forked from grblHAL/core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspindle_control.c
737 lines (599 loc) · 25.4 KB
/
spindle_control.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
/*
spindle_control.c - spindle control methods
Part of grblHAL
Copyright (c) 2017-2023 Terje Io
Copyright (c) 2012-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <string.h>
#include "hal.h"
#include "protocol.h"
#include "state_machine.h"
#include "settings.h"
#ifndef UNUSED
#define UNUSED(x) (void)(x)
#endif
/*! \brief Structure for holding spindle registration data */
typedef struct {
const spindle_ptrs_t *cfg;
spindle_ptrs_t hal;
const char *name;
bool init_ok;
} spindle_reg_t;
/*! \brief Structure for holding data about an enabled spindle */
typedef struct {
spindle_param_t param;
spindle_ptrs_t hal;
bool enabled;
} spindle_sys_t;
static uint8_t n_spindle = 0;
static spindle_sys_t sys_spindle[N_SYS_SPINDLE] = {0};
static spindle_reg_t spindles[N_SPINDLE] = {0}, *pwm_spindle = NULL;
/*! \internal \brief Activates and registers a spindle as enabled with a specific spindle number.
\param spindle_id spindle id of spindle to activate as a \ref spindle_id_t.
\param spindle_num spindle number to set as enabled as a \ref spindle_num_t.
\returns \a true if succsesful, \a false if not.
*/
static bool spindle_activate (spindle_id_t spindle_id, spindle_num_t spindle_num)
{
bool ok;
spindle_reg_t *spindle;
// Always configure PWM spindle on startup to ensure outputs are set correctly.
if(pwm_spindle && pwm_spindle->cfg->config && pwm_spindle != &spindles[spindle_id]) {
if(!pwm_spindle->hal.cap.rpm_range_locked) {
pwm_spindle->hal.rpm_min = settings.spindle.rpm_min;
pwm_spindle->hal.rpm_max = settings.spindle.rpm_max;
}
if((pwm_spindle->init_ok = pwm_spindle->hal.config == NULL || pwm_spindle->hal.config(&pwm_spindle->hal)))
pwm_spindle->hal.set_state((spindle_state_t){0}, 0.0f);
}
pwm_spindle = NULL;
if((ok = spindle_id >= 0 && spindle_id < n_spindle && !!spindles[spindle_id].cfg)) {
spindle = &spindles[spindle_id];
if(sys_spindle[spindle_num].enabled && sys_spindle[spindle_num].hal.id != spindle_id && sys_spindle[spindle_num].hal.set_state)
gc_spindle_off(); // TODO: switch off only the default spindle?
if(!spindle->hal.cap.rpm_range_locked) {
spindle->hal.rpm_min = settings.spindle.rpm_min;
spindle->hal.rpm_max = settings.spindle.rpm_max;
}
if(!spindle->init_ok)
ok = spindle->init_ok = spindle->hal.config == NULL || spindle->hal.config(&spindle->hal);
if(ok) {
spindle_ptrs_t spindle_hal;
memcpy(&spindle_hal, &spindle->hal, sizeof(spindle_ptrs_t));
if(spindle->cfg->get_data == NULL) {
spindle_hal.get_data = hal.spindle_data.get;
spindle_hal.reset_data = hal.spindle_data.reset;
if(!spindle->cfg->cap.at_speed)
spindle_hal.cap.at_speed = !!spindle_hal.get_data;
}
spindle_hal.cap.laser &= settings.mode == Mode_Laser;
if(grbl.on_spindle_select)
ok = grbl.on_spindle_select(&spindle_hal);
if(ok) {
sys_spindle[spindle_num].enabled = true;
sys_spindle[spindle_num].param.hal = &sys_spindle[spindle_num].hal;
if(sys_spindle[spindle_num].param.override_pct == 0)
sys_spindle[spindle_num].param.override_pct = DEFAULT_SPINDLE_RPM_OVERRIDE;
spindle_hal.param = &sys_spindle[spindle_num].param;
memcpy(&sys_spindle[spindle_num].hal, &spindle_hal, sizeof(spindle_ptrs_t));
if(grbl.on_spindle_selected)
grbl.on_spindle_selected(&sys_spindle[spindle_num].hal);
}
}
}
return ok;
}
/*! \brief Register a spindle with the core.
