-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsupervised_track_extension.py
477 lines (355 loc) · 21.8 KB
/
supervised_track_extension.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import numpy as np
import pandas as pd
from trackml.dataset import load_event, load_dataset
from trackml.score import score_event
import os
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import DBSCAN
from tqdm import tqdm, tqdm_notebook
from mpl_toolkits.mplot3d import Axes3D
from sklearn.metrics import mean_squared_error, mean_absolute_error
import math
import datetime
import random
from sys import getsizeof
import sys, getopt
import lightgbm as lgb
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score,f1_score,log_loss
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KDTree
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
import warnings
warnings.simplefilter('ignore', np.RankWarning)
warnings.simplefilter('ignore', np.RankWarning)
from track_clustering import *
from detector_geometry import *
from utils import *
from merging_tracks import *
def features_Vmatrix(N1_df1, angle, idx, df, x, y, z, d, r, a, ns):
'''
Calculate the features.
The features are calculated between two hits (e.g. distance between the candidate hit and the last hit of the track) or on a single hit (e.g. x,y,z of a given hit)
Return a np array with the features
'''
idx0, idx1 = idx[0],idx[-1]
idx_1, idx_m2 = idx[1], idx[-2]
a0 = a[idx0]
a1 = a[idx1]
r0 = r[idx0]
r1 = r[idx1]
da1 = a[idx[-1]] - a[idx[-2]]
dr1 = r[idx[-1]] - r[idx[-2]]
direction0 = np.arctan2(r[idx[1]] - r[idx[0]], a[idx[1]] - a[idx[0]] )
direction1 = np.arctan2(r[idx[-1]] - r[idx[-2]], a[idx[-1]] - a[idx[-2]])
direction21 = np.arctan2(r[idx[2]] - r[idx[1]],a[idx[2]] - a[idx[1]])
direction23 = np.arctan2(r[idx[-2]] - r[idx[-3]],a[idx[-2]] - a[idx[-3]])
direction0_a = np.arctan2(r[idx[2]] - r[idx[0]],a[idx[2]] - a[idx[0]])
direction1_a = np.arctan2(r[idx[-1]] - r[idx[-3]],a[idx[-1]] - a[idx[-3]])
direction_lf = np.arctan2(r[idx[-1]] - r[idx[0]],a[idx[-1]] - a[idx[0]])
dr0ns = r0-r[ns]
da0ns = a0-a[ns]
features = np.stack([N1_df1[ns], np.array([angle]*len(ns)), mul_(N1_df1[idx0], ns), mul_(len(idx), ns), mul_(direction_lf, ns), df.arctan2[ns],
r[ns]-r1, np.fabs(np.arctan2(r[ns]-r1,a[ns]-a1)-direction1), np.fabs(np.arctan2(r[ns]-r1,a[ns]-a1)-direction1_a),
