-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dash.py
217 lines (158 loc) · 8.32 KB
/
Dash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import requests
import numpy as np
import pandas as pd
# ------------------------------------------------------------------------------
df = pd.read_csv('https://api.covid19india.org/csv/latest/states.csv')
df['Active'] = df['Confirmed'] - df['Recovered'] - df['Deceased'] - df['Other']
df['Date'] = pd.to_datetime(df['Date'])
r = requests.get(url='https://raw.githubusercontent.com/geohacker/india/master/state/india_telengana.geojson')
geojson = r.json()
st = pd.read_csv('https://api.covid19india.org/csv/latest/state_wise.csv')
st_map = st.copy()
st_map['State'] = st_map['State'].apply(lambda x: x.replace('Odisha', 'Orissa') if 'Odisha' in str(x) else x)
st_map['State'] = st_map['State'].apply(
lambda x: x.replace('Uttarakhand', 'Uttaranchal') if 'Uttarakhand' in str(x) else x)
st_map['State'] = st_map['State'].apply(
lambda x: x.replace('Andaman and Nicobar Islands', 'Andaman and Nicobar') if 'Andaman and Nicobar Islands' in str(
x) else x)
st_map = st_map.iloc[:, :5]
st_map.drop([0, 31], inplace=True)
st_map.reset_index(drop=True, inplace=True)
States = []
for i in np.sort(df['State'].unique()):
States.append({'label': i, 'value': i})
color = {'Confirmed': px.colors.sequential.Reds,
'Active': px.colors.sequential.Blues,
'Recovered': px.colors.sequential.Greens,
'Deaths': px.colors.sequential.Greys}
# ------------------------------------------------------------------------------
app = dash.Dash(__name__)
server = app.server
app.layout = html.Div([
html.H1(children='COVID-19 India Dashboard',
style={'textAlign': 'center', 'color': '#0062ff'}),
html.Div([
dcc.Graph(id='indicator'),
html.Label(['States & Union Territories:'], style={ "text-align": "center"}),
dcc.Dropdown(id='my_dropdown', options=States, optionHeight=35, value='India',
disabled=False, multi=False, searchable=True, search_value='India',
placeholder='Select a State or Union Territory', clearable=False, style={'width': "50%"}),
dcc.Graph(id='donut'),
dcc.Graph(id='our_graph'),
dcc.Graph(id='our_graph2')
]),
html.Div([
html.Label(['Status:'], style={'font-weight': 'bold', "text-align": "center"}),
dcc.RadioItems(
id='candidate',
options=[{'value': x, 'label': x} for x in st_map.columns[1:]],
value='Confirmed',
labelStyle={'display': 'inline-block'}),
dcc.Graph(id='choro'),
]),
])
# ------------------------------------------------------------------------------
@app.callback(
Output(component_id='indicator', component_property='figure'),
Output(component_id='donut', component_property='figure'),
Output(component_id='our_graph', component_property='figure'),
Output(component_id='our_graph2', component_property='figure'),
[Input(component_id='my_dropdown', component_property='value')]
)
def build_graph(column_chosen):
df1 = df[df['State'] == column_chosen]
df1['Daily Confirmed'] = df1['Confirmed'].diff()
df1['Daily Active'] = df1['Active'].diff()
df1['Daily Recovered'] = df1['Recovered'].diff()
df1['Daily Deceased'] = df1['Deceased'].diff()
df1['Daily Tested'] = df1['Tested'].diff()
df1['Positivity'] = (df1['Daily Confirmed'] / df1['Daily Tested']) * 100
dfm = df[df['State'] == column_chosen]
data1 = [go.Indicator(mode="number+delta", value=dfm.iloc[-1, 2],
delta={'position': "bottom", 'reference': (dfm.iloc[-2, 2])},
title={"text": 'Confirmed'},
domain={'x': [0, 0.25], 'y': [0, 1]}),
go.Indicator(mode="number+delta", value=dfm.iloc[-1, 3],
