx85N50LvEfPz9G2Gs+xT/0OTl
POx7vKNcr10Y6R99/iX9ZR7MDHrCKIhufpFLc8vMPAiw786wrBTGFNWjd37Q
L4DpFWv5eFL/F0Vsf6PIAkRPHR5XDhRGpfaPchkaC/DWb+Z9yjFh9H+4/Xqg
6QLMhAS/P7ZDGN+cMe2wdVqAQ9Pr83+nhJBNPkpUJ3ABEqstOBeeCqHNyjsP
/vgFUDrae5PeVQhzmpiaVooXYLTshVqrhBDORB3g7H2zAPQFaie/9ghiqFRr
RezSAjwZ9fK5u1sQRUTvUPy3fRFC7dN4Fz8IYBX/of1Hdy2CR3ik8JKLAE6y
dvZx2i0CNH13HMvmx7Ct98UXfRbBND5M+qgeP4rRHXXuiVkET6OY6ycG+PDY
Wu/Gg9eLkMo9+Pc1Lx/OLiQaew8twtXzp6ccqnkxYtom6tgq6Sdu/XWLPS9K
jQv1qnMswTcjEUplel5s+DEkwiO/BEvpRpRnynjwxFDGheW9SzA+PmBPf44H
5/scSntPL0FvvIdDLB8PRnZLrVVeXYKNHS66bt3cKN3xyyAhbgnSKd1WVuO4
8VVbXoRv8RKMUkhwxdtwo02zc/fx1iUo8mLc/2gnNy7Wywtpfl8Cy+G5LpcN
Loyumj7Pt7EEE+NTqcd7uVDmeWnxKtcyhJ/sba+t4sKmYs/lPoVlaFAUiB3L
4kLbPDW9ahPC7iK1Yg+5cDlr+XaSwzIo3aJXrbrHhTGPqj5eDVgG1+cbzQux
XCib6M9vE78M5bnvm7jTufB1rK6DdukySI+1spqWc6F9FEWhQPsyTJacW2jt
4sLV268W1n8sw+aaGEPaOhfGhoToDvxbhvgdqeJjctwof934Vi3vCoT6BYen
OXFjqy99R4ryCggIvdpbW8CNDp5tPAGHVoBPWnaYb5UbN10jTts6rsCkoYaP
vykPxl84nKcbtAJF2erJKcU8qOTAOieUtAK65bX/hLh5sd32o9a/shUQc+bZ
/zCUF88fjw359n4FyradOeW3wYuJh3m40qhWYf3h1hr2f3yosr/PNlBgFYpO
Vn25FMaP7w2SH9urrQIHh8hBby4BpNojskf04ioYfrpje1ZHEC+KS9tkdK7C
4MK+aP9UYaQR+pN1Y3wVPARv3hjgE8FUnoK/Z2jXQH/1rrv3ORH8yKxwXXzP
GtzlnOVhWhRBZ/rZN9QWa3DnNfdfKy1RpKMuYx11XoNRIX3ePQGiqLWsnpGV
tgafO35SvF0TxZ7ZlT8hVWuwusi4c5uaGLr/rVY+17UGzQpzQRwuYsj465q/
0eQacFpsT36TJoZZI9AsSb8O5cPHV3g6xVB3gJKFTmwdPuhbqtBtimHv50ar
Ma11oH8Qw3lvhzgyvdv7K8dtHa5d8tBtdBfHB2fE1DpurcNnzSHR3EhxFF5e
D155tA4rBYI5tHnimHv3c6dY5TpMXfUOp2kURyXxUuGDHetknzbeXV/EsaYy
wuW/X+ugIsW6u2hSHI0OO1anUmxArMRG6jtKCbT2FTg2o7ABNXHT7FPiEjjC
spTFt38DVpyTh68pS+ClrM5Zg9MbYOHquMNFXwIDPoRGPri3AckJbfqldhJI
f+50f/2TDZjdk/Enz1UC761qyfx+uQGCZ7/fNgmQwCzJmWat2Q2w2nyk/TpN
AuWr37KfY9wEh6kmNaMyCawwzTkdKbYJOWq3I4pbJRDHAosrNDdBSJpGzGxY
AtuuntwYMt+EdTP74StrEmi5Xe0A46VN2OmTdPQUjyQO5LAmKAdvAj0VI98R
DUk8rz0+ZpO0CeYeLtShJyVxurNZJfQZ6VfdTaF5QxL9HNNuFL/dhOD4Fv+U
Akmk3vDr6P2+CX+oM28M9EliRMxRIar1TVj2u6YpxCyFXNIKzrs4/kHeK0a/
AAMpTKtlrLKU/QdKHV18nAFSKGPxY0uA4T/Yd2ZCZK5GCnUCEjM7PP8B/Wj0
kYy9O/A1+38zKxH/YGR8a7fz/R1o+uQIiGf/g1lKFy237zvQoYvm63/d/0DK
S+puY5Q0GsWp32bmp8DD4nQ3z3LKIOOQhILYDgqsE7zgMB0gg+9l2D6rKVPg
+8bT4Tgug9YNExL2Bwjfbg+fbtuFl8bTG0qvUmCkZ4uTQ4ocKqhFOb65RYEB
D028l9jlcT7Qn6X/PgWWLh7ljA+XxwCuYza0BRQoe4FJPNFrN97TY1o+1k+B
e/uK6ijTFNAqYiXV+RcFZmmIUpf1KCDf5zGjoHmiH2VnE2JSxCznl/fzmChR
5jPDeIyHIl6oKNKs56HEj8dyqk9nKqI8VfLwJwlK/LZZ8tP9oyJWPPTavaFN
ieVz9ElrMkpoPUcp272PEiedr3+8baGEq4fvShdaUuJQzozxTj8lTM7jkbxp
T4kBw4+FO1KVUJcuS/SUMyUm+ji/9H2phEOndwup+lBil9zEjOiIEt6oreJj
DqFEkaaM528plPG1Zyd7bRIl0phqJahrKKNThw1r3GNKpHTcto3BTBkZZX8x
uTyjRNOqfWmrjspYcOsKg1E9JSbtrKkSuKaMh75v0gq+pURdu2NugdHKOKkb
TrXQQ4mzFF47NTOUMTqR81/7CCWKH1zNsy1VRqXFtLWsSUo8uLZoRPNSGbvM
ZJf9VynxX6ern+F7ZfQqrJi3pKPCGfGFij19ysjDYDAjy0aFz0J02yh/KGOV
w/u/NEJUaCttfu3FpDLaNBz/07+TCvPMPHQClpRxk//HWJkqFcoFZ/K7/FPG
NG/37xF6VMhVddP5MZ0Kfpe/1a99nAppXmtpXmdXwZBwti8c56iQmf6Spw2v
CkqNpXRPuFNh1Nu4EhphFbyYUvY+OYwK90cb0qrJqCDTCrz1jKVCAd/kPxu7
VbDI8u2bg2lUONv2coxZTQVnt440rFdQYUNAbI+PgQrGOrrUdjVS4TaBNF2m
Ayqo1rj8ouADFZ4OPbd0zEIFe4VCykO+UuH6E/7r/9mooJ/ftmc2P6mQZfDm
Y//zKijQk1isMkeF1lWOEHJZBesUpQqY/lGh+YOlpoxrKmh/92nuKCM1BjAH
0f4NV0HK39rZNVzU6Bc1XO+VoIIZhi3psWLU6Mj43M3siQoaplmkOstTo9oF
xu93q1RwbG0w0VCTGqvrz7zVeqeCYccuPhQwpsa68ULFC8MqKPNs4f68GTWa
ZrW2iS+pYDtLUHT7KWrUPul4zJtFFVlfP7zt/x817klo+sCir4qlouKhlkHU
eJLje8FZW1W0vFZ0Q/YuNYruNq/w8FfFeJXmq/1Z1Hgky+flx1pV1Iw29Skr
oUbd+q00O4dVsX/8q2dEDTW296OwMZ0aCmfOumh3UaNn3BbujqNq2LB57SLH
EDU23Cs9ohGohmdOMDhOjFPj8Xd04zYFapizXcQ+mZoGk1ONzr1iUEf5wEPm
60o02P+ffM3Pz+rocyXRpBto8AMTt/U0uwa+PP9Tv+ggDRrq5xTGmGmg5aEg
ZfvzNDjfKd9u3KmBV/meczQl0OCRb1NMR7/twZYygc93KGjxmt7xb+Xc2siW
e+GDAzMtJvfvO+Nvq40nk8rf6PDREh8NdgVZ2jgZZFo5pUyL30okXJ7K6yDn
kZAEC0daZHbelWugqou2+p33ZD1pcX3+pfChK7qYqyoUThtEi7qFX4/nFOui
tkClX0UiLaZFNtj3iAGGbqO9Ev2YFvnzLfR9jgN+oDK/dKGMFkc93Dv+3QU8
83v8JP97WlzW4K67PA1Y0K9hOd9Hi3PTyYwC2xAXPtw8+O4nLWaKdil1kJ8T
3caPhjnztCipyx1+cA9iWLmwznVKOswIK9S9exDx4xNnVWsWOvROiP0VaYso
kPJCTpGfDvl+G18+7IZ4PppOilGaDg9ZNvx7G4BYHGwh9F2FDpPMBrVo7yIu
e6Vx1ejRYXK4v9taAqL+xb8scYfpMC2oQ7I0GzHilOYW15N0aNUTd1i2BLHH
9NY/Yyc6fKs2M+n2AlHEsGtJ+D867P8zQx/8EvGCuuj0chAdjlqNyF9qQSyV
cf3VGUmH1nb5+srvEdcFq4fykuhwbpsE39hHROPt9F+Cc+mQQ7fgdGQPYhTN
0U6b53QYdK/QY88XxN6l9FbVV3R4LepjyHwfotj45EuWD3SoM+XA+OErovOg
VtXPr3QIqndD+giXd4aVNvyiw3yH9jc7CFM0d+clLNDhPbmXV1pJvf2VYpke
VFvQW/Xn+MfPiDH5bkkHtm3BiQBKC+tuxP7UmvsSAltQlTuu2ZX4k4phiNiQ
3oJNG4Gtuz4gut+0CulR3YI3HH4aZL9FrPLJ9C/W34KCY5PXZ94gUjtPe4Yd
2YId7940STUhPjAPP6d5YQt+Xr4Wml2DaH3/7JD6f1vQfMr4zVGyP94u7ZOq
QVvw8V+BFe1yxD4Orh6lu1tQ+FgovfMzxOSjU6YKCVvwZalV/yzZ/6kHLW/l