np.fabs(np.arctan2(r[ns]-r1,a[ns]-a1)-direction23), np.arctan2(r[ns]-r1,a[ns]-a1), [direction1]*len(ns),
a[ns]-a1, mul_(direction23, ns), mul_(direction1_a, ns), np.fabs(np.arctan2(r[ns]-r1,a[ns]-a1)-direction_lf),
np.fabs(np.arctan2(r[ns]-r[idx_m2],a[ns]-a[idx_m2])-direction1_a),r[ns]-r[idx_m2],a[ns]-a[idx_m2],
r0-r[ns], np.fabs(np.arctan2(r0-r[ns],a0-a[ns])-direction0), np.fabs(np.arctan2(r0-r[ns],a0-a[ns])-direction0_a),
np.fabs(np.arctan2(r0-r[ns],a0-a[ns])-direction21), np.arctan2(r0-r[ns],a0-a[ns]), mul_(direction0, ns),
a0-a[ns], mul_(direction21, ns), mul_(direction0_a, ns), np.fabs(np.arctan2(r0-r[ns],a0-a[ns])-direction_lf),
np.fabs(np.arctan2(r[idx_1]-r[ns],a[idx_1]-a[ns])-direction0_a),r[idx_1]-r[ns],a[idx_1]-a[ns],
mul_(r[idx[-1]] - r[idx[0]], ns), mul_(r[idx[0]], ns), r[ns],
mul_(N1_df1[idx[0]], ns), d[ns]-d[idx0], d[ns]-d[idx1], np.fabs(np.arctan2(d[ns]-d[idx1],a[ns]-a1)-direction1),
np.fabs(np.arctan2(d[idx0]-d[ns],a0-a[ns])-direction0),
(z[ns]-z[idx1])/(r[ns]-r[idx1]), (z[idx0]-z[ns])/(r[idx0]-r[ns]), np.sqrt((r0-r[ns])**2+(a0-a[ns])**2),
np.sqrt((r[ns]-r[idx1])**2+(a[ns]-a[idx1])**2),
mul_(np.sqrt(r[idx1]**2 + a[idx1]**2), ns), mul_(np.sqrt(r[idx0]**2 + a[idx0]**2), ns), np.sin(np.arctan2(r[ns],a[ns])),
(x[ns]-x[idx1])/(r[ns]-r[idx1]), (x[idx0]-x[ns])/(r[idx0]-r[ns]), (y[ns]-y[idx1])/(r[ns]-r[idx1]), (y[idx0]-y[ns])/(r[idx0]-r[ns]),
(d[ns]-d[idx1])/(r[ns]-r[idx1]), (d[idx0]-d[ns])/(r[idx0]-r[ns]), (d[ns]-d[idx_m2])/(r[ns]-r[idx_m2]), (d[idx_1]-d[ns])/(r[idx_1]-r[ns]),
np.sin(a[ns]-a[idx1]), np.cos(a[ns]-a[idx1]), np.sin(a[idx0]-a[ns]), np.cos(a[idx0]-a[ns]), mul_(np.max(r[ns]-r1), ns), mul_(np.max(r0-r[ns]), ns),
mul_(np.min(np.fabs(np.arctan2(r[ns]-r1,a[ns]-a1)-direction1)), ns), mul_(np.min(np.fabs(np.arctan2(r0-r[ns],a0-a[ns])-direction0)), ns),x[ns],mul_(x[idx0], ns),mul_(x[idx1], ns),y[ns],mul_(y[idx0], ns),mul_(y[idx1], ns),
z[ns],mul_(z[idx0], ns),mul_(z[idx1], ns), np.sin(a[ns]), np.cos(a[ns]), mul_(np.sin(a[idx0]), ns),mul_(np.cos(a[idx0]), ns),
mul_(da1/(np.sqrt(da1**2+dr1**2)+1e-6), ns), mul_(dr1/(np.sqrt(da1**2+dr1**2)+1e-6), ns), dr0ns/(np.sqrt(da0ns**2+dr0ns**2)+1e-6)], axis=1)
return features.astype('float16')
def extend_supervised_create_dataset(submission, hits, truth, training_aperture=2, k_min=50, angle_delta=2, extend_start_of_track=True, extend_end_of_track=True):
'''
Create a dataset for extending the beginning and the end of a track.
