-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathai8x_nas.py
632 lines (532 loc) · 22.6 KB
/
ai8x_nas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
###################################################################################################
#
# Copyright (C) 2021-2023 Maxim Integrated Products, Inc. All Rights Reserved.
#
# Maxim Integrated Products, Inc. Default Copyright Notice:
# https://www.maximintegrated.com/en/aboutus/legal/copyrights.html
#
###################################################################################################
"""
Contains the custom PyTorch modules for Once For All[1] training that take the AI84/AI85/AI87
implementations into account.
[1] Cai, Han, et al. "Once-for-all: Train one network and specialize it for efficient deployment."
arXiv preprint arXiv:1908.09791 (2019).
"""
import abc
import random
import torch
import torch.nn.functional as F
from torch import nn
import ai8x
from ai8x import get_activation, quantize_clamp, quantize_clamp_pool
class OnceForAllModule(nn.Module):
"""
AI8X - Common code for Once for All NAS layers
"""
def __init__(self, pooling=None, activation=None, wide=False, pool=None, op=None, func=None,
bn=None, **_):
super().__init__()
self.pooling = pooling
self.clamp = None
self.clamp_pool = None
self.activate = get_activation(activation)
self.wide = wide
self.pool = pool
self.op = op
self.func = func
self.bn = bn
self.quantize = None
self.clamp = None
self.quantize_pool = None
self.clamp_pool = None
self.kernel_list = None
if op is not None:
self.in_channels = op.weight.shape[1]
self.out_channels = op.weight.shape[0]
self.max_kernel_size = op.weight.shape[2] # kernel must be 1D or 2D square
self.max_pad_size = op.padding[0]
self.kernel_size = self.max_kernel_size
self.pad = self.max_pad_size
klist = []
self.padding_list = []
self.ktm_list = torch.nn.ParameterList()
self.in_ch_order = torch.arange(self.in_channels)
self.out_ch_order = torch.arange(self.out_channels)
if op.__class__.__name__.endswith('1d'):
kernel_size = self.max_kernel_size - 2
padding = self.max_pad_size - 1
while (kernel_size > 0) and (padding >= 0):
klist.append(kernel_size)
self.padding_list.append(padding)
ktm = torch.zeros(self.max_kernel_size, kernel_size)
j = (self.max_kernel_size-kernel_size)//2
for i in range(kernel_size):
ktm[j, i] = 1.
j += 1
self.ktm_list.append(nn.Parameter(data=ktm, requires_grad=True))
kernel_size -= 2
padding -= 1
elif op.__class__.__name__.endswith('2d'):
if (self.max_kernel_size == 3) and (self.max_pad_size >= 0):
klist.append(1)
self.padding_list.append(0)
ktm = torch.zeros(self.max_kernel_size**2, 1)
ktm[self.max_kernel_size**2 // 2] = 1
self.ktm_list.append(nn.Parameter(data=ktm, requires_grad=True))
else:
assert False, f'Unknown operation for OFA module: {op}'
# parameters to store in the checkpoint file
self.max_kernel_size = nn.Parameter(data=torch.tensor(self.max_kernel_size),
requires_grad=False)
self.kernel_list = nn.Parameter(data=torch.tensor(klist),
requires_grad=False)
self.padding_list = nn.Parameter(data=torch.tensor(self.padding_list),
requires_grad=False)
self.init_module()
def init_module(self):
"""Initialize module parameters"""
self.set_functions()
def set_functions(self):
"""Set functions wrt defined module parameters"""
self.quantize, self.clamp = quantize_clamp(self.wide, False)
self.quantize_pool, self.clamp_pool = quantize_clamp_pool(self.pooling, False)