srdgUuPI9FARotDndONdT7fgwE2FHMNCxCHuqy+la7dgmpmDzq4CxHRrS22p
1i2YdYtrMy0f8UyCXIV49xbUQ63FEsISfXRKosNbkG9a8L0Dif/BN1Qg9Jf4
+3C0qonUyzn5YofAyhY8m7Ya+rkY0Sk5JoOXlh73SF09llGKuHPgkiD3dnp8
W2IdIk38/xE0iucQpEeJz74ll6oQC2yF2Nl20uOX1EwW53pE10dLd7ep0mOw
UETHjmbE3UMd9Mx69Fh1JoM1iexzWiQvmPEQPUawOsNLsv/S08GbW47T4+Ul
u1sx5PyvZNj40p6jRxNm3Sba74gq31XnqS7T46e+E5WsE4gVDr9+b4SRfgo2
U5X/EH2yXzqsxdJjxg65RE1GPdQcS/y2nEaPq9vnFrg59bDG8VD3XCU9UlA7
OCTv0sNXF0sbfv+ix+cBs8mBx/UwJP+O1s95elT6PhaU7qCHRhMO5aMUDPil
LK7C1U0P6eR0FUeYGFDvgPrnd7562OLCXfCNhwGL5Obe5wbr4e2iaakBCQYs
jk3qHI3QQ5Op1vQ+BQY8UXs540KcHjIpZAr0ajPgDK3BVsEUPXzn7v+wex8D
HpzauvtXph5GPj3K9smSAY1sFAZKn+ih6az83Q57BvzbMsB6oUgPtyvT0793
ZsDwI1Ucc0/18OOV4RtvfRjwT8SJZu0yPYwtq9poCWHAl2Xbzyo918OjC/d9
Xkcz4OU3iS9fEZ1LzWWuMZkBvf6ULPWX6mGvl7Hry1wGZKl4Oe5RrIcJFcK/
68oY8OeyEYt3nh6eWF4+W9PAgP1X9KcHiD+BPR8HX7Qz4ArdOGNqkh4O+OYf
r+hlwPjLHpwl9/QwtSqkq2yUAZ9XnvvBFKqH9munjpROM2CE0t+opz56KKqt
3la8zoAqQVpNyRf0cMSf1aiQnhHfrLeffmeth1m1v+vzOBhxSsOR0thYD89t
vtLMFWFEpyb/rK1KeigFyc+zZRnR4tChZREBPfx1/T+FTA1GPOMQHRhFo4dP
Gg7npxkyomlX09TpccSLlNJSqaaMeE9e8UZaB+LfG338CU6MOLijfVvKA0Sr
k//FPPyPETX9nS+3eSI2KLMyPLjBiHMBZ+0czcj3xajRYkwyI94d5Yo8QIeo
Zvy0I6KDEc8uM2crN+piIEPYzUCNrVgSLWowMamFv4fF1gOMtiLFhamzpTFa
aF5V63HNnPDqW+1ONS2UuDRn5+e8FY/o8DaPBGpia7utpmfaVqRLkblxSHQP
KmWvlHgUbkUOwxdsQ+0amHwtdsflKpKf0tTN66eBrvJtHK5dWzGLX0p79os6
skWrTjnSM6EhO7XenadqeNWp49x5TiZUOc6e3eishqN4qd9BjAkT5+oy5WTU
sHwmrfW0NhPquH1vT89XReE2LbTfz0R+N20k89xUMSyjp9zWigkDnU1jh1RV
8aQFU9ZJdybsm/IqqGhRwaZdj/lOXGPCzeaj3/XiVFCeRv+edTgTpvZnw/uz
Kkjx3DvgaBZh4Qn+J+R9l8X13fpILxO2uJ09Z3haGZmnrn049IPU67ajeqlF
3pdveIwPzjJhbrSJQzy3Mu73Oay8n4kZS6hUpn59VMLJLy+YDZAZ2/2u/tM8
qoTqKdGv1HKZ0URFI/E8eb8HhLZGLpcxY9Crk0usxxSxyY3qZNVLZnzQEbMc
q6WIpvqeczpfmfFwk/fkH2pFdPp5TMKIhQXtw21jFKIVsKgjepqOnwX3Fo90
sngo4PyL1pqWHSz4r/Lpop2FAgZFaB09qMeCFwd/qqlzKGCionCohScL0mUm
Fh4V2I1DfNbmnEEs2P1Rz36uWx6laO4Jfb7LgiU8Cp/VIuXxWQ9VxYnHLJgS
PvOiclUO26+O/Tzdx4Jc39hun2+SJXss3O+O2zDyg8a/m1IyaFg8xql0aBvK
hN4dyfywE8PjhUfmjm9D7SMutSd9diL3pXt+3le2YQzNweubLdKowPpffkDO
Nuz5+sP024UdqCiXGmpMx4r+cdlrHfUS2JVe5fyYiRW9gpYrZcn/uz5cn83p
2VmxV0nV7IGgBNb92ybcJsyKgf8kWDuvi6PJx6CKQ3tYke/MtaJDFmJ41vvc
L0tnVsz691i6SVsEX7G1bNvnwYqpWvUO1jQiKFIko67lw4r3+MqG9RKFcXB0
6qZoCCuq6kfscG4SwhPmfuKTSazYXd4vFaAsiOZyUba33rIijxUX7UdnPnza
MnPTr5MVk8X2NUzw8SGrg2Why2dSL/DbJ6M2XnyfyLtu8Z0VPxZujTkqy4sm
9FkJImuseOOyzd2La9yo/72y64XMdlSKejU1WcqJ6QH86wUK27HU4jz/l4uc
SMEXIJ6mth2dM7bnvxHjxDpTA49Q/e2YvMHvFBLDgZp177ZZnCD5zzIeX3Jn
R6WEEZOJ29txUNGj+JzodhQ9wvRS6Pd2LJEe49DspkfL8iPnY6a2oyV9ZdRZ
FXoMFby/lW5xO35Mf8sdGkveFeO8Vn+p2LDczuDhPms6rAzbMV4twIYUVMOX
qGaocXzqYvRucTZU+EsV5nmSGoWOFalm7mQj9/0sS/cbKgyWVA0MV2PDCPnv
/K9yKPHwK33O46Zs6Oltuv733yYE7QytardiwzTWOtex5Q0oi261w1NsKJCx
NiCwtA58dqZ5Oy6yob3pXto31GvwY+0ULAazoXPQjMSC/RLwnE0fvRDOhqw3
5sf+hC6CSdvo7YFoNqSvee76rXQBSuIvdTWlsKHljjG7FYF58Ff1vXC/gvTz
djzFpzUDxck1LFvq2NA9VtBFMmYaRqgpyvya2NB0LP3E2OAU7PsYunm6k8zn
p1sc7PsXru5py+z+THhNrsDn+AQUpTHv3z9I6iVX0A8ajQO7W+x9hXGSH/Dh
TJbBbzDu+ayRNcOGuaxMrH8tf4GPDv8g9zIbiiy9NbTw+An5WbbBdzbZ0Gct
/Xhz0hgMbs2Q/kfDjnivPEii8wdsv/LjncdWdvw17htvzvYDDPukr4xtZ0fr
F3xfxe1GIS+3uPadEDua6vYFMvF/h4Ftc2f0JNnRflbY9dXtEWD1VqN/vosd
WX9fCbSnHgGDQd9CaSV2nAYh5ie3hsHLqNY8WYMd3RlEwiy4huFJAcXyNmDH
Bq0IRsniIehnN0wJNmLHFu8fw51mQ8By9Zb+0gF27Mj+uY11/RvojbT9vGjO
jhRXGsr+nP8GnvtZ7g5aE/+GnuH3vg9CTomZkrkdiT8CK8aXB+ELd9zn5nOE
L+ddObRtEJiu9/rvcWbHtKWO6xM1AwBj/GKFHqSef+yUme8AeByyeyPiy45D
9WmqNQYDkF2W4Rx7nfj/6ul/gn8AevnHttOHkvm8W/vM/vXDmyduy8wRRI8W
CUuZ6ody9ZVB9hjiR93irenvfshqvtHMG8+Ogaw765rG++G+BVOBcCrpH77z
nuliP9wYjouRzCLxkT6/D9APgLubsO+uPLKfMy+zBUUHwG4j106xhOyHKaZX
CAfg8B0lY/Vysn8ps8R6hwHQ4a2R1alhR5ETzKGukQMg+9iI3eAV0SVWrNPJ
fAyN1kOH35N87YAnMRKDsGw68tqyi/hv+C5nf2oQxgYvFZ7oI/lOAv/9iB+E
ptUAv/Nj7Bjt5Nlwl+sbPAujP+08QfzqJOYKWH+DDK6YvR6z7FhyME1ZLOkb
XFfK5gjYJPUzLzm6sA2B5sW3RXFcHDgd1S2zkT4EO5ct45IEOPCXtuUEzZsh
4AkdvJouxoG9mxc2IyaGYCF9Zl+hPAf6vL+ifnzPMJR84f7eZMyBlcwGqmr9
w/DIMb217SAH7isdfeKzZQQiF2RKOsw50HNRM25DeQQubde91m/Lgckqy58s
7o3AiUdvzo44cGB0ieCi06sR2CdnZvLrIgc6XW7l37swAlL7HbjnvThQwi8u
95v9d+D8/HdjxZ8Dl6lSunsTvgPNOe/Rfzc4cN7s/Bhn93cYDgx/ujWKAzuM
JSZemo9CcmXJAfHHHOS62fYzuPyAO8aaSjsLCQ9uuXqs6gf4dTXy7H7GgfFP
9yqcZhyDY9M9PzTrOZApmmE2rnQM2KQ3rpt/5sCIO6apemK/gKI89Lz1AMl/
z5KzI+QXTBmwHrL9zoHtLx95qv/6Be124nwXp8g+6uN3KZb/hlsP95cFbeHE
3rm2zwwO4zAql2F0gZkTWc/dNav6MA76Tas9puyc6K82JDWsNQHr0/krwsKc
uN7vyHyG4y94mLBAnRonFlgkolvdJHwYOt+Rrc2JlrIbZrWSUyDrXX/6rj7J
d0yqFbkzBT8z3UNsDnNin/x7F/cd02Co2cppaMmJEyOKNw9ZTUNGh+jjXSc4
UUJk/f294Gmw2fjYunqOE/XT7IyKeqfhxf1dJ0cucWKO3Aa7OsUMcMmETLRe