train_aprture, k_min, angle_delta - hyperparameters that regulate the potential hits to be part of the track
'''
df = submission.merge(hits, on=['hit_id'], how='left')
df = df.assign(particle_id = truth.particle_id)
df = df.assign(d = np.sqrt( df.x**2 + df.y**2 + df.z**2 ))
df = df.assign(r = np.sqrt( df.x**2 + df.y**2))
df = df.assign(arctan2 = np.arctan2(df.z, df.r))
df = df.assign(a = np.arctan2(df.y,df.x))
df_track_ids = np.array(df['track_id'].values)
df_values = df[['x','y','z','d','r','a','hit_id']].values
N1 = get_list_value_count(submission['track_id'])
X_start = []
y_start = []
X_end = []
y_end = []
for angle in range(-180,180,1):
print ('\r %f'%angle, end='',flush=True)
df1 = df.loc[(df.arctan2>(angle-angle_delta)/180*np.pi) & (df.arctan2<(angle+angle_delta)/180*np.pi)]
N1_df1 = N1[(df.arctan2>(angle-angle_delta)/180*np.pi) & (df.arctan2<(angle+angle_delta)/180*np.pi)]
min_num_neighbours = len(df1)
if min_num_neighbours<4: continue
hit_ids = df1.hit_id.values
particle_ids = df1.particle_id.values
track_ids_hit = df1.track_id.values
x,y,z = df1.as_matrix(columns=['x', 'y', 'z']).T
r = np.sqrt(x**2 + y**2)
r = r/1000
d = np.sqrt(x**2 + y**2 + z**2)
a = np.arctan2(y,x)
tree = KDTree(np.column_stack([a,r]))
track_ids = list(df1.track_id.unique())
num_track_ids = len(track_ids)
min_length=3
for i in range(num_track_ids):
p = track_ids[i]
if p==0: continue
idx = np.where(df1.track_id==p)[0]
if len(idx)<min_length: continue
if angle>0:
idx = idx[np.argsort( z[idx])]
else:
idx = idx[np.argsort(-z[idx])]
particle_id_track = truth.loc[df.track_id==p, 'particle_id'].value_counts().index.tolist()[0]
idx0, idx1 = idx[0],idx[-1]
a0 = a[idx0]
a1 = a[idx1]
r0 = r[idx0]
r1 = r[idx1]
direction0 = np.arctan2(r[idx[1]] - r[idx[0]], a[idx[1]] - a[idx[0]] )
direction1 = np.arctan2(r[idx[-1]] - r[idx[-2]], a[idx[-1]] - a[idx[-2]])
## START OF THE TRACK
if extend_start_of_track:
ns = tree.query([[a0,r0]], k=min(k_min,min_num_neighbours))
ns = np.squeeze(np.array(ns, dtype='int')[1])
direction = np.arctan2(r0-r[ns],a0-a[ns])
ns = ns[(r0-r[ns]>0) &(np.fabs(direction-direction0)<training_aperture)]
if len(ns) > 0:
## Add the new train example to the dataset (X_start & y_start)
X_start.append(features_Vmatrix(N1_df1, angle, idx, df, x, y, z, d, r, a, ns))
y_start.extend(particle_ids[ns] == particle_id_track)
## END OF THE TRACK
if extend_end_of_track:
ns = tree.query([[a1,r1]], k=min(k_min,min_num_neighbours))
ns = np.squeeze(np.array(ns, dtype='int')[1])
direction = np.arctan2(r[ns]-r1,a[ns]-a1)
ns = ns[(r[ns]-r1>0) &(np.fabs(direction-direction1)<training_aperture)]
if len(ns) > 0:
## Add the new train example to the dataset (X_start & y_start)
X_end.append(features_Vmatrix(N1_df1, angle, idx, df, x, y, z, d, r, a, ns))
y_end.extend(particle_ids[ns] == particle_id_track)
if extend_start_of_track:
X_start = np.concatenate(X_start, axis=0).astype('float16')
if extend_end_of_track:
X_end = np.concatenate(X_end, axis=0).astype('float16')
return X_start, np.array(y_start, dtype='int8'), X_end, np.array(y_end, dtype='int8')
def extend_using_supervised(submission, hits, gbm_start_classifier, gbm_end_classifier, inference_aperture=3, k_min=100, angle_delta=2,
extend_start_of_track=True, extend_end_of_track=True, threshold_start=0.5, threshold_end=0.5):
