-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBig_Skate_D-Mtuning_NewPrior_.tex
944 lines (802 loc) · 41.1 KB
/
Big_Skate_D-Mtuning_NewPrior_.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
\documentclass[12pt,]{article}
%\usepackage{lmodern} Melissa removed to deal with font rendering issue
\usepackage{amssymb,amsmath}
\usepackage{ifxetex,ifluatex}
\usepackage{fixltx2e} % provides \textsubscript
%Melissa removed the following section to deal with font rendering issue
%\ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex
% \usepackage[T1]{fontenc}
% \usepackage[utf8]{inputenc}
%%\else % if luatex or xelatex
% \ifxetex
% \usepackage{mathspec}
% \else
% \usepackage{fontspec}
% \fi
% \defaultfontfeatures{Ligatures=TeX,Scale=MatchLowercase}
% \newcommand{\euro}{€}
%%%%%%\fi
% use upquote if available, for straight quotes in verbatim environments
\IfFileExists{upquote.sty}{\usepackage{upquote}}{}
% use microtype if available
\IfFileExists{microtype.sty}{%
\usepackage{microtype}
\UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts
}{}
\usepackage[margin=1in]{geometry}
\usepackage{hyperref}
\PassOptionsToPackage{usenames,dvipsnames}{color} % color is loaded by hyperref
\hypersetup{unicode=true,
pdftitle={Status of Big Skate (Beringraja binoculata) Off the U.S. Pacific Coast in 2019},
pdfborder={0 0 0},
breaklinks=true}
\urlstyle{same} % don't use monospace font for urls
\usepackage{graphicx,grffile}
\makeatletter
\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi}
\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi}
\makeatother
% Scale images if necessary, so that they will not overflow the page
% margins by default, and it is still possible to overwrite the defaults
% using explicit options in \includegraphics[width, height, ...]{}
\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio}
\setlength{\parindent}{0pt}
\setlength{\parskip}{6pt plus 2pt minus 1pt}
\setlength{\emergencystretch}{3em} % prevent overfull lines
\providecommand{\tightlist}{%
\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
\setcounter{secnumdepth}{5}
%%% Use protect on footnotes to avoid problems with footnotes in titles
\let\rmarkdownfootnote\footnote%
\def\footnote{\protect\rmarkdownfootnote}
%%% Change title format to be more compact
\usepackage{titling}
% Create subtitle command for use in maketitle
\newcommand{\subtitle}[1]{
\posttitle{
\begin{center}\large#1\end{center}
}
}
\setlength{\droptitle}{-2em}
\title{Status of Big Skate (\emph{Beringraja binoculata}) Off the U.S. Pacific
Coast in 2019}
\pretitle{\vspace{\droptitle}\centering\huge}
\posttitle{\par}
\author{}
\preauthor{}\postauthor{}
\date{}
\predate{}\postdate{}
% This file contains all of the LaTeX packages you may need to compile the document
% Documentation for each package can be found onlines
\usepackage{tabularx} % table environment providing flexibility
\usepackage{caption} % for creating captions
\usepackage{longtable} % allows tables to span multiple pages
\usepackage{rotating} % allows for sideways tables
\usepackage{float} % floating environments; may not need in rmarkdown
\usepackage{placeins} % keeps floats from moving
\usepackage{indentfirst} % indents first paragraph of a section
\usepackage{mdwtab} % continued float multi-page figure
\usepackage{enumerate} % create lists
\usepackage{hyperref} % highlight cross references
\hypersetup{colorlinks=true, urlcolor=blue, linktoc=page, linkcolor=blue, citecolor=blue} %define referencing colors
%\usepackage{makebox} % make boxes around text
\usepackage[usenames,dvipsnames]{xcolor} % color name options
%\usepackage[space]{grffile} % spaces in file name path
\usepackage{soul} % highlight text
\usepackage{enumitem} % numbered lists
\usepackage{lineno} % Line numbers; comment out for final
\usepackage{upquote} % produce grave accent in latex
\usepackage{verbatim} % produces verbatim results
\usepackage{fancyvrb} % verbatim in a box
%\usepackage{draftwatermark} % places Draft watermark in background; comment out for final
\usepackage{textcomp} % fixes error with packages interfering
\usepackage{pdflscape} % rotate pages - to allow for landscape longtables
%\pdfinterwordspaceon % fix loss of inter word spacing
\usepackage{cmap} % fix mapping characters to unicode
\RequirePackage[linewidth = 1]{pdfcomment} % pdf comments
\RequirePackage[l2tabu, orthodox]{nag} % checks packages related to the accessibility?
