diff --git a/404.html b/404.html index 0c2d178..14cf2e6 100644 --- a/404.html +++ b/404.html @@ -27,7 +27,7 @@ PopED - 0.6.0.9005 + 0.7.0
tic(); eval <- evaluate_design(poped.db); toc()
-#> Elapsed time: 2.744 seconds.
+#> Elapsed time: 2.76 seconds.
tic(); eval <- evaluate_design(poped.db.Rcpp); toc()
-#> Elapsed time: 1.188 seconds.
The difference is noticeable and gets larger for more complex ODE models.
@@ -1908,7 +1908,7 @@We can see that the result, based on MC sampling, is somewhat variable with so few samples.
diff --git a/articles/handling_LOQ.html b/articles/handling_LOQ.html index c60bc45..1577580 100644 --- a/articles/handling_LOQ.html +++ b/articles/handling_LOQ.html @@ -26,7 +26,7 @@ PopED - 0.6.0.9005 + 0.7.0@@ -84,7 +84,7 @@ Define a model
library(PopED) packageVersion("PopED") -#> [1] '0.6.0.9005'
ff <- function(model_switch,xt,parameters,poped.db){
with(as.list(parameters),{
@@ -283,8 +283,8 @@ LOQ handlingcat("D6 evaluation time: ",e_time_D6[1],"seconds \n" )
cat("D2 evaluation time: ",e_time_D2[1],"deconds \n" )
-#> D6 evaluation time: 0.045 seconds
-#> D2 evaluation time: 0.007 deconds
The D2 method is the same as removing the last design point, as you can se below.
@@ -900,7 +900,7 @@Version information#> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: -#> [1] PopED_0.6.0.9005 kableExtra_1.4.0 knitr_1.48 ggplot2_3.5.1 +#> [1] PopED_0.7.0 kableExtra_1.4.0 knitr_1.48 ggplot2_3.5.1 #> #> loaded via a namespace (and not attached): #> [1] sass_0.4.9 utf8_1.2.4 generics_0.1.3 xml2_1.3.6 diff --git a/articles/index.html b/articles/index.html index 49fe94e..2ea8ea4 100644 --- a/articles/index.html +++ b/articles/index.html @@ -7,7 +7,7 @@ PopED - 0.6.0.9005 + 0.7.0
diff --git a/articles/intro-poped.html b/articles/intro-poped.html index f1a222d..a20b965 100644 --- a/articles/intro-poped.html +++ b/articles/intro-poped.html @@ -26,7 +26,7 @@ PopED - 0.6.0.9005 + 0.7.0 @@ -114,7 +114,7 @@ Define a model
library(PopED) packageVersion("PopED") -#> [1] '0.6.0.9005'
ff <- function(model_switch,xt,parameters,poped.db){
with(as.list(parameters),{
@@ -432,7 +432,7 @@ Design optimization#> d_CL 0.0625 28 26
#> sig_prop 0.04 14 15
#>
-#> Total running time: 16.797 seconds
+#> Total running time: 16.882 seconds
plot_model_prediction(output$poped.db)
We see that there are four distinct sample times for this design. @@ -493,7 +493,7 @@
Here we see that the optimization ran somewhat quicker, but gave a @@ -558,7 +558,7 @@
We see that the optimal doses are 31.6 and 55.2 for the two groups. This leads to population trough concentrations of 0.2 and 0.35 for the two groups of patients at 240 hours:
diff --git a/articles/model_def_other_pkgs.html b/articles/model_def_other_pkgs.html index 00386b6..7f6d7ea 100644 --- a/articles/model_def_other_pkgs.html +++ b/articles/model_def_other_pkgs.html @@ -26,7 +26,7 @@ PopED - 0.6.0.9005 + 0.7.0CRAN release: 2024-10-07
create.poped.database()
now uses a better method of identifying the total number of parameters of each type (bpop, d, sigma, etc.) in a user defined model parameter function (the ff_fun
argument in create.poped.database()
) (#73).
create.poped.database()
has a new option reorder_parameter_vectors
, which is turned off by default. When turned on, if you use named arguments in bpop
or d
then PopED will try to figure out the order of the parameters based on what is found in the fg_fun
. See the resulting poped_db$parameters
and make sure the order matches with fg_fun
.
start_parallel()
has a new default fornum_cores
, which is now one less than the number of cores available from parallel::detectCores()
.