Jr8j7gXLYZIz4NnQf+2pNyeKSGWFXds3A51WqtsSrpH4Q9u4ZpxmQP7v3bTA
YE4c2pqR8ip0BiKCxxSdbnNiZfyIfXv6DPzmhcYjUZz4gMHz9uyLGTAueWip
HseJ+wzsGTk/zECm8fQPoSROtNnfdopreAYoBvZ506VzYjtn+ZGRqRmwvZJO
P5nDiZHlU1Sn1magmmE1obuAEwU8eq5fpp4FnjTzXbXkd9GPqYefkX4WvNTy
a7IqOdG86IG2IMMsfGqnPhxRR/Yvcn1fHN0sKJy1+XaliRPTrKTeXKSYhbsr
Ze4n2zix7c7l17GLM/AnipnKoIMTLw5fXWX+PQP7pM7fl+nhxJqCI6sdn2cg
u6ZOgq2fE2Voqy8NvpoBKgvu8pVhTpR6GsGkkTcD9r/d9g7/JPWu/dc7cncG
aq+39Lb85cR+dlGNny4zwMclerFkjhNDxbZnHTGZAe8C37WHK5xousBsuEN8
Brr0P0Zc/8eJskKuuQHL06D0RUbIkZYLfYJ5Vx3bpiHKLbj48FYuDAjzWl+M
n4YJ2n5U286F4TuvSRg4TINJsspHQW4uLJfRsTsnOw00rT/mJ8S4kIY+IFbR
cQpO2+mGdklzoemVbrWWH5NQt/CAu0aeCzVk7iTT2E2Cr9g+zTuahE/rU57Q
/wuTV/Ou7zTnQh7LhVc9XX+gV96N8XwQF3KM5dXcdv8BDPdyed/f4kKHfSca
jxeNgubcsLRaJBeOrm3h+jT+HZIrLPfSJXFh1zv2yyaOI3AaNUNyyrhQpHv0
U2/PIMRkXLnPUs2F9pt0m0VnBqCJpjDD6yUXLgd7VrbNfQWpVuGXxu+5kML1
tf8B6S/wx4x2c+wn8dM3Urb7zyfgL9NlPjLJhdLbb0iuF3+Eg1w+AhXzXGjd
K80qeb0Tivv+aN6i5EZWzsF/N/97D0PaEiZTW7ixY91WuPpIO7A9OnX8GAs3
urMKfmeFNvA82+G9g58bKT6n80vYvobsZoZbUaLc2CD186dNZBP07DB4sLSD
G9MiagUyul6BxsTzsjcq3Bg4WhLqsrceLhyeatytxY0isVUXu61rILFE+tND
PaJrWMltf/ACNjyTZhwPc+NQeonm13tlIP+5i6LDkrDvdrnjR0rBfg8Lq8ZJ
wtRjTNvUSuBe0l7htNPciDf/ZUaGF8CrjUB5eifiT409PHQpF+bsqnTcXYm/
xJ0HPpdkg8SruYO9nqTf3+c5z55lwFEJORu8SuIDm08+XnsEoaHnL+UGEY7T
HxXlSYKKX4/8WMMIC644hFY8gF8mX277RJL8ZGUG/U8xwFfIljAUS/QB/q01
rZFwYNvB3H1JhAtjH157Gwb+l29WlKQTNjumpp8aDEWf6l7z5BJuOJnhdyEA
vqkudwcWEdY8ZUFP5Q2s8Yo/fpURbj9zg3ncHfRWL86bVhNuOf7FnM0JPGyy
qF+8JBzRc40q2B4y6wbYRFsId8TEeowdhS4RbrHb7wm7J5wVrzsItMGmijNd
/2cjngAeQ1D7cRuPfyWsYOE+IKAHTnsbj7wc/n++0dI+DgNIeLJuu/MXYYo3
/Y7m+6Ftq5rrvcn/x0vaRCeawbqL27WVecIi2laZ7NYg15EbcZq8wymGuFWE
O+zAVmkkqZWSBymsvfjq9jlAVCx/viI94YhjytnbL0DDomVVAgvhxLINVRlX
EKt+03uBn/CHO+dOX/eEbYZ7dzqIEr5p/fqZkDest7/2td1B+DRk2bf4Qs9g
M5+FMuHHYsipeh0aHY0uHdpDuJ/SVHE9EEqmm6r3Ag8GwqDQ/rM3IJyqyUb7
ANFlO6TNTG6C9x2DQjUzolcJxSR+CAUHjsYNhWOEr927nH4uDMxS9A/vOkXi
hylCilnDQVfqVarkWaJ33O7S6r4Du4r1poQvEC5r4nWpvAs8Gi+Bz43wGY7O
5foomN3fMMRyleS/Umxr2xkD3z6CIkMQD6KZqqGh131oP1kfRH2L6Euh6inD
sfBiVPfjRgQPNhjqj7C6PYAclzqx5RgSz1uTzS8WD/cXda7MxhP9W2E4x2YC
BF6vbZxIJTzLy+FNlwwu9DocP7NIPIP5RrZuKpy4V+MwnEf49vHVWcs02Mun
/fxrCQ+KmOWcbstOB5XMatqectI/TETAkD0TRGW1rDpqeHBI4eze9tQsYHle
ldP2isxzNcPl8/4cWNPRXGpqIfEPlW4FcebCr9cv9ta/50H7OYtWZuo8aOyt
/PWsj+TnxTi67y2CktMae4qGeNCdN89t9UgJpP6puJ07xoOsipW8NZFPwWe9
XCZlltSXmjfzMCyDczfVrj5c5kGF0/NsEdXPwZyl/O29TR6MVtbYccWoAmRF
njuHMvIibmw98C26CnifqNQGsvJi2jX9bZ/NaoBOqYz5KhcvlvwbDnaWqIMh
g2dFbmK8SO/dmKy+2QCxjk+nrTV5sTcvvl1XsRmCphX0LJAXRaZmaCwPvwZX
35J7h4x5USO27dWk+xvYd6dYSd+cFxtAKompqRXWiwo9d13kxWknq8/3It/D
b3W5Zkl3XqRQaUm41/QBehoKOEW8eLFjfGe21LUOKPmYX85xgxfdX50I/FbS
CQ6LT5Y3EnjR8tzjBCeaLpA8wPjGJ40XW/IOLseldsHYo4txcznE36mk+DiV
bnDav0vp9zPij9ZlU9m8B3am3qFwqOLF+Lyhqje9PfBndvz9YAMvysoKy2se
/wzOyQWXut7xovOu2v30xr0gN8OkeaSLFz3bkwOCn/bCpJELfVsfL7b7bKTK
c36B4sR3PYbDhDtOsBa6fwH3Kbns+p8kn5ElKL/xCygaRl7RnCTz5Prs7Gfu
g9n4Sb3n82SexBa6tcN9UPr3MKvCGi92PSqO+xDaB1f0iwfzKPnQfwuXseTz
PlB5uK1Qkp4Pkw+F3O760gfz425X01j4sF2Jya5mvg+eY8d+fk4+HGWrMm6i
/QpecQo8D/j5cGjGKnyE6Suo/4keYxXjQ6fV/b/ZGb/Csu5M2R1pPpzP29Zi
s9FH3mNmwXS7ib7zqsi7sT7w+/XULEiVD+3PPl248boPtHTYRNa1+JD+PutU
SnIfrN/zmPTSJ3qNzdkjF/qgduxjzcw+PpRdmFdplu2DAC3lO85H+HBiNa1H
7+cXgOj7x38e5cPcd2EzNAlfgOLH3I4zNnyo4KC/67T+F3i5x3Kx/wwfWg/2
Wzz53gs3Isuajl0g/oujG/Zc6wWD7xz3P7qRfiqsS1e29QKNxn+nD3nx4fQL
XYn6xM8QOqy6qR/Mh7+27azcl9oDt1Uq1OVT+DDNNjF72/kuMLnNTfckkw/1
e4pS8t99AsZB7y7xPD402XXCcZfSJ4i4pXGZt4IPH3wLm+qb64Tovhd5NJ18
2OCqnXGw4z2Y7ebzvf6Z1M8bs1i6/Q7YQvz2rg7wYc2drKITRu0QK6c1OvWH
DzV4zKoHyf2OD6wR/ErDj0M60k30m01wvFtg4uhWfvRZyFhu7W8EPplrVR3b
+fHXxeoo98ZXkPxJ59hrIX5UMMw4/DyvAU5Jp0rqSfKj/YFTuinW9SB0bXOu
ehfR/VlZb7nVwiOp+uinGkTv211l8PUFvA+eZGABfkyr3cPcqlEJm0OCwReN
+BGP7F4+m18OcrqH1l8f4MeO5yc67JSfg02S/3/i5iTf6oXLn45nELGcP3nd
muS3jpiJhJRC9dGvjv22RP/JMvn24FPgY9U8EXeJ1FMo+JGsVQQmLhc+zVwm
8Z276H0PFIBvW/zBwz785Pt0byt7SB7k7mhpzgvgRwrGErvA0VzoDVnS3XKT
7IOpYDrg0mOgH5GqPHuH6IWHbrVz54A6WCk23CP5WlyGoz+z4HzyzTyBeNKv
rfu8fF8mPFgpE/dNJX72ORz7N5EBr61Gk7uziL5yZOWeUAYsPGPnUson+T/D
Zxac00Fiu0FU5FPiD06w7O5JA0tXD/rxCpJ/9IyNsnUahLxND9pbR/KFeBb6
hx/BM+nO1cwmwpqKlx20H8HITQpPirekXvJD8czqVGD7vvuvTSept/nmqtXJ
VNBHu/MvPvNjIMPdEkruVLicEvmNc5DMNxaQ7vUnBdJWa609Rkm/Qo5c5c4U
6Dj2t/P9H34UUc+/uP9NClA8Fziwa4bMb8IqeKclBXazHWy6tUTiEyg+UpJ4
W7erOqMbhCt2EIMpENmeV440AhhodFWj7VcK1O3s253CSNjv6U72mRT4G8rw
ZIVVAIfecxTlz6aAwKiGmBW3ADY0N98tJn4O6jkllQoKYJrp4PrVnhTwT33I
sU2C6L88Nd8/S4H8tdd3L8kQvdDJ2z0wBfqsF+laFATQ/hLDnwLNFGAslwyU
UBdAkfmMm9uHk0GT/ehKoA7pvzzz84ZHMlxwD/EYMCD59nKWCpNJEP/u2fge