\param spindle pointer to a \a spindle_ptrs_t structure.
\param name pointer to a null terminated string.
\returns assigned \a spindle id as a \ref spindle_id_t if successful, -1 if not.
__NOTE:__ The first spindle registered will become the default active spindle.
__NOTE:__ up to \ref N_SPINDLE spindles can be registered at a time.
*/
spindle_id_t spindle_register (const spindle_ptrs_t *spindle, const char *name)
{
if(n_spindle < N_SPINDLE && settings_add_spindle_type(name)) {
spindles[n_spindle].cfg = spindle;
spindles[n_spindle].name = name;
memcpy(&spindles[n_spindle].hal, spindles[n_spindle].cfg, sizeof(spindle_ptrs_t));
spindles[n_spindle].hal.id = n_spindle;
if(spindle->type == SpindleType_PWM && pwm_spindle == NULL) {
pwm_spindle = &spindles[n_spindle];
hal.driver_cap.pwm_spindle = On;
}
if(n_spindle == 0)
memcpy(&sys_spindle[0].hal, spindle, sizeof(spindle_ptrs_t));
return n_spindle++;
}
return -1;
}
/*! \brief Enable a spindle and make it available for use by gcode.
\param spindle_id spindle id as a \ref spindle_id_t.
\returns assigned spindle number as a \a spindle_num_t if successful \a -1 if not.
__NOTE:__ up to \ref N_SYS_SPINDLE spindles can be enabled at a time.
*/
spindle_num_t spindle_enable (spindle_id_t spindle_id)
{
uint_fast8_t idx = 0;
spindle_num_t spindle_num = -1;
if(spindle_id >= 0 && spindle_id < n_spindle) do {
if(!sys_spindle[idx].enabled && spindle_activate(spindle_id, idx))
spindle_num = idx;
} while(++idx < N_SYS_SPINDLE && spindle_num == -1);
return spindle_num;
}
/*! \brief Enables a spindle and sets it as default spindle (spindle number 0).
\param spindle_id spindle id as a \ref spindle_id_t.
\returns \a true if succsesful, \a false if not.
*/
bool spindle_select (spindle_id_t spindle_id)
{
if(n_spindle == 0 && spindle_id >= 0) {
spindle_id = 0;
spindle_add_null();
}
return (sys_spindle[0].enabled && sys_spindle[0].hal.id == spindle_id) || spindle_activate(spindle_id, 0);
}
/*! \brief Get the handlers (function pointers) etc. associated with the spindle.
\param spindle_id spindle id as a \ref spindle_id_t.
\param hal a \ref spindle_hal_t enum value:
<br>\ref SpindleHAL_Raw - get the read only version as supplied at registration
<br>\ref SpindleHAL_Configured - get the version with run-time modifications applied by the spindle driver.
<br>\ref SpindleHAL_Active - get the enabled version available from gcode. Can be overriden by event handlers prior to activation.
\returns pointer to a \ref spindle_ptrs_t structure if successful, \a NULL if not.
__NOTE:__ do not modify the returned structure!
*/
spindle_ptrs_t *spindle_get_hal (spindle_id_t spindle_id, spindle_hal_t hal)
{
spindle_ptrs_t *spindle = NULL;
if(hal == SpindleHAL_Active) {
uint_fast8_t idx = N_SYS_SPINDLE;
do {
idx--;
if(sys_spindle[idx].hal.id == spindle_id && sys_spindle[idx].enabled)
spindle = &sys_spindle[idx].hal;
} while(idx && spindle == NULL);
} else if(spindle_id >= 0 && spindle_id < n_spindle && spindles[spindle_id].cfg)
spindle = hal == SpindleHAL_Raw ? (spindle_ptrs_t *)spindles[spindle_id].cfg : &spindles[spindle_id].hal;
return spindle;
}
/*! \brief Get the spindle id of the default spindle (spindle number 0).