%\usepackage[inline]{showlabels} % show table and figure labels; comment out for final
%\RequirePackage[tagged]{accessibilityMeta}
\usepackage{booktabs} % For multi-header tables
\usepackage{geometry} % For landscape display
\usepackage{graphicx}
% \linenumbers % specify use of line numbers
\definecolor{light-gray}{gray}{.85} % define light-gray as a color
%\usepackage[tagged]{accessibility-meta}
%\showlabels[\color{mred}]{label}
% Redefines (sub)paragraphs to behave more like sections
\ifx\paragraph\undefined\else
\let\oldparagraph\paragraph
\renewcommand{\paragraph}[1]{\oldparagraph{#1}\mbox{}}
\fi
\ifx\subparagraph\undefined\else
\let\oldsubparagraph\subparagraph
\renewcommand{\subparagraph}[1]{\oldsubparagraph{#1}\mbox{}}
\fi
\begin{document}
\maketitle
\begin{center}
\thispagestyle{empty}
\vspace{.7cm}
% \includegraphics{cover_photo}~\\[1cm]
\pdftooltip{\includegraphics{cover_photo}}{This is a fish.}
\vspace{.5cm}
Ian G. Taylor\textsuperscript{1}\\
Vladlena Gertseva\textsuperscript{1}\\
Andi Stephens\textsuperscript{2}\\
Joseph Bizzarro\textsuperscript{3}\\
\vspace{.7cm}
\small
\textsuperscript{1}Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112\\
\vspace{.3cm}
\textsuperscript{2}Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2032 S.E. OSU Drive Newport, Oregon 97365
\vspace{.3cm}
\textsuperscript{3}Southwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, California 95060\\
\vspace{.5cm}
\vfill
DRAFT SAFE\\
Disclaimer: This information is distributed solely for the purpose of pre-dissemination
peer review under applicable information quality guidelines. It has not been formally
disseminated by NOAA Fisheries. It does not represent and should not be construed to
represent any agency determination or policy.
\vspace{.3cm}
%Bottom of the page
%{\large \today}
\newpage{\thispagestyle{empty}}
\vspace*{\fill}
\begin{flushleft}
This report may be cited as:
Taylor, I.G., Gertseva, V., Stephens, A. and Bizzarro, J. Status of Big Skate (\emph{Beringraja binoculata}) Off the U.S. West Coast, 2019. Pacific Fishery Management Council, Portland, OR. Available from http://www.pcouncil.org/groundfish/stock-assessments/
\end{flushleft}
\newpage{\thispagestyle{empty}}
% Create this table using the instructions in Acronyms.Rmd
\begin{flushleft}
\large{\textbf{Acronyms used in this Document}}
\end{flushleft}
\vspace{.5cm}
\renewcommand{\arraystretch}{1.2}
\begin{table}[ht]
% \centering
\begin{tabular}{rll}
\hline
& ABC & Allowable Biological Catch \\
& ACL & Annual Catch Limit \\
& AFSC & Alaska Fisheries Science Center \\
& CDFW & California Department of Fish and Wildlife \\
& DFO & Canada's Department of Fisheries and Oceans \\
& DW & Disk Width \\
& IFQ & Individual Fishing Quota \\
& IPHC & International Pacific Halibut Commission \\
& ISW & Interspiracular Width \\
& NMFS & National Marine Fisheries Service \\
& NWFSC & Northwest Fisheries Science Center \\
& ODFW & Oregon Department of Fish and Wildlife \\
& OFL & Overfishing Limit \\
& OY & Optimum Yield \\
& PacFIN & Pacific Fisheries Information Network \\
& PFMC & Pacific Fishery Management Council \\
& SPR & Spawning Potential Ratio \\
& SSC & Scientific and Statistical Committee \\
& SWFSC & Southwest Fisheries Science Center \\
& TL & Total Length \\
& VAST & Vector Autoregressive Spatio-Temporal Package \\
& WCGBT & West Coast Groundfish Bottom Trawl Survey \\
& WCGOP & West Coast Groundfish Observer Program \\
& WDFW & Washington Department of Fish and Wildlife \\
\hline
\end{tabular}
\end{table}
\renewcommand{\arraystretch}{1}
\maketitle
\pagenumbering{roman}
\setcounter{page}{1}
\end{center}
{
\setcounter{tocdepth}{4}
\tableofcontents
}
\setlength{\parskip}{5mm plus1mm minus1mm}
\pagebreak
\pagenumbering{roman}
\renewcommand{\thefigure}{\alph{figure}}
\renewcommand{\thetable}{\alph{table}}
\hypertarget{executive-summary}{%
\section*{Executive Summary}\label{executive-summary}}
\addcontentsline{toc}{section}{Executive Summary}
\hypertarget{stock}{%
\subsection*{Stock}\label{stock}}
\addcontentsline{toc}{subsection}{Stock}
This assessment reports the status of the Big Skate
(\emph{Beringraja binoculata}) resource in U.S. waters off the West
Coast using data through 2018. A map showing the area of the U.S. West
Coast Exclusive Economic Zone covered by this stock assessment is
provided in Figure \ref{fig:assess_region_map}.
\begin{figure}[H]
\begin{centering}
\includegraphics{Figures/assess_region_map.png}
\caption{U.S. West Coast Exclusive Economic zone covering the area in which this stock assessment is focused.}\label{fig:assess_region_map}
\end{centering}
\end{figure}
\hypertarget{catches}{%
\subsection*{Catches}\label{catches}}
\addcontentsline{toc}{subsection}{Catches}
The majority of Big Skate catch was discarded prior to 1995 when markets
for Big Skate and Longnose Skate developed, landings increased, and
discarding decreased. The majority of the discards were unrecorded and
the landings were in the unspecified skates category. The landings from
prior to 1995 were reconstructed separately in each of the three coastal
states for this assessment. In general the methods all relied on
differences in depth distribution of the different skates species
(primarily Big Skate and Longnose Skate). Discards during this period
prior to 1995 were estimated outside the model based on an assumption
that the average discard rate during the period 1950--1994 was equal to
that for Longnose Skate. The current fishery, beginning in 1995, has
less uncertainty in landings, lower discard rates, and more data on
discards. The discards are estimated within the model for this period
using a time-varying retention function. Big Skate have only been landed
in their own species category in the past few years (starting in 2015).
In the current fishery (since 1995), annual total landings of Big Skate
have ranged between 135-528 mt, with landings in 2018 totaling 173 mt.