E8JnWy2LLJKgRea7wwNT0k/cmrMvIxGWbrENzlqR/PyOjfGvCSD1Q+/YkVNE
r9Vqcv4XD1b6lzvyzwogSphEabHEw81HafvpL5L5DNtKQhkeQtn6h1cO7v+f
/8aut7NxMHr8n9ZLL+J3jU+u420s6HPYyvsFE/Yp31dyNAYobvOzTyST+v3R
05vi4aAwZhKxL5PU3z5Sg0G3wM7Ajzb7CdGL4X3peAhEpj0JoCwh+jBVT8rF
G1C30bt0qpzoO7iV9tMGwuQJ+stVNaT/uc83A0KvgmCl+h+uRgGkcBISV7P2
hoOcjmevtBKmap8ZjbwC/h4P+j98IDzbKZO/xx0cF7c+rOsmbP4l1WLHJTD3
CzIr/Eq45ecCzefzoLu5uDV5mPCisPbJhLOw84bz6/CfhDfk/FpDTgMH3Uig
71/C0rfEN4rsgSL8mJbTHGGLCT5z2dMwzvxuwWqF8Akn7ROsZ6Hnnn6J0T/C
F5e4fjmfh1eclRdVaAWR4tn02ivzS1CYICcpvlUQA4119tf/cod4wcxv27cT
nfJr/9qqJ4Sk8yRScBNdI5FWbswX3CQjLacECJ8eLY0ovg4nnlBvGxQj8TRX
vG/JBYOxnG9ruzThk4sxMwuhoPh0MrhansQL1NNKKt0BAVUH3TwVopfQj6aM
RAH9iy/L8ZqC2JB3IbQkOAbmtI88u4WCiDKNA9SmcTDY0OTiZUzi93x1pLWK
hzZDTelzBwUxrWW3fXxsEjxvKR6xMCcsi9b5jI8goiPxmKItyRf4anHkYCZ4
W7KyiTiQ/j46FM5W2XCm92Y7y0VBdHe+Wj/j8xj2DLnrTfxHmHuPQx9VAYxN
Ge96fJf0u2HwrpLiGXReqfkRd5/kixStX7Esg5olxbSQBEGcfqcyuqXoOdz/
J8B5JlsQ98kczZ5wqwTcNrcpUCuI0e0LyS6sdSB73+nF1kZBNFUzYtbxqQdu
7sErqy2C6MBtdPOjawNMCrX++txF+s9YvAh4/xKS5B99jJkg/bbXh35xbILQ
Uo67QbOCaG9oT81P3QweauF73ZcFUeJG6+jv+GbYp/tfzSEaIVz2kd5nVPoa
VF798dJmFELZ0keTGypvQNjYXnEXqxBKdCj0+pS8gcVDB3LoBYTQ/tD5TKXo
FhjubLBfEhXC+JzU0ZdzLdB+VI1/bIcQKkwv/Ck+3AqVX/K7u+SEsL37dVNV
WitknhKNblQWQo7bfB8yf7dC5PADk9I9Qti/McyqurMN/M4x0aaDEFJ8ChbR
tWuDc7+D6qOMhNCJQSrk0Z02MHVZ8g04IIQNFDo8RkVtsK32UOlfMyFsqXv7
9HlLG7xnyvpjY03qRbn1hH9ug0ibVbF2W+Jn28M/LX1tcKjA9KTWOSE0tH6w
//rHNmBaz7mfd4n477zztrauDdoPbLzl9RBCU4bvv589aoM7SRY0t32EsGvv
A8u4/9rAZPyJ9nKAEDq/pSxLxDZg0KL4z/EmqZe4pXs7ZRu0hFsV9twRwoKq
JE+TilYI6yv4YRQjhNEMmovZZ1thrwy10PN4IfShSrG6S9cKdH7HrSQeCWGa
y1NBt7QWeN1aHHk/Wwgrg7Q9Xim2gOEFm3+XS4l/podzndpvgPpFqfpwJTkP
OfnyrIrX8Iqewd20Xggjdp45yC37GvRynw/JtwvhBN7IN6BpBt2fLK/Gfwgh
a5iH8sHgV6B+7mXIOV5h1BiM2fcxtgoWy7hru4SF0Z1n10MKyxdQTuO6YCAl
TN5LUoNfeStBJYvvvJiyMOYGHdQwrn0Oc3Puqff2CGMHR2NdWnIZlBq86aFA
YfTZ1pUkGfoMFL5f2fvtoDCyfjJed/B7ClNKbdcPWwjj0PmozKOhJVB0Q6Sy
9jjp17LNo16nGFw/ek3L2gujyIT9RFNYIciJvZNOPi+MCs7DjQGT+TBxWfz0
VheSf+dJsY1bHhS89E3wu0L8VVtp1W99Ape2d3T+9hVG0+lR55XGxyBzWorx
eCDxN1zZMvcwB36X+Ou3hAojqixRV97KhlyKT37qd0l+S9bOPzFZ4GS681nO
fWGkGDnQrP8iE3akXR/nTCSc8a1aYzWDfJ67xW+mCWO05UNfzqMZkAOyNvM5
xJ+8gNNiSzqci7oRe7aQ1GNULhE8St4P33rbPz4TxpIkjbeXl9Pgu/xuWv0q
4i9eSe/D0zTICLip87SBxAvsfL10PQ3OvP/6n8gbEq+R9P3B6TQQFVIqinpH
5s0yvr7naBoMuYSNbX4i+4wtXL10PA3SageFXPvIfEsNmbXOaWDHrHpsYIjU
q5qzPXk3DYRO3Yk6+JP4/6KQ2PQiDRI+7WA4/JfUh8cnbCbSgMOk6caRObJ/
+vYnJ6TSIbrBft10hdSbbRZxO58OW9U3/jP/R/rR1z2kyk+Hxp72pSdUItig
nJ46PJsOlGxJZXm0ImjaaxCXo50B/mHq8gVbRTDaNuTG644MqGqkHS9gEUEK
n4eSB3kyYWnz0+PC7SLk/1m2hFybTFDRzHAo4hDBkjpP9YjkTPD4z120mFsE
RR4Hdf7qyYSSEt3BYj4RpP+P8UwOYxb8HWdKKhEkepOAWaVaFsjs+HrsqQjp
vxYuduwEOb8zTzhKxUWQVU/brdgzC3JSvDtLpQjnf73QG5IF33uNIp/tFMHe
bvYX+8OzQISD40CZrAhWrn+wcyW67ZGRLc93k3gmh6d1HlmQHF7S9FyJ+NsX
IfbHMgu+NAcElauKIFZViaTJZAEX5SHdCg0RdOrPtiydywRLbf61Ci0yPyS9
Yy/JhBjv3xWVusSvWRrNa7tM+FBa4flCj+xDMvvVBFUmME3eVKwyFEH7RdNn
dQkZYLLTcrJqrwhKt3tPRklkQJiDWH61CZmvj+V4e2Y6ND+adqw5RPwMNOev
cKcDct0drrUg/bQunFNvfAQBZidT66yIv8M37GQvp0J1xM6T9cfJPPUaLZ0s
KaBG/bqrwU4EpwNUhqdFEkF2evNN4yVS75NV3ZP++3Bx17uQJlfid1D7ib9B
DDw+n6TXfJlwJCwZFUSD2IB69WtvwtZyHnv574A9D53PGz9ynsUTvRrcYZBq
0aXSco3oXf2ya7tuAm+be1FrMLkvvA6nmi9cBytauNQWSvy9FRChcPSDWGSW
fntbBANzB44Y1P8HH69+HX0bQeLZeQX/878MrBVP0tujyL4OnmR/deQSHJ71
tn0XQ+IbBkzE4xzgjpwx//s4ottqlJeWnYIWJ47e9/GE1a1ieOwsgS5rJPZD
EuEbj6pco0zA8FuJWUcq4ZxU2mEOPQjiu87SmU5YJXPYk2oP1B099LYzi3Dy
rlQzak1Yj+YP+/iYcHmYiW2tPmi2/zb8lEeYhf2Z/udD4L2lkrKrkPAWN1NQ
PQZl+qF1XSWEWaWWlcRPw+w1y6vdzwi/VD9jxe4EfMLs3lwVhCdOPxeIdwe9
hk6PY1VkHzJssdJr/4HT6WjX+Fqif5OY0FD0h2iqIxe/NBC95XdAZHIQVGYy
n+drIvvhoPRSC7sJ3wzbT598Q+KdZTLtem+D/K39xwfekf3YMUhovb8HVtL0
R4U6yfl+/kERGxIL11pfm9p1kftSqjEqeP4htG813DfcR3TfxjNe6SlwMVpX
/cdPEXQ/uvlm7VM2xChuKEmNE864sfNm2WN48bFa3nGS5D95JSKX+gToOfdI
/Z4n5y0XkhcfUgg5CcqcfylFseFOyQWpZ6XwXnOWVZ5WFHkGp51c85/BwtcS
Jjd6URQolFRbelQGhkLyNDMsolhQ+daUya8cnOsn/imyiaJ0aRhL5qkKuG+f
v+bBKYoll4Vl7u+phJEM6bl5flF0suJR+d7zAhgNf06qChO+tSM96kEVKP7I
/uMlJoo2rtNjmgeqwTrUYaxCUhS7xKkleeerIXCH+MiytCgebIsX9YuugdyW
4YE9sqLIlPyvq0m4Fj5cSPvit1sUW+rndd3Sa2GR0a67WkkUs+QPDs1x1IFQ
gWDnuirx+/RYyQ/fOjA+1N+us4fEm7BS/vlQBy6TiS0B2qLoPOvpUc5VD7FR
x5vqQRSTH958zXm4HmoUeBooDETx1/Pub73/1cNoZ0+1nrEosqYPVW6NrIet
V+IqbuwXxd5JIf+wB/WgxGH5rPEg8Zt8rcIrqh5OPGcrpjEVRQWWRkVa33q4
YdWZZ2Qhiu02wi52FvXwZCkqJ9RKFJedrnN3C9VDR/zhjDfHyf5DdVhqvtbB
8h7mVPpTpN/1x6VR4XUg8vVtwn57UeRgKFmp3VUHe/3D48LPiqLpi/1BX+pr
wVVw/72358m8frbJbntr4UHdlrtMF0XR59NhJ83GGqizex12yIXUP1b04ody
DfyguBkS6S6K0YXDeYqJ1aBiQOXP6i2K++7S9/eaVIHNaIO3mZ8oajj5VI0+
