forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAbsKernel.cu
51 lines (46 loc) · 1.48 KB
/
AbsKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/native/UnaryOps.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/cuda/JitLoops.cuh>
#include <ATen/Dispatch.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
namespace at::native {
template<typename scalar_t>
struct AbsFunctor {
__device__ __forceinline__ scalar_t operator() (const scalar_t a) const {
return std::abs(a);
}
};
CONSTEXPR_EXCEPT_WIN_CUDA char abs_name[] = "abs_kernel";
void abs_kernel_cuda(TensorIteratorBase& iter) {
auto dtype = iter.dtype();
if (at::isComplexType(dtype)) {
#if AT_USE_JITERATOR()
static const auto abs_string = jiterator_stringify(
template <typename T> T abs_kernel(T x) { return std::abs(x); });
AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, dtype, "abs_cuda", [&]() {
jitted_gpu_kernel<
/*name=*/abs_name,
/*return_dtype=*/scalar_t,
/*common_dtype=*/scalar_t,
/*arity=*/1>(iter, abs_string);
});
#else
AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, dtype, "abs_cuda", [&]() {
using opmath_t = at::opmath_type<scalar_t>;
gpu_kernel(iter, AbsFunctor<opmath_t>());
});
#endif
} else {
AT_DISPATCH_ALL_TYPES_AND3(
ScalarType::Half,
ScalarType::BFloat16,
ScalarType::Bool,
iter.dtype(),
"abs_cuda",
[&]() { gpu_kernel(iter, AbsFunctor<scalar_t>()); });
}
}
REGISTER_DISPATCH(abs_stub, &abs_kernel_cuda);
} // namespace at::native