\vspace{.5cm}
\FloatBarrier
\begin{table}[ht]
\centering
\caption{Recent Big Skate landings (mt)}
\label{tab:Exec_catch}
\begin{tabular}{>{\centering}p{1in}>{\centering}p{1in}}
\hline
Year & Landings \\
\hline
2008 & 366.0 \\
2009 & 205.7 \\
2010 & 196.2 \\
2011 & 268.4 \\
2012 & 269.6 \\
2013 & 135.0 \\
2014 & 372.4 \\
2015 & 331.5 \\
2016 & 411.5 \\
2017 & 277.6 \\
2018 & 172.6 \\
\hline
\end{tabular}
\end{table}
\FloatBarrier
\begin{figure}
\centering
\includegraphics{r4ss/plots_mod1/catch2 landings stacked.png}
\caption{Catch history of Big Skate in the model.
\label{fig:r4ss_catches}}
\end{figure}
\FloatBarrier
\newpage
\hypertarget{data-and-assessment}{%
\subsection*{Data and Assessment}\label{data-and-assessment}}
\addcontentsline{toc}{subsection}{Data and Assessment}
This the first full assessment for Big Skate. It is currently managed
using an OFL which was based on a proxy for \(F_{MSY}\) and the average
survey biomass for the years 2010--2012. This assessment uses the newest
version of Stock Synthesis (3.30.13.02). The model begins in 1916, and
assumes the stock was at an unfished equilibrium that year. The choice
of 1916 is based on the first year of the Califonia catch
reconstruction.
The assessment relies on two bottom trawl survey indices of abundance,
the Triennial Survey from which an index covering the period 1980--2004
was used here and the West Coast Groundfish Bottom Trawl (WCGBT) Survey,
which began in 2003 and for which data is available through 2018. The
triennial survey shows an increasing trend over the 25 year period it
covers, which the model is not able to fit as this includes the period
when trawl fishing in this area was at its most intense and the stock
would is expected to have been declining. The WCGBT Survey also shows an
increasing trend, with the 5 most recent observations (2014--2018) all
falling in the top 6 ever observed (2004 was the 5th highest
observation). The model estimates an increasing trend during this period
but the slope is more gradual than the trend in the survey observations.
The misfit to these survey indices could be due to some combination of
incorrect estimation of the catch history, variability in recruitment
which is not modeled here, or biological or ecological changes which are
not modeled.
Length composition data from the fishery is available starting in 1995
but is sparse until the most recent 10 years. Most of the ages are also
from 2008 onward. This limits the ability of the model to estimate any
changes in composition of the population during the majority of the
history of the fishery. Estimates of discard rates and mean body weight
of discards are available for the years 2002 onward and discard length
compositions are available starting in 2010.
The age and length data provide evidence for growth patterns and
sex-specific differences in selectivity that are unusual among
groundfish stocks that have been assessed within the U.S. West Coast and
are not found in Longnose Skate, where the data show little difference
between the sexes. Growth appears to be almost linear and similar
between females and males up to about age 7 or over 100 cm at which
point male growth appears to stabilize while females continue to grow.
However, in spite of the similar growth pattern for ages prior to 7,
males are observed more frequently in the length bins associated with
these ages, with the 70--100 cm length bins showing more than 60\% males
in many years. Sex-specific differences in selectivity were included in
the model in order to better match patterns in the sex ratios in the
length composition data and a new ``growth cessation model'' was used to
model growth as it provided much better fits than the von Bertalanffy
growth function. The length and age data do not cover enough years or
show enough evidence of distinct cohorts to reliably estimate deviations
in recruitment around the stock-recruit curve, so recruitment in the
final model is based directly on the Beverton-Holt stock-recruit curve.
Steepness of this stock-recruit curve was not well-informed by the model
so was fixed at the value used in a previous Longnose Skate stock
assessment (Gertseva, V and Schirippa, MJ
\protect\hyperlink{ref-Gertseva2007}{2007}).
The final model has 44 estimated parameters, most of which are related
to selectivity (including sex-specific differences), time-varying
retention, and growth (including sex-specific differences). The
remaining 7 parameters include natural mortality, equilibrium
recruitment, an extra survey uncertainty parameter for each of the two
surveys, and three catchability parameters, where the Triennial Survey
is assumed to have a change in catchability starting in 1995 due to
changes in survey design.
The scale of the population is not reliably informed by the data due to
the combination of surveys that show trends which can't be matched by
the structure of the model, and length and age data which inform growth
and selectivity but provide relatively little information about changes
in stock structure over time. Therefore, a prior on catchability of the
WCGBT Survey (centered at 0.83) was applied in order to provide more
stable results.
Although the assessment model requires numerous simplifying assumptions,
it represents an improvement over the simplistic status-quo method of
setting management limits, which relies on average survey biomass and an
assumption about \(F_{MSY}\). The use of an age-structured model with
estimated growth, selectivity, and natural mortality likely provides a
better estimate of past dynamics and the impacts of fishing in the
future.
\hypertarget{stock-biomass}{%
\subsection*{Stock Biomass}\label{stock-biomass}}
\addcontentsline{toc}{subsection}{Stock Biomass}
The 2018 estimated spawning biomass relative to unfished equilibrium
spawning biomass is above the target of 40\% of unfished spawning
biomass at 86.9\% (95\% asymptotic interval: \(\pm\) 79.9\%-93.9\%)
(Figure \ref{fig:Spawnbio_all} and Table
\ref{tab:SpawningDeplete_mod1}). Approximate confidence intervals based
on the asymptotic variance estimates show that the uncertainty in the
estimated spawning biomass is high, although even the lower range of the
95\% interval for \%unfished is above the 40\% reference point, and all
sensitivity analyses explored also show the stock to be at a relatively
high level.