eAHBN69fibkmip7fHbQnvlbCxzfrFzlCRLFmdYHhrmUFKP4V0za+RfwENQxV
3i2HaLb9zD7hxI9Q1VBB43M4dCqu+Gu0KIoU8z+8urMMWmbl5jNSRJEmpu+5
0kIJ7OCxbO5KE8UJ40s6XHIlEKrj94AuSxTp77Pkbu8sAoOw1xoX80SRIqtO
xqgvHzIKJxiSC0UxfiTR34i8Lyg+sX19V0LO4xnL9S3bn0CdoN01xQoyf9mH
Q0rXc0DQ4Obhs1WiOL1dKzXiUDb4O+ULx9WS+Yt+iryVzYK+u53TrxtIvx1f
qMIFM2HPs6WXy41kX8t+/uEiGRDfK3hf5o0o2o9V6R1US4fFDQMHmzZyn1aa
+bTs0uCo+EXVyHfkvJXn5BLUH0HZvmi6hg7SL38yQqQ3Bdhdyz/PfCLz8/yc
YkhLBo/7/bnin0URIwSoKqOSoKOSyu9oH+H2KYeBnETYPSh94NYAifdaye8c
TYBI6iMCL4ZE0f3SQc7lfQkwIf3f3z/fiZ4/3OX0MR4OHE6qE/hJ9l//ZGH9
ejzkXXkZdfgPqRcQ4HjNNB4YEn7aB/4l+ytgbzupHw9OdcxKpdPk89/3z4ze
Mh5ef1emHp0TxTQGQ57E4HiQZDjRxblE9sPWyyP2IR5C5AOz966S+pePqKeq
JMCIRY6X7waJjzNcKn+aAHq+7XvzKcSwYf/NWUnDREhLneUZoBZDCpezurd+
J8K/Rp4/LFvEcHr65wPRR0lg+1u3GhnF0DTuhv3YmWTgV7lzKotVDKNVgotu
MaTCg1bxjEuCYph7vEinoykNFib3X0kREUOeKk7J/UrpYMnhbvhBXAylI1L6
A5PToXTPA07KHSS/8neyOlUGbLerGVOSEcMSmQtR9GcywD1kpMJBTgzt7Uck
KKoz4P0T+tsPFEj9gDPNzEyZIPdB/kSLshgua/97qWqZCRHzlrtW1cRQY1jz
QkxMJozzXl3fpSmGLWHvq81fZ4IJpL87pSOGvxionryczIQnDm9So1AMrbU6
pU22ZgF9+F+3lwZiGJhhlWnBnwWOxex6c8Zi6C6qXOoqlAWvu/awSZqQ/Mnd
OuIcWSCxavfd6hDRs2dVD69nQrBwaFmYKZmv3OJfGXlfofWRnGALss+8x7x7
HmeS3zue+AArMh/rqezaS5nwonX4tu9xEi8ns3BBIhO8qPKvetqI4T6ne+8v
dmaAkpani5udGPYqb26huZIBU1d07C6eEUMRgcajkQwZUFBAZ3buHDk/ldtX
XeLSwenHB317JzH0EXK2FyHvF0mhBJWTl8j+ZX2fyUelwYjVGSkrV9JfKv70
tfVHcLJlnuGgJ5mX03CYISwFDufzdqoHkvNQbI9xZYiHraMjr5SCSfxhY+ef
sQ+gRaCgTC6UxPdVmAzyx4FepG68eATRb8sN2krEwObrLeFCUWReagoUyouG
qn8dV3ljxBBjQ4ccHCNB5fJZu23x5D79FyNr/zwMpp/ImjEmEf3gz3eJyzeh
cGRBnzaVzFNdIrDXMhgu8terUKST+9bXzubWHghSlmFSa5lEvyRFK9vmD98j
zHgWc8Qw7fBhHVpDH0hr5mOceUL0+KeLvCyeYLP5fW28gNS3/BrptdsdeNUL
/44VExYW1v976gL0uHl9Gy4l8VtbeOckz0JMLnT2PyfzrW+azdw8CUeG6Rs/
VxLe+spFMtAcmPg+ln2sJvNROF6/n2IMLeZJOe/qCP9iuWrHqgE37zjEt7wk
nDXan3NDEvSb5MIbmwj7NDc/Z+GCzfXFq3VvCNfsNzRiFoVq1QaXF22Ejb3l
raeUwcf1tl3ZO8J9lh1WEwag8tjcrLiDsGehYzmHGcx84zfI+0Q4ivNF6/ET
UMTzQyW7h8yjuPtF8/AZuGhWJJX2hcyT1RSsknsBdoR78yT1k88P70Aha507
jL5CxgffCF/ni2CQ+w/S1xjWo0cIO96zlhT2A1uVT3/v/CD7vErhvx51Hfhc
kr+F/hJDhSQV3+11N+Bz9rnOoHESr5BaETV1E2IH5Rv9J8WQ9VTSi3vHb4Mp
93KZ9wy5P3aNIwkrEdAWFh7vskT8uio/euwYA6EvLcKdVsk+QeD1ckAsGKwK
+J/dIH5NM3158x9AzaViu+PU4pi7+7dBpHoSFB/ukjLaJo6yWzXOLpH7b/X3
7rFANnFkSuJ+3f+OfJ7u7A2r5hRHmxfJ0po7s8Gkteq3ooA4ln07SXdu8DFM
O3ryuQiLo7tGi+dflSfwkE7+QK6YOEr0n9MZC82DUYP0AqGd4rj+S/XoAa5C
uDNyYuC4rDhGJ3AN0ZgVgVIQB0vcbnEMEWM5eSSoGK7X3XLbqiaOmjffg+9g
CUid0ksz3iOOLTQ3BBbPPIX2tdWOIG1xZCtYPVT/7SlcSSyjrAVS33o6UdOy
FPj2uCot64tjEcUWr/n6Umj4vOOssrE46nNwOzmLPQNHr+H7rvvFsYZeZ2bv
1WfAwpnU9OSgODL2VbpLtz2DsmeWC6NHxJF+KOVNI0sZnDRnkRKxECffj1ti
+/aVAdXMG6uTVuJornR/RM2nDHKjgm49OE78CtC+K0kugyPyWpWdNuLIJQcp
u8vLYLF9/heTvTh61XH+Kmoqg+RLRbz7zoqjdnft2q6WMjBgdDIJPk/OQ2HV
vbqhDP7kil6tuyCOUpHn6K4WlUH03q/5K87ieHjLLtU798pAfSy2X8VdHB3u
yUwrXyyDwZDDzO5XyP4fXcmp0iiDEHF63XwvcXQ1/63jtfEMZF69dB3zFcd5
vhPD1ZXPoNP+6iPRa+KYeun67NLFZ+DzT6XDJlAcu9j0YpI5noFQ6iRFfLA4
hsnVjcmUl0Kzdq7ip1BxbLey1eMzLQXnr6fPsISLY96SmOjW70/hBU93Y0i0
OMrIFZvpLJaAfUXkfP19cv67m/e89C4BOqt9kmsPxHGi2z3+2u9isLxfHXo5
RRxLFOBu3ptCmGTO2G+bJ47Jl1tkDC2eQGzBSb+EQnE0Zc4+JaCSC1oHOPO7
Ssj9wyt7P3I9hrCwMKYDFeIoEHcmk+dnFuzeof8/Cq07nurvjUtCSqSUUNmu
697rXtnrOUqRPUqShJCV7L2z57X3HgmpkKwkIUkZIWnpm4xSJEpS/c7vz/fr
2c/zfs7nnNfroxrdhusf8lbgflEOE72/Lz+4J4x4Ri3C/z0tA+GtV4bke4TR
6/fBpYzjJTBQSmDwfCSMzz+nZaNnxeCG/qPWD+B42bosLaxFsP9dvvXCU1y/
RtJmp3kBdAafThMZwXy49nZOvi8PbPk5Hl4YE0bDEdIbJrq5sKO9/3veC2FE
uHXZz/JrNjScjRCZmBJGAtalNK8bWWC2rnx691sc74uUjXF8JljU5FRxvxdG
y23+4wpZGWBtsfbzwIwwMnsiZMN7Lx3sdxmfPDSH47+f+M/4Xxo4ddXnCX3C
+nMiNObzaeDqsWNR7IswKrn76tToeCp4ijioSi7jfaqukNnhlAp+Ez3JUt+F
ESe9ZIXjQCoExQpOH/mB92eNJlTwHx3ClEJoCr+EEbJ41yvdR4eoxakIlU1c
/+aq6ko3HeKL5MfQP4wte5Z4JumQbJghepxRBNETy1VvM6VCOuM3n5PbRBCS
3dxxQzMVcpr0+vVYRdDkbNX09pJUKLCvOWC8QwR1LcdGmuxMg1IeFmfTXSKo
pZPn0JGENKgauNhhvlsEMYhNbwJfOtQEdbFf2CuCeDgjIr+3pUPTtP+tS7wi
KCwqm3FRKBNa0ia2uBwUQYYZN/7rn8uEexpHTNwERFC/2Lz/vztZ0Fe9uOYn
JoIEDJcKdtnnwID5Sc1gCRHkdr6vzVMjF4Z2VuWEk0TQfAnnm0KRPJh0u6Ac
L43teW8efP5fPrwW6khMlsX1uKtHp90rgPdjPG/TFLC8cE/4eFohfFIYDctX
E0EK3VKFMoRi+PqJMlqsLoJy4pU5TWaK4XtBgnCFhgha9lIvPKFdAuv6817V
miKIWjfoNJtfApsMx/vqtEXQ3re1PxVmS2BLY+n+23oiSOPKo6dThFJgtvvr
cMdQBFV8NHDbcbEU2Pafa2s1EcF86w0/m1EKHI/v7ug0FUGkBicfo45S2Bu4
93z3WRG0+Inw+upUKfCQ3ev7LLD+yPn+6K+lcPDd038DF3B+e40txdZLQSiV
aDRkI4L8zrEzcv8sBbFjMWXP7XC+zesNSp9LQXLtw/cXDiIoaObvx7CxUqBe
Q8dfO4ugQUPHoNcNpSBztjBr2hXPP8d72jy6FBR2bMzNuGP7yQK23QaloHrP
VHHBC/fbVOCsMHspHL3SGP/FVwSZhTD+fN5VAicEOV9/CxBBIm35m85OJaD9
3IX8I1gEJfZWjBxnKwGDqMchG2F4/juUqBnqxWC2ECG4NQbz5aVy4rVLhWCR