'''
Extend the tracks of a submission, following the prediction given by the classifier gbm_start_classifier and gbm_end_classifier
train_aprture, k_min, angle_delta - hyperparameters that regulate the potential hits to be part of the track
threshold_start, threshold_end - minimum threshold to declare that a hit belong to a track
'''
df = submission.merge(hits, on=['hit_id'], how='left')
df = df.assign(d = np.sqrt( df.x**2 + df.y**2 + df.z**2 ))
df = df.assign(r = np.sqrt( df.x**2 + df.y**2))
df = df.assign(arctan2 = np.arctan2(df.z, df.r))
df = df.assign(a = np.arctan2(df.y,df.x))
df_track_ids = np.array(df['track_id'].values)
df_values = df[['x','y','z','d','r','a','hit_id']].values
N1 = get_list_value_count(submission['track_id'])
for angle in range(-180,180,1):
print ('\r %f'%angle, end='',flush=True)
df1 = df.loc[(df.arctan2>(angle-angle_delta)/180*np.pi) & (df.arctan2<(angle+angle_delta)/180*np.pi)]
N1_df1 = N1[(df.arctan2>(angle-angle_delta)/180*np.pi) & (df.arctan2<(angle+angle_delta)/180*np.pi)]
min_num_neighbours = len(df1)
if min_num_neighbours<4: continue
hit_ids = df1.hit_id.values
track_ids_hit = df1.track_id.values
x,y,z = df1.as_matrix(columns=['x', 'y', 'z']).T
r = np.sqrt(x**2 + y**2)
r = r/1000
d = np.sqrt(x**2 + y**2 + z**2)
a = np.arctan2(y,x)
tree = KDTree(np.column_stack([a,r]))
track_ids = list(df1.track_id.unique())
num_track_ids = len(track_ids)
min_length=3
to_predict_start_track = []
to_predict_end_track = []
potential_new_start_track = []
potential_new_end_track = []
for i in range(num_track_ids):
p = track_ids[i]
if p==0: continue
idx = np.where(df1.track_id==p)[0]
if len(idx)<min_length: continue
if angle>0:
idx = idx[np.argsort( z[idx])]
else:
idx = idx[np.argsort(-z[idx])]
a0 = a[idx[0]]
a1 = a[idx[-1]]
r0 = r[idx[0]]
r1 = r[idx[-1]]
direction0 = np.arctan2(r[idx[1]] - r[idx[0]], a[idx[1]] - a[idx[0]] )
direction1 = np.arctan2(r[idx[-1]] - r[idx[-2]], a[idx[-1]] - a[idx[-2]])
## START OF THE TRACK
if extend_start_of_track:
ns = tree.query([[a0,r0]], k=min(k_min,min_num_neighbours))
ns = np.squeeze(np.array(ns, dtype='int')[1])
direction = np.arctan2(r0-r[ns],a0-a[ns])
ns = ns[(r0-r[ns]>0) &(np.fabs(direction-direction0)<inference_aperture)]
if len(ns) > 0:
# Calculate the features for the given observation
to_predict_start_track.append(features_Vmatrix(N1_df1, angle, idx, df, x, y, z, d, r, a, ns))
for n in ns:
# Save the potential number of the track_id
potential_new_start_track.append([np.squeeze(hit_ids[n]) - 1, p])
## END OF THE TRACK
if extend_end_of_track:
ns = tree.query([[a1,r1]], k=min(k_min,min_num_neighbours))
ns = np.squeeze(np.array(ns, dtype='int')[1])
direction = np.arctan2(r[ns]-r1,a[ns]-a1)
ns = ns[(r[ns]-r1>0) &(np.fabs(direction-direction1)<inference_aperture)]
if len(ns) > 0:
# Calculate the features for the given observation
to_predict_end_track.append(features_Vmatrix(N1_df1, angle, idx, df, x, y, z, d, r, a, ns))
for n in ns:
# Save the potential number of the track_id
potential_new_end_track.append([np.squeeze(hit_ids[n]) - 1, p])
## NB: for a computational time point of view, the predictions are done after gathering all the observation for a given angle
## Predict the hits at the start of the track
if extend_start_of_track and (len(to_predict_start_track) > 0):