\vspace{.5cm}
\FloatBarrier
\begin{table}[ht]
\centering
\caption{Recent trend in beginning of the
year spawning output and %unfished
(spawning biomass relative to unfished
equilibrum spawning biomass)}
\label{tab:SpawningDeplete_mod1}
\begin{tabular}{l>{\centering}p{1.3in}>{\centering}p{1.2in}>{\centering}p{1in}>{\centering}p{1.2in}}
\hline
Year & Spawning Output (mt) & \~{} 95\% confidence interval & Estimated \%unfished & \~{} 95\% confidence interval \\
\hline
2010 & 3011.2 & (1359.6-4662.9) & 0.853 & (0.775-0.931) \\
2011 & 3024.4 & (1372.9-4675.9) & 0.857 & (0.78-0.934) \\
2012 & 3031.8 & (1380.6-4682.9) & 0.859 & (0.783-0.935) \\
2013 & 3040.1 & (1389.4-4690.8) & 0.861 & (0.787-0.935) \\
2014 & 3061.5 & (1411-4712) & 0.867 & (0.796-0.938) \\
2015 & 3060.1 & (1410.3-4710) & 0.867 & (0.796-0.938) \\
2016 & 3061.7 & (1412.3-4711.2) & 0.867 & (0.796-0.938) \\
2017 & 3053.1 & (1404.1-4702) & 0.865 & (0.793-0.937) \\
2018 & 3055.1 & (1406.4-4703.8) & 0.866 & (0.794-0.938) \\
2019 & 3065.7 & (1417.2-4714.2) & 0.869 & (0.799-0.939) \\
\hline
\end{tabular}
\end{table}
\FloatBarrier
\begin{figure}
\centering
\includegraphics{r4ss/plots_mod1/ts7_Spawning_biomass_(mt)_with_95_asymptotic_intervals_intervals.png}
\caption{Time series of spawning biomass trajectory (circles and line:
median; light broken lines: 95\% credibility intervals) for the base
case assessment model. \label{fig:Spawnbio_all}}
\end{figure}
\FloatBarrier
\hypertarget{recruitment}{%
\subsection*{Recruitment}\label{recruitment}}
\addcontentsline{toc}{subsection}{Recruitment}
Recruitment was assumed to follow the Beverton-Holt stock recruit curve
with the steepness parameter fixed at \(h=0.4\), so uncertainty in
estimated recruitment is due to uncertainty in the estimated unfished
equilibrium recruitment \(R_0\) as well as uncertainty in growth and
mortality (Figure \ref{fig:Recruits_all} and Table
\ref{tab:Recruit_mod1}).
\vspace{.5cm}
\begin{table}[ht]
\centering
\caption{Recent recruitment for the model.}
\label{tab:Recruit_mod1}
\begin{tabular}{>{\centering}p{.8in}>{\centering}p{1.6in}>{\centering}p{2in}}
\hline
Year & Estimated Recruitment (millions) & \~{} 95\% confidence interval \\
\hline
2010 & 11 & (7 - 20) \\
2011 & 12 & (7 - 20) \\
2012 & 12 & (7 - 20) \\
2013 & 12 & (7 - 20) \\
2014 & 12 & (7 - 20) \\
2015 & 12 & (7 - 20) \\
2016 & 12 & (7 - 20) \\
2017 & 12 & (7 - 20) \\
2018 & 12 & (7 - 20) \\
2019 & 12 & (7 - 20) \\
\hline
\end{tabular}
\end{table}
\FloatBarrier
\begin{figure}
\centering
\includegraphics{r4ss/plots_mod1/ts11_Age-0_recruits_(1000s)_with_95_asymptotic_intervals.png}
\caption{Time series of estimated Big Skate recruitments for the
base-case model with 95\% confidence or credibility intervals.
\label{fig:Recruits_all}}
\end{figure}
\FloatBarrier
\hypertarget{exploitation-status}{%
\subsection*{Exploitation Status}\label{exploitation-status}}
\addcontentsline{toc}{subsection}{Exploitation Status}
Harvest rates estimated by the base model indicate catch levels have
been below the limits that would be associated with the Spawning
Potential Ratio (SPR) = 50\% limit (corresponding to a relative fishing
intensity of 100\%) (Table \ref{tab:SPR_Exploit_mod1} and Figures
\ref{fig:SPR_all} and \ref{fig:phase}). SPR is calculated as the
lifetime spawning potential per recruit at a given fishing level
relative to the lifetime spawning potential per recruit with no fishing.
The exploitation rate of age 2+ fish has been below 3\% over the recent
10-year period.