/86DJV4EWTGSXd7i+7C1nkrPjiQsL/UJ6jLIB6fba/Z700XQtCHVn8aUC8H+
DnWixSJISyCveHlLBrTcJD3nLRNB1T/+m5ZqT4PVj8u/OCrxvHWWsls9UsHF
2F9zo0YElTQdt7v4KAmqY1Vdl25geVdd/RhKgJnOLZkztzBf/aMX43piwUIy
/r9nzRh7csgqrV+FHGv97T2tuD+vhKzq68NhLJuL2tqB+Xg9quPfeghwPpsw
rb+Pcdbr/WmPA0CHKT+4vBvzW2nXHv5xH4hWulCR04vjnzoUZC7oCd1uwk+S
+nH8zC2XCy5dgb9Vc98inmD9ZGM2C2FHUHpTy+P3DMeXsPUMC70IPnvc4PII
lmvc5pDccR4aTsrY24xh7FvicTjwFHwNXU888wLrr3Jxd3doA7G5o1F3CuOQ
rBklFgD7xbAp9TcYkwIvBKSQoUzo+Bb5aYxb9pVQo/fAW7PtBNIHjLuaSzJO
/lQ7kPJUX3AWY0J796ozF5zqTfXet/B/efex9EES0H+fLtixiDGXRXLqtBoM
0ngfMixhfCom8c02HWB1eLuw9g3nJ86vWLF+CjSKyjg/r2IsTc0W4LaEsDF7
+emfuP5TxgutjrbQwSZpOb6B8SG/m3lZTrCOliIH/uB+zhvnbHnkBjK+jbX3
GUTRdBbLPakKL3C74TvatFUUWX2I797+zg/qPij/us4sikp+GF409w6G+QMM
AsXbsf7xhXk9WjiIGPacyNiJcc1c+e6Rq2AVHXs5jkMUMQzXRYpmR8OLFc52
T24st936djE5Ebgkxt878IiiMDR0MKQ1BfQv5LJa8mH/v2t8VkJToe+JoKmW
oCjiUbD34FzIgOYK6W/8ZFHE6uKblr6vAFamfuznoooiAdl+Ro1PhUDZ3a7G
ckQU5bjPbFm9VwyVwccSvymIovUVlZWR+lKYbmRpnFUWRWjb09yvaWXA/+nJ
y1dqomi1JXON6FkOGaanxPs0RJHu/qcaZ0QrYTiRR79dUxRlJBasSa9Vws6H
r71uaYsiuWHOfQc6qyBSyq47z1AUaXGg/Cvy1dBlJ7GQYiKKRq8LzPrMVsNm
/heOKFNR5Ppm4bFtwnVQGL0tF3BWFGnvCtG7L1oDnqw+569YiCILR4kt2+/U
QE4F8WHFBVE08UOu5tCxWuhE7whTNqLoVPjLyonuWph5nZ7MYS+K6AzZRqVH
6oDNX2tVw1EUURdPr+3MrAMq95+zAS6iiD+8/3f7bB2Y3r59/+YVUVRmm5ht
SbgBQXr2oh89RNFw2Iho19kbULbAm8DrI4rUdhxseRRwA/qjhpYN/EXRridX
t9gk4PuEYKRpVJAoErq02ZyH8d5OhY62UFGk8v6maWrgDVA0/yK4HCGKCppY
DnufuwGWP0pjRKNF0Wv7N8vFkjcgMs30i3mcKFrctzv8+GId1FB2mNATRREn
c+TFn4V1MDxwv6U3RRR1H2QXk1Svgx/2Xod+p2F+pDpv+k7UAv9WiUhqFp7P
k4rn/pa1cLT4zYJdrijq+Do7tPKyBi4ppxnkF4giJ1GGoJKTNZD44sSd4WJR
5OVqr6FZfx0aPH/zMpfjfvPv/zvCeh3+1trOul3H9d1mfCdTfg1EtA7oVtWJ
IkZp5ZrNmSrQnnl6+9VNUfRpG5tosEAVZPLLB59oxvlkRCwMxVYAKWn7Xv6H
oqgi2dvpokopGEt0+hv1Yb7qfqk541gCfr0e76If433pu7aVm1YMD/+8qvk2
hPN/V8RsxlgA87l0TvHnosjvd5G3un8e7JI77mMxIYr6z5cGbtvMAXPXevVH
r7E9HP5ygJQFYWwXr22+E0UkJ0vfwtcZUFW1n136gygaUxSrVClOh8Gjgx6X
ZjH/GZ75XfJOg29vwyYLFkRR4pruW0WrVNgXKKs2uoj5M7XKU2VFB5X9n8pZ
lrF/keY/TkvJYNNYtF31O64v4meJqm4SxBqYXPH4gfdnyOoqz8sEqP/MMn7t
F/YvZ7j7VVY8jMV0KL3ZFEUtAlEHmaPjYEPYvYSLQQxZNXK/k7kWC4e7RJm1
toohQ8KcRcJGDGhYTDkHM4shgvN170uhMeC0njzSsB3LFY9q1cvGAD3jmPz8
TjFEX/w1c5o/Bpqp6wUHOcWQ1nu7HAfpGHg9WMdoskcMTcpya0T5xACjo7VD
7D7sb9indd9cDBC27Xt274AY8ns0lSUbEQv6pQNHvvOLIQYKb/rc8TjwUg3N
JQiIoVsl8ruTpOIh7+WRf+eFxVBOPTvTQdUE6PKet00XE0Nmd41CE50T4ePu
woF+CTG0XrEksr0lCRwerBo+IomhsD2FJrnMKbDopvuiVwrHK/NuEpSlw+rQ
7w/dsmLo1LPoYb+GVGBMNv/ToS6GKhJcDnB9zYBo1Yar7RpiqMlsaXP2QSaw
fdnO1qYphl4/Cz32IiMLduu27rurh+sXONW9VToHMn5zFt4xxPV91yt3/JUD
PLUOwk0mYmhw56qRdVsuCLDxUG+fFUMlI1ZzdsL5UNF6pfmmhRiarqaMbn+c
DwTHRyr1F8TQPHF5C8fFAqjjOfywzgbL734X/LpcAFL9Pidr7bA80P3UK7dC
aPB9NnTdQQyhnC2f7f8rBDlxMdNqZzEkE9ycelOjCNomgl9XueL6G4kSk1lF
oBY9blPpLob4tcwSKZNF0C1LXij3wvlqfPfQYi2GEx8jr5T5iqFhBSGxFLFi
GMh4vVYSIIYWI52Hy6SLQU9DJqg4GM/38mCXIakYhr8nMBaFiaH+P8Z2bnuK
4VT5h9iCq5hP81ZyA3NFMGmszJEfjfkSunJF43oRWDCmZ+bGiaEuI54riWZF
MH37E19OIo6XLOpStlYIttZHy7JSxFBBUdLmaFghzHPmETLTxNCmnr9N1UYB
OHd9q0/PFMP7wkek4/58vXJSNi1HDGkMsGSpduSDx+HSdnq+GCKlPxOy35YP
ASGG/UmleL663Z7XXXLhL7laP7EC23+0OpafmAMRb/6NxV/D/eK6ZTJWkg1x
Kjffx9zAfFoucauvyYScDfbf4a04fsX2Kb5LqcBfYxce1oH5CZlXP+rQoeTs
PZbQ+5iPDxu3dlsmw7UWl71BvZivSvt7TyzHAdGhJy+gXwy15PGV3+6Kgfr9
/IL+T8Tw+9Rw8kReFDT7PCH7jOD+R1DdkzzDQUlMuMlrDPs360/9+y0E7o0H
KHm+wPO7uOU2QTQQUNRol/uUGKJ+Ytr7LMoXemSImm5vxNDymgdphccLtGbC
n7pOY33ZXxURH9xgMP2lyeUPmG8OHmO7x5zB8BhtynkW48RMGbq1PTxfibVy
WsD9yEgN0fa1BnxxFr2+iPmkTgzhSzoL9QcPfJ5bwjjRRoQxxQj4j1jfEvuO
/fPI2d/begLita572/3A+X7kl/nxXB7Wz39TqviF8eq6Y3W6MNh5KjJ82MTY
7z3TWScGGI0N7xVkEMf3I4mPAXJzaqjocbzVVoxZ9UvjgvdDfeNuw2JmjH84
lN+OpwH/47Pcb7djbNAVJ/haHeLflk7xs2Ps4eLWTdaHn98Xis9xiqMw3dHr
+lOmYLtd2i5vjziafhCx022/FYweCiC+3CeOEPu40v5oO0Ay3Uv7eTEm7DbN
u+MM9SfZ7pgeFEdWpSTXM/ruwH/BOCBTQBzR93odf3nAG+K88mBMGPtb9Hz+
TNEfbIuJA0ZErO++1O4tFQ6jTR4pdLI4mk8J3NJ94yqggbZTQ1RxFDv+LF1P
Jxr41rTf6cqLo+puVbPu8QSIZUuvSFASR113sjtZ2pPhx+FXjgOq4sgsIjWA
8yUdRrWdVzU1xJFbZiPJ5EM6xJYkbD9mJI42+8s7p9ny4Med58/CT4kjGYFQ
k49J+WD7hC+j64w4ahm8tgJshQA/ag+pWYqjyflnaSfmiqFux+qHIGsc3+XN
Ba6yEuAVVLnebiuOpNvHp9pOlsIPncEjis7iaN2vJXp7eBnev72/fF3FUVGC
GMsljnIY8bHobHYXR/y3Hh9vTS8HtcSKq2teOJ6IpV4yewXUlS5qyfiJIxv1
XnvtoArgvSuzyzNQHN2SUqB5vquA2MGg57dDxNGyVU5ug1wl/Hjfk7Mcjv0d
orgXhFfCxZ87LaWi8DysU1R67+P72s7Twq6x4qhGg1LzZ7kS1IQK5+sScH6h
sucOcldBnfzHG5+TxdG+LqOvLKQq4NUjexLTxFEVh0hZj2wVxNp4KzhmiqP+
ON5TBtJVsOZ778+1HHH0VvsPYUCwCmyStj2czRdHxM9anueZqmC4TC9WtFgc
7XVc1dOZwvFaMvVsy8QRV/Bazlh5JdQ9fcNVXimOuu97M7hYVwLvB9HJ99Xi
qIkDPyf2VELM+uVCgTpxFL0ylB7aVgGr7M02F26KI43lfXzbz1SAjfBf8aIG