## Predictions..
is_same_track = gbm_start_classifier.predict(np.nan_to_num(np.concatenate(to_predict_start_track, axis=0)), num_iteration=gbm_start_classifier.best_iteration)
arg_sorted = np.argsort(is_same_track)
## The predictions that reach the threashold are extended to the track saved in potential_new_start_track
for (t_pos, p_s), is_st in zip(np.array(potential_new_start_track)[arg_sorted],np.array(is_same_track)[arg_sorted]):
if np.squeeze(is_st) >= threshold_start:
df_track_ids[t_pos] = p_s
## Predict the hits at the end of the track
if extend_end_of_track and (len(to_predict_end_track) > 0):
## Predictions..
is_same_track = gbm_end_classifier.predict(np.nan_to_num(np.concatenate(to_predict_end_track, axis=0)), num_iteration=gbm_end_classifier.best_iteration)
arg_sorted = np.argsort(is_same_track)
## The predictions that reach the threashold are extended to the track saved in potential_new_start_track
for (t_pos, p_s), is_st in zip(np.array(potential_new_end_track)[arg_sorted],np.array(is_same_track)[arg_sorted]):
if np.squeeze(is_st) >= threshold_end:
df_track_ids[t_pos] = p_s
df['track_id'] = df_track_ids
df['track_id'] = df_track_ids
df = df[['event_id', 'hit_id', 'track_id']]
return df
def lightGBM_hit_classification(X_train, y_train, X_valid, y_valid, num_leaves=200,max_depth=-1, learning_rate=0.1, n_estimators=3000, subsample_for_bin=100000,
is_unbalance=False, min_data_in_leaf=20, bagging_fraction=1.0, bagging_freq=0, max_bin=255, min_sum_hessian_in_leaf=0.001,
min_gain_to_split=0, lambda_l2=0, scale_pos_weight=1.0, print_info=True):
'''
classification lightGBM model.
'''
p_time = PrintTime()
d_train = lgb.Dataset(X_train, label=y_train, free_raw_data=True)
d_valid = lgb.Dataset(X_valid, label=y_valid, free_raw_data=True)
params = {}
params['learning_rate'] = learning_rate
params['boosting_type'] = 'gbdt'
params['objective'] = 'binary'
params['subsample_for_bin'] = subsample_for_bin
params['num_leaves'] = num_leaves
params['max_depth'] = max_depth
params['is_unbalance'] = is_unbalance
params['scale_pos_weight'] = scale_pos_weight
params['min_data_in_leaf'] = min_data_in_leaf
params['bagging_fraction'] = bagging_fraction
params['bagging_freq'] = bagging_freq
params['max_bin'] = max_bin
params['min_sum_hessian_in_leaf'] = min_sum_hessian_in_leaf
params['min_gain_to_split'] = min_gain_to_split
params['lambda_l2'] = lambda_l2
gbm = lgb.train(params, d_train, n_estimators, valid_sets=[d_train,d_valid], early_stopping_rounds=50, verbose_eval=20,feval=custom_f1_score)
#gbm.save_model('model.lgb', num_iteration=gbm.best_iteration)
valid_predicted = gbm.predict(X_valid, num_iteration=gbm.best_iteration)
if print_info:
print('\nF1 Valid',f1_score(y_valid, np.round(valid_predicted)))
print('Logloss Valid',log_loss(y_valid, valid_predicted))
print(confusion_matrix(y_valid,np.round(valid_predicted)))
print('--------------------------')
train_predicted = gbm.predict(X_train, num_iteration=gbm.best_iteration)
if print_info:
print('\nF1 train',f1_score(y_train, np.round(train_predicted)))
print(confusion_matrix(y_train,np.round(train_predicted)))
print('Feature importances:', list(gbm.feature_importance()))
print(p_time.get_timer(reset_timer=True))
return gbm
def create_massive_dataset(classifier, train_path, training_aperture=2, angle_delta=2, k_min=50, skip=30, nevents=5, keep_only_percentage=50,
extend_start_of_track=True, extend_end_of_track=True):
'''
Create a dataset to be used for the classification of a hit to a given track. It produce a X and y data for both the start and end of a track
classifier - layer detector classifier
extend_start_of_track - boolean to declare the will to extend the start of the tracks