\vspace{.5cm}
\FloatBarrier
\begin{table}[ht]
\centering
\caption{Recent trend in spawning potential
ratio and exploitation for Big Skate in the model. Relative fishing intensity is (1-SPR)
divided by 50\% (the SPR target) and exploitation
is catch divided by age 2+ biomass.}
\label{tab:SPR_Exploit_mod1}
\begin{tabular}{l>{\centering}p{1in}>{\centering}p{1.2in}>{\centering}p{1in}>{\centering}p{1.2in}}
\hline
Year & Relative fishing intensity & \~{} 95\% confidence interval & Exploitation rate & \~{} 95\% confidence interval \\
\hline
2009 & 0.110 & (0.051-0.169) & 0.006 & (0.003-0.009) \\
2010 & 0.105 & (0.049-0.161) & 0.006 & (0.003-0.009) \\
2011 & 0.141 & (0.067-0.215) & 0.008 & (0.004-0.012) \\
2012 & 0.141 & (0.067-0.215) & 0.008 & (0.004-0.012) \\
2013 & 0.073 & (0.034-0.112) & 0.004 & (0.002-0.006) \\
2014 & 0.193 & (0.094-0.292) & 0.011 & (0.005-0.017) \\
2015 & 0.172 & (0.083-0.262) & 0.010 & (0.005-0.015) \\
2016 & 0.215 & (0.105-0.324) & 0.012 & (0.006-0.019) \\
2017 & 0.148 & (0.071-0.226) & 0.008 & (0.004-0.013) \\
2018 & 0.094 & (0.044-0.143) & 0.005 & (0.002-0.008) \\
\hline
\end{tabular}
\end{table}
\FloatBarrier
\begin{figure}
\centering
\includegraphics{r4ss/plots_mod1/SPR2_minusSPRseries.png}
\caption{Estimated Spawning Potential Ratio (SPR) for the base-case
model. One minus SPR is plotted so that higher exploitation rates occur
on the upper portion of the y-axis. The management target is plotted as
a red horizontal line and values above this reflect harvests in excess
of the overfishing proxy based on the SPR\textsubscript{50\%} harvest
rate. The last year in the time series is 2018. \label{fig:SPR_all}}
\end{figure}
\begin{figure}
\centering
\includegraphics{r4ss/plots_mod1/SPR4_phase.png}
\caption{Phase plot of biomass vs.~fishing intensity. \label{fig:phase}}
\end{figure}
\FloatBarrier
\hypertarget{reference-points}{%
\subsection*{Reference Points}\label{reference-points}}
\addcontentsline{toc}{subsection}{Reference Points}
This stock assessment estimates that Big Skate in the model is above the
biomass target (\(B_{40\%}\)), and well above the minimum stock size
threshold (\(B_{25\%}\)). The estimated \%unfished level for the base
model in 2019 is 86.9\% (95\% asymptotic interval: \(\pm\)
79.9\%-93.9\%, corresponding to an unfished spawning biomass of 3066 mt
(95\% asymptotic interval: 1417-4714 mt) of spawning biomass in the base
model (Table \ref{tab:Ref_pts_mod1}). Unfished age 2+ biomass was
estimated to be 4,263 mt in the base case model. The target spawning
biomass (\(B_{40\%}\)) is 1,412 mt, which corresponds with an
equilibrium yield of 1,045 mt. Equilibrium yield at the proxy
\(F_{MSY}\) harvest rate corresponding to \(SPR=50\%\) is 880 mt (Figure
\ref{fig:Yield_all}).
\vspace{.5cm}
\FloatBarrier
\begin{table}[ht]
\centering
\caption{Summary of reference
points and management quantities for the
base case model.}
\label{tab:Ref_pts_mod1}
\begin{tabular}{>{\raggedright}p{4.1in}>{\raggedleft}p{.62in}>{\raggedleft}p{.62in}>{\raggedleft}p{.62in}}
\hline
\textbf{Quantity} & \textbf{Estimate} & \textbf{Low 2.5\% limit} & \textbf{High 2.5\% limit} \\
\hline
Unfished spawning output (mt) & 3,529 & 1,905 & 5,154 \\
Unfished age 2+ biomass (mt) & 4,263 & 2,196 & 6,329 \\
Unfished recruitment ($R_{0}$, thousands) & 1,222 & 5,604 & 1,884 \\
Spawning output (2018 mt) & 3,055 & 1,406 & 4,704 \\
Depletion (2018) & 0.866 & 0.794 & 0.937 \\
\textbf{$\text{Reference points based on } \mathbf{B_{40\%}}$} & & & \\
Spawning biomass ($B_{40\%}$) & 1,412 & 762 & 2,062 \\
SPR resulting in $B_{40\%}$ ($SPR_{B40\%}$) & 0.625 & 0.625 & 0.625 \\
Exploitation rate resulting in $B_{40\%}$ & 0.05 & 0.047 & 0.052 \\
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt) & 1,045 & 537 & 1,554 \\
\textbf{\textit{Reference points based on $SPR=50\%$ proxy for MSY}} & & & \\
Spawning biomass (mt) & 706 & 381 & 1,031 \\
$SPR_{proxy}$ & 0.5 & & \\
Exploitation rate corresponding to $SPR=50\%$ & 0.072 & 0.069 & 0.076 \\
Yield with $SPR=50\%$ at $B_{SPR=50\%}$ (mt) & 880 & 452 & 1,309 \\
\textbf{\textit{Reference points based on estimated MSY values}} & & & \\
Spawning biomass at $MSY$ ($B_{MSY}$) & 1,321 & 713 & 1,928 \\
$SPR_{MSY}$ & 0.609 & 0.607 & 0.611 \\
Exploitation rate at $MSY$ & 0.052 & 0.05 & 0.055 \\
Dead Catch $MSY$ (mt) & 1,048 & 539 & 1,558 \\
Retained Catch $MSY$ (mt) & 967 & 498 & 1,436 \\
\hline
\end{tabular}
\end{table}
\FloatBarrier
\newpage
\hypertarget{ecosystem-considerations}{%
\subsection*{Ecosystem Considerations}\label{ecosystem-considerations}}
\addcontentsline{toc}{subsection}{Ecosystem Considerations}
Big Skate have broad thermal tolerances and are broadly distributed,
occurring from the southeastern Bering Sea to southern Baja California
and the Gulf of California. They have been reported at depths of 2-501 m
but are most common on the inner continental shelf (\textless{} 100 m).