\returns spindle id as a \ref spindle_id_t if successful, \a -2 if not (no spindle available).
*/
spindle_id_t spindle_get_default (void)
{
return sys_spindle[0].enabled ? sys_spindle[0].hal.id : -2;
}
/*! \brief Get the merged spindle capabilities of all registered spindles.
\returns capabilities in a \ref spindle_cap_t structure.
*/
spindle_cap_t spindle_get_caps (void)
{
spindle_cap_t caps = {0};
uint_fast8_t idx = n_spindle;
do {
caps.value |= spindles[--idx].hal.cap.value;
} while(idx);
return caps;
}
/*! \brief Get the registered name of a spindle.
\param spindle_id spindle id as a \ref spindle_id_t.
\returns pointer to a null terminated string if succesful, \a NULL if not.
*/
const char *spindle_get_name (spindle_id_t spindle_id)
{
return spindle_id >= 0 && spindle_id < n_spindle && spindles[spindle_id].cfg ? spindles[spindle_id].name : NULL;
}
/*! \brief Update the capabilities of a registered PWM spindle.
May be used by the driver on spindle initialization or when spindle settings has been changed.
\param spindle pointer to a \ref spindle_ptrs_t structure.
\param pwm_caps pointer to a \ref spindle_pwm_t structure.
*/
void spindle_update_caps (spindle_ptrs_t *spindle, spindle_pwm_t *pwm_caps)
{
uint_fast8_t idx = N_SYS_SPINDLE;
spindle->type = pwm_caps ? SpindleType_PWM : SpindleType_Basic;
spindle->cap.laser = !!pwm_caps && !!spindle->update_pwm && settings.mode == Mode_Laser;
spindle->pwm_off_value = pwm_caps ? pwm_caps->off_value : 0;
do {
idx--;
if(sys_spindle[idx].enabled && spindle->id == sys_spindle[idx].hal.id) {
sys_spindle[idx].hal.type = spindle->type;
sys_spindle[idx].hal.cap.laser = spindle->cap.laser;
sys_spindle[idx].hal.pwm_off_value = spindle->pwm_off_value;
break;
}
} while(idx);
}
/*! \brief Get number of registered spindles.
\returns number of registered spindles.
*/
uint8_t spindle_get_count (void)
{
if(n_spindle == 0)
spindle_select(0);
return n_spindle;
}
static spindle_num_t spindle_get_num (spindle_id_t spindle_id)
{
uint_fast8_t idx = N_SPINDLE_SELECTABLE;
spindle_num_t spindle_num = -1;
const setting_detail_t *setting;
do {
idx--;
if((setting = setting_get_details(idx == 0 ? Setting_SpindleType : (setting_id_t)(Setting_SpindleEnable0 + idx), NULL))) {
if(setting_get_int_value(setting, 0) == spindle_id)
spindle_num = idx;
}
} while(idx && spindle_num == -1);
return spindle_num;
}
/*! \brief Enumerate registered spindles by calling a callback function for each of them.
\param callback pointer to a \ref spindle_enumerate_callback_ptr type function.
\returns \a true if spindles are registered and a callback function was provided, \a false otherwise.