nN99stmtBdw//eQGvlbMH9kje2e/l8GHOVU9nQ5xJNJ7ocL9ShnEhn+ZC7iP
+8EZIKk6U4r5pXtwqlccefwo7wvqKAF7vh2xOaPi+P5+2sglqAB23GkT6h//
//x7l/OP5MMtfad7PyfF0amGWkuTT7mwEf54xfQd3pd3p0SyLbIhaT7mPPci
5tvQ4znuq2kgHSG/rrGE+9XLwMJ8MRUm+ObSvFbEUQ+rxvq0Ph0C72SRK9Yw
f6Z9zh1JSQYBgxP9z9cx3z2EKp8XJkLv/JrN1k1xpPXd99/2J/HgFFH5R/qf
OBpmf5DxkScOOPhP59gwElCYmPVgeGwMNN1hOpK2jYDMEq9fCuePhrMGTU8f
sGL5jznJivFI+Dt/0eHbDgLSsp7oFG2+CuURe7YKchDQpEtO7J17EaDF/7DQ
kIuAlmcbiVe+hMOXOx4KYdwERF9oElQ9Hg5pBkLPb/IQkCF7cvqWvjCQXxi5
/I6PgNzYYytzroTB64hwVo7DWF4w29qkHgbh/LRyNSECYr09kzOiHAZizdOq
rqIE1PK+7Pf+82HwxIA+WUjA8X4fZrxdEQZuC+D5VJKASmYMz3rvDgfuq0vs
fygE1NVQHD5TGg5t/MXVJGkCUrjoE1F2KgIuNOsfs5AloOlDVxazxa8Ck+Hf
NwkKGKuTpa0ORML1hRt+7coEdIsv4kmWeBToXz2/57MaATEc9urYNIiGnOYO
Le3jBFRt55BeOxMLqoYuH/y1CChWKEKTpBsP/y3whVzXwfU8XVKW70kAyYOB
jazGuF4rhbvBk8kw3EzUVziN/e2doDHK08HLcGr+khkBVSh9NTVkSoXOq4qH
HlkSUI/Fsw6D4jS4eHCh5Yc1Aan0VwZoOKUD690cEzE7AqK+WGPMo2WA8aef
sVHOOJ+wvWdZb2bCz6vXhO+4/n+eu22e2GRBwcEznTPuBCQQo304kT0b1O8y
n93rTUD8GjmtgvXZMGvY/P2Y3//jDcZqHsuBhE92yZ6B2P+yzIcrT3KAGskt
UR5CQP1f9z7YOJ4L4wd7H46GE5Atl1mgc0MuBNz1smSMIqDBb5mO+Rx5EGz7
6MDvGAJazy/4uXwmD8J2845/jycgmXXD6FepeXC104W+mIT5o/D58a2OPIh2
vq/zkY77P0J3spnMgzgeLpa36QQU5DDr4TeTB4m9tt0TWQRk9fSbP+P7PEj2
uBs8lEtApDCiZPnTPEg9zKbYX0BA81P3DHRr8iBj0GK1qxjzoXEjWsI3D7L8
b95sLcPzvNP2wlgmD3LFGJ0bKgnIb/dwBOd/uVDw/JRYbTXm66CnQGdYLhSH
XXtfXov9t0hDJWculJE3CgrqCYhg1P9bIS0HKqd0zTJvE9CMNfccB3MOVMcU
70luwv6jmlxbXLKhVmblWfRdAsohj4j97suC+vca8aFtmL+G3xczuLOgSfkT
g3sXrndj3Y01PQPuzqt0OD4kIK9bEUvXH6ZDW2aKr00f7s8hrs+yi2lwf0nm
q8kgAWlYXEGaEvg8ODPQf2CGgHgO7JHzunwVXjIdjOSaw/v6elzYtyQcXt++
Ajs+4XkPW4Yn3guF/3ZwN28uYT5mjWn07PSHjy2X3NdWcL1sZuQD894wb9dG
+rqG+8sFAvGfPeDL/Qvl735j+6ZiD7lVJ1h2abCc/Iv9q+odfcFjDysHtvGO
bJFADOvxl2dqrGGt78z4YyYJ1LWNHPzE6hyse9bQu1mw/I1qkJ/lKfgt8Een
nQ3j+47nvt/Uhb9PDVia2DFuvC/McuMobAks667jxDhsWyQ1WhaYCGvBlXsw
nv7IGc0gAizjmopF+zCeX+Ff/8wMbBF5q1kHMGY4k6Xu1ae2U+rLzRR+jIeV
UudS/qlxvAbn2MMYj1nxvEwUAK64NLFwIYn//z90yJz7COyV+/jeXxTj+rxT
gjR12P9BvtCDgLHVrO5eDh3gpcebOUtKIGRQOf8t2QQOqr7ZY0vB9XndqS6o
NgeBT1JDFjQJFKZZws9/yRqEsyPiT8tIoOmhkTzGTTsQ0xg/ri+P5dC98oTD
GSS+iW/RVJJAy9LGTpp6bkAqCugAVQnEOfmtx13XE2jrh4/QjkmgnJNiF2De
Hw7tuEh2OoH1b8TKLQ4FA9uhKvHykxKI4P60qmc1DGaOkfi5DXF+ugE/Jwyi
ICdFYdsvC+zv2ZGS2o5kiCoL/EezkkBymuFXDLPo4HGn85fTRQmkUqjzV24o
FXReaXx97SiBNGxHhPNUM+CvmNGLLh8JxMN+4kPxfznwWTFj5Je/BOou/mPt
9zMXJnVfPJEOxvZNKUY1W/Kh5wJvn3OYBNrwrqs6/y8fbnuc76q4iuM1XHB5
sFQARVElbW+iJVD/pzAetZFCiM/50LQvXgJlVHAYzZcVgW+t2E2DJAnkYuXw
dONiMdh2Ol6PpUsgnYqHZn3bS8BopK78QboEav327qGCWQmozSwVbmRJoIZ8
2zxCYQlI/pTOOZIngeg9Jqs8kyXAw+aT5lIogXyO+fKssZbCtoOtiZUlGLe/
do+WKoUVqc3ot+USqPickG+OTim8PQrh+69JoLKbCjZ850vhyemIQMMaCZRA
qZhgsS2FFode77gbuL8SFS2WVqVQEcjq1n1LAhlVxsuoG5dCarKO0+9GCbTy
0kJiVLEUQkqTbWXuSiC/ZxVSqvtLwblpxPJymwQqmptK6f1UAmaP9p6tuieB
kg3/NrQ0lcDxqTMm77okUAnh29pF7xKQ/pKnx9MjgZZSL1xUJpfAYYa3mkaP
JJDxVTh+obUYdu4RPBo/IIEcbBMP2+H34EeFa3KbwxLobfLeGuXAQhjV+USV
HcN8+dFbrFtaAJ2WZEnXFxJIbKrS5yB+f+VENh6efoP5uHPLoOZ4LkRl/zhw
4L0E6nx2atVxIgc8ahT3Gs9IoJ4+psjskWzQGb7P2vMJ2w//pjh1ZMJfvsFv
135KII/P1vSShFT4TOFYnN7A81OJlPePpsOkuvHsgb8SKJL7SfR99hRouDQ5
lcBEREGX5JIpyglQHMA33sNCRGY5F+auuMRBYpLl0B82ImJwrKUyN8aAXePM
wyu7iWj9MPFHSEwk3Ho58NZ9LxG9niX1vaVehY1/t3557iciNyXt3icr4XBc
LHuvDy8RqfB9Wv38LAzousFSfgeJqCV2ReNOYii88rioHSBARKhe+f6rxmAQ
yz1pFyRMRITCXm1D7iBwuy8VFiJGRDnrFgeCbwdA+0fu/DAJIgpLTJqcivMH
5p2bdyJIRDStq3JIu9gPDKX/G46UIqLqS+xO7775Qr5Z/+doaSIq4RN+3hzu
C7Mh9cxxskQkkMgsVKXvC7TKDMEEBRxPULXtxxlfCHoSoJKkTESsCdKODQW+
0PfN6kyKGs535nxjD58f7ObR9EhVx/HKr7M1PPcDCzVyUroGEQ27Gi5Xd/tD
le2e6kxNIup3UWMxnw2Ab/G/urO1cT6anNqKqkGgcvvdm1w9XO9IxklyTzDE
vOhdzzfE8f70qSv7hcLon9o9RSZE1GN6cf1MbRhc0vY7WXaWiBIvk0RCuyOg
wc3StsKCiMbaJXTs567CZpZGaNUFItIIEPr350AUpH3gvFNjR0SxPjfZj5bF
wL2g6wKN7kS0WOQircmUBKzlKcp3vIho51W5Gg/rZDB+7G161xfPi7QQudme
AvPcRxPbg7F8qOpcKi0VjqgQrt0LI6JPEpt958dTIcRmV/f9q0QkdMvt5k6v
NNhzc+rnwzgiatO5p1dSmA6W411cfYk43wbGJ1ziGVD9u4rcn0JEk0sLzMPX
MuC7YJLWQBoRyZ3Otnh1KBPUtDwvDmYS0aiI6vmYhEyIcz0b8iyHiP5GKZ+w
+ZIJYxmQO5xPRPH75WSpx7LgULto02gREd2aTVo5mpQFju93DI2VEhGvG+le
/gD+XrOsLExU4HzrnW/MbGTBX/Ik08trRPSfjrLM44PZcPJU5+FXNUREr165
/k06GzICKpTe3MDxnz+KZVHKhncl8aff3SKi6OjrBaZHsoH4yM3tfSMRJTvv
dIo8lA1eX0wTPjQTUUG2UF3O7yy4v0e16mMrEe0rsgmvx/HZlIQfzHUQkak6
P3kpIQtOWW1/vXCfiGT4Cn1vQBYURy/9+NyN55fx32np2Uz4VDe++2svETEp
cjg/Cc0E2eftpOV+IuIJajdhYM+EsF+lmitPMH9W+v11kjOA+4Rr8I8RImLs
vK5efCUdcpbbLy+MEdGPRtMq2bE04M3fbvn6BRH12ZIZvkqlwaHlCrXuN0Qk
tm9Y9fkQHcTyXv1LWsB8U9G97ZiWANUaEsthi0Sk8N7Y3HQzDohLPtOeS0TU
FbP+K9ImFigaXA/OruH9F434fE8yCuS+akWIbpFEnMfHxheGg6ElJ8uDh0kS