Big Skates are opportunistic predators with highly variable
spatio-temporal trophic roles.
In this assessment, neither environmental nor ecosystem considerations
were explicitly included in the analysis. This is primarily due to a
lack of relevant data or results of analyses that could contribute
ecosystem-related quantitative information for the assessment.
\hypertarget{management-performance}{%
\subsection*{Management Performance}\label{management-performance}}
\addcontentsline{toc}{subsection}{Management Performance}
Annual Catch Limits have only been in place for Big Skate in recent
years and total catch, including discards has remained below these
limits with the exception of 2014, where in retrospect the catch was
above the ACL although still below the Overfishing Limit (Table
\ref{tab:mnmgt_perform}).
\begin{table}[ht]
\centering
\caption{Recent trend in total catch (mt) relative to the
management guidelines. Big skate was
managed in the Other Species complex in 2013 and 2014,
designated an Ecosystem Component species in 2015 and
2016, and managed with stock-specific harvest
specifications since 2017. Estimated total mortality
includes discards estimated in the model with an
assumed mortality rate of 50\%.}
\label{tab:mnmgt_perform}
\scalebox{0.9}{
\begin{tabular}{l>{\centering}p{1.2in}>{\centering}p{1in}>{\centering}p{1in}>{\centering}p{1in}>{\centering}p{1in}}
\hline
Year & OFL (mt; ABC prior to 2011) & ABC (mt) & ACL (mt; OY prior to 2011) & Landings (mt) & Estimated total mortality (mt) \\
\hline
2009 & & & & 205.7 & 217.2 \\
2010 & & & & 196.2 & 207.2 \\
2011 & & & & 268.4 & 282.8 \\
2012 & & & & 269.6 & 283.1 \\
2013 & 458 & 317.9 & 317.9 & 135.0 & 144.1 \\
2014 & 458 & 317.9 & 317.9 & 372.5 & 394.7 \\
2015 & & & & 331.6 & 349.2 \\
2016 & & & & 411.5 & 438.9 \\
2017 & 541 & 494.0 & 494.0 & 277.6 & 297.3 \\
2018 & 541 & 494.0 & 494.0 & 172.6 & 185.5 \\
2019 & 541 & 494.0 & 494.0 & & \\
2020 & 541 & 494.0 & 494.0 & & \\
\hline
\end{tabular}
}
\end{table}
\FloatBarrier
\hypertarget{unresolved-problems-and-major-uncertainties}{%
\subsection*{Unresolved Problems and Major
Uncertainties}\label{unresolved-problems-and-major-uncertainties}}
\addcontentsline{toc}{subsection}{Unresolved Problems and Major
Uncertainties}
The data provide little information about the scale of the population,
necessitating the use of a prior on catchability to maintain stable
model results. The prior was developed for the 2007 Longnose Skate stock
assessment and has not been revised to account for any differences
between the two species.
There is little evidence that the population is overfished or
experiencing overfishing, but forecasts of overfishing limits vary
considerably among the sensitivity analyses explored (though all remain
well above the recent average catch).
The fit to the length data was significantly improved by estimating a
difference between female and male selectivity, with females having a
lower maximum selectivity than males, but the behavioral processes that
might contribute to this difference are not understood.
\FloatBarrier
\hypertarget{decision-table}{%
\subsection*{Decision Table}\label{decision-table}}
\addcontentsline{toc}{subsection}{Decision Table}
\textbf{\(\color{red}{\text{Template in Table h and associated discussion to be filled in during the STAR panel}}\)}
\FloatBarrier
\hypertarget{projected-landings-ofls-and-time-varying-acls}{%
\subsection*{Projected Landings, OFLs and Time-varying
ACLs}\label{projected-landings-ofls-and-time-varying-acls}}
\addcontentsline{toc}{subsection}{Projected Landings, OFLs and
Time-varying ACLs}
Potential OFLs projected by the model are shown in Table
\ref{tab:OFL_projection_Exec}. These values are based on an SPR target
of 50\%, a P* of 0.45, and a time-varying Category 2 Sigma which creates
the buffer shown in the right-hand column. The OFL and ACL values for
2019 and 2020 are the current harvest specifications (also shown in
Table \ref{tab:mnmgt_perform}) while the landings for 2019 and 2020
represent the average landings over the most recent 5 years
(2014--2018).