extend_end_of_track - boolean to declare the will to extend the end of the tracks
'''
X_start_massive = []
y_start_massive = []
X_end_massive = []
y_end_massive = []
p_timer = PrintTime()
for event_id, hits, cells, particles, truth in load_dataset(train_path, skip=skip, nevents=nevents):
print('---------- Event :',event_id, '----------')
'''
Predict basic tracks for the event
'''
rz_scale=[1.3,1.4,0.94,0.273,0.01]
shifting=[('z_shift',0)]
lab = unroll_helix_clustering(hits, classifier, truth, shifting=shifting, func='hough', dz0=0.002, num_step=40, eps=0.008, additional_theta=[0], rz_scale=rz_scale, print_info=True, threshold_value_post=15)
'''
Create the start & end dataset for the tracks just inferred
'''
extended_subm = create_one_event_submission(0, hits, lab)
X_train_start, y_train_start, X_train_end, y_train_end = extend_supervised_create_dataset(extended_subm, hits, truth, training_aperture=training_aperture, angle_delta=angle_delta, k_min=k_min,
extend_start_of_track=extend_start_of_track, extend_end_of_track=extend_end_of_track)
X_start_massive.append(X_train_start)
y_start_massive.append(y_train_start)
X_end_massive.append(X_train_end)
y_end_massive.append(y_train_end)
print('\t',p_timer.get_timer())
return np.concatenate(X_start_massive, axis=0), np.concatenate(y_start_massive, axis=0), np.concatenate(X_end_massive, axis=0), np.concatenate(y_end_massive, axis=0)
def create_supervised_track_extension_models(start_model_name, end_model_name, train_path, training_aperture=2, train_angle_delta=2, train_k_min=50, num_train_events=2, num_valid_events=1,
min_data_in_leaf=800, num_leaves=3000):
'''
It creates two models for the start and end of a track. It predict 1 if a hit belong to a track, 0 otherwise
train_aprture, k_min, angle_delta - hyperparameters that regulate which hits can be part of a track
min_data_in_leaf, num_leaves - LightGBM hyperparameters
num_train_events, num_valid_events - number of events used to create the dataset
'''
classifier = get_layer_classifier(train_path)
'''
Create the train & validation dataset for both the start and end of the track
'''
X_train_start, y_train_start, X_train_end, y_train_end = create_massive_dataset(classifier, train_path, training_aperture=training_aperture, angle_delta=train_angle_delta, k_min=train_k_min,
skip=50, nevents=num_train_events, extend_start_of_track=True, extend_end_of_track=True)
print('Train start shape:', X_train_start.shape, y_train_start.shape)
print('Train end shape:', X_train_end.shape)
X_valid_start, y_valid_start, X_valid_end, y_valid_end = create_massive_dataset(classifier, train_path, training_aperture=training_aperture, angle_delta=train_angle_delta, k_min=train_k_min,
skip=0, nevents=num_valid_events, extend_start_of_track=True, extend_end_of_track=True)
print('Valid start shape:', X_valid_start.shape)
print('Valid end shape:', X_valid_end.shape)
'''
LightGBM models
'''
scale_pos_weight = len(y_train_start[y_train_start==0])/len(y_train_start[y_train_start==1])
gbm_start = lightGBM_hit_classification(X_train_start, y_train_start, X_valid_start, y_valid_start, min_data_in_leaf=min_data_in_leaf, num_leaves=num_leaves, scale_pos_weight=scale_pos_weight)
scale_pos_weight = len(y_train_end[y_train_end==0])/len(y_train_end[y_train_end==1])
gbm_end = lightGBM_hit_classification(X_train_end, y_train_end, X_valid_end, y_valid_end, min_data_in_leaf=min_data_in_leaf, num_leaves=num_leaves, scale_pos_weight=scale_pos_weight)
gbm_start.save_model(start_model_name, num_iteration=gbm_start.best_iteration)
gbm_end.save_model(end_model_name, num_iteration=gbm_end.best_iteration)