def set_channels(self, in_channels=None, out_channels=None):
"""Set channels"""
if in_channels:
self.in_channels = in_channels
if out_channels:
self.out_channels = out_channels
def set_kernel_size(self, kernel_size):
"""Set kernel size"""
self.kernel_size = kernel_size
def sample_subnet_kernel(self, level):
"""OFA Elastic kernel search strategy"""
assert self.kernel_list is not None
kernel_opts = [int(self.max_kernel_size.detach().cpu().item())]
kernel_list = self.kernel_list.detach().cpu().numpy()
k_level = level if level >= 0 else kernel_list.size
for i in range(k_level):
kernel_opts.append(int(kernel_list[i]))
with torch.no_grad():
self.kernel_size = random.choice(kernel_opts)
def reset_kernel_sampling(self):
"""Resets kernel to maximum widths"""
with torch.no_grad():
assert self.op
self.set_kernel_size(self.op.weight.shape[2])
def set_out_ch_order(self, inds, reset_order=False):
"""Set order of the output channel of the operators"""
if reset_order:
self.reset_out_ch_order()
self.out_ch_order = inds
else:
self.out_ch_order = self.out_ch_order[inds]
assert self.op
self.op.weight.data = self.op.weight.data[inds]
if self.op.bias is not None:
self.op.bias.data = self.op.bias.data[inds]
if self.bn is not None:
self.bn.weight.data = self.bn.weight.data[inds]
self.bn.bias.data = self.bn.bias.data[inds]
self.bn.running_mean.data = self.bn.running_mean.data[inds]
self.bn.running_var.data = self.bn.running_var.data[inds]
def reset_out_ch_order(self):
"""Reset order of the output channel of the operators"""
reset_ind = torch.argsort(self.out_ch_order)
self.set_out_ch_order(reset_ind)
def set_in_ch_order(self, inds, reset_order=False):
"""Set order of the input channel of the operators"""
if reset_order:
self.reset_in_ch_order()
self.in_ch_order = inds
else:
self.in_ch_order = self.in_ch_order[inds]
assert self.op
self.op.weight.data = self.op.weight.data[:, inds]
def reset_in_ch_order(self):
"""Reset order of the input channel of the operators"""
reset_ind = torch.argsort(self.in_ch_order)
self.set_in_ch_order(reset_ind)
def forward(self, x): # pylint: disable=arguments-differ
"""Forward prop"""
if self.pool is not None:
assert self.clamp_pool and self.quantize_pool
x = self.clamp_pool(self.quantize_pool(self.pool(x)))
if self.op is not None:
weight = self.op.weight[:self.out_channels, :self.in_channels]
bias = self.op.bias
if bias is not None:
bias = bias[:self.out_channels]
if self.kernel_size == int(self.max_kernel_size.detach().cpu().item()):
assert self.func
x = self.func(x, weight, bias, self.op.stride, self.max_pad_size, self.op.dilation,
self.op.groups)
else:
assert self.kernel_list is not None
for k_idx, k_size in enumerate(self.kernel_list):
if k_size == self.kernel_size:
break
if weight.dim() == 4:
flattened_weight = weight.view(weight.size(0), weight.size(1), -1,
self.max_kernel_size**2)
else:
flattened_weight = weight
# pylint: disable=undefined-loop-variable
weight = flattened_weight @ self.ktm_list[k_idx]
# pylint: disable=undefined-loop-variable
pad = int(self.padding_list[k_idx].detach().cpu().item())
assert self.func
x = self.func(x, weight, bias, self.op.stride, pad, self.op.dilation,
self.op.groups)
if self.bn is not None:
x = F.batch_norm(x, self.bn.running_mean[:self.out_channels],
self.bn.running_var[:self.out_channels],
self.bn.weight[:self.out_channels],
self.bn.bias[:self.out_channels],
self.bn.training,
self.bn.momentum,
self.bn.eps)
x /= 4.