\begin{table}[ht]
\centering
\caption{Projections of landings, total mortality, OFL, and ACL values.}
\label{tab:OFL_projection_Exec}
\begin{tabular}{l>{\centering}p{0.8in}>{\centering}p{1.2in}>{\centering}p{0.8in}>{\centering}p{0.8in}>{\centering}p{0.8in}}
\hline
Year & Landings (mt) & Estimated total mortality (mt) & OFL (mt) & ACL (mt) & Buffer \\
\hline
2019 & 313.2 & 336.5 & 541.0 & 494.0 & 1.000 \\
2020 & 313.2 & 336.5 & 541.0 & 494.0 & 1.000 \\
2021 & 2171.5 & 2335.1 & 2658.4 & 2335.1 & 0.874 \\
2022 & 2024.3 & 2181.9 & 2509.0 & 2181.9 & 0.865 \\
2023 & 1911.5 & 2064.6 & 2395.6 & 2064.6 & 0.857 \\
2024 & 1826.3 & 1975.1 & 2312.7 & 1975.1 & 0.849 \\
2025 & 1760.7 & 1904.7 & 2250.7 & 1904.7 & 0.841 \\
2026 & 1705.0 & 1844.2 & 2199.5 & 1844.2 & 0.833 \\
2027 & 1655.5 & 1790.2 & 2152.6 & 1790.2 & 0.826 \\
2028 & 1605.3 & 1735.5 & 2106.6 & 1735.5 & 0.818 \\
2029 & 1556.0 & 1681.9 & 2061.0 & 1681.9 & 0.810 \\
2030 & 1509.3 & 1631.3 & 2015.8 & 1631.3 & 0.803 \\
\hline
\end{tabular}
\end{table}
\begin{table}[ht]
\centering
\caption{Summary of 10-year
projections beginning in 2020
for alternate states of nature based on
an axis of uncertainty for the model. Columns range over low, mid, and high
states of nature, and rows range over different
assumptions of catch levels. An entry of "--"
indicates that the stock is driven to very low
abundance under the particular scenario.}
\label{tab:Decision_table_mod1}
\scalebox{0.85}{
\begin{tabular}{l|cc|>{\centering}p{.7in}c|>{\centering}p{.7in}c|>{\centering}p{.7in}c}
\multicolumn{3}{c}{} & \multicolumn{2}{c}{}
& \multicolumn{2}{c}{\textbf{States of nature}}
& \multicolumn{2}{c}{} \\
\multicolumn{3}{c}{} & \multicolumn{2}{c}{Low State}
& \multicolumn{2}{c}{Base State}
& \multicolumn{2}{c}{High State} \\
\hline
& Year & Catch & Spawning Output & Depletion & Spawning Output & Depletion & Spawning Output & Depletion \\
\hline
& 2019 & - & - & - & - & - & - & - \\
& 2020 & - & - & - & - & - & - & - \\
& 2021 & - & - & - & - & - & - & - \\
Default harvest, & 2022 & - & - & - & - & - & - & - \\
for Low State & 2023 & - & - & - & - & - & - & - \\
& 2024 & - & - & - & - & - & - & - \\
& 2025 & - & - & - & - & - & - & - \\
& 2026 & - & - & - & - & - & - & - \\
& 2027 & - & - & - & - & - & - & - \\
& 2028 & - & - & - & - & - & - & - \\
\hline
& 2019 & - & - & - & - & - & - & - \\
& 2020 & - & - & - & - & - & - & - \\
& 2021 & - & - & - & - & - & - & - \\
Default harvest, & 2022 & - & - & - & - & - & - & - \\
for Base State & 2023 & - & - & - & - & - & - & - \\
& 2024 & - & - & - & - & - & - & - \\
& 2025 & - & - & - & - & - & - & - \\
& 2026 & - & - & - & - & - & - & - \\
& 2027 & - & - & - & - & - & - & - \\
& 2028 & - & - & - & - & - & - & - \\
\hline
& 2019 & - & - & - & - & - & - & - \\
& 2020 & - & - & - & - & - & - & - \\
& 2021 & - & - & - & - & - & - & - \\
Default harvest, & 2022 & - & - & - & - & - & - & - \\
for High State & 2023 & - & - & - & - & - & - & - \\
& 2024 & - & - & - & - & - & - & - \\
& 2025 & - & - & - & - & - & - & - \\
& 2026 & - & - & - & - & - & - & - \\
& 2027 & - & - & - & - & - & - & - \\
& 2028 & - & - & - & - & - & - & - \\
\hline
& 2019 & - & - & - & - & - & - & - \\
& 2020 & - & - & - & - & - & - & - \\
& 2021 & - & - & - & - & - & - & - \\
Average & 2022 & - & - & - & - & - & - & - \\
Catch & 2023 & - & - & - & - & - & - & - \\
& 2024 & - & - & - & - & - & - & - \\
& 2025 & - & - & - & - & - & - & - \\
& 2026 & - & - & - & - & - & - & - \\
& 2027 & - & - & - & - & - & - & - \\
& 2028 & - & - & - & - & - & - & - \\
\hline
\end{tabular}
}
\end{table}
\FloatBarrier
\newgeometry{hmargin=1in,vmargin=1in}
\begin{landscape}
\renewcommand{\arraystretch}{1.2}
\begin{table}[ht]
\centering
\caption{Base case results summary.}
\label{tab:base_summary}
\scalebox{0.6}{
\begin{tabular}{r>{\centering}p{1.1in}>{\centering}p{1.1in}>{\centering}p{1.1in}>{\centering}p{1.1in}>{\centering}p{1.1in}>{\centering}p{1.1in}>{\centering}p{1.1in}>{\centering}p{1.1in}>{\centering}p{1.1in}>{\centering}p{1.1in}}
\hline
Quantity & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 & 2019 \\
\hline
Landings (mt) & 313.2 & 313.2 & 2171.5 & 2024.3 & 1911.5 & 1826.3 & 1760.7 & 1705.0 & 1655.5 & 1605.3 \\
Total Est. Catch (mt) & 336.5 & 336.5 & 2335.1 & 2181.9 & 2064.6 & 1975.1 & 1904.7 & 1844.2 & 1790.2 & 1735.5 \\
OFL (mt) & 541.0 & 541.0 & 2658.4 & 2509.0 & 2395.6 & 2312.7 & 2250.7 & 2199.5 & 2152.6 & 2106.6 \\
ACL (mt) & 494.0 & 494.0 & 2335.1 & 2181.9 & 2064.6 & 1975.1 & 1904.7 & 1844.2 & 1790.2 & 1735.5 \\
\hline
(1-$SPR$)(1-$SPR_{50\%}$) & 0.10 & 0.14 & 0.14 & 0.07 & 0.19 & 0.17 & 0.21 & 0.15 & 0.09 & \\
\hline
Exploitation rate & 0.01 & 0.01 & 0.01 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & \\