delta={'position': "bottom", 'reference': (dfm.iloc[-2, 3])},
title={"text": 'Recovered'},
domain={'x': [0.25, 0.5], 'y': [0, 1]}),
go.Indicator(mode="number+delta", value=dfm.iloc[-1, 4],
delta={'position': "bottom", 'reference': (dfm.iloc[-2, 4])},
title={"text": 'Deceased'},
domain={'x': [0.5, 0.75], 'y': [0, 1]}),
go.Indicator(mode="number+delta", value=dfm.iloc[-1, 7],
delta={'position': "bottom", 'reference': (dfm.iloc[-2, 7])},
title={"text": 'Active'},
domain={'x': [0.75, 1], 'y': [0, 1]})]
fig1 = go.Figure(data=data1)
fig1.update_layout(paper_bgcolor="lightgray", height=250, width=1320)
labels = ['Active', 'Recovered', 'Deceased']
recovered = dfm.iloc[-1, 3]
deceased = dfm.iloc[-1, 4]
active = dfm.iloc[-1, 7]
values = [active, recovered, deceased]
colors = ['#66b3ff', '#02bf47', '#db1200']
fig_d = make_subplots(rows=1, cols=2, specs=[[{'type': 'domain'}, {"type": "xy"}]],
subplot_titles=("Current Status", "Test Positivity Ratio"))
fig_d.add_trace(go.Pie(labels=labels, values=values, name="GHG Emissions", hole=.4, hoverinfo="label+percent",
marker=dict(colors=colors, line=dict(color='#ffffff', width=2))), row=1, col=1)
fig_d.add_trace(
go.Scatter(name="Postivity Ratio", x=df1['Date'], y=df1['Positivity'], mode='lines', marker_color='#ff4714', ),
row=1, col=2)
fig_d.update_layout(showlegend=False,
title="Current Status in {}".format(column_chosen),
title_x=0.2,
annotations=[dict(text=column_chosen, x=0.225, y=0.46, font_size=16, showarrow=False),
dict(text='Test Positivity Ratio of {}'.format(column_chosen), x=0.75, y=1,
font_size=17, showarrow=False)])
data2 = [go.Scatter(name="Confirmed", x=df1['Date'], y=df1['Confirmed'], marker_color='Red'),
go.Scatter(name="Active", x=df1['Date'], y=df1['Active'], marker_color='Blue'),
go.Scatter(name='Recovered', x=df1['Date'], y=df1['Recovered'], marker_color='Green'),
go.Scatter(name='Deceased', x=df1['Date'], y=df1['Deceased'], marker_color='Grey')]
layout2 = go.Layout(
title='Cumulative Graph of {}'.format(column_chosen),
title_x=0.5,
yaxis={'title': 'No of cases'},
xaxis={'title': 'Date'},
font=dict(size=14))
fig2 = go.Figure(data=data2, layout=layout2)
data3 = [go.Bar(name="Confirmed", x=df1['Date'], y=df1['Daily Confirmed'], marker_color='Red'),
go.Bar(name="Active", x=df1['Date'], y=df1['Daily Active'], marker_color='Blue'),
go.Bar(name="Recovered", x=df1['Date'], y=df1['Daily Recovered'], marker_color='Green'),
go.Bar(name="Deceased", x=df1['Date'], y=df1['Daily Deceased'], marker_color='Grey')]
layout3 = go.Layout(
plot_bgcolor='#000000',
template='plotly',
title='Daily Graph of {}'.format(column_chosen),
title_x=0.5,
yaxis={'title': 'No of cases'},
xaxis={'title': 'Date'},
font=dict(size=14))
fig3 = go.Figure(data=data3, layout=layout3)
return fig1, fig_d, fig2, fig3
# ------------------------------------------------------------------------------
@app.callback(
Output('choro', "figure"),
[Input('candidate', "value")])
def display_choropleth(status):
fig1 = px.choropleth(st_map, geojson=geojson, color=status,
locations="State", featureidkey="properties.NAME_1",
hover_name='State',
hover_data=['Confirmed', 'Recovered', 'Deaths', 'Active'],
color_continuous_scale=color[status],
title='India: Total {} cases per state'.format(status)
)
fig1.update_geos(fitbounds="locations", visible=False)
fig1.update_geos(projection_type="orthographic")
fig1.update_layout(height=600, margin={"r": 0, "t": 30, "l": 0, "b": 30})
return fig1
# ------------------------------------------------------------------------------
if __name__ == '__main__':
app.run_server(debug=True)