assert self.clamp and self.quantize
x = self.clamp(self.quantize(self.activate(x)))
return x
class Conv2d(OnceForAllModule):
"""
AI8X-OnceForAll - 2D pooling ('Avg', 'Max' or None) optionally followed by
2D convolution/transposed 2D convolution and activation ('ReLU', 'Abs', None)
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
op='Conv2d',
pooling=None,
pool_size=2,
pool_stride=2,
stride=1,
padding=0,
bias=True,
activation=None,
wide=False,
batchnorm=None,
**_
):
assert not wide or activation is None
if pooling is not None:
if pool_stride is None:
pool_stride = pool_size
if isinstance(pool_size, int):
assert ai8x.dev.device != 84 or pool_size & 1 == 0
assert pool_size <= 16 \
and (ai8x.dev.device != 84 or pool_size <= 4 or pooling == 'Max')
elif isinstance(pool_size, tuple):
assert len(pool_size) == 2
assert ai8x.dev.device != 84 or pool_size[0] & 1 == 0
assert pool_size[0] <= 16 \
and (ai8x.dev.device != 84 or pool_size[0] <= 4 or pooling == 'Max')
assert ai8x.dev.device != 84 or pool_size[1] & 1 == 0
assert pool_size[1] <= 16 \
and (ai8x.dev.device != 84 or pool_size[1] <= 4 or pooling == 'Max')
else:
raise ValueError('pool_size must be int or tuple')
if isinstance(pool_stride, int):
assert pool_stride > 0
assert pool_stride <= 16 \
and (ai8x.dev.device != 84 or pool_stride <= 4 or pooling == 'Max')
elif isinstance(pool_stride, tuple):
assert len(pool_stride) == 2
assert ai8x.dev.device != 84 or pool_stride[0] == pool_stride[1]
assert 0 < pool_stride[0] <= 16 \
and (ai8x.dev.device != 84 or pool_stride[0] <= 4 or pooling == 'Max')
assert 0 < pool_stride[1] <= 16 \
and (ai8x.dev.device != 84 or pool_stride[1] <= 4 or pooling == 'Max')
else:
raise ValueError('pool_stride must be int or tuple')
if op == 'ConvTranspose2d':
assert stride == 2
else:
assert stride == 1
else:
if op == 'ConvTranspose2d':
assert stride == 2
else:
assert 0 < stride <= 3
assert 0 <= padding <= 2
if pooling == 'Max':
pool = nn.MaxPool2d(kernel_size=pool_size, stride=pool_stride, padding=0)
elif pooling == 'Avg':
pool = nn.AvgPool2d(kernel_size=pool_size, stride=pool_stride, padding=0)
else:
pool = None
if batchnorm == 'Affine':
bn = nn.BatchNorm2d(out_channels, eps=1e-05, momentum=0.05, affine=True)
assert bias, '`bias` must be set (enable --use-bias for models where bias is optional)'
elif batchnorm == 'NoAffine':
bn = nn.BatchNorm2d(out_channels, eps=1e-05, momentum=0.05, affine=False)
assert bias, '`bias` must be set (enable --use-bias for models where bias is optional)'
else:
bn = None
if kernel_size is not None:
if isinstance(kernel_size, tuple):
assert len(kernel_size) == 2 and kernel_size[0] == kernel_size[1]
kernel_size = kernel_size[0]
assert kernel_size == 3 or ai8x.dev.device != 84 and kernel_size == 1
if op == 'Conv2d':
opn = nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, bias=bias)
elif op == 'ConvTranspose2d':
assert ai8x.dev.device != 84
opn = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
output_padding=1,
padding=padding, bias=bias)
else:
raise ValueError('Unsupported operation')
else:
opn = None
if op == 'ConvTranspose2d':
func = nn.functional.conv_transpose2d
else:
func = nn.functional.conv2d
super().__init__(
pooling,
activation,
wide,
pool,
opn,
func,
bn,
)
class FusedConv2dReLU(Conv2d):
"""
AI8X-OnceForAll - Fused 2D Convolution and ReLU
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, activation='ReLU', **kwargs)
class FusedConv2dBNReLU(FusedConv2dReLU):
"""
AI8X-OnceForAll - Fused 2D Convolution and BatchNorm and ReLU
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, batchnorm='Affine', **kwargs)
