-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_convnet.py
70 lines (61 loc) · 2.96 KB
/
text_convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import tensorflow as tf
import numpy as np
class TextConvNet(object):
def __init__(self, sequence_length, num_classes, vocab_size,
embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0):
# Placeholders for input vectors and dropout probability
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.dropout_keep_probability = tf.placeholder(tf.float32, name="dropout_keep_probability")
# Track L2 Loss
l2_loss = tf.constant(0.0)
with tf.device('/cpu:0'), tf.name_scope("embedding"):
W = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0), name="W")
self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
# Create a convolution layer and a pool for each filter size
pooled_out = []
for filter_size in filter_sizes:
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution layer
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
conv = tf.nn.conv2d(self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply non-linearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Max Pooling
pooled = tf.nn.max_pool(h,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding="VALID",
name="pool")
pooled_out.append(pooled)
num_total_filters = num_filters * len(filter_sizes)
self.h_pool = tf.concat(3, pooled_out)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_total_filters])
# Dropout with probability: self.dropout_keep_probability
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_probability)
# Final un-normalized scores and predictions
with tf.name_scope("output"):
W = tf.get_variable("W", shape=[num_total_filters, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
self.predictions = tf.argmax(self.scores, 1, name="predictions")
# Calculate mean cross-entropy loss
with tf.name_scope("loss"):
# should the below be tf.nn.softmax_cross_entropy_with_logits(self.predictions, self.input_y) ???
losses = tf.nn.softmax_cross_entropy_with_logits(self.scores, self.input_y)
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
# Accuracy
with tf.name_scope("accuracy"):
correct = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct, "float"), name="accuracy")