OaR9UM5/EQBKx2ZsdrBg7NugxP7DF9RyQo992ymJpkcFey/FekDX0adHZjgk
kRlX/BfTrW5w9AuvyAsuSWTl/q/vuKYz9GQ77B3gxv5PtAZFTtrDiaPNTPd4
JFGYTRJXYZcN9C9uXbvJJ4lQcWtYxnZL0M42+lh2CMv/VdQNmpyBQfXi8UxB
SSSQsWuexdEI9BcXe2NFJBHD+Z6Bd6VaMJyl1BwojvV13SU6RBEYq8dWuRIx
LhWk7XsuDWOfx7OsyVifSW0x860gmGYJx5yiYmwRuKPcfxtMIndfzSMYd4WU
kdi61Mw/d15SksN4kvqb0X9V7XXmTjOyIsbE70W5FTxgicy1BFQwFudKiY4h
w/Snawp7AOM95c5mnMpgk7lGYD4qibpci+crI47DDBw78EsDy7sd35NPGoD9
J/r2RU3cn3OdOxhdTsN8xttfb7UlUcmWmXZndgtwAtKnET1s/6KOPaTbGhYX
/Kd6DHG/lw7UUT/agWvGo4G7JpJoWCM4QMER3w/VuNtrTCWRW+POE8m6V8Bj
waa28KwkajFb/E9UwwN81P4mXL0gidYjf/gUrfvC+rxOkI8N7vc26oAHayAE
pOe6ONpJov4LPqKnFUMgZF5Gz8BZEm3KZyd99o6A6DTnXXy+koj09B57TFYc
sKq2/mUPkERj96U0w5wTIH6OeYkhWBL57Wi9AygJklXKhmYjJFGFQULZsDsd
smYn6Q3Jkkgr3Vnh8pd0YPy5r+tjqiTyaKzw3zqcAa4sp5d4MnF+9WPM165n
wtT+9EO6OZKoJiLpvKV/FpwgjOiF5kui/2jcZ8fVsqFBgSO4oUgSPWN3zpdY
z4ZDJ/XqPpZKIvOGpp1PKnIg/mzCK55KHL8n7u7jY7nww/Exm261JJI+OiVk
NJYLNgEsSqG1ksg16asLxTQPnsUfd2yol0R/I7aZnO7PA6X8qzkfb0si3ojo
OkNiPlTVPnjEc0cScd2UuDwYmA9cHf9+6LRg+9WTJRb4+x4yqCoW2i6JToRM
an78nA+fXgeebuiURJ2PRHKE2ArA9Etr5McHksjwbN+BrfsLoPvPz0aeXknU
IHZOJIurACi75D7o9EsisePmx75s5kPeIS+u0CcYv/vgpjWRD8xSDeoNzyTR
Lu6FsM2ifPCAZbePI5KI7mzIb3cmH94aUEp4xrH+OXPjn//yQNvKZUhnEvON
czZVKzcPmt1q/oa8kkSrL7/5fxfOA6HweXLDWzx/C+2oxpJcSE4VO//xvSQa
9X2XdRq/t+wbytp15nH9BIPZ/CfZMNo9/SnksyRaMTd4L3EgG9SeH+Jt+CqJ
dAv7Z+XPZwH3ap4fz5okiuXiPxT1NAPC8Omss477Yfzt8+ff6bC4d/+LkN+S
6PXAJT030XTokU2X/biFhKSZzFXIrqng5ZuwcnsXCdFf7so68S0BpmMeC37c
TUK2y8p6jurxoJvDYsTDTUL8NrJbLufFgkjr1ZshfCSk0ishQnOLAvrjB29v
HyIht50Ka/eW8ffz5T/2j4Ik1F8zPB8VEQFjG4EuOgQs35QOaOgOBbSjLT9E
koQQ+9LM4YvBUMe3PnCbguVOQgbp0oHAQ5LbmKGRkB+feCafjD9EqnhJ8MiS
UEkmr3qcky8s6zaY6Shg+z++ZmwvvMHi/HJMiDIJcQYu7voY6AX9lyl3b6uR
EM+Nv/v5zT1BJsRldkadhIb5J24tu3tASXINN89xEhK4n5eu0esOO4vnNXS0
SGj+gtuWZybu4HdTzCtEB/uPkr9cc9AdZu7blt/WJyHWj9lu+kLuYDhcNjpj
REKxZlEndlq7Q8f09Bae0zjeVCn380l3IHw7RNMxIyGrkYmvmvh8zthy3irk
HM4/dvNFy2VPsBRVuxVgif2ZLl4u9fACwsnDDL7WWN/+MmmtzBtWXBgMPW1J
SMtk647+TR/ooL8vvnKJhCaLY3OPBPtBdFP3krMT7o/zSImyUAAYTpaDw2US
Wn6eIfx0PhA+HLZ/Z+VJQreQXXzjSCjUHdOUOu9DQk3M02SbH2Hgc4kQetaf
hLxO9AYwcUQA281Ph4xDSair+u2NtrORIK12xfJYAgnlRN5gDCPEwaa1YT0k
4/lUFOvsPh8PfVG0v8qpmB9mJ9hakhPA/On3Qpls3K8BSqjGhyQQ+Tb2hZqH
+/PnS82/LSnwdW+zKrmQhBxk3LsNd9Ah3MLvjWg5CfX1xRw335UK2mFnyUJV
mH+MZ+1Lo1Jhb4VS8KHrJLRypyz3y2oqvH3E95S3DvdHGN6PnEuD6s+b/Ptv
ktAhf97yxNY08OB467KnAcuJxFJv9nRQOXK/g+MOCbUUOfdXnEkH5jMlO3e2
kFDExXPu+7PTYTgg3IK1HdfXeGI9/0k65BXZ1DF1ktBO4cd8bavpYNt9bJPh
AQkx9ZxYIHBlAGVWRPfPQxJaX8wUXhbOgPXtzAW/+khIbo+gf59EBnST5z6v
PSahgJoXu0KwPNGoX3llkIQIA127j+zOAFPv6wlfh0holqJ8tHclHQ7nxr/6
NIr7PRbywLg/HeY7nCXnxrF+6T5O9bR0aJjWDfwwSULTAY8Xow3TIYiJ8uTd
K8zfPal83lvT8XnMwff6LQmpKb/ccK1NA07dZafJ97i+It9rj7XSYOrKSNvY
DAkxDpy9/vtVKrjeTTd/+omEPh1fqdg7SweFV141j7/gedz/eXyvJR0Y/53e
6F3G8zybFGFekAJZJ3jyOn+QkCH9wUXqkSToHC94eZORjF4bnKx/PBMDsb+C
Jeq2kZEFv43WUFg0GB+84F/NSkaE50/e38X35VlbwQOlu8ioPxlKBE5GAPtq
pVkaLxlN/2105i/2h65g37lnB8koR8JEjTjsA14sJ312CJKRAtNj/2ZevA+p
vNu0RMiohMf7el+EO7zmXUyPFCej5ebbkft5XIFecU/oARFjrkRJNm9H0KCk
3P5DJiO6TR1PsrAdrN+1Qko0MqJ2SrZESFhDnbr0kI8MGSEvJ5c/fOfA6slW
y0Z5MmK4MDnaXXMK9p4eX1xSIqOuGgO2Gm596H9bFUhSw/q6/801xWtAoIMf
m6M6GYUJ8LDfj1QEysrJ3EoNbB8/RWYiScJ/gXyE/zQxbonXuOTADVnbvjQf
0sHYSubtU6tFNe2UzuPn9DEOK3F8JvVU7S8PfSzb6P/yk5QTgjugocz64tgp
jIt/D4x1iIA96cgKpxnGdn+MPURlgbeZKVzvHI6f/0tPbEIdnsEER7wlzteE
M0R/WRsiHl8r6rMmIyv960/OfDYGORN/8lY7jB+r/U1TPgsLr7U7wIGM3Din
5/WkraDAnl8nyBnj9oJjb8i2YLj85WWLKxndepbuHhrvAC1bU3/SvMnIr3tN
ZkXcHVySbKJd/XB/D+53uTHuCQL7ZbhrA7H95Wz1u9U+EEt8IS0SQUbVzqnP
3lTj91hT9QOrKJzfKuudtGehsKwaYFgYS0ZaF5hfFV8NBzOjg677UsioZ/Qm
68PRSBD3u3idtYCM6m7qfVO8mgBTW2QVjheT0XDCR8kIMXyfSWB+FF5GRqMn
JWMTHiTDj6LrMxvVOL+HaVoGn+lQQwj0lK8jI+vAB5dSq1LBskGX0esmGe2o
dpaaO5sGfb1Lh7/cISPpcvPh5+XpEGDwoF6ilYyazM1H2RXxfr9MU7XvwP7O
7x9jeJgB/9nYDpbdJ6OlpxtOL1AmZC7KnnvXTUauhHqx+7czQcuH5RNfH+bz
cMFNTe4s2Pw36Wf2mIyMuE+bLzplwa24GpbMQTL6Jdh5xqMhC2z3BGWNDJHR
Tt7tgj6fs4CnUE9013MyOmN+8UItdzYMih1u0p4gIx5Hjser1GwIu7V8NOYl
GZl8/6IgqZoNMkrdIw9fk9ENPyluW/yemn+YbsUwTUZrQgs/2wnZUKBnt6Ty
gYxYLF6qWrBmg+ELuRD/WTIquHFvLfhlFmy1ZmVvXsA4+6Cbd0EW7P0b1NG+
SEZR5A7O7WeyQCz/m/ODJbxvOS9bdjBngYKCPd+jFTKKPeRI+YLvg9rjUwOD
a2TE9zv5l8ixTLDwMAgYXScjQbP1T1qj+P7I0SMx+ZuMXmwzdFk4kwFpJ2/E
fthCQT/j3l2QPJkOFbOCCgtMFOSgeyJWvTkNmq9mzX1loSD9p56VWfxp8PJe
6IkNdgpig6ke+Uk6CEgbM+3mpaC0I7QhD41EkB7qa9x3kII2u77tuz0dDxou
yhf5BbC/L0o90UFxcKlKpFtcjIJCarcf5GiPBr9jue5kCQoSIq20/bWKgvhp
dsEjJApiPWtFb2CPhHren6Fq0hSkPclQ8zksHLruOktpyGL/0db/erTDYPTU
9NuTChTU0n3O88vREJj5dirZQJmCVhOhG3YGwVryY9XTahTkpz9s2LTqD8wk