class FusedMaxPoolConv2d(Conv2d):
"""
AI8X-OnceForAll - Fused 2D Max Pool, 2D Convolution and Activation ('ReLU', 'Abs', None)
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, pooling='Max', **kwargs)
class FusedMaxPoolConv2dBN(FusedMaxPoolConv2d):
"""
AI8X-OnceForAll - Fused 2D Max Pool, 2D Convolution, BatchNorm and
Activation ('ReLU', 'Abs', None)
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, batchnorm='Affine', **kwargs)
class FusedMaxPoolConv2dReLU(FusedMaxPoolConv2d):
"""
AI8X-OnceForAll - Fused 2D Max Pool, 2D Convolution and ReLU
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, activation='ReLU', **kwargs)
class FusedMaxPoolConv2dBNReLU(FusedMaxPoolConv2dReLU):
"""
AI8X-OnceForAll - Fused 2D Max Pool, 2D Convolution, BatchNorm and ReLU
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, batchnorm='Affine', **kwargs)
class Conv1d(OnceForAllModule):
"""
AI8X-OnceForAll - Fused 1D Pool ('Avg', 'Max' or None) followed by
1D Convolution and activation ('ReLU', 'Abs', None)
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
pooling=None,
pool_size=2,
pool_stride=2,
stride=1,
padding=0,
bias=True,
activation=None,
wide=False,
batchnorm=None,
**_
):
assert not wide or activation is None
if pooling is not None:
if pool_stride is None:
pool_stride = pool_size
assert ai8x.dev.device != 84 or pool_size & 1 == 0
assert pool_size <= 16 \
and (ai8x.dev.device != 84 or pool_size <= 4 or pooling == 'Max')
assert 0 < pool_stride <= 16 \
and (ai8x.dev.device != 84 or pool_stride <= 4 or pooling == 'Max')
assert stride == 1
else:
assert ai8x.dev.device != 84 or stride == 3
assert ai8x.dev.device == 84 or stride == 1
if pooling == 'Max':
pool = nn.MaxPool1d(kernel_size=pool_size, stride=pool_stride, padding=0)
elif pooling == 'Avg':
pool = nn.AvgPool1d(kernel_size=pool_size, stride=pool_stride, padding=0)
else:
pool = None
if batchnorm == 'Affine':
bn = nn.BatchNorm1d(out_channels, eps=1e-05, momentum=0.05, affine=True)
assert bias, '`bias` must be set (enable --use-bias for models where bias is optional)'
elif batchnorm == 'NoAffine':
bn = nn.BatchNorm1d(out_channels, eps=1e-05, momentum=0.05, affine=False)
assert bias, '`bias` must be set (enable --use-bias for models where bias is optional)'
else:
bn = None
if kernel_size is not None:
assert ai8x.dev.device != 84 or padding in [0, 3, 6]
assert ai8x.dev.device == 84 or padding in [0, 1, 2]
assert ai8x.dev.device != 84 or kernel_size == 9
assert ai8x.dev.device == 84 or kernel_size in [1, 2, 3, 4, 5, 6, 7, 8, 9]
opn = nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride,
padding=padding, bias=bias)
else:
opn = None
super().__init__(
pooling,
activation,
wide,
pool,
opn,
nn.functional.conv1d,
bn,
)
class FusedConv1dReLU(Conv1d):
"""
AI8X-OnceForAll - Fused 1D Convolution and ReLU
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, activation='ReLU', **kwargs)
class FusedConv1dBNReLU(FusedConv1dReLU):
"""
AI8X-OnceForAll - Fused 1D Convolution and BatchNorm and ReLU
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, batchnorm='Affine', **kwargs)
class FusedMaxPoolConv1d(Conv1d):
"""
AI8X-OnceForAll - Fused 1D Max Pool, 1D Convolution and Activation ('ReLU', 'Abs', None)
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, pooling='Max', **kwargs)
class FusedMaxPoolConv1dBN(FusedMaxPoolConv1d):
"""
AI8X-OnceForAll - Fused 1D Max Pool, 1D Convolution, BatchNorm and
Activation ('ReLU', 'Abs', None)
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, batchnorm='Affine', **kwargs)
class FusedMaxPoolConv1dReLU(FusedMaxPoolConv1d):