*/
bool spindle_enumerate_spindles (spindle_enumerate_callback_ptr callback)
{
if(callback == NULL || n_spindle == 0)
return false;
uint_fast8_t idx;
spindle_info_t spindle;
for(idx = 0; idx < n_spindle; idx++) {
spindle.id = idx;
spindle.name = spindles[idx].name;
spindle.hal = &spindles[idx].hal;
spindle.num = spindle_get_num(idx);
spindle.enabled = spindle.num != -1;
spindle.is_current = spindle.enabled && sys_spindle[0].hal.id == idx;
callback(&spindle);
}
return true;
}
// The following calls uses logical spindle numbers pointing into the sys_spindle array
// containing enabled spindles (spindle number as used by the $ gcode word)
/*! \brief Check if a spindle is enabled and available or not.
\param spindle_num spindle number as a \ref spindle_num_t.
\returns \a true if the spindle is enabled, \a false otherwise.
*/
bool spindle_is_enabled (spindle_num_t spindle_num)
{
if(spindle_num == -1)
spindle_num = 0;
return spindle_num >= 0 && spindle_num < N_SYS_SPINDLE && sys_spindle[spindle_num].enabled;
}
/*! \brief Get the handlers (function pointers) etc. associated with an enabled spindle.
\param spindle_num spindle number as a \ref spindle_num_t.
\returns pointer to a \ref spindle_ptrs_t structure if successful, \a NULL if not.
__NOTE:__ do not modify the returned structure!
*/
spindle_ptrs_t *spindle_get (spindle_num_t spindle_num)
{
return spindle_num >= 0 && spindle_num < N_SYS_SPINDLE && sys_spindle[spindle_num].enabled ? &sys_spindle[spindle_num].hal : NULL;
}
//
//
// Null (dummy) spindle, automatically installed if no spindles are registered.
//
static void null_set_state (spindle_state_t state, float rpm)
{
UNUSED(state);
UNUSED(rpm);
}
static spindle_state_t null_get_state (void)
{
return (spindle_state_t){0};
}
// Sets spindle speed
static void null_update_pwm (uint_fast16_t pwm_value)
{
UNUSED(pwm_value);
}
static uint_fast16_t null_get_pwm (float rpm)
{
UNUSED(rpm);
return 0;
}
static void null_update_rpm (float rpm)
{
UNUSED(rpm);
}
/*! \brief Register a null spindle that has no connection to the outside world.
This is done automatically on startup if no spindle can be succesfully enabled.
\returns assigned spindle id as a \ref spindle_id_t if successful, \a -1 if not.
*/
spindle_id_t spindle_add_null (void)
{
static const spindle_ptrs_t spindle = {
.type = SpindleType_Null,
.cap.variable = Off,
.cap.at_speed = Off,
.cap.direction = Off,
.set_state = null_set_state,
.get_state = null_get_state,
.get_pwm = null_get_pwm,
.update_pwm = null_update_pwm,
.update_rpm = null_update_rpm
};
bool registered = false;
uint_fast8_t idx = n_spindle;
if(idx) do {
if((registered = spindles[--idx].hal.type == SpindleType_Null))
break;
} while(idx);
if(!registered)
return spindle_register(&spindle, "NULL");
return idx;
}
// End null (dummy) spindle.
/*! \brief Set spindle speed override.
\param spindle pointer to a \ref spindle_ptrs_t structure.
\param speed_override override as a percentage of the programmed RPM.
__NOTE:__ Unlike motion overrides, spindle overrides do not require a planner reinitialization.
*/
void spindle_set_override (spindle_ptrs_t *spindle, override_t speed_override)
{
// if(speed_override != 100 && sys.override.control.spindle_rpm_disable)
// return;
if(speed_override != 100 && spindle->param->state.override_disable)
return;
speed_override = constrain(speed_override, MIN_SPINDLE_RPM_OVERRIDE, MAX_SPINDLE_RPM_OVERRIDE);
if ((uint8_t)speed_override != spindle->param->override_pct) {
spindle->param->override_pct = speed_override;
if(state_get() == STATE_IDLE)
spindle_set_state(spindle, gc_state.modal.spindle.state, gc_state.spindle.rpm);
else
sys.step_control.update_spindle_rpm = On;
system_add_rt_report(Report_Overrides); // Set to report change immediately
if(grbl.on_spindle_programmed)
grbl.on_spindle_programmed(spindle, gc_state.modal.spindle.state, spindle_set_rpm(spindle, gc_state.spindle.rpm, speed_override), gc_state.modal.spindle.rpm_mode);
if(grbl.on_override_changed)
grbl.on_override_changed(OverrideChanged_SpindleRPM);
}
}
/*! \internal \brief Immediately sets spindle running state with direction and spindle rpm, if enabled.
