forked from Seike1223/lecture
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
587 lines (402 loc) · 13.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<title>Introduction to Data Science with R</title>
<meta charset="utf-8" />
<meta name="author" content="謝舒凱" />
<link href="libs/remark-css/default.css" rel="stylesheet" />
<link href="libs/remark-css/chocolate.css" rel="stylesheet" />
<link href="libs/remark-css/chocolate-fonts.css" rel="stylesheet" />
</head>
<body>
<textarea id="source">
class: title-slide
.bg-text[
# Introduction to Data Science with R
### week.3
<hr />
9月 26, 2019
謝舒凱
]
---
# 課程資訊
- [課程網頁課綱已更新](https://rlads2019.github.io/lecture/)
- 國慶連假後記名不計分小考預告(記名不計分)
---
# DataCamp 閱讀與練習作業
> 20% 同學免試
---
## 工具提醒
不一定要用 RStudio (e.g. 指令列 `Rscript test.R`), 但它還可以做很多事 (to be continued...)
- 做 ([可重製 reproducible](http://rmarkdown.rstudio.com/lesson-1.html)、[可調參數 Parameterized](http://rmarkdown.rstudio.com/developer_parameterized_reports.html)、[互動型 interactive](http://rmarkdown.rstudio.com/lesson-14.html)) 筆記(notebook) 與報告 (report)
- 做投影片 (presentation)
- 做網站 (website) 與 web application (using `shiny`)
- 做「數位報表」(dashboard)
- 做專業科學文件 (using `\(\LaTeX\)`)
---
background-image: url(../img/emo/boredom-small.png)
---
## 各取強項
<img src =
https://i2.wp.com/www.business-science.io/assets/2018-10-08-python-and-r/python_r_workflow.png?zoom=2&w=456 scale="50%"></img>
---
## Learning DS with R
`對應式`學習意識
**R syntax** `\(< >\)`
【獲取】Obtaining data, 【整理】Scrubbing data, 【探索】Exploring data, 【建模】Modeling data, 【詮解】Interpreting (and reporting) data.
---
## R 的初體驗
```r
data() # browse pre-loaded data sets
data(rivers) # get this one: "Lengths of Major North American Rivers"
?rivers
head(rivers,10) # peek at the data set
```
```
## [1] 735 320 325 392 524 450 1459 135 465 600
```
```r
length(rivers) # how many rivers were measured?
```
```
## [1] 141
```
```r
summary(rivers) # what are some summary statistics?
```
```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 135.0 310.0 425.0 591.2 680.0 3710.0
```
---
## R 的初體驗
```r
# make a histogram; play around with these parameters
hist(rivers, col="blue", border="white", breaks=25)
```
![](index_files/figure-html/unnamed-chunk-2-1.png)<!-- -->
---
## In-class Exercise.1
- 換看看顏色 (用 `colors()` 看 R 認識什麼顏色)
```r
hist(log(rivers), col="sienna", border="white", breaks=25)
```
![](index_files/figure-html/unnamed-chunk-3-1.png)<!-- -->
---
## Base R and Package
An R package contains `data sets` and specific `functions` to solve specific question.
- 安裝發佈在 CRAN 上的套件: `install.packages("ggplot2")`
- 安裝在 Github 上的開發套件:
```r
#install.packages("devtools")
#devtools::install_github("shukai/coolR)
```
---
## 比較圖形套件
`plot()` and others
```r
library("ggplot2")
# qplot: ggplot2 中最基本的繪圖函數
qplot(data = iris, Sepal.Length, Petal.Length, color = Species, size = Petal.Width)
```
![](index_files/figure-html/unnamed-chunk-5-1.png)<!-- -->
---
## 入門小秘訣
- `ctrl + l` 清除 console 的顯示內容。
- `rm(list=ls())` 清除 workspace 中的變數。
- 但請注意:R 也可以在終端機執行:對於日後在雲端伺服器工作者,特別是結合**指令列 (command line)** 很重要。
- 隨時知道妳在那裡:`getwd()` and `Set Working Directory`
---
## 變數 (variable)、賦值 (assignment)
- R 在給予變數值時是利用`<-` 而不是其他程式語言中常見的 `=`。(根據 R 官方文件解釋因為在某些狀況是會出問題)。
- 變數命名中,大小寫有所區別。所以 a 與 A 是不同的變數。
```r
a <- 19
a
```
```
## [1] 19
```
---
## Modes and classes of R objects
- 變數命名規則舉例:cannot start with numbers; it will start with a character or underscore; no special character allowed, such as @, #, $, and *.
- 存入變數後,它就是個物件 (object)。兩種最重要的物件屬性 (attribute) 是 `class` 與 `mode` (*numeric, character*, *logical*, *function*).
- The `mode()` returns the mode of R objects. 表示物件在記憶體中是何種類型存儲的;類別概念以後再談。
```r
mode(rivers)
```
```
## [1] "numeric"
```
---
## 資料類型 (Data type) 與基本運算 (basic arithmetic)
資料類型包含以下幾種,可用 `mode` 函數判斷
- **數值型 (numeric)**:實數(可以寫成整數 integers,小數 floating numners,或 科學記述 scientific notations)
```r
b <- 8.31
mode(b)
```
```
## [1] "numeric"
```
- **字符型 (character)**:文字字串,放入 "" 或 '' 中
```r
c <- 'coding'
mode(c)
```
```
## [1] "character"
```
---
## 資料類型 (Data type) 與基本運算 (basic arithmetic)
- **邏輯型 (logical)**:`TRUE`(T) 和 `FALSE`(F) 兩個值
```r
d <- F
mode(d)
```
```
## [1] "logical"
```
- **複數型 (complex)** :取值包含虛數 `\(a+bi\)`
```r
e <- 2+3i
mode(e)
```
```
## [1] "complex"
```
---
## NA and NULL
- NA (*missing*)
- NULL (*undefined*)
---
## 資料類型強制轉換 (type coercion):
- If an R object contains both numeric and logical elements, the mode of that object will be numeric and in that case the logical element automatically gets converted to numeric.
