-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_emotion_classifiers.py
74 lines (59 loc) · 2.63 KB
/
train_emotion_classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import cv2
import os
import random
import numpy as np
emotions = ["neutral", "anger", "contempt", "disgust", "fear", "happy", "sadness", "surprise"] # Emotion list
fishface = cv2.face.createFisherFaceRecognizer() # Initialize fisher face classifier
data = {}
def get_files(emotion): # Define function to get file list, randomly shuffle it and split 80/20
files = os.listdir(os.path.join("../ExpressionRecognizer/dataset", emotion))
random.shuffle(files)
training = files[:int(len(files) * 0.8)] # get first 80% of file list
prediction = files[-int(len(files) * 0.2):] # get last 20% of file list
return training, prediction
def make_sets():
training_data = []
training_labels = []
prediction_data = []
prediction_labels = []
for emotion in emotions:
training, prediction = get_files(emotion)
source_path = os.path.join("../ExpressionRecognizer/dataset", emotion)
# Append data to training and prediction list, and generate labels 0-7
for item in training:
image = cv2.imread(os.path.join(source_path, item)) # open image
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # convert to grayscale
training_data.append(gray) # append image array to training data list
training_labels.append(emotions.index(emotion))
for item in prediction: # repeat above process for prediction set
image = cv2.imread(os.path.join(source_path, item))
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
prediction_data.append(gray)
prediction_labels.append(emotions.index(emotion))
return training_data, training_labels, prediction_data, prediction_labels
def run_recognizer(num_run=0):
training_data, training_labels, prediction_data, prediction_labels = make_sets()
print("training fisher face classifier")
print("size of training set is:", len(training_labels), "images")
fishface.train(training_data, np.asarray(training_labels))
fishface.save('fish_models/fish_model' + str(num_run) + '.xml')
print("predicting classification set")
cnt = 0
correct = 0
incorrect = 0
for image in prediction_data:
pred, conf = fishface.predict(image)
if pred == prediction_labels[cnt]:
correct += 1
cnt += 1
else:
incorrect += 1
cnt += 1
return (100 * correct) / (correct + incorrect)
# Now run it
metascore = []
for i in range(0, 10):
correct = run_recognizer(num_run=i)
print("got", correct, "percent correct!")
metascore.append(correct)
print("end score:", np.mean(metascore), "percent correct!")