Called by g-code parser spindle_sync(), parking retract and restore, g-code program end,
sleep, and spindle stop override.
\param spindle pointer to a \ref spindle_ptrs_t structure.
\param state a \ref spindle_state_t structure.
\param rpm the spindle RPM to set.
\returns \a true if successful, \a false if the current controller state is \ref ABORTED.
*/
static bool set_state (spindle_ptrs_t *spindle, spindle_state_t state, float rpm)
{
if (!ABORTED) { // Block during abort.
if (!state.on) { // Halt or set spindle direction and rpm.
spindle->param->rpm = rpm = 0.0f;
spindle->set_state((spindle_state_t){0}, 0.0f);
} else {
// NOTE: Assumes all calls to this function is when Grbl is not moving or must remain off.
// TODO: alarm/interlock if going from CW to CCW directly in non-laser mode?
if (spindle->cap.laser && state.ccw)
rpm = 0.0f; // TODO: May need to be rpm_min*(100/MAX_SPINDLE_RPM_OVERRIDE);
spindle->set_state(state, spindle_set_rpm(spindle, rpm, spindle->param->override_pct));
}
system_add_rt_report(Report_Spindle); // Set to report change immediately
st_rpm_changed(rpm);
}
return !ABORTED;
}
/*! \brief Immediately sets spindle running state with direction and spindle rpm, if enabled.
Called by g-code parser spindle_sync(), parking retract and restore, g-code program end,
sleep, and spindle stop override.
\param spindle pointer to a \ref spindle_ptrs_t structure.
\param state a \ref spindle_state_t structure.
\param rpm the spindle RPM to set.
\returns \a true if successful, \a false if the current controller state is \ref ABORTED.
*/
bool spindle_set_state (spindle_ptrs_t *spindle, spindle_state_t state, float rpm)
{
return set_state(spindle, state, rpm);
}
/*! \brief G-code parser entry-point for setting spindle state. Forces a planner buffer sync and bails
if an abort or check-mode is active. If the spindle supports at speed functionality it will wait
for it to reach the speed and raise an alarm if the speed is not reached within the timeout period.
\param spindle pointer to a \ref spindle_ptrs_t structure.
\param state a \ref spindle_state_t structure.
\param rpm the spindle RPM to set.
\returns \a true if successful, \a false if the current controller state is \ref ABORTED.
*/
bool spindle_sync (spindle_ptrs_t *spindle, spindle_state_t state, float rpm)
{
bool ok;
if (!(ok = state_get() == STATE_CHECK_MODE)) {
bool at_speed = !state.on || !spindle->cap.at_speed || settings.spindle.at_speed_tolerance <= 0.0f;
// Empty planner buffer to ensure spindle is set when programmed.
if((ok = protocol_buffer_synchronize()) && set_state(spindle, state, rpm) && !at_speed) {
float on_delay = 0.0f;
while(!(at_speed = spindle->get_state().at_speed)) {
delay_sec(0.2f, DelayMode_Dwell);
on_delay += 0.2f;
if(ABORTED)
break;
if(on_delay >= settings.safety_door.spindle_on_delay) {
gc_spindle_off();
system_raise_alarm(Alarm_Spindle);
break;
}
}
}
ok &= at_speed;
}
return ok;
}
/*! \brief Restore spindle running state with direction, enable, spindle RPM and appropriate delay.