Age 2+ biomass (mt) & 35474.8 & 35624.9 & 35760.3 & 35806.8 & 35846.9 & 36008.6 & 35921.5 & 35898.5 & 35804.3 & 35861.3 \\
\hline
Spawning Output & 3011.2 & 3024.4 & 3031.8 & 3040.1 & 3061.5 & 3060.1 & 3061.7 & 3053.1 & 3055.1 & 3065.7 \\
~95\% CI & (1359.6-4662.9) & (1372.9-4675.9) & (1380.6-4682.9) & (1389.4-4690.8) & (1411-4712) & (1410.3-4710) & (1412.3-4711.2) & (1404.1-4702) & (1406.4-4703.8) & (1417.2-4714.2) \\
\hline
Depletion & 0.9 & 0.9 & 0.9 & 0.9 & 0.9 & 0.9 & 0.9 & 0.9 & 0.9 & 0.9 \\
~95\% CI & (0.775-0.931) & (0.78-0.934) & (0.783-0.935) & (0.787-0.935) & (0.796-0.938) & (0.796-0.938) & (0.796-0.938) & (0.793-0.937) & (0.794-0.938) & (0.799-0.939) \\
\hline
Recruits & 11 & 12 & 12 & 12 & 12 & 12 & 12 & 12 & 12 & 12 \\
~95\% CI & (7 - 20) & (7 - 20) & (7 - 20) & (7 - 20) & (7 - 20) & (7 - 20) & (7 - 20) & (7 - 20) & (7 - 20) & (7 - 20) \\
\hline
\end{tabular}
}
\end{table}
\renewcommand{\arraystretch}{1}
\end{landscape}
\restoregeometry
\begin{figure}
\centering
\includegraphics{r4ss/plots_mod1/yield1_yield_curve.png}
\caption{Equilibrium yield curve for the base case model. Values are
based on the 2018 fishery selectivity and retention with steepness fixed
at 0.4. \label{fig:Yield_all}}
\end{figure}
\FloatBarrier
\newpage
\hypertarget{research-and-data-needs}{%
\subsection*{Research and Data Needs}\label{research-and-data-needs}}
\addcontentsline{toc}{subsection}{Research and Data Needs}
We recommend the following research be conducted before the next
assessment.
\begin{enumerate}
\item \textbf{Extend all ongoing data streams used in this assessment.} A longer fishery-independent index from a continued WCGBT Survey with associated compositions of length and age-at-length will improve understanding of dynamics of the stock. Continued sampling of lengths and ages from the landed catch and lengths, mean body weights, and discard rates from the fishery will be even more valuable for the years ahead now that Big Skate are landed as a separate market category and the estimates will be more precise.
\item \textbf{Investigate factors contributing to estimated lower selectivity for females than males.} Sex-specific differences in selectivity were included in the base model to better fit differences in sex ratios in the length composition data but the behavioral processes that might contribute to this pattern are not understood and other explanations for the sex ratios are possible.
\item \textbf{Investigate the distribution of Big Skate shallower than the 55 m limit of the WCGBT Survey.} This would help with interpretation of the biomass estimates from the survey and potentially refining the associated prior on catchability.
\item \textbf{Pursue additional approaches for estimating historical discards.} The approaches used here were based on averages applied over a period of decades. The catch reconstructions conducted for each state were much more sophisticated, but were applied only to the subset of the catch that was landed. Reconstructed spatial patterns of fishing effort could be used to estimate changes in total mortality over time.
\item \textbf{Improve understanding of links between Big Skate on the U.S. West Coast and other areas.} Tagging studies in Alaska indicated that Big Skate are capable of long distance movements. A better understanding of links through tagging in other areas and genetic studies could highlight strengths or weaknesses of the status-quo approach.
\item \textbf{Conduct studies of mortality of discarded skates in commercial fisheries.} Estimates of discard mortality for skates in general could be improved.
\item \textbf{Improve understanding of catch history and population dynamics of California Skate.} California Skate is the third most commonly occurring Skate in California waters after Longnose Skate and Big Skate and the catch reconstruction indicated that the center of abundance for California Skate is centered around San Francisco, where the fishery was strongest in the early years. If California Skate is found to be at a low biomass compared to historical levels it would have implications for the catch reconstruction of the other two species, as well as suggesting that management of California Skate should be a higher priority.
\end{enumerate}
\FloatBarrier
\newpage
\renewcommand{\thefigure}{\arabic{figure}}
\renewcommand{\thetable}{\arabic{table}}
\setcounter{figure}{0}
\setcounter{table}{0}
\hypertarget{refs}{}
\leavevmode\hypertarget{ref-Gertseva2007}{}%
Gertseva, V and Schirippa, MJ. 2007. Status of the Longnose Skate
(\emph{Raja rhina}) off the continental US Pacific Coast in 2007.
Pacific Fishery Management Council, Portland, OR. Available from
\href{\%7Bhttp://www.pcouncil.org/groundfish/stock-assessments/\%7D}{\{http://www.pcouncil.org/groundfish/stock-assessments/\}}.
\end{document}