"""
AI8X-OnceForAll - Fused 1D Max Pool, 1D Convolution and ReLU
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, activation='ReLU', **kwargs)
class FusedMaxPoolConv1dBNReLU(FusedMaxPoolConv1dReLU):
"""
AI8X-OnceForAll - Fused 1D Max Pool, 1D Convolution, BatchNorm and ReLU
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, batchnorm='Affine', **kwargs)
class OnceForAllUnit(metaclass=abc.ABCMeta):
"""
AI8X-OnceForAll - Interface for unit definition
"""
@classmethod
def __subclasshook__(cls, subclass):
return (hasattr(subclass, 'sample_subnet_depth') and
callable(subclass.sample_subnet_depth) and
hasattr(subclass, 'reset_depth_sampling') and
callable(subclass.reset_depth_sampling) and
hasattr(subclass, 'get_max_elastic_depth_level') and
callable(subclass.get_max_elastic_depth_level))
class OnceForAllModel(metaclass=abc.ABCMeta):
"""
AI8X-OnceForAll - Interface for model definition
"""
@classmethod
def __subclasshook__(cls, subclass):
return (hasattr(subclass, 'sample_subnet_width') and
callable(subclass.sample_subnet_width) and
hasattr(subclass, 'reset_width_sampling') and
callable(subclass.reset_width_sampling) and
hasattr(subclass, 'sample_subnet_depth') and
callable(subclass.sample_subnet_depth) and
hasattr(subclass, 'reset_depth_sampling') and
callable(subclass.reset_depth_sampling) and
hasattr(subclass, 'sample_subnet_kernel') and
callable(subclass.sample_subnet_kernel) and
hasattr(subclass, 'reset_kernel_sampling') and
callable(subclass.reset_kernel_sampling) and
hasattr(subclass, 'get_max_elastic_width_level') and
callable(subclass.get_max_elastic_width_level) and
hasattr(subclass, 'get_max_elastic_depth_level') and
callable(subclass.get_max_elastic_depth_level) and
hasattr(subclass, 'get_max_elastic_kernel_level') and
callable(subclass.get_max_elastic_kernel_level))
def sample_subnet_kernel(ofa_model, level=0):
"""
Sample kernels of the OnceForAll modules in the model
"""
def _sample_subnet_kernel(m):
if isinstance(m, OnceForAllModel):
m.sample_subnet_kernel(level) # type: ignore
ofa_model.apply(_sample_subnet_kernel)
def reset_kernel_sampling(ofa_model):
"""
Reset kernel sampling for OnceForAll modules in the model
"""
def _reset_kernel_sampling(m):
if isinstance(m, OnceForAllModel):
m.reset_kernel_sampling() # type: ignore
ofa_model.apply(_reset_kernel_sampling)
def sample_subnet_depth(ofa_model, level=0, sample_kernel=True):
"""
Sample depths of the OnceForAll units in the model
"""
def _sample_subnet_depth(m):
if isinstance(m, OnceForAllModel):
if sample_kernel:
m.sample_subnet_kernel(level=-1) # type: ignore
m.sample_subnet_depth(level) # type: ignore
ofa_model.apply(_sample_subnet_depth)
def reset_depth_sampling(ofa_model):
"""
Reset depth sampling for OnceForAll modules in the model
"""
def _reset_depth_sampling(m):
if isinstance(m, OnceForAllModel):
m.reset_kernel_sampling() # type: ignore
m.reset_depth_sampling() # type: ignore
ofa_model.apply(_reset_depth_sampling)
def sample_subnet_width(ofa_model, level=0, sample_depth=True):
"""
Sample widths of the OnceForAll layers in the model
"""
def _sample_subnet_width(m):
if isinstance(m, OnceForAllModel):
if sample_depth:
with torch.no_grad():
sample_subnet_depth(m, level=-1)
m.sample_subnet_width(level) # type: ignore
ofa_model.apply(_sample_subnet_width)
def reset_width_sampling(ofa_model):
"""
Reset width sampling for OnceForAll layers in the model
"""
def _reset_width_sampling(m):
if isinstance(m, OnceForAllModel):
reset_depth_sampling(m)
m.reset_width_sampling() # type: ignore
ofa_model.apply(_reset_width_sampling)