\param spindle pointer to a \ref spindle_ptrs_t structure.
\param state a \ref spindle_state_t structure.
\param rpm the spindle RPM to set.
\returns \a true if successful, \a false if the current controller state is \ref ABORTED.
*/
bool spindle_restore (spindle_ptrs_t *spindle, spindle_state_t state, float rpm)
{
bool ok = true;
if(spindle->cap.laser) // When in laser mode, ignore spindle spin-up delay. Set to turn on laser when cycle starts.
sys.step_control.update_spindle_rpm = On;
else { // TODO: add check for current spindle state matches restore state?
spindle_set_state(spindle, state, rpm);
if(state.on) {
if((ok = !spindle->cap.at_speed))
delay_sec(settings.safety_door.spindle_on_delay, DelayMode_SysSuspend);
else if((ok == (settings.spindle.at_speed_tolerance <= 0.0f))) {
float delay = 0.0f;
while(!(ok = spindle->get_state().at_speed)) {
delay_sec(0.1f, DelayMode_SysSuspend);
delay += 0.1f;
if(ABORTED)
break;
if(delay >= settings.safety_door.spindle_on_delay) {
system_raise_alarm(Alarm_Spindle);
break;
}
}
}
}
}
return ok;
}
/*! \brief Calculate and set programmed RPM according to override and max/min limits
\param spindle pointer to a \ref spindle_ptrs_t structure.
\param rpm the programmed RPM.
\param override_pct override value in percent.
\returns the calulated RPM.
*/
float spindle_set_rpm (spindle_ptrs_t *spindle, float rpm, override_t override_pct)
{
if(override_pct != 100)
rpm *= 0.01f * (float)override_pct; // Scale RPM by override value.
// Apply RPM limits
if (rpm <= 0.0f) // TODO: remove this test?
rpm = 0.0f;
else if (rpm > spindle->rpm_max)
rpm = spindle->rpm_max;
else if (rpm < spindle->rpm_min)
rpm = spindle->rpm_min;
spindle->param->rpm_overridden = rpm;
spindle->param->override_pct = override_pct;
return rpm;
}
/*! \brief Turn off all enabled spindles.
*/
void spindle_all_off (void)
{
spindle_ptrs_t *spindle;
uint_fast8_t spindle_num = N_SYS_SPINDLE;
do {
if((spindle = spindle_get(--spindle_num))) {
spindle->param->rpm = spindle->param->rpm_overridden = 0.0f;
spindle->param->state.value = 0;
#ifdef GRBL_ESP32
spindle->esp32_off();
#else
spindle->set_state((spindle_state_t){0}, 0.0f);
#endif
}
} while(spindle_num);
}
/*! \brief Check if any of the enabled spindles is running.
\returns \a true if a spindle is running, \a false otherwise.
*/
bool spindle_is_on (void)
{
bool on = false;
spindle_ptrs_t *spindle;
uint_fast8_t spindle_num = N_SYS_SPINDLE;
do {
if((spindle = spindle_get(--spindle_num)))
on = spindle->get_state().on;
} while(spindle_num && !on);
return on;
}
//
// The following functions are not called by the core, may be called by driver code.
//
/*! \brief calculate inverted pwm value if configured
\param pwm_data pointer t a \a spindle_pwm_t structure.
\param pwm_value non inverted PWM value.
\returns the inverted PWM value to use.
*/
static inline uint_fast16_t invert_pwm (spindle_pwm_t *pwm_data, uint_fast16_t pwm_value)
{
return pwm_data->invert_pwm ? pwm_data->period - pwm_value - 1 : pwm_value;
}
/*! \brief Precompute PWM values for faster conversion.
\param spindle pointer to a \ref spindle_ptrs_t structure.
\param pwm_data pointer to a \a spindle_pwm_t structure, to hold the precomputed values.
\param clock_hz timer clock frequency used for PWM generation.