- if any R object contains a character element along with both numeric and logical elements, it automatically converts to the character mode.
```r
# R object containing both numeric and logical element
x <- c(2, 4, TRUE, 6, FALSE, 8); mode(x)
```
```
## [1] "numeric"
```
```r
# R object containing character, numeric, and logical elements
y <- c(1,2,TRUE,FALSE,"a"); mode(y)
```
```
## [1] "character"
```
???
趕作業
---
## 資料類型的判斷與轉換
| 類型 | 意義 | 判斷 | 轉換 |
|-----------|---------|--------------|--------------|
| numeric | 數值 | is.numeric() | as.numeric() |
| character | 字符 | is.character() | as.character() |
| logical | 邏輯 | is.logical() | as.logical() |
| complex | 複數 | is.complex() | as.complex() |
| NA | 缺失 | is.na() | as.na() |
```r
is.character(b)
```
```
## [1] FALSE
```
```r
as.character(b)
```
```
## [1] "8.31"
```
---
## 資料結構 Data structure
- 一組(2 個以上)相同或不同**資料類型**的資料元素組合在一起形成**資料結構**.
- R 提供 6 個基本的資料結構:`vector`, `matrix`, `array`, `factor`, `list`, `data frame`.
- 學習重點在於**如何建立 create 與檢索 access**
---
## 向量 Vector
a combination of multiple values (`numeric, character` or `logical`)
### 建立
- `c()` ('concatenate')
- `:` 可產生差距為 1 的等差數列向量。
- `seq()` 可產生等差數列向量,差距值可以自行決定。
- `rep()` 可產生重複數值的向量。
```r
g <- c(1,2,3)
h <- c('me','you')
i <- 1:6
j <- seq(from=1, to=10, by=2)
k <- rep(1:4, times=3, each=2)
```
---
## 向量 Vector
### 檢索 access
- Get a subset of a vector: `my_vec[i]` to get the `ith` elment.
- Calculations with vectors: `max(), min(), length(), sum(), mean(),sd(),var()`, etc.
```r
m <- c(2:10)
m[1]
```
```
## [1] 2
```
```r
m[1:3]
```
```
## [1] 2 3 4
```
---
## 課堂練習.2
Preparing/Obtaining Data
- 資料格式
- Comma separated values (`*.csv`)
- Text file with Tab delimited (`*.txt` or `*.tbl`)
- MS Excel file (`*.xls` or `*.xlsx`)
- R data object (`*.RData`)
- 資料來源
- Web (下載;網路爬蟲 Scraping and parsing data from the **web** (raw HTML sources); Interacting with APIs)
- 資料庫 database
---
## 課堂練習.2
collaboration: the baby step
- go to [shared doc](https://docs.google.com/spreadsheets/d/1DbifnNulA2ReMjaAhWZkdx72QDWP2WXDw8th5mRXgRA/edit?usp=sharing)
- type in your data
- download it as `csv`, and read the file into R
- quick look at the data and do some preliminary analysis (in groups)
---
## 基本備檔
Data preparation rule
- use the first row as **column names** (which represent *variables*).
- Use the first column as **row names** (which represent *observations*).
- Avoid names with blank spaces. Good example:`person_look`, or `person.look`. Bad example: `person look`
- Avoid names with special symbols (excpet `_`)
- Avoid beggining variable names with a number. Good: `run_100m`, Bad: `100m`.
- R is case sensitive; and row/column name should be unique.
- Avoid blank rows in your data; delete any comments in your file.
- Replace missing values by **NA**.
- Use the four digit format for data. Good: `01/06/1970`, Bad: `01/06/70`.
---
## 檔案欄位說明
specification
連結放在本週 sli.do
-【gender】: 0(trans)-1(femail)-2(male)
-【grade】: 1-2-3-4-5
-【q.self】: 0-100
-【GPA】: previous average of GPA
-【q.teacher】: 0-100
---
## 下載成 csv 後讀檔
- Save as `Rclass.csv`, Importing data into R.
```r
# csv (逗號分隔 comma separated value file); csv2 (分號分隔 semicolon separated values)
#my_Rclass <- read.csv(file.choose())
```
- Explore the data and see what you can find
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
<script src="macros.js"></script>
<script>var slideshow = remark.create({
"highlightStyle": "github",
"highlightLines": true,
"countIncrementalSlides": false
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();
// adds .remark-code-has-line-highlighted class to <pre> parent elements
// of code chunks containing highlighted lines with class .remark-code-line-highlighted
(function(d) {
const hlines = d.querySelectorAll('.remark-code-line-highlighted');
const preParents = [];
const findPreParent = function(line, p = 0) {
if (p > 1) return null; // traverse up no further than grandparent
const el = line.parentElement;
return el.tagName === "PRE" ? el : findPreParent(el, ++p);
};
for (let line of hlines) {
let pre = findPreParent(line);
if (pre && !preParents.includes(pre)) preParents.push(pre);
}
preParents.forEach(p => p.classList.add("remark-code-has-line-highlighted"));
})(document);</script>
<script>
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();
</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>