diff --git a/include/vku/vkNames.h b/include/vku/vkNames.h new file mode 100644 index 0000000..daabd47 --- /dev/null +++ b/include/vku/vkNames.h @@ -0,0 +1,92 @@ +#pragma once + +namespace vkNames +{ + namespace CommandBuffer + { + //[[deprecated]] [[maybe_unused]] static inline constexpr char const* const COMPUTE_TEXTURE = "[cb] Compute Textures"; + [[maybe_unused]] static inline constexpr char const* const COMPUTE_LIGHT = "[cb] Compute Light"; + [[maybe_unused]] static inline constexpr char const* const TRANSFER_LIGHT = "[cb] Transfer Light"; + [[maybe_unused]] static inline constexpr char const* const TRANSFER = "[cb] Transfer"; + [[maybe_unused]] static inline constexpr char const* const STATIC = "[cb] Static"; + [[maybe_unused]] static inline constexpr char const* const GPU_READBACK = "[cb] Gpu Readback"; + [[maybe_unused]] static inline constexpr char const* const DYNAMIC = "[cb] Dynamic"; + [[maybe_unused]] static inline constexpr char const* const PRESENT = "[cb] Present"; + [[maybe_unused]] static inline constexpr char const* const CLEAR = "[cb] Clears"; + [[maybe_unused]] static inline constexpr char const* const OVERLAY_RENDER = "[cb] Overlay Render"; + [[maybe_unused]] static inline constexpr char const* const OVERLAY_TRANSFER = "[cb] Overlay Transfer"; + [[maybe_unused]] static inline constexpr char const* const CHECKERBOARD = "[cb] Checkerboard"; + }; // end ns + + namespace FrameBuffer + { + [[maybe_unused]] static inline constexpr char const* const CLEAR = "[fb] Clears"; + [[maybe_unused]] static inline constexpr char const* const PRESENT = "[fb] Present"; + [[maybe_unused]] static inline constexpr char const* const POSTAA = "[fb] PostAA"; + [[maybe_unused]] static inline constexpr char const* const COLOR_DEPTH = "[fb] Color Depth"; + [[maybe_unused]] static inline constexpr char const* const OFFSCREEN = "[fb] Offscreen Color Depth"; + [[maybe_unused]] static inline constexpr char const* const MID_COLOR_DEPTH = "[fb] Mid Color Depth"; + [[maybe_unused]] static inline constexpr char const* const FULL_COLOR_ONLY = "[fb] Full Color Only"; + [[maybe_unused]] static inline constexpr char const* const HALF_COLOR_ONLY = "[fb] Half Color Only"; + [[maybe_unused]] static inline constexpr char const* const DEPTH = "[fb] Depth"; + } + + namespace Renderpass + { + [[maybe_unused]] static inline constexpr char const* const CLEAR = "[rp] Clears"; + [[maybe_unused]] static inline constexpr char const* const FINAL = "[rp] Final"; + [[maybe_unused]] static inline constexpr char const* const POSTAA = "[rp] PostAA"; + [[maybe_unused]] static inline constexpr char const* const OVERLAY = "[rp] Overlay"; + [[maybe_unused]] static inline constexpr char const* const OFFSCREEN = "[rp] Offscreen"; + [[maybe_unused]] static inline constexpr char const* const MIDPASS = "[rp] Mid"; + [[maybe_unused]] static inline constexpr char const* const UPPASS = "[rp] Up"; + [[maybe_unused]] static inline constexpr char const* const DOWNPASS = "[rp] Down"; + [[maybe_unused]] static inline constexpr char const* const ZPASS = "[rp] Z"; + } + + namespace Queue + { + [[maybe_unused]] static inline constexpr char const* const GRAPHICS = "[q] Graphics"; + [[maybe_unused]] static inline constexpr char const* const COMPUTE = "[q] Compute"; + [[maybe_unused]] static inline constexpr char const* const TRANSFER = "[q] Transfer"; + } + + namespace Image + { + [[maybe_unused]] static inline constexpr char const* const colorImage = "[img] colorImage"; + [[maybe_unused]] static inline constexpr char const* const depthImage = "[img] depthImage"; + [[maybe_unused]] static inline constexpr char const* const depthImageResolve = "[img] depthImageResolve"; + [[maybe_unused]] static inline constexpr char const* const mouseImage_multisampled = "[img] mouseImage_multisampled"; + [[maybe_unused]] static inline constexpr char const* const mouseImage_resolved = "[img] mouseImage_resolved"; + [[maybe_unused]] static inline constexpr char const* const stencilCheckerboard = "[img] stencilCheckerboard"; + [[maybe_unused]] static inline constexpr char const* const lastColorImage = "[img] lastColorImage"; + [[maybe_unused]] static inline constexpr char const* const colorVolumetricImage_checkered = "[img] colorVolumetricImage_checkered"; + [[maybe_unused]] static inline constexpr char const* const colorVolumetricImage_resolved = "[img] colorVolumetricImage_resolved"; + [[maybe_unused]] static inline constexpr char const* const colorVolumetricImage_upsampled = "[img] colorVolumetricImage_upsampled"; + [[maybe_unused]] static inline constexpr char const* const colorReflectionImage_checkered = "[img] colorReflectionImage_checkered"; + [[maybe_unused]] static inline constexpr char const* const colorReflectionImage_resolved = "[img] colorReflectionImage_resolved"; + [[maybe_unused]] static inline constexpr char const* const colorReflectionImage_upsampled = "[img] colorReflectionImage_upsampled"; + [[maybe_unused]] static inline constexpr char const* const guiImage = "[img] guiImage"; + [[maybe_unused]] static inline constexpr char const* const offscreenImage = "[img] offscreenImage"; + [[maybe_unused]] static inline constexpr char const* const PingPongMap = "[img] PingPongMap"; + [[maybe_unused]] static inline constexpr char const* const LightProbeMap = "[img] LightProbeMap"; + [[maybe_unused]] static inline constexpr char const* const LightMap_DistanceDirection = "[img] LightMap_DistanceDirection"; + [[maybe_unused]] static inline constexpr char const* const LightMap_Color = "[img] LightMap_Color"; + [[maybe_unused]] static inline constexpr char const* const LightMap_Reflection = "[img] LightMap_Reflection"; + [[maybe_unused]] static inline constexpr char const* const OpacityMap = "[img] OpacityMap"; + } + + namespace Buffer + { + [[maybe_unused]] static inline constexpr char const* const SUBGROUP_LAYER_COUNT = "[buf] Subgroup Layer Count"; + [[maybe_unused]] static inline constexpr char const* const SHARED = "[buf] Shared"; + [[maybe_unused]] static inline constexpr char const* const TERRAIN = "[buf] Terrain"; + [[maybe_unused]] static inline constexpr char const* const ROAD = "[buf] Road"; + [[maybe_unused]] static inline constexpr char const* const VOXEL_STATIC = "[buf] Voxel Static"; + [[maybe_unused]] static inline constexpr char const* const VOXEL_DYNAMIC = "[buf] Voxel Dynamic"; + [[maybe_unused]] static inline constexpr char const* const VOXEL_SHARED_UNIFORM = "[buf] Voxel Shared Uniform"; + } +}; // end ns + + + diff --git a/include/vku/vku.hpp b/include/vku/vku.hpp index b27d4b8..7877791 100644 --- a/include/vku/vku.hpp +++ b/include/vku/vku.hpp @@ -2,7 +2,7 @@ // /// Vookoo high level C++ Vulkan interface. // -/// (C) Vookoo Contributors, MIT License +/// (C) Andy Thomason 2017 MIT License // /// This is a utility set alongside the vkcpp C++ interface to Vulkan which makes /// constructing Vulkan pipelines and resources very easy for beginners. @@ -15,65 +15,165 @@ // //////////////////////////////////////////////////////////////////////////////// +// Additions & Fixes - +// Jason Tully +// 2022 +// (supports minimum spec Radeon 290, Hvidia GTX 970) + +#pragma once #ifndef VKU_HPP #define VKU_HPP -#include +#include +#pragma intrinsic(memcpy) +#pragma intrinsic(memset) + +#define VK_NO_PROTOTYPES +#include "volk/volk.h" + #include #include -#include -#include #include #include #include #include #include +#include +#include +#include + +#ifndef NDEBUG +//#define BREAK_ON_VALIDATION_ERROR 1 // set to 1 to enable debug break on vulkan validation errors. callstack can be used to find source of error. +#endif + +#ifndef NDEBUG +//#define SYNC_VALIDATION_ONLY 1 +#endif -#ifdef VOOKOO_SPIRV_SUPPORT - #include +// workaround, so volk gets used instead. note that vulkan is not staically linked using this method +// all vulkan function calls route properly through volk +// modify Vulkan->hpp (line 756) +// #if defined(VK_NO_PROTOTYPES) // was: #if !defined(VK_NO_PROTOTYPES) +// class DispatchLoaderStatic +#define VULKAN_HPP_ENABLE_DYNAMIC_LOADER_TOOL 0 // disabled - using volk instead +#define VULKAN_HPP_DISPATCH_LOADER_DYNAMIC 0 // disabled - using volk instead +#define VULKAN_HPP_NO_NODISCARD_WARNINGS +#define VULKAN_HPP_NO_EXCEPTIONS +#define VULKAN_HPP_ASSERT (void) + +// #################################################################################################################### +#pragma component(browser, off, references) // warning BK4504 workaround +#include +#include // this is the one and only place Vulkan->hpp can be included, use cVulkan->h (prefer) +#pragma component(browser, on, references) // warning BK4504 workaround +// ##################################################################################################################### + +#include +#include + +#define VULKAN_API_VERSION_USED VK_API_VERSION_1_2 + +#include + +#define VMA_STATIC_VULKAN_FUNCTIONS 1 // route to volk +#define VMA_VULKAN_VERSION 1002000 // Vulkan 1.2 +#define VMA_DEDICATED_ALLOCATION 1 +#define VMA_MEMORY_BUDGET 1 + +#ifndef NDEBUG +#ifdef VKU_VMA_DEBUG_ENABLED +#define VMA_DEBUG_MARGIN 32 +#define VMA_DEBUG_DETECT_CORRUPTION 1 +#define VMA_RECORDING_ENABLED 0 +#define VMA_STATS_STRING_ENABLED 1 +#define VMA_DEBUG_LOG(message, ...) { (fmt::printf("[VMA] " INVERSE_ANSI message INVERSE_ANSI_OFF "\n", __VA_ARGS__)); } +#endif +#define VMA_ASSERT(expr) assert_print(expr, "VMA Memory FAIL"); +#else +#define VMA_DEBUG_MARGIN 0 +#define VMA_DEBUG_DETECT_CORRUPTION 0 +#define VMA_RECORDING_ENABLED 0 +#define VMA_STATS_STRING_ENABLED 0 +#define VMA_DEBUG_LOG(format, ...) (void)format; +#define VMA_ASSERT(expr) ((void)0) +#endif +#ifndef VULKAN_H_ +#define VULKAN_H_ // sanity check prevent vma from additional inclusion of Vulkan->h which is covered by volk ONLY #endif -#include +#include namespace vku { + extern VmaAllocator vma_; //singleton - further initialized by vku_framework after device creation + extern tbb::concurrent_unordered_map> pool_; + + enum eMappedAccess + { + Disabled = 0, + Sequential = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT, + Random = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT + }; + /// Printf-style formatting function. template std::string format(const char *fmt, Args... args) { - int n = snprintf(nullptr, 0, fmt, args...); - std::string result(n, '\0'); - snprintf(&*result.begin(), n+1, fmt, args...); - return result; + //int n = (snprintf(nullptr, 0, fmt, args...); + //std::string result(n, '\0'); + //snprintf(&*result.begin(), n+1, fmt, args...); + return(fmt::format(fmt, args)); } -/// Utility function for finding memory types for uniforms and images. -inline int findMemoryTypeIndex(const vk::PhysicalDeviceMemoryProperties &memprops, uint32_t memoryTypeBits, vk::MemoryPropertyFlags search) { - for (int i = 0; i != memprops.memoryTypeCount; ++i, memoryTypeBits >>= 1) { - if (memoryTypeBits & 1) { - if ((memprops.memoryTypes[i].propertyFlags & search) == search) { - return i; - } - } - } - return -1; -} +template +static inline void executeImmediately(vk::Device const& __restrict device, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue, std::function const func) { // const std::function + + static constexpr uint64_t const umax = nanoseconds(milliseconds(500)).count(); -/// Execute commands immediately and wait for the device to finish. -inline void executeImmediately(vk::Device device, vk::CommandPool commandPool, vk::Queue queue, const std::function &func) { - vk::CommandBufferAllocateInfo cbai{ commandPool, vk::CommandBufferLevel::ePrimary, 1 }; + using pool_map = tbb::concurrent_unordered_map>; - auto cbs = device.allocateCommandBuffers(cbai); - cbs[0].begin(vk::CommandBufferBeginInfo{}); - func(cbs[0]); - cbs[0].end(); + pool_map::const_iterator container(pool_.find(commandPool)); - vk::SubmitInfo submit; - submit.commandBufferCount = (uint32_t)cbs.size(); - submit.pCommandBuffers = cbs.data(); - queue.submit(submit, vk::Fence{}); - device.waitIdle(); + if (pool_.cend() == container) { + vk::CommandBufferAllocateInfo const cbai{ commandPool, vk::CommandBufferLevel::ePrimary, 2 }; // always allocating 2 command buffers on this command pools first usage - device.freeCommandBuffers(commandPool, cbs); + auto const [iter, success] = pool_.emplace(commandPool, CommandBufferContainer<1>(device, cbai)); +#ifndef NDEBUG + assert_print(success, "Could not allocate command buffer! FAIL"); +#endif + container = iter; + } + + // try first command buffer, no waiting (fast path) + vk::CommandBuffer cb(*container->second.cb[0][0]); + vk::Fence cbFence(container->second.fence[0][0]); + + if (vk::Result::eTimeout == device.waitForFences(cbFence, VK_FALSE, 0)) { + // try second command buffer, waiting if neccessary + cb = *container->second.cb[0][1]; + cbFence = container->second.fence[0][1]; + device.waitForFences(cbFence, VK_TRUE, umax); + } + + cb.begin(vk::CommandBufferBeginInfo{ vk::CommandBufferUsageFlagBits::eOneTimeSubmit }); + func(cb); + cb.end(); + + vk::SubmitInfo submit{}; + submit.commandBufferCount = 1; + submit.pCommandBuffers = &cb; + + device.resetFences(cbFence); + queue.submit(submit, cbFence); + + if constexpr (!bAsync) { + queue.waitIdle(); + } +} + +// memory barrier helper +static inline void memory_barrier(vk::CommandBuffer& cb, vk::PipelineStageFlags const srcStageMask, vk::PipelineStageFlags const dstStageMask, vk::AccessFlags const srcAccessMask, vk::AccessFlags const dstAccessMask) { + vk::MemoryBarrier mb(srcAccessMask, dstAccessMask); + cb.pipelineBarrier(srcStageMask, dstStageMask, vk::DependencyFlagBits::eByRegion, mb, nullptr, nullptr); } /// Scale a value by mip level, but do not reduce to zero. @@ -307,50 +407,36 @@ class InstanceMaker { InstanceMaker() { } - InstanceMaker &extensionMultiview () - { - extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME); // added for multiview extension - return *this; - } - - InstanceMaker &extensionValidation () - { - layers_.push_back("VK_LAYER_KHRONOS_validation"); - return *this; - } - /// Set the default layers and extensions. - InstanceMaker &defaultLayers(int core=0) - { - instance_extensions_.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME); - -#ifdef VKU_SURFACE - instance_extensions_.push_back(VKU_SURFACE); + InstanceMaker &defaultLayers() { +#ifndef NDEBUG + +#if defined(SYNC_VALIDATION_ONLY) && SYNC_VALIDATION_ONLY + layer("VK_LAYER_KHRONOS_synchronization2"); +#else + layer("VK_LAYER_KHRONOS_validation"); #endif - - instance_extensions_.push_back(VK_KHR_SURFACE_EXTENSION_NAME); - -#if defined( __APPLE__ ) && defined(VK_EXT_METAL_SURFACE_EXTENSION_NAME) - instance_extensions_.push_back(VK_EXT_METAL_SURFACE_EXTENSION_NAME); -#endif //__APPLE__ - - if (core > 0) - { - - } + extension(VK_EXT_DEBUG_UTILS_EXTENSION_NAME); +#endif + +#ifdef VKU_SURFACE + extension(VKU_SURFACE); +#endif + extension(VK_KHR_SURFACE_EXTENSION_NAME); + extension(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME); return *this; } - /// Add a layer. eg. "VK_LAYER_KHRONOS_validation" + /// Add a layer. eg. "VK_LAYER_LUNARG_standard_validation" InstanceMaker &layer(const char *layer) { layers_.push_back(layer); return *this; } - /// Add an extension. eg. VK_EXT_DEBUG_REPORT_EXTENSION_NAME - InstanceMaker &extension(const char *layer) { - instance_extensions_.push_back(layer); + /// Add an extension. eg. VK_EXT_DEBUG_UTILS_EXTENSION_NAME + InstanceMaker &extension(const char * extension) { + instance_extensions_.push_back(extension); return *this; } @@ -391,13 +477,46 @@ class InstanceMaker { /// Create a self-deleting (unique) instance. vk::UniqueInstance createUnique() { - return vk::createInstanceUnique( - vk::InstanceCreateInfo{ - {}, &app_info_, (uint32_t)layers_.size(), - layers_.data(), (uint32_t)instance_extensions_.size(), - instance_extensions_.data() - } - ); + + // common to both release and debug builds // + vk::UniqueInstance instance; + + vk::InstanceCreateInfo instanceInfo{ + {}, &app_info_, (uint32_t)layers_.size(), + layers_.data(), (uint32_t)instance_extensions_.size(), + instance_extensions_.data() + }; + +#ifndef NDEBUG + // *******Debug - enable extra validation here (performance warnings galore) + //vk::ValidationFeatureEnableEXT const enabledValidation[]{ /*vk::ValidationFeatureEnableEXT::eGpuAssisted, vk::ValidationFeatureEnableEXT::eGpuAssistedReserveBindingSlot,*/ vk::ValidationFeatureEnableEXT::eBestPractices}; + //vk::ValidationFeaturesEXT enabledValidationFeatures(_countof(enabledValidation), enabledValidation); + + // pNext linked list chain start: + //enabledValidationFeatures.pNext = instanceInfo.pNext; + //instanceInfo.pNext = &enabledValidationFeatures; + +#else // *******Release + // ensure validation is disabled on release builds // + vk::ValidationFeatureDisableEXT const disabledValidation[]{ vk::ValidationFeatureDisableEXT::eAll }; + vk::ValidationFeaturesEXT disabledValidationFeatures({}, 0, _countof(disabledValidation), disabledValidation); + + vk::ValidationCheckEXT const disableValidation[]{ vk::ValidationCheckEXT::eAll }; + vk::ValidationFlagsEXT disabledValidationFlags{ _countof(disableValidation), disableValidation }; + + // pNext linked list chain start: + disabledValidationFeatures.pNext = instanceInfo.pNext; + disabledValidationFlags.pNext = &disabledValidationFeatures; + instanceInfo.pNext = &disabledValidationFlags; + +#endif + + // instance creation // + instance = vk::createInstanceUnique(instanceInfo).value; + + volkLoadInstanceOnly(*instance); // volk + + return(instance); } private: std::vector layers_; @@ -412,29 +531,20 @@ class DeviceMaker { DeviceMaker() { } - DeviceMaker &extensionMultiview () - { - extension(VK_KHR_MULTIVIEW_EXTENSION_NAME); // added for multiview extension - return *this; - } - - DeviceMaker &extensionValidation () - { - layers_.push_back("VK_LAYER_LUNARG_standard_validation"); - return *this; - } - /// Set the default layers and extensions. - DeviceMaker &defaultLayers(int core=0) - { - device_extensions_.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME); - - if (core > 0) - { - // VK_KHR_MAINTENANCE1 is required for using negative viewport heights - // Note: This is core as of Vulkan 1.1. So if you target 1.1 you don't have to explicitly enable this - device_extensions_.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME); - } + DeviceMaker &defaultLayers() { + +#ifndef NDEBUG + +#if defined(SYNC_VALIDATION_ONLY) && SYNC_VALIDATION_ONLY + //layer("VK_LAYER_KHRONOS_synchronization2"); +#else + layer("VK_LAYER_LUNARG_standard_validation"); + layer("VK_LAYER_LUNARG_assistant_layer"); +#endif + +#endif + extension(VK_KHR_SWAPCHAIN_EXTENSION_NAME); return *this; } @@ -444,88 +554,62 @@ class DeviceMaker { return *this; } - /// Add an extension. eg. VK_EXT_DEBUG_REPORT_EXTENSION_NAME - DeviceMaker &extension(const char *layer) { - device_extensions_.push_back(layer); + /// Add an extension. eg. VK_EXT_DEBUG_UTILS_EXTENSION_NAME + DeviceMaker &extension(const char *extension) { + device_extensions_.push_back(extension); return *this; } /// Add one or more queues to the device from a certain family. - DeviceMaker &queue(uint32_t familyIndex, float priority=0.0f, uint32_t n=1) { - queue_priorities_.emplace_back(n, priority); - - qci_.emplace_back( - vk::DeviceQueueCreateFlags{}, - familyIndex, n, - queue_priorities_.back().data() - ); + //template< VkQueueGlobalPriorityEXT const global_priority = VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT > // *bugfix - NVIDIA does not support this extension. It's not really needed - all queue priorities were the same anyway. + DeviceMaker &queue(uint32_t const familyIndex, uint32_t const n = 1u) { + queue_priorities_.emplace_back(n, 1.0f); + + vk::DeviceQueueCreateInfo new_queue(vk::DeviceQueueCreateFlags{}, + familyIndex, n, + queue_priorities_.back().data()); + + //if constexpr(VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT != global_priority) { // only if not default global priority + // + // static VkDeviceQueueGlobalPriorityCreateInfoEXT global_priority_ext; // static life time required for deferred init from this function + // only unique because of the template specialization + // global_priority_ext.