\returns \a true if successful, \a false if no PWM range possible - driver should then revert to simple on/off spindle control.
*/
bool spindle_precompute_pwm_values (spindle_ptrs_t *spindle, spindle_pwm_t *pwm_data, uint32_t clock_hz)
{
if(spindle->rpm_max > spindle->rpm_min) {
pwm_data->rpm_min = spindle->rpm_min;
pwm_data->period = (uint_fast16_t)((float)clock_hz / settings.spindle.pwm_freq);
if(settings.spindle.pwm_off_value == 0.0f)
pwm_data->off_value = pwm_data->invert_pwm ? pwm_data->period : 0;
else
pwm_data->off_value = invert_pwm(pwm_data, (uint_fast16_t)(pwm_data->period * settings.spindle.pwm_off_value / 100.0f));
pwm_data->min_value = (uint_fast16_t)(pwm_data->period * settings.spindle.pwm_min_value / 100.0f);
pwm_data->max_value = (uint_fast16_t)(pwm_data->period * settings.spindle.pwm_max_value / 100.0f) + pwm_data->offset;
pwm_data->pwm_gradient = (float)(pwm_data->max_value - pwm_data->min_value) / (spindle->rpm_max - spindle->rpm_min);
pwm_data->always_on = settings.spindle.pwm_off_value != 0.0f;
}
#if ENABLE_SPINDLE_LINEARIZATION
uint_fast8_t idx;
pwm_data->n_pieces = 0;
for(idx = 0; idx < SPINDLE_NPWM_PIECES; idx++) {
if(!isnan(settings.spindle.pwm_piece[idx].rpm) && settings.spindle.pwm_piece[idx].start != 0.0f)
memcpy(&pwm_data->piece[pwm_data->n_pieces++], &settings.spindle.pwm_piece[idx], sizeof(pwm_piece_t));
}
spindle->cap.pwm_linearization = pwm_data->n_pieces > 0;
#endif
return spindle->rpm_max > spindle->rpm_min;
}
/*! \brief Spindle RPM to PWM conversion.
\param pwm_data pointer t a \a spindle_pwm_t structure.
\param rpm spindle RPM.
\param pid_limit boolean, \a true if PID based spindle sync is used, \a false otherwise.
\returns the PWM value to use.
__NOTE:__ \a spindle_precompute_pwm_values() must be called to precompute values before this function is called.
Typically this is done by the spindle initialization code.
*/
uint_fast16_t spindle_compute_pwm_value (spindle_pwm_t *pwm_data, float rpm, bool pid_limit)
{
uint_fast16_t pwm_value;
if(rpm > pwm_data->rpm_min) {
#if ENABLE_SPINDLE_LINEARIZATION
// Compute intermediate PWM value with linear spindle speed model via piecewise linear fit model.
uint_fast8_t idx = pwm_data->n_pieces;
if(idx) {
do {
idx--;
if(idx == 0 || rpm > pwm_data->piece[idx].rpm) {
pwm_value = floorf((pwm_data->piece[idx].start * rpm - pwm_data->piece[idx].end) * pwm_data->pwm_gradient);
break;
}
} while(idx);
} else
#endif
// Compute intermediate PWM value with linear spindle speed model.
pwm_value = (uint_fast16_t)floorf((rpm - pwm_data->rpm_min) * pwm_data->pwm_gradient) + pwm_data->min_value;
if(pwm_value >= (pid_limit ? pwm_data->period : pwm_data->max_value))
pwm_value = pid_limit ? pwm_data->period - 1 : pwm_data->max_value;
else if(pwm_value < pwm_data->min_value)
pwm_value = pwm_data->min_value;
pwm_value = invert_pwm(pwm_data, pwm_value);
} else
pwm_value = rpm == 0.0f ? pwm_data->off_value : invert_pwm(pwm_data, pwm_data->min_value);
return pwm_value;
}