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT; + // global_priority_ext.globalPriority = global_priority; + // global_priority_ext.pNext = nullptr; + + // new_queue.pNext = &global_priority_ext; + //} + qci_.emplace_back(new_queue); return *this; } - DeviceMaker &physicalDeviceFeatures(const vk::PhysicalDeviceFeatures &v = {}) - { - pdfs_.push_back(v); - return *this; - } - - DeviceMaker &enableGeometryShader () - { - // assert !pdfs_.empty() - pdfs_.back().setGeometryShader(true); - return *this; - } - - DeviceMaker &enableTessellationShader () - { - // assert !pdfs_.empty() - pdfs_.back().setTessellationShader(true); - return *this; - } - - DeviceMaker &multiviewFeatures (const vk::PhysicalDeviceMultiviewFeatures &v = {}) - { - mvfs_.push_back(v); - return *this; - } - - DeviceMaker &enableMultiview () - { - // assert !mvfs_.empty() - mvfs_.back().setMultiview(true); - return *this; - } - /// Create a new logical device. - vk::UniqueDevice createUnique(vk::PhysicalDevice physical_device) { - auto dci = vk::DeviceCreateInfo{ - {}, - (uint32_t)qci_.size(), qci_.data(), - (uint32_t)layers_.size(), layers_.data(), - (uint32_t)device_extensions_.size(), device_extensions_.data() - }; + vk::UniqueDevice createUnique(vk::PhysicalDevice physical_device, vk::PhysicalDeviceFeatures const& enabledFeatures, const void* const __restrict pNext = nullptr) { - // - if (!pdfs_.empty()) - dci.setPEnabledFeatures(&pdfs_.front()); + vk::DeviceCreateInfo createInfo{ + {}, (uint32_t)qci_.size(), qci_.data(), + (uint32_t)layers_.size(), layers_.data(), + (uint32_t)device_extensions_.size(), device_extensions_.data(), + &enabledFeatures }; - // required to enable and use multiview - if (!mvfs_.empty()) - dci.pNext = &mvfs_.front(); + createInfo.pNext = pNext; + + vk::UniqueDevice device = physical_device.createDeviceUnique(createInfo).value; - return physical_device.createDeviceUnique(dci); + volkLoadDevice(*device); // volk + + return(device); } private: std::vector layers_; std::vector device_extensions_; std::vector > queue_priorities_; std::vector qci_; - std::vector pdfs_; - std::vector mvfs_; - vk::ApplicationInfo app_info_; }; +#ifndef NDEBUG class DebugCallback { public: DebugCallback() { @@ -533,59 +617,212 @@ class DebugCallback { DebugCallback( vk::Instance instance, - vk::DebugReportFlagsEXT flags = - vk::DebugReportFlagBitsEXT::eWarning | - vk::DebugReportFlagBitsEXT::eError + vk::DebugUtilsMessageSeverityFlagsEXT const severityFlags = + vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning | + vk::DebugUtilsMessageSeverityFlagBitsEXT::eError ) : instance_(instance) { - auto ci = vk::DebugReportCallbackCreateInfoEXT{flags, &debugCallback}; +#ifndef NDEBUG + vk::DebugUtilsMessageTypeFlagsEXT const typeFlags(vk::DebugUtilsMessageTypeFlagBitsEXT::ePerformance | vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation); + vk::DebugUtilsMessengerCreateFlagBitsEXT const flags{}; - auto vkCreateDebugReportCallbackEXT = - (PFN_vkCreateDebugReportCallbackEXT)instance_.getProcAddr( - "vkCreateDebugReportCallbackEXT"); + auto ci = vk::DebugUtilsMessengerCreateInfoEXT(flags, severityFlags, typeFlags, &debugCallback); - VkDebugReportCallbackEXT cb; - vkCreateDebugReportCallbackEXT( - instance_, &(const VkDebugReportCallbackCreateInfoEXT &)ci, - nullptr, &cb + auto vkCreateDebugUtilsMessengerEXT = + (PFN_vkCreateDebugUtilsMessengerEXT)instance_.getProcAddr( + "vkCreateDebugUtilsMessengerEXT"); + + VkDebugUtilsMessengerEXT mess; + vkCreateDebugUtilsMessengerEXT( + instance_, &(const VkDebugUtilsMessengerCreateInfoEXT&)ci, + nullptr, &mess ); - callback_ = cb; + messenger_ = mess; +#endif } ~DebugCallback() { - //reset(); + //reset(); // handled by messenger_ object at exit } void reset() { - if (callback_) { - auto vkDestroyDebugReportCallbackEXT = - (PFN_vkDestroyDebugReportCallbackEXT)instance_.getProcAddr( - "vkDestroyDebugReportCallbackEXT"); - vkDestroyDebugReportCallbackEXT(instance_, callback_, nullptr); - callback_ = vk::DebugReportCallbackEXT{}; + if (messenger_) { + auto vkDestroyDebugUtilsMessengerEXT = + (PFN_vkDestroyDebugUtilsMessengerEXT)instance_.getProcAddr( + "vkDestroyDebugUtilsMessengerEXT"); + vkDestroyDebugUtilsMessengerEXT(instance_, messenger_, nullptr); + messenger_ = vk::DebugUtilsMessengerEXT{}; } } + + void acquireDeviceFunctionPointers( vk::Device const& device ) { + + device_ = device; + + pfn_vkSetDebugUtilsObjectNameEXT = (PFN_vkSetDebugUtilsObjectNameEXT)device.getProcAddr("vkSetDebugUtilsObjectNameEXT"); + pfn_vkCmdInsertDebugUtilsLabelEXT = (PFN_vkCmdInsertDebugUtilsLabelEXT)device.getProcAddr("vkCmdInsertDebugUtilsLabelEXT"); + } private: - // Report any errors or warnings. + /* + + typedef VkBool32 (VKAPI_PTR *PFN_vkDebugUtilsMessengerCallbackEXT)( + VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, + VkDebugUtilsMessageTypeFlagsEXT messageTypes, + const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, + void* pUserData); + + */ + // Messagner callback, outputing to console any errors or warnings. static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback( - VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, - uint64_t object, size_t location, int32_t messageCode, - const char *pLayerPrefix, const char *pMessage, void *pUserData) { - printf("%08x debugCallback: %s\n", flags, pMessage); + VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, + VkDebugUtilsMessageTypeFlagsEXT messageTypes, + const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void *pUserData) { + + static constexpr int32_t const granularity = 24 << 2; + static std::string szLast = ""; + constinit static int32_t iReplicateCnt = granularity; + + if (iReplicateCnt <= 0 || szLast.find(std::string(pCallbackData->pMessageIdName).substr(1, granularity>>1)) == std::string::npos) { + + vk::DebugUtilsMessageSeverityFlagsEXT const severity(messageSeverity); + vk::DebugUtilsMessageTypeFlagsEXT const types(messageTypes); + + fmt::print(fg(fmt::color::orange), "\n ++++ "); + fmt::print("\n{:s}-{:s} : {:s} {:s}\n", vk::to_string(severity), vk::to_string(types), pCallbackData->pMessage, (iReplicateCnt<=0?"REPEATED":"")); + + uint32_t index(0); + uint32_t queueLabelCount(pCallbackData->queueLabelCount); + while (queueLabelCount--) { + std::string_view const label(pCallbackData->pQueueLabels[index].pLabelName ? pCallbackData->pQueueLabels[index].pLabelName : "null"); + fmt::print("\n\t queue: {:s}", label); + + ++index; + } + + index = 0; + uint32_t cmdbufferLabelCount(pCallbackData->cmdBufLabelCount); + while (cmdbufferLabelCount--) { + std::string_view const label(pCallbackData->pCmdBufLabels[index].pLabelName ? pCallbackData->pCmdBufLabels[index].pLabelName : "null"); + fmt::print("\n\t command buffer: {:s}", label); + + ++index; + } + + index = 0; + uint32_t objectLabelCount(pCallbackData->objectCount); + while (objectLabelCount--) { + + vk::ObjectType const type((vk::ObjectType)pCallbackData->pObjects[index].objectType); + + std::string_view const label(pCallbackData->pObjects[index].pObjectName ? pCallbackData->pObjects[index].pObjectName : "null"); + fmt::print("\n\t {:s}: {:s}", vk::to_string(type), label); + + ++index; + } + + fmt::print(fg(fmt::color::orange), "\n ++++ \n"); + + szLast = pCallbackData->pMessageIdName; + iReplicateCnt = granularity; + } + else { + --iReplicateCnt; + } + +#if defined(BREAK_ON_VALIDATION_ERROR) +#if BREAK_ON_VALIDATION_ERROR + DebugBreak(); + quick_exit(1); +#endif +#endif + return VK_FALSE; } - vk::DebugReportCallbackEXT callback_; + vk::DebugUtilsMessengerEXT messenger_; vk::Instance instance_; + + public: + static inline vk::Device device_; + static inline PFN_vkSetDebugUtilsObjectNameEXT pfn_vkSetDebugUtilsObjectNameEXT = nullptr; + static inline PFN_vkCmdInsertDebugUtilsLabelEXT pfn_vkCmdInsertDebugUtilsLabelEXT = nullptr; }; +// use vk::ObjectType::_xxx_ +/* +enum class ObjectType + { + eUnknown = VK_OBJECT_TYPE_UNKNOWN, + eInstance = VK_OBJECT_TYPE_INSTANCE, + ePhysicalDevice = VK_OBJECT_TYPE_PHYSICAL_DEVICE, + eDevice = VK_OBJECT_TYPE_DEVICE, + eQueue = VK_OBJECT_TYPE_QUEUE, + eSemaphore = VK_OBJECT_TYPE_SEMAPHORE, + eCommandBuffer = VK_OBJECT_TYPE_COMMAND_BUFFER, + eFence = VK_OBJECT_TYPE_FENCE, + eDeviceMemory = VK_OBJECT_TYPE_DEVICE_MEMORY, + eBuffer = VK_OBJECT_TYPE_BUFFER, + eImage = VK_OBJECT_TYPE_IMAGE, + eEvent = VK_OBJECT_TYPE_EVENT, + eQueryPool = VK_OBJECT_TYPE_QUERY_POOL, + eBufferView = VK_OBJECT_TYPE_BUFFER_VIEW, + eImageView = VK_OBJECT_TYPE_IMAGE_VIEW, + eShaderModule = VK_OBJECT_TYPE_SHADER_MODULE, + ePipelineCache = VK_OBJECT_TYPE_PIPELINE_CACHE, + ePipelineLayout = VK_OBJECT_TYPE_PIPELINE_LAYOUT, + eRenderPass = VK_OBJECT_TYPE_RENDER_PASS, + ePipeline = VK_OBJECT_TYPE_PIPELINE, + eDescriptorSetLayout = VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, + eSampler = VK_OBJECT_TYPE_SAMPLER, + eDescriptorPool = VK_OBJECT_TYPE_DESCRIPTOR_POOL, + eDescriptorSet = VK_OBJECT_TYPE_DESCRIPTOR_SET, + eFramebuffer = VK_OBJECT_TYPE_FRAMEBUFFER, + eCommandPool = VK_OBJECT_TYPE_COMMAND_POOL, + eSamplerYcbcrConversion = VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION, + eDescriptorUpdateTemplate = VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE, + eSurfaceKHR = VK_OBJECT_TYPE_SURFACE_KHR, + eSwapchainKHR = VK_OBJECT_TYPE_SWAPCHAIN_KHR, + eDisplayKHR = VK_OBJECT_TYPE_DISPLAY_KHR, + eDisplayModeKHR = VK_OBJECT_TYPE_DISPLAY_MODE_KHR, + eDebugReportCallbackEXT = VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT, + eObjectTableNVX = VK_OBJECT_TYPE_OBJECT_TABLE_NVX, + eIndirectCommandsLayoutNVX = VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX, + eDebugUtilsMessengerEXT = VK_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT, + eValidationCacheEXT = VK_OBJECT_TYPE_VALIDATION_CACHE_EXT, + eAccelerationStructureNV = VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_NV, + ePerformanceConfigurationINTEL = VK_OBJECT_TYPE_PERFORMANCE_CONFIGURATION_INTEL, + eDescriptorUpdateTemplateKHR = VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_KHR, + eSamplerYcbcrConversionKHR = VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_KHR + }; + */ +#define VKU_SET_OBJECT_NAME(type, object, objectname) \ +{ \ + vk::DebugUtilsObjectNameInfoEXT const obj{ \ + type, (uint64_t)(object), objectname \ + }; \ + vku::DebugCallback::pfn_vkSetDebugUtilsObjectNameEXT((VkDevice const)vku::DebugCallback::device_, ((VkDebugUtilsObjectNameInfoEXT const* const)&obj)); \ +} +#define VKU_SET_CMD_BUFFER_LABEL(cb, labelname) \ +{ \ + vk::DebugUtilsLabelEXT const label{ labelname }; \ + vku::DebugCallback::pfn_vkCmdInsertDebugUtilsLabelEXT((VkCommandBuffer const)cb, ((VkDebugUtilsLabelEXT const* const)&label)); \ +} + +#else // NDEBUG + +#define VKU_SET_OBJECT_NAME(type, object, objectname) { (void)type; (void)object; (void)objectname; } +#define VKU_SET_CMD_BUFFER_LABEL(cb, labelname) { (void)cb; (void)labelname; } + +#endif + /// Factory for renderpasses. /// example: /// RenderpassMaker rpm; /// rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); /// rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal); -/// +/// /// rpm.attachmentDescription(attachmentDesc); /// rpm.subpassDependency(dependency); /// s.renderPass_ = rpm.createUnique(device); +// ********* Color Attachments should be grouped together, same with Input Attachments ********* class RenderpassMaker { public: RenderpassMaker() { @@ -593,65 +830,90 @@ class RenderpassMaker { /// Begin an attachment description. /// After this you can call attachment* many times - RenderpassMaker& attachmentBegin(vk::Format format) { - vk::AttachmentDescription desc{{}, format}; - s.attachmentDescriptions.push_back(desc); - return *this; + void attachmentBegin(vk::Format format) { + s.attachmentDescriptions.emplace_back(vk::AttachmentDescription{ {}, format }); } - RenderpassMaker& attachmentFlags(vk::AttachmentDescriptionFlags value) { s.attachmentDescriptions.back().flags = value; return *this;}; - RenderpassMaker& attachmentFormat(vk::Format value) { s.attachmentDescriptions.back().format = value; return *this;}; - RenderpassMaker& attachmentSamples(vk::SampleCountFlagBits value) { s.attachmentDescriptions.back().samples = value; return *this;}; - RenderpassMaker& attachmentLoadOp(vk::AttachmentLoadOp value) { s.attachmentDescriptions.back().loadOp = value; return *this;}; - RenderpassMaker& attachmentStoreOp(vk::AttachmentStoreOp value) { s.attachmentDescriptions.back().storeOp = value; return *this; }; - RenderpassMaker& attachmentStencilLoadOp(vk::AttachmentLoadOp value) { s.attachmentDescriptions.back().stencilLoadOp = value; return *this;}; - RenderpassMaker& attachmentStencilStoreOp(vk::AttachmentStoreOp value) { s.attachmentDescriptions.back().stencilStoreOp = value; return *this;}; - RenderpassMaker& attachmentInitialLayout(vk::ImageLayout value) { s.attachmentDescriptions.back().initialLayout = value; return *this;}; - RenderpassMaker& attachmentFinalLayout(vk::ImageLayout value) { s.attachmentDescriptions.back().finalLayout = value; return *this;}; + void attachmentFlags(vk::AttachmentDescriptionFlags const value) { s.attachmentDescriptions.back().flags = value; }; + void attachmentFormat(vk::Format const value) { s.attachmentDescriptions.back().format = value; }; + void attachmentSamples(vk::SampleCountFlagBits const value) { s.attachmentDescriptions.back().samples = value; }; + void attachmentLoadOp(vk::AttachmentLoadOp const value) { s.attachmentDescriptions.back().loadOp = value; }; + void attachmentStoreOp(vk::AttachmentStoreOp const value) { s.attachmentDescriptions.back().storeOp = value; }; + void attachmentStencilLoadOp(vk::AttachmentLoadOp const value) { s.attachmentDescriptions.back().stencilLoadOp = value; }; + void attachmentStencilStoreOp(vk::AttachmentStoreOp const value) { s.attachmentDescriptions.back().stencilStoreOp = value; }; + void attachmentInitialLayout(vk::ImageLayout const value) { s.attachmentDescriptions.back().initialLayout = value; }; + void attachmentFinalLayout(vk::ImageLayout const value) { s.attachmentDescriptions.back().finalLayout = value; }; /// Start a subpass description. /// After this you can can call subpassColorAttachment many times /// and subpassDepthStencilAttachment once. - RenderpassMaker& subpassBegin(vk::PipelineBindPoint bp) { + void subpassBegin(vk::PipelineBindPoint const bp) { vk::SubpassDescription desc{}; desc.pipelineBindPoint = bp; - s.subpassDescriptions.push_back(desc); - return *this; + s.subpassDescriptions.emplace_back(desc); } - RenderpassMaker& subpassColorAttachment(vk::ImageLayout layout, uint32_t attachment) { + void subpassColorAttachment(vk::ImageLayout const layout, uint32_t const attachment) { vk::SubpassDescription &subpass = s.subpassDescriptions.back(); - auto *p = getAttachmentReference(); + auto * const p = getAttachmentReference(); p->layout = layout; p->attachment = attachment; - if (subpass.colorAttachmentCount == 0) { + if (0 == subpass.colorAttachmentCount) { subpass.pColorAttachments = p; } - subpass.colorAttachmentCount++; - return *this; + ++subpass.colorAttachmentCount; + } + + void subpassInputAttachment(vk::ImageLayout const layout, uint32_t const attachment) { + vk::SubpassDescription& subpass = s.subpassDescriptions.back(); + auto* const p = getAttachmentReference(); + p->layout = layout; + p->attachment = attachment; + if (0 == subpass.inputAttachmentCount) { + subpass.pInputAttachments = p; + } + ++subpass.inputAttachmentCount; } - RenderpassMaker& subpassDepthStencilAttachment(vk::ImageLayout layout, uint32_t attachment) { + void subpassDepthStencilAttachment(vk::ImageLayout const layout, uint32_t const attachment) { vk::SubpassDescription &subpass = s.subpassDescriptions.back(); - auto *p = getAttachmentReference(); + auto * const p = getAttachmentReference(); p->layout = layout; p->attachment = attachment; subpass.pDepthStencilAttachment = p; - return *this; } - vk::UniqueRenderPass createUnique(const vk::Device &device) const { - vk::RenderPassCreateInfo renderPassInfo{}; - renderPassInfo.attachmentCount = (uint32_t)s.attachmentDescriptions.size(); - renderPassInfo.pAttachments = s.attachmentDescriptions.data(); - renderPassInfo.subpassCount = (uint32_t)s.subpassDescriptions.size(); - renderPassInfo.pSubpasses = s.subpassDescriptions.data(); - renderPassInfo.dependencyCount = (uint32_t)s.subpassDependencies.size(); - renderPassInfo.pDependencies = s.subpassDependencies.data(); - return device.createRenderPassUnique(renderPassInfo); + void subpassResolveSkipAttachment() { + vk::SubpassDescription& subpass = s.subpassDescriptions.back(); + auto* const p = getAttachmentReference(); + p->layout = vk::ImageLayout::eUndefined; + p->attachment = VK_ATTACHMENT_UNUSED; + if (nullptr == subpass.pResolveAttachments) { + subpass.pResolveAttachments = p; + } } - vk::UniqueRenderPass createUnique(const vk::Device &device, const vk::RenderPassMultiviewCreateInfo &I) const { + void subpassResolveAttachment(vk::ImageLayout const layout, uint32_t const attachment) { + vk::SubpassDescription& subpass = s.subpassDescriptions.back(); + auto* const p = getAttachmentReference(); + p->layout = layout; + p->attachment = attachment; + if (nullptr == subpass.pResolveAttachments) { + subpass.pResolveAttachments = p; + } + } + + void subpassPreserveAttachment(uint32_t attachment) { + vk::SubpassDescription& subpass = s.subpassDescriptions.back(); + auto* const p = getPreserveAttachmentReference(); + *p = attachment; + if (0 == subpass.preserveAttachmentCount) { + subpass.pPreserveAttachments = p; + } + ++subpass.preserveAttachmentCount; + } + + vk::UniqueRenderPass createUnique(const vk::Device &device) const { vk::RenderPassCreateInfo renderPassInfo{}; renderPassInfo.attachmentCount = (uint32_t)s.attachmentDescriptions.size(); renderPassInfo.pAttachments = s.attachmentDescriptions.data(); @@ -659,44 +921,60 @@ class RenderpassMaker { renderPassInfo.pSubpasses = s.subpassDescriptions.data(); renderPassInfo.dependencyCount = (uint32_t)s.subpassDependencies.size(); renderPassInfo.pDependencies = s.subpassDependencies.data(); - renderPassInfo.pNext = &I; // identical to createUnique(const vk::Device &device) except set pNext to use multi-view &I - return device.createRenderPassUnique(renderPassInfo); + return device.createRenderPassUnique(renderPassInfo).value; } - RenderpassMaker& dependencyBegin(uint32_t srcSubpass, uint32_t dstSubpass) { + void dependencyBegin(uint32_t srcSubpass, uint32_t dstSubpass) { vk::SubpassDependency desc{}; desc.srcSubpass = srcSubpass; desc.dstSubpass = dstSubpass; - s.subpassDependencies.push_back(desc); - return *this; + s.subpassDependencies.emplace_back(desc); } - RenderpassMaker& dependencySrcSubpass(uint32_t value) { s.subpassDependencies.back().srcSubpass = value; return *this;}; - RenderpassMaker& dependencyDstSubpass(uint32_t value) { s.subpassDependencies.back().dstSubpass = value; return *this;}; - RenderpassMaker& dependencySrcStageMask(vk::PipelineStageFlags value) { s.subpassDependencies.back().srcStageMask = value; return *this;}; - RenderpassMaker& dependencyDstStageMask(vk::PipelineStageFlags value) { s.subpassDependencies.back().dstStageMask = value; return *this;}; - RenderpassMaker& dependencySrcAccessMask(vk::AccessFlags value) { s.subpassDependencies.back().srcAccessMask = value; return *this;}; - RenderpassMaker& dependencyDstAccessMask(vk::AccessFlags value) { s.subpassDependencies.back().dstAccessMask = value; return *this;}; - RenderpassMaker& dependencyDependencyFlags(vk::DependencyFlags value) { s.subpassDependencies.back().dependencyFlags = value; return *this;}; + void dependencySrcSubpass(uint32_t const value) { s.subpassDependencies.back().srcSubpass = value; }; + void dependencyDstSubpass(uint32_t const value) { s.subpassDependencies.back().dstSubpass = value; }; + void dependencySrcStageMask(vk::PipelineStageFlags const value) { s.subpassDependencies.back().srcStageMask = value; }; + void dependencyDstStageMask(vk::PipelineStageFlags const value) { s.subpassDependencies.back().dstStageMask = value; }; + void dependencySrcAccessMask(vk::AccessFlags const value) { s.subpassDependencies.back().srcAccessMask = value; }; + void dependencyDstAccessMask(vk::AccessFlags const value) { s.subpassDependencies.back().dstAccessMask = value; }; + void dependencyDependencyFlags(vk::DependencyFlags const value) { s.subpassDependencies.back().dependencyFlags = value; }; private: - constexpr static int max_refs = 64; + constexpr static int const max_refs = 16; vk::AttachmentReference *getAttachmentReference() { return (s.num_refs < max_refs) ? &s.attachmentReferences[s.num_refs++] : nullptr; } + uint32_t* getPreserveAttachmentReference() { + return (s.num_preserve_refs < (max_refs >> 1)) ? &s.preserveReferences[s.num_preserve_refs++] : nullptr; + } struct State { std::vector attachmentDescriptions; std::vector subpassDescriptions; std::vector subpassDependencies; std::array attachmentReferences; - int num_refs = 0; + std::array>1)> preserveReferences; + int num_refs = 0, num_preserve_refs = 0; bool ok_ = false; }; State s; }; +class SpecializationConstant { +public: + SpecializationConstant() + : value{}, constant_id{} + {} + + template + explicit SpecializationConstant(uint32_t const constant_id_, Args&&... args) + : value(std::forward(args)...), constant_id(constant_id_) + {} + + std::variant const value; + uint32_t const constant_id; +}; /// Class for building shader modules and extracting metadata from shaders. class ShaderModule { public: @@ -704,23 +982,91 @@ class ShaderModule { } /// Construct a shader module from a file - ShaderModule(const vk::Device &device, const std::string &filename) { - auto file = std::ifstream(filename, std::ios::binary); - if (!file.good()) { - return; - } - - file.seekg(0, std::ios::end); - int length = (int)file.tellg(); - - s.opcodes_.resize((size_t)(length / 4)); - file.seekg(0, std::ios::beg); - file.read((char *)s.opcodes_.data(), s.opcodes_.size() * 4); - - vk::ShaderModuleCreateInfo ci; - ci.codeSize = s.opcodes_.size() * 4; - ci.pCode = s.opcodes_.data(); - s.module_ = device.createShaderModuleUnique(ci); + ShaderModule(const vk::Device &device, std::wstring_view const filename, std::optional< std::vector< SpecializationConstant > const > constants_ = std::nullopt) { + { + auto file = std::ifstream(filename.data(), std::ios::binary | std::ios::in); + if (file.bad()) { + file.close(); + return; + } + + file.seekg(0, std::ios::end); + int const length = (int)file.tellg(); + + std::vector opcodes; + opcodes.reserve((size_t)(length / 4)); + opcodes.resize((size_t)(length / 4)); + file.seekg(0, std::ios::beg); + file.read((char*)opcodes.data(), opcodes.size() * 4); + + vk::ShaderModuleCreateInfo ci; + ci.codeSize = opcodes.size() * 4; + ci.pCode = opcodes.data(); + s.module_ = device.createShaderModuleUnique(ci).value; + + std::string const shaderFile(stringconv::ws2s(filename.substr(filename.find_last_of('/') + 1, filename.size()))); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eShaderModule, (VkShaderModule)(*s.module_), shaderFile.c_str()); + + file.close(); + } + if (constants_ && !constants_->empty()) { + + std::vector< SpecializationConstant > const& constants(*constants_); + + // get total size needed for value buffer + { + size_t total_value_size(0); + for (auto const& constant : constants) { + + std::visit([&total_value_size, &constant](auto&& arg) { + + total_value_size += sizeof(arg); + + }, constant.value); + } + // allocate memory for the data buffer containing values + special.info.dataSize = total_value_size; + special.values = new std::byte[special.info.dataSize]; + } + + // set num of entries + special.info.mapEntryCount = (uint32_t)constants.size(); + + // build series of constant map entries + // build data buffer containg values + size_t current_buffer_size(0); + + for (auto const& constant : constants) { + + std::visit([this, ¤t_buffer_size, &constant](auto&& arg) { + + size_t const value_type_size(sizeof(arg)); + + // map entry + special.constant_descs.emplace_back(vk::SpecializationMapEntry(constant.constant_id, (uint32_t)current_buffer_size, value_type_size)); + + // value + memcpy_s(&(special.values + current_buffer_size)[0], special.info.dataSize, &arg, value_type_size); + + current_buffer_size += value_type_size; + + }, constant.value); + } + + // all of this memory is resident until shader module is dtor + // required as this data isn't used until pipeline is actually created + + // point to specialization constant map entries + special.info.pMapEntries = special.constant_descs.data(); + + // point to specialization constant value buffer + special.info.pData = special.values; + + // set specialization constants active (reference to the memory containg the "special.info") + // in PipelineMaker (vk::PipelineShaderStageCreateInfo) will set a reference accordingly + special.hasSpecialization = true; + } s.ok_ = true; } @@ -728,122 +1074,49 @@ class ShaderModule { /// Construct a shader module from a memory template ShaderModule(const vk::Device &device, InIter begin, InIter end) { - s.opcodes_.assign(begin, end); + + std::vector opcodes; + opcodes.assign(begin, end); vk::ShaderModuleCreateInfo ci; - ci.codeSize = s.opcodes_.size() * 4; - ci.pCode = s.opcodes_.data(); + ci.codeSize = opcodes.size() * 4; + ci.pCode = opcodes.data(); s.module_ = device.createShaderModuleUnique(ci); s.ok_ = true; } -#ifdef VOOKOO_SPIRV_SUPPORT - /// A variable in a shader. - struct Variable { - // The name of the variable from the GLSL/HLSL - std::string debugName; - - // The internal name (integer) of the variable - int name; - - // The location in the binding. - int location; - - // The binding in the descriptor set or I/O channel. - int binding; - - // The descriptor set (for uniforms) - int set; - int instruction; + bool const ok() const { return s.ok_; } + VkShaderModule const shadermodule() const { return(*s.module_); } - // Storage class of the variable, eg. spv::StorageClass::Uniform - spv::StorageClass storageClass; - }; - - /// Get a list of variables from the shader. - /// - /// This exposes the Uniforms, inputs, outputs, push constants. - /// See spv::StorageClass for more details. - std::vector getVariables() const { - auto bound = s.opcodes_[3]; - - std::unordered_map bindings; - std::unordered_map locations; - std::unordered_map sets; - std::unordered_map debugNames; - - for (int i = 5; i != s.opcodes_.size(); i += s.opcodes_[i] >> 16) { - spv::Op op = spv::Op(s.opcodes_[i] & 0xffff); - if (op == spv::Op::OpDecorate) { - int name = s.opcodes_[i + 1]; - auto decoration = spv::Decoration(s.opcodes_[i + 2]); - if (decoration == spv::Decoration::Binding) { - bindings[name] = s.opcodes_[i + 3]; - } else if (decoration == spv::Decoration::Location) { - locations[name] = s.opcodes_[i + 3]; - } else if (decoration == spv::Decoration::DescriptorSet) { - sets[name] = s.opcodes_[i + 3]; - } - } else if (op == spv::Op::OpName) { - int name = s.opcodes_[i + 1]; - debugNames[name] = (const char *)&s.opcodes_[i + 2]; - } - } - - std::vector result; - for (int i = 5; i != s.opcodes_.size(); i += s.opcodes_[i] >> 16) { - spv::Op op = spv::Op(s.opcodes_[i] & 0xffff); - if (op == spv::Op::OpVariable) { - int name = s.opcodes_[i + 1]; - auto sc = spv::StorageClass(s.opcodes_[i + 3]); - Variable b; - b.debugName = debugNames[name]; - b.name = name; - b.location = locations[name]; - b.set = sets[name]; - b.instruction = i; - b.storageClass = sc; - result.push_back(b); - } - } - return result; - } -#endif - - bool ok() const { return s.ok_; } - VkShaderModule module() const { return *s.module_; } - - /// Write a C++ consumable dump of the shader. - /// Todo: make this more idiomatic. - std::ostream &write(std::ostream &os) { - os << "static const uint32_t shader[] = {\n"; - char tmp[256]; - auto p = s.opcodes_.begin(); - snprintf( - tmp, sizeof(tmp), " 0x%08x,0x%08x,0x%08x,0x%08x,0x%08x,\n", p[0], p[1], p[2], p[3], p[4]); - os << tmp; - for (int i = 5; i != s.opcodes_.size(); i += s.opcodes_[i] >> 16) { - char *p = tmp + 2, *e = tmp + sizeof(tmp) - 2; - for (int j = i; j != i + (s.opcodes_[i] >> 16); ++j) { - p += snprintf(p, e-p, "0x%08x,", s.opcodes_[j]); - if (p > e-16) { *p++ = '\n'; *p = 0; os << tmp; p = tmp + 2; } - } - *p++ = '\n'; - *p = 0; - os << tmp; - } - os << "};\n\n"; - return os; - } + bool const hasSpecialization() const { return(special.hasSpecialization); } + vk::SpecializationInfo const* const specialization() const { return(&special.info); } private: struct State { - std::vector opcodes_; vk::UniqueShaderModule module_; bool ok_ = false; }; + struct Specialization { + std::byte* values; + std::vector constant_descs; + vk::SpecializationInfo info; + bool hasSpecialization; + + Specialization() + : values(nullptr), hasSpecialization(false) + {} + ~Specialization() + { + if (values) { + delete [] values; + values = nullptr; + } + } + }; + State s; + Specialization special; }; /// A class for building pipeline layouts. @@ -858,20 +1131,18 @@ class PipelineLayoutMaker { {}, (uint32_t)setLayouts_.size(), setLayouts_.data(), (uint32_t)pushConstantRanges_.size(), pushConstantRanges_.data()}; - return device.createPipelineLayoutUnique(pipelineLayoutInfo); + return device.createPipelineLayoutUnique(pipelineLayoutInfo).value; } /// Add a descriptor set layout to the pipeline. - PipelineLayoutMaker& descriptorSetLayout(vk::DescriptorSetLayout layout) { + void descriptorSetLayout(vk::DescriptorSetLayout layout) { setLayouts_.push_back(layout); - return *this; } /// Add a push constant range to the pipeline. /// These describe the size and location of variables in the push constant area. - PipelineLayoutMaker& pushConstantRange(vk::ShaderStageFlags stageFlags_, uint32_t offset_, uint32_t size_) { + void pushConstantRange(vk::ShaderStageFlags stageFlags_, uint32_t offset_, uint32_t size_) { pushConstantRanges_.emplace_back(stageFlags_, offset_, size_); - return *this; } private: @@ -879,22 +1150,6 @@ class PipelineLayoutMaker { std::vector pushConstantRanges_; }; - -struct SpecConst { - uint32_t constantID; - std::aligned_union<4,VkBool32, uint32_t, int32_t, float, double>::type - data; - uint32_t alignment; - uint32_t size; - - template - SpecConst(uint32_t constantID, T value) - : constantID(constantID), alignment{alignof(T)}, size(sizeof(T)) { - new (&data) T{value}; - } - -}; - /// A class for building pipelines. /// All the state of the pipeline is exposed through individual calls. /// The pipeline encapsulates all the OpenGL state in a single object. @@ -903,36 +1158,16 @@ struct SpecConst { /// The default is to generate a working pipeline. class PipelineMaker { public: - struct SpecData { - vk::SpecializationInfo specializationInfo_; - std::vector specializationMapEntries_; - std::unique_ptr data_; - size_t data_size_; - - SpecData(){} - - template - SpecData(iterator b, sentinel e); - - template - SpecData(const SCList &specConstants); - - SpecData(std::initializer_list list) - : SpecData(list.begin(), list.end()) {} - SpecData(SpecData &&) = default; - SpecData(const SpecData &) = delete; - SpecData &operator=(SpecData &&) = default; - SpecData &operator=(const SpecData &) = delete; - }; -public: - void init () - { + PipelineMaker(uint32_t const width, uint32_t const height) { inputAssemblyState_.topology = vk::PrimitiveTopology::eTriangleList; + //viewport_ = vk::Viewport{ 0.0f, float(height), float(width), -float(height), 0.0f, 1.0f }; // reference on how to - for inversion to make Up Y+ + viewport_ = vk::Viewport{ 0.0f, 0.0f, (float)width, (float)height, 0.0f, 1.0f }; // default Up is Y- for Vulkan + + scissor_ = vk::Rect2D{{0, 0}, {width, height}}; rasterizationState_.lineWidth = 1.0f; - // Set up depth test, but do not enable it. depthStencilState_.depthTestEnable = VK_FALSE; - depthStencilState_.depthWriteEnable = VK_TRUE; + depthStencilState_.depthWriteEnable = VK_FALSE; depthStencilState_.depthCompareOp = vk::CompareOp::eLessOrEqual; depthStencilState_.depthBoundsTestEnable = VK_FALSE; depthStencilState_.back.failOp = vk::StencilOp::eKeep; @@ -942,26 +1177,15 @@ class PipelineMaker { depthStencilState_.front = depthStencilState_.back; } - PipelineMaker() { - init(); - } - - PipelineMaker(uint32_t width, uint32_t height) { - viewport(vk::Viewport{0.0f, 0.0f, (float)width, (float)height, 0.0f, 1.0f}); - scissor(vk::Rect2D{{0, 0}, {width, height}}); - - init(); - } - - vk::UniquePipeline createUnique(const vk::Device &device, - const vk::PipelineCache &pipelineCache, - const vk::PipelineLayout &pipelineLayout, - const vk::RenderPass &renderPass, bool defaultBlend=true) { + vk::Pipeline create(const vk::Device &device, + const vk::PipelineCache &pipelineCache, + const vk::PipelineLayout &pipelineLayout, + const vk::RenderPass &renderPass) { // Add default colour blend attachment if necessary. - if (colorBlendAttachments_.empty() && defaultBlend) { + if (colorBlendAttachments_.empty()) { vk::PipelineColorBlendAttachmentState blend{}; - blend.blendEnable = 0; + blend.blendEnable = VK_FALSE; blend.srcColorBlendFactor = vk::BlendFactor::eOne; blend.dstColorBlendFactor = vk::BlendFactor::eZero; blend.colorBlendOp = vk::BlendOp::eAdd; @@ -970,7 +1194,7 @@ class PipelineMaker { blend.alphaBlendOp = vk::BlendOp::eAdd; typedef vk::ColorComponentFlagBits ccbf; blend.colorWriteMask = ccbf::eR|ccbf::eG|ccbf::eB|ccbf::eA; - colorBlendAttachments_.push_back(blend); + colorBlendAttachments_.emplace_back(blend); } auto count = (uint32_t)colorBlendAttachments_.size(); @@ -978,7 +1202,7 @@ class PipelineMaker { colorBlendState_.pAttachments = count ? colorBlendAttachments_.data() : nullptr; vk::PipelineViewportStateCreateInfo viewportState{ - {}, (uint32_t)viewport_.size(), viewport_.data(), (uint32_t)scissor_.size(), scissor_.data()}; + {}, 1, &viewport_, 1, &scissor_}; vk::PipelineVertexInputStateCreateInfo vertexInputState; vertexInputState.vertexAttributeDescriptionCount = (uint32_t)vertexAttributeDescriptions_.size(); @@ -1002,130 +1226,122 @@ class PipelineMaker { pipelineInfo.renderPass = renderPass; pipelineInfo.pDynamicState = dynamicState_.empty() ? nullptr : &dynState; pipelineInfo.subpass = subpass_; - pipelineInfo.pTessellationState = &tessellationState_; - auto [result, pipeline] = device.createGraphicsPipelineUnique(pipelineCache, pipelineInfo); - // TODO check result for vk::Result::ePipelineCompileRequiredEXT - return std::move(pipeline); + return( std::move(device.createGraphicsPipeline(pipelineCache, pipelineInfo).value) ); } /// Add a shader module to the pipeline. - PipelineMaker& shader(vk::ShaderStageFlagBits stage, const vku::ShaderModule &shader, - const char *entryPoint = "main") { + void shader(vk::ShaderStageFlagBits stage, vku::ShaderModule const& __restrict shader) { vk::PipelineShaderStageCreateInfo info{}; - info.module = shader.module(); - info.pName = entryPoint; + info.module = shader.shadermodule(); + info.pName = "main"; // required to always be main - limitation of glsl spec they did it on purpose info.stage = stage; + + // if specialization constants were defined for the shader module, use them + if (shader.hasSpecialization()) { + info.pSpecializationInfo = shader.specialization(); + } + modules_.emplace_back(info); - return *this; } + // mostly for live shader, index is in order the shader stages were added + void replace_shader(uint32_t const index, vk::ShaderStageFlagBits stage, vku::ShaderModule& shader) { + vk::PipelineShaderStageCreateInfo info{}; + info.module = shader.shadermodule(); + info.pName = "main"; + info.stage = stage; - /// Add a shader module with specialized constants to the pipeline. - PipelineMaker& shader(vk::ShaderStageFlagBits stage, vku::ShaderModule &shader, - SpecData specConstants, - const char *entryPoint = "main") { - auto data = std::unique_ptr{new SpecData{std::move(specConstants)}}; - vk::PipelineShaderStageCreateInfo info{}; - info.module = shader.module(); - info.pName = entryPoint; - info.stage = stage; - info.pSpecializationInfo = &data->specializationInfo_; - modules_.emplace_back(info); - moduleSpecializations_.emplace_back(std::move(data)); - return *this; + // if specialization constants were defined for the shader module, use them + if (shader.hasSpecialization()) { + info.pSpecializationInfo = shader.specialization(); + } + +#ifndef NDEBUG + assert_print(modules_[index].stage == info.stage, "FAIL liveshader : mismatch on shader stages, replace shader with wrong stage."); +#endif + modules_[index] = info; } /// Add a blend state to the pipeline for one colour attachment. /// If you don't do this, a default is used. - PipelineMaker& colorBlend(const vk::PipelineColorBlendAttachmentState &state) { - colorBlendAttachments_.push_back(state); - return *this; + void colorBlend(const vk::PipelineColorBlendAttachmentState &state) { + colorBlendAttachments_.emplace_back(state); } - PipelineMaker& subPass(uint32_t subpass) { + void subPass(uint32_t subpass) { subpass_ = subpass; - return *this; } /// Begin setting colour blend value /// If you don't do this, a default is used. /// Follow this with blendEnable() blendSrcColorBlendFactor() etc. - /// Default is a regular alpha blend. - PipelineMaker& blendBegin(vk::Bool32 enable) { + /// Default is a opaque. + void blendBegin(vk::Bool32 enable) { colorBlendAttachments_.emplace_back(); auto &blend = colorBlendAttachments_.back(); blend.blendEnable = enable; - blend.srcColorBlendFactor = vk::BlendFactor::eSrcAlpha; - blend.dstColorBlendFactor = vk::BlendFactor::eOneMinusSrcAlpha; + blend.srcColorBlendFactor = vk::BlendFactor::eOne; + blend.dstColorBlendFactor = vk::BlendFactor::eZero; blend.colorBlendOp = vk::BlendOp::eAdd; - blend.srcAlphaBlendFactor = vk::BlendFactor::eSrcAlpha; - blend.dstAlphaBlendFactor = vk::BlendFactor::eOneMinusSrcAlpha; + blend.srcAlphaBlendFactor = vk::BlendFactor::eOne; + blend.dstAlphaBlendFactor = vk::BlendFactor::eZero; blend.alphaBlendOp = vk::BlendOp::eAdd; typedef vk::ColorComponentFlagBits ccbf; blend.colorWriteMask = ccbf::eR|ccbf::eG|ccbf::eB|ccbf::eA; - return *this; } /// Enable or disable blending (called after blendBegin()) - PipelineMaker& blendEnable(vk::Bool32 value) { colorBlendAttachments_.back().blendEnable = value; return *this;} + void blendEnable(vk::Bool32 value) { colorBlendAttachments_.back().blendEnable = value; } /// Source colour blend factor (called after blendBegin()) - PipelineMaker& blendSrcColorBlendFactor(vk::BlendFactor value) { colorBlendAttachments_.back().srcColorBlendFactor = value; return *this;} + void blendSrcColorBlendFactor(vk::BlendFactor value) { colorBlendAttachments_.back().srcColorBlendFactor = value; } /// Destination colour blend factor (called after blendBegin()) - PipelineMaker& blendDstColorBlendFactor(vk::BlendFactor value) { colorBlendAttachments_.back().dstColorBlendFactor = value; return *this;} + void blendDstColorBlendFactor(vk::BlendFactor value) { colorBlendAttachments_.back().dstColorBlendFactor = value; } /// Blend operation (called after blendBegin()) - PipelineMaker& blendColorBlendOp(vk::BlendOp value) { colorBlendAttachments_.back().colorBlendOp = value; return *this;} + void blendColorBlendOp(vk::BlendOp value) { colorBlendAttachments_.back().colorBlendOp = value; } /// Source alpha blend factor (called after blendBegin()) - PipelineMaker& blendSrcAlphaBlendFactor(vk::BlendFactor value) { colorBlendAttachments_.back().srcAlphaBlendFactor = value; return *this;} + void blendSrcAlphaBlendFactor(vk::BlendFactor value) { colorBlendAttachments_.back().srcAlphaBlendFactor = value; } /// Destination alpha blend factor (called after blendBegin()) - PipelineMaker& blendDstAlphaBlendFactor(vk::BlendFactor value) { colorBlendAttachments_.back().dstAlphaBlendFactor = value; return *this;} + void blendDstAlphaBlendFactor(vk::BlendFactor value) { colorBlendAttachments_.back().dstAlphaBlendFactor = value; } /// Alpha operation (called after blendBegin()) - PipelineMaker& blendAlphaBlendOp(vk::BlendOp value) { colorBlendAttachments_.back().alphaBlendOp = value; return *this;} + void blendAlphaBlendOp(vk::BlendOp value) { colorBlendAttachments_.back().alphaBlendOp = value; } /// Colour write mask (called after blendBegin()) - PipelineMaker& blendColorWriteMask(vk::ColorComponentFlags value) { colorBlendAttachments_.back().colorWriteMask = value; return *this;} + void blendColorWriteMask(vk::ColorComponentFlags value) { colorBlendAttachments_.back().colorWriteMask = value; } /// Add a vertex attribute to the pipeline. - PipelineMaker& vertexAttribute(uint32_t location_, uint32_t binding_, vk::Format format_, uint32_t offset_) { + void vertexAttribute(uint32_t location_, uint32_t binding_, vk::Format format_, uint32_t offset_) { vertexAttributeDescriptions_.push_back({location_, binding_, format_, offset_}); - return *this; } /// Add a vertex attribute to the pipeline. - PipelineMaker& vertexAttribute(const vk::VertexInputAttributeDescription &desc) { + void vertexAttribute(const vk::VertexInputAttributeDescription &desc) { vertexAttributeDescriptions_.push_back(desc); - return *this; } /// Add a vertex binding to the pipeline. /// Usually only one of these is needed to specify the stride. /// Vertices can also be delivered one per instance. - PipelineMaker& vertexBinding(uint32_t binding_, uint32_t stride_, vk::VertexInputRate inputRate_ = vk::VertexInputRate::eVertex) { + void vertexBinding(uint32_t binding_, uint32_t stride_, vk::VertexInputRate inputRate_ = vk::VertexInputRate::eVertex) { vertexBindingDescriptions_.push_back({binding_, stride_, inputRate_}); - return *this; } /// Add a vertex binding to the pipeline. /// Usually only one of these is needed to specify the stride. /// Vertices can also be delivered one per instance. - PipelineMaker& vertexBinding(const vk::VertexInputBindingDescription &desc) { + void vertexBinding(const vk::VertexInputBindingDescription &desc) { vertexBindingDescriptions_.push_back(desc); - return *this; } /// Specify the topology of the pipeline. /// Usually this is a triangle list, but points and lines are possible too. PipelineMaker &topology( vk::PrimitiveTopology topology ) { inputAssemblyState_.topology = topology; return *this; } - /// Specify patch count. - /// Applies when (inputAssemblyState_.topology == vk::PrimitiveTopology::ePatchList). - PipelineMaker &setPatchControlPoints( uint32_t patchControlPoints ) { tessellationState_.setPatchControlPoints(patchControlPoints); return *this; } - /// Enable or disable primitive restart. /// If using triangle strips, for example, this allows a special index value (0xffff or 0xffffffff) to start a new strip. PipelineMaker &primitiveRestartEnable( vk::Bool32 primitiveRestartEnable ) { inputAssemblyState_.primitiveRestartEnable = primitiveRestartEnable; return *this; } @@ -1136,11 +1352,11 @@ class PipelineMaker { /// Set the viewport value. /// Usually there is only one viewport, but you can have multiple viewports active for rendering cubemaps or VR stereo pair - PipelineMaker &viewport(const vk::Viewport &value) { viewport_.push_back(value); return *this; } + PipelineMaker &viewport(const vk::Viewport &value) { viewport_ = value; return *this; } /// Set the scissor value. /// This defines the area that the fragment shaders can write to. For example, if you are rendering a portal or a mirror. - PipelineMaker &scissor(const vk::Rect2D &value) { scissor_.push_back(value); return *this; } + PipelineMaker &scissor(const vk::Rect2D &value) { scissor_ = value; return *this; } /// Set a whole rasterization state. /// Note you can set individual values with their own call @@ -1190,102 +1406,46 @@ class PipelineMaker { PipelineMaker &dynamicState(vk::DynamicState value) { dynamicState_.push_back(value); return *this; } private: vk::PipelineInputAssemblyStateCreateInfo inputAssemblyState_; - std::vector viewport_; - std::vector scissor_; + vk::Viewport viewport_; + vk::Rect2D scissor_; vk::PipelineRasterizationStateCreateInfo rasterizationState_; vk::PipelineMultisampleStateCreateInfo multisampleState_; vk::PipelineDepthStencilStateCreateInfo depthStencilState_; vk::PipelineColorBlendStateCreateInfo colorBlendState_; - vk::PipelineTessellationStateCreateInfo tessellationState_; std::vector colorBlendAttachments_; std::vector modules_; - std::vector> moduleSpecializations_; std::vector vertexAttributeDescriptions_; std::vector vertexBindingDescriptions_; std::vector dynamicState_; uint32_t subpass_ = 0; }; -template -PipelineMaker::SpecData::SpecData(iterator b, sentinel e) -{ - auto round_offset = [](uint32_t offset, uint32_t alignment) { - uint32_t unaligned = offset & (alignment-1); - return unaligned == 0 ? offset : offset + alignment-unaligned; - }; - uint32_t offset = 0; - for (auto it = b; it != e; ++it) { - auto &entry = *it; - offset = round_offset(offset, entry.alignment) + entry.size; - } - data_size_ = offset; - // We rely on the fact that new allocates with the maximum basic type alignment. - data_ = std::unique_ptr(new char[data_size_]); - offset = 0; - int specCount = 0; - for (auto it = b; it != e; ++it) { - auto &entry = *it; - offset = round_offset(offset, entry.alignment); - specializationMapEntries_.emplace_back( - entry.constantID, offset, entry.size); - const char *src = reinterpret_cast(&entry.data); - std::copy(src, src+entry.size, data_.get() + offset); - offset += entry.size; - ++specCount; - } - specializationInfo_.mapEntryCount = specCount; - specializationInfo_.pMapEntries = specializationMapEntries_.data(); - specializationInfo_.dataSize = data_size_; - specializationInfo_.pData = data_.get(); -} - -template -PipelineMaker::SpecData::SpecData(const SCList &specConstants) -{ - auto round_offset = [](uint32_t offset, uint32_t alignment) { - uint32_t unaligned = offset & (alignment-1); - return unaligned == 0 ? offset : offset + alignment-unaligned; - }; - uint32_t offset = 0; - for (auto &entry : specConstants) { - offset = round_offset(offset, entry.alignment) + entry.size; - } - data_size_ = offset; - // We rely on the fact that new allocates with the maximum basic type alignment. - data_ = std::unique_ptr(new char[data_size_]); - offset = 0; - for (auto &entry : specConstants) { - offset = round_offset(offset, entry.alignment); - specializationMapEntries_.emplace_back( - entry.constantID, offset, entry.size); - const char *src = reinterpret_cast(&entry.data); - std::copy(src, src+entry.size, data_.get() + offset); - offset += entry.size; - } - specializationInfo_.mapEntryCount = static_cast(specConstants.size()); - specializationInfo_.pMapEntries = specializationMapEntries_.data(); - specializationInfo_.dataSize = data_size_; - specializationInfo_.pData = data_.get(); -} - /// A class for building compute pipelines. class ComputePipelineMaker { + friend class Framework; + constinit static inline bool fullsubgroups_supported = false; public: ComputePipelineMaker() { } /// Add a shader module to the pipeline. - ComputePipelineMaker& shader(vk::ShaderStageFlagBits stage, vku::ShaderModule &shader, + void shader(vk::ShaderStageFlagBits stage, vku::ShaderModule const& __restrict shader, const char *entryPoint = "main") { - stage_.module = shader.module(); + stage_.module = shader.shadermodule(); stage_.pName = entryPoint; stage_.stage = stage; - return *this; + + if (shader.hasSpecialization()) { + stage_.pSpecializationInfo = shader.specialization(); + } } /// Set the compute shader module. - ComputePipelineMaker &module(const vk::PipelineShaderStageCreateInfo &value) { + ComputePipelineMaker & shadermodule(const vk::PipelineShaderStageCreateInfo &value) { stage_ = value; + + // if specialization constants were defined for the shader module, use them + return *this; } @@ -1294,11 +1454,15 @@ class ComputePipelineMaker { vk::ComputePipelineCreateInfo pipelineInfo{}; pipelineInfo.stage = stage_; - pipelineInfo.layout = pipelineLayout; + pipelineInfo.layout = pipelineLayout; + + vk::PipelineShaderStageRequiredSubgroupSizeCreateInfoEXT fullsubgroups_info(32); // both nvidia and amd now use 32. AMD used to use 64, NVIDIA always 32. So for best compatibility set the subgroup size to the new standard ( 32 ). Now it's consistent on AMD & NVIDIA. + if (fullsubgroups_supported) { + stage_.flags = vk::PipelineShaderStageCreateFlagBits::eAllowVaryingSubgroupSizeEXT | vk::PipelineShaderStageCreateFlagBits::eRequireFullSubgroupsEXT; // only for compute shaders, require full subgroups + stage_.pNext = &fullsubgroups_info; + } - auto [ result, pipeline ] = device.createComputePipelineUnique(pipelineCache, pipelineInfo); - // TODO check result for vk::Result::ePipelineCompileRequiredEXT - return std::move(pipeline); + return device.createComputePipelineUnique(pipelineCache, pipelineInfo).value; } private: vk::PipelineShaderStageCreateInfo stage_; @@ -1308,108 +1472,451 @@ class ComputePipelineMaker { /// Buffers require memory objects which represent GPU and CPU resources. class GenericBuffer { public: - GenericBuffer() { - } + constexpr GenericBuffer() {} // every member is zero initialized (see below) - constexpr of the default ctor allows constinit optimization for private voxel data in cVoxelWorld.cpp file. + - GenericBuffer(vk::Device device, const vk::PhysicalDeviceMemoryProperties &memprops, vk::BufferUsageFlags usage, vk::DeviceSize size, vk::MemoryPropertyFlags memflags = vk::MemoryPropertyFlagBits::eDeviceLocal) { - // Create the buffer object without memory. - vk::BufferCreateInfo ci{}; - ci.size = size_ = size; - ci.usage = usage; - ci.sharingMode = vk::SharingMode::eExclusive; - buffer_ = device.createBufferUnique(ci); + GenericBuffer(vk::BufferUsageFlags const usage, vk::DeviceSize const size, vk::MemoryPropertyFlags const memflags = vk::MemoryPropertyFlagBits::eDeviceLocal, VmaMemoryUsage const gpu_usage = VMA_MEMORY_USAGE_UNKNOWN, uint32_t const mapped_access = (uint32_t)eMappedAccess::Disabled, bool const bDedicatedMemory = false, bool const bPersistantMapping = false) { + + vk::BufferCreateInfo ci{}; + ci.size = maxsizebytes_ = size; + ci.usage = usage; + ci.sharingMode = vk::SharingMode::eExclusive; + + VmaAllocationCreateInfo allocInfo{}; + allocInfo.usage = gpu_usage ? gpu_usage : VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE; // default to gpu only if 0/unknown is passed in + allocInfo.requiredFlags = (VkMemoryPropertyFlags)memflags; + allocInfo.preferredFlags = allocInfo.requiredFlags; + allocInfo.flags = (bDedicatedMemory ? VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT : (VmaAllocationCreateFlags)0) + | (bPersistantMapping ? VMA_ALLOCATION_CREATE_MAPPED_BIT : (VmaAllocationCreateFlags)0); + + if ((uint32_t)eMappedAccess::Disabled == mapped_access) { // only if not provided + + if (bPersistantMapping) { // only if known to be mapped + // default to sequential access (important if forgotten) + allocInfo.flags |= (uint32_t)eMappedAccess::Sequential; + } + } + else { + + allocInfo.flags |= mapped_access; + } + + vmaCreateBuffer(vma_, (VkBufferCreateInfo const* const)&ci, &allocInfo, (VkBuffer*)&buffer_, &allocation_, &mem_); + } - // Find out how much memory and which heap to allocate from. - auto memreq = device.getBufferMemoryRequirements(*buffer_); + // for clearing staging buffers + __SAFE_BUF void clearLocal() const { + void* const __restrict ptr(map()); + memset(ptr, 0, (size_t)maxsizebytes_); + unmap(); + flush(maxsizebytes_); + } - // Create a memory object to bind to the buffer. - vk::MemoryAllocateInfo mai{}; - mai.allocationSize = memreq.size; - mai.memoryTypeIndex = vku::findMemoryTypeIndex(memprops, memreq.memoryTypeBits, memflags); - mem_ = device.allocateMemoryUnique(mai); + // checks alignment of source, assumes alignment of dst is same or greater + template + __SAFE_BUF void updateLocal(T const* const __restrict src, vk::DeviceSize const size) const { + T* const __restrict ptr( static_cast(map()) ); - device.bindBufferMemory(*buffer_, *mem_, 0); + vk::DeviceSize flush_size(size); + + if constexpr (bClear) { + + if constexpr (alignment >= 16) { + if (maxsizebytes_ > 4096) { + ___memset_threaded(ptr, 0, (size_t)maxsizebytes_); // alignment is known + } + else { + memset(ptr, 0, (size_t)maxsizebytes_); + } + } + else { + memset(ptr, 0, (size_t)maxsizebytes_); // alignment is unknown, can only assume minimum 16 byte alignment + } + flush_size = maxsizebytes_; + } + if constexpr (alignment >= 16) { + if (size > 4096) { + ___memcpy_threaded(ptr, src, (size_t)size); // alignment is known + } + else { + memcpy(ptr, src, (size_t)size); + } + } + else { + memcpy(ptr, src, (size_t)size); // alignment is unknown, can only assume minimum 16 byte alignment + } + + unmap(); + flush(flush_size); } /// For a host visible buffer, copy memory to the buffer object. - void updateLocal(const vk::Device &device, const void *value, vk::DeviceSize size) const { - void *ptr = device.mapMemory(*mem_, 0, size_, vk::MemoryMapFlags{}); - memcpy(ptr, value, (size_t)size); - flush(device); - device.unmapMemory(*mem_); + template + __SAFE_BUF void updateLocal(T const* const __restrict value, vk::DeviceSize const size) { + + if (size != maxsizebytes_) { + updateLocal<(true), T>(value, size); + } + else { + updateLocal<(false), T>(value, size); + } + + bActiveDelta = (size != activesizebytes_); + activesizebytes_ = size; + } + void createAsGPUBuffer(vk::Device const device, vk::CommandPool const commandPool, vk::Queue const queue, vk::DeviceSize const maxsize, vk::BufferUsageFlagBits const bits) // good for gpu->gpu copies, used to reset buffers shared_buffer & subgroup_layer_count_max + { + if (maxsize == 0) return; + using buf = vk::BufferUsageFlagBits; + using pfb = vk::MemoryPropertyFlagBits; + + if (0 == maxsizebytes()) { // only allocate once + *this = vku::GenericBuffer(bits | buf::eTransferDst, maxsize); // device local, gpu only buffer - here default params get a device allocated buffer (gpu), with *no* mapping capability - can be initialized or set at any time with a staging buffer and upload to this buffer only. + activesizebytes_ = maxsizebytes(); + + // upload temporary staging buffer to clear + vku::GenericBuffer tmp(buf::eTransferSrc, maxsize, pfb::eHostCoherent | pfb::eHostVisible, VMA_MEMORY_USAGE_AUTO_PREFER_HOST, (uint32_t)vku::eMappedAccess::Sequential, false, false); + tmp.clearLocal(); + + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + vk::BufferCopy bc{ 0, 0, maxsize }; + cb.copyBuffer(tmp.buffer(), buffer_, bc); + }); + } + } + + void createAsCPUToGPUBuffer(vk::DeviceSize const maxsize, uint32_t const mapped_access = (uint32_t)vku::eMappedAccess::Disabled, bool const bDedicatedMemory = false, bool const bPersistantMapping = false) + { + if (maxsize == 0) return; + using buf = vk::BufferUsageFlagBits; + using pfb = vk::MemoryPropertyFlagBits; + + if (0 == maxsizebytes()) { // only allocate once + *this = vku::GenericBuffer(buf::eTransferSrc, maxsize, pfb::eHostCoherent | pfb::eHostVisible, VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE, mapped_access, bDedicatedMemory, bPersistantMapping); + activesizebytes_ = maxsizebytes(); + clearLocal(); + } + } + void createAsStagingBuffer(vk::DeviceSize const maxsize, uint32_t const mapped_access = (uint32_t)vku::eMappedAccess::Disabled, bool const bDedicatedMemory = false, bool const bPersistantMapping = false) + { + if (maxsize == 0) return; + using buf = vk::BufferUsageFlagBits; + using pfb = vk::MemoryPropertyFlagBits; + + if (0 == maxsizebytes()) { // only allocate once + *this = vku::GenericBuffer(buf::eTransferSrc, maxsize, pfb::eHostCoherent | pfb::eHostVisible, VMA_MEMORY_USAGE_AUTO_PREFER_HOST, mapped_access, bDedicatedMemory, bPersistantMapping); + activesizebytes_ = maxsizebytes(); + clearLocal(); + } + } + // intended for use with frame work's dynamic command buffer + // that gets queued up before the static command buffer + template + void uploadDeferred(vk::CommandBuffer& __restrict cb, vku::GenericBuffer& __restrict stagingBuffer, const T * __restrict value, vk::DeviceSize const size, vk::DeviceSize const maxsize) { + if (size == 0) return; + using buf = vk::BufferUsageFlagBits; + using pfb = vk::MemoryPropertyFlagBits; + + if (0 == stagingBuffer.maxsizebytes()) { // only allocate once + stagingBuffer = vku::GenericBuffer(buf::eTransferSrc, maxsize, pfb::eHostCoherent | pfb::eHostVisible, VMA_MEMORY_USAGE_AUTO_PREFER_HOST, vku::eMappedAccess::Sequential, false, true); // *bugfix - hidden options not exposed thru this path, default to persistant mapping. + } + stagingBuffer.updateLocal(value, size); + bActiveDelta = (activesizebytes_ != size); + activesizebytes_ = size; + + vk::BufferCopy bc{ 0, 0, size }; + cb.copyBuffer(stagingBuffer.buffer(), buffer_, bc); + } + // this is for a staging buffer that has already been updated(mappped/unmapped) and has updated the active size + void setActiveSizeBytes(vk::DeviceSize const size) + { + bActiveDelta = (activesizebytes_ != size); + activesizebytes_ = size; + } + // fast path, **no clear done** intended for usage with map/unmap of staging buffers + void uploadDeferred(vk::CommandBuffer& __restrict cb, vku::GenericBuffer const& __restrict stagingBuffer) { + + vk::DeviceSize const size(stagingBuffer.activesizebytes()); + + bActiveDelta = (activesizebytes_ != size); + activesizebytes_ = size; + + if (0 == size) + return; + + vk::BufferCopy const bc{ 0, 0, activesizebytes_ }; + cb.copyBuffer(stagingBuffer.buffer(), buffer_, bc); } + // fast path, **no clear done** intended for usage with map/unmap of staging buffers + void uploadDeferred(vk::CommandBuffer& __restrict cb, vku::GenericBuffer const& __restrict stagingBuffer, vku::GenericBuffer const& __restrict stagingBufferAppended) { + + vk::DeviceSize const firstactivesizebytes(stagingBuffer.activesizebytes()), secondactivesizebytes(stagingBufferAppended.activesizebytes()); + vk::DeviceSize const size(firstactivesizebytes + secondactivesizebytes); + + bActiveDelta = (activesizebytes_ != size); + activesizebytes_ = size; + if (0 == size) + return; + + { + vk::BufferCopy const bc{ 0, 0, firstactivesizebytes }; + cb.copyBuffer(stagingBuffer.buffer(), buffer_, bc); + } + + if (0 == secondactivesizebytes) + return; + + { + vk::BufferCopy const bc{ 0, firstactivesizebytes, secondactivesizebytes }; + cb.copyBuffer(stagingBufferAppended.buffer(), buffer_, bc); + } + } /// For a purely device local buffer, copy memory to the buffer object immediately. /// Note that this will stall the pipeline! - void upload(vk::Device device, const vk::PhysicalDeviceMemoryProperties &memprops, vk::CommandPool commandPool, vk::Queue queue, const void *value, vk::DeviceSize size) const { + template + void upload(vk::Device device, vk::CommandPool commandPool, vk::Queue queue, const T * __restrict value, vk::DeviceSize const size) { if (size == 0) return; using buf = vk::BufferUsageFlagBits; using pfb = vk::MemoryPropertyFlagBits; - auto tmp = vku::GenericBuffer(device, memprops, buf::eTransferSrc, size, pfb::eHostVisible); - tmp.updateLocal(device, value, size); + auto tmp = vku::GenericBuffer(buf::eTransferSrc, size, pfb::eHostCoherent | pfb::eHostVisible, VMA_MEMORY_USAGE_AUTO_PREFER_HOST, eMappedAccess::Sequential); + maxsizebytes_ = tmp.maxsizebytes_; - vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { - vk::BufferCopy bc{0, 0, size}; - cb.copyBuffer(tmp.buffer(), *buffer_, bc); + tmp.updateLocal(value, size); + + bActiveDelta = (activesizebytes_ != size); + activesizebytes_ = size; + + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + vk::BufferCopy bc{ 0, 0, size}; + cb.copyBuffer(tmp.buffer(), buffer_, bc); }); } template - void upload(vk::Device device, const vk::PhysicalDeviceMemoryProperties &memprops, vk::CommandPool commandPool, vk::Queue queue, const std::vector &value) const { - upload(device, memprops, commandPool, queue, value.data(), value.size() * sizeof(T)); + void upload(vk::Device device, vk::CommandPool commandPool, vk::Queue queue, const std::vector &value) { + upload(device, commandPool, queue, value.data(), value.size() * sizeof(T)); } template - void upload(vk::Device device, const vk::PhysicalDeviceMemoryProperties &memprops, vk::CommandPool commandPool, vk::Queue queue, const T &value) const { - upload(device, memprops, commandPool, queue, &value, sizeof(value)); + void upload(vk::Device device, vk::CommandPool commandPool, vk::Queue queue, const T &value) { + upload(device, commandPool, queue, &value, sizeof(value)); } - void barrier(vk::CommandBuffer cb, vk::PipelineStageFlags srcStageMask, vk::PipelineStageFlags dstStageMask, vk::DependencyFlags dependencyFlags, vk::AccessFlags srcAccessMask, vk::AccessFlags dstAccessMask, uint32_t srcQueueFamilyIndex, uint32_t dstQueueFamilyIndex) const { - vk::BufferMemoryBarrier bmb{srcAccessMask, dstAccessMask, srcQueueFamilyIndex, dstQueueFamilyIndex, *buffer_, 0, size_}; + template + void uploadDeferred(vk::Device const& __restrict device, vk::CommandBuffer& __restrict cb, vku::GenericBuffer& __restrict stagingBuffer, const std::vector > & __restrict value, size_t const maxreservecount = 0) { + uploadDeferred(device, cb, stagingBuffer, value.data(), value.size() * sizeof(T), (0 == maxreservecount ? value.size() : maxreservecount) * sizeof(T)); + } + + void barrier(vk::CommandBuffer const& __restrict cb, vk::PipelineStageFlags const srcStageMask, vk::PipelineStageFlags const dstStageMask, vk::DependencyFlags const dependencyFlags, vk::AccessFlags const srcAccessMask, vk::AccessFlags const dstAccessMask, uint32_t const srcQueueFamilyIndex, uint32_t const dstQueueFamilyIndex) const { + vk::BufferMemoryBarrier bmb{srcAccessMask, dstAccessMask, srcQueueFamilyIndex, dstQueueFamilyIndex, buffer_, 0, maxsizebytes_ }; cb.pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, nullptr, bmb, nullptr); } + // batched / multiple barriers + template + static void barrier(std::array const& __restrict buffers, + vk::CommandBuffer const& __restrict cb, vk::PipelineStageFlags const srcStageMask, vk::PipelineStageFlags const dstStageMask, vk::DependencyFlags const dependencyFlags, vk::AccessFlags const srcAccessMask, vk::AccessFlags const dstAccessMask, uint32_t const srcQueueFamilyIndex, uint32_t const dstQueueFamilyIndex) { + std::array bmbs; + for (uint32_t i = 0; i < buffer_count; ++i) { + bmbs[i] = vk::BufferMemoryBarrier{ srcAccessMask, dstAccessMask, srcQueueFamilyIndex, dstQueueFamilyIndex, buffers[i]->buffer_, 0, buffers[i]->maxsizebytes_ }; + } + + cb.pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, nullptr, bmbs, nullptr); + } template - void updateLocal(const vk::Device &device, const std::vector &value) const { - updateLocal(device, (void*)value.data(), vk::DeviceSize(value.size() * sizeof(Type))); + void updateLocal(const std::vector &value) { + updateLocal((void*)value.data(), vk::DeviceSize(value.size() * sizeof(Type))); } template - void updateLocal(const vk::Device &device, const Type &value) const { - updateLocal(device, (void*)&value, vk::DeviceSize(sizeof(Type))); + void updateLocal(const Type &value) { + updateLocal((void*)&value, vk::DeviceSize(sizeof(Type))); } - void *map(const vk::Device &device) const { return device.mapMemory(*mem_, 0, size_, vk::MemoryMapFlags{}); }; - void unmap(const vk::Device &device) const { return device.unmapMemory(*mem_); }; + __SAFE_BUF void * const __restrict map() const { + + if (mem_.pMappedData) // if persistantly mapped just return the pointer to memory + return(mem_.pMappedData); + + // size no longer used : https://gpuopen-librariesandsdks.github.io/VulkanMemoryAllocator/html/memory_mapping.html#memory_mapping_mapping_functions - void flush(const vk::Device &device) const { - vk::MappedMemoryRange mr{*mem_, 0, VK_WHOLE_SIZE}; - return device.flushMappedMemoryRanges(mr); - } + void* __restrict mapped; + vmaMapMemory(vma_, allocation_, (void**)&mapped); - void invalidate(const vk::Device &device) const { - vk::MappedMemoryRange mr{*mem_, 0, VK_WHOLE_SIZE}; - return device.invalidateMappedMemoryRanges(mr); - } + return(mapped); + }; + __SAFE_BUF void unmap() const { - vk::Buffer buffer() const { return *buffer_; } - vk::DeviceMemory mem() const { return *mem_; } - vk::DeviceSize size() const { return size_; } -private: - vk::UniqueBuffer buffer_; - vk::UniqueDeviceMemory mem_; - vk::DeviceSize size_; -}; + if (mem_.pMappedData) // if persistantly mapped just return, don't do anything + return; -/// This class is a specialisation of GenericBuffer for high performance vertex buffers on the GPU. + vmaUnmapMemory(vma_, allocation_); + }; + +// required after writing to memory (IF BUFFER is HOST COHERENT - flushing can be skipped) + __SAFE_BUF void flush(vk::DeviceSize const bytes_flushed) const { + vmaFlushAllocation(vma_, allocation_, 0, bytes_flushed); // flushes memory only for this buffers memory + } + __SAFE_BUF void flush() const { + vmaFlushAllocation(vma_, allocation_, 0, maxsizebytes_); // flushes memory only for this buffers memory + } + + // required before reading memory (IF BUFFER is HOST COHERENT - invalidation can be skipped) + __SAFE_BUF void invalidate(vk::DeviceSize const bytes_invalidated) const { + vmaInvalidateAllocation(vma_, allocation_, 0, bytes_invalidated); // invalidates memory only for this buffers memory + } + __SAFE_BUF void invalidate() const { + vmaInvalidateAllocation(vma_, allocation_, 0, maxsizebytes_); // invalidates memory only for this buffers memory + } + + void release() + { + if (allocation_) { + vmaDestroyBuffer(vma_, buffer_, allocation_); + buffer_ = nullptr; + allocation_ = nullptr; + mem_ = {}; + } + } + + GenericBuffer(GenericBuffer&& relegate) + { + buffer_ = std::move(relegate.buffer_); + allocation_ = std::move(relegate.allocation_); + mem_ = std::move(relegate.mem_); + activesizebytes_ = relegate.activesizebytes_; + maxsizebytes_ = relegate.maxsizebytes_; + bActiveDelta = relegate.bActiveDelta; + + relegate.allocation_ = nullptr; + relegate.buffer_ = nullptr; + relegate.mem_ = {}; + relegate.activesizebytes_ = 0; + relegate.maxsizebytes_ = 0; + relegate.bActiveDelta = false; + } + GenericBuffer& operator=(GenericBuffer&& relegate) + { + buffer_ = std::move(relegate.buffer_); + allocation_ = std::move(relegate.allocation_); + mem_ = std::move(relegate.mem_); + activesizebytes_ = relegate.activesizebytes_; + maxsizebytes_ = relegate.maxsizebytes_; + bActiveDelta = relegate.bActiveDelta; + + relegate.allocation_ = nullptr; + relegate.buffer_ = nullptr; + relegate.mem_ = {}; + relegate.activesizebytes_ = 0; + relegate.maxsizebytes_ = 0; + relegate.bActiveDelta = false; + + return(*this); + } + ~GenericBuffer() + { + release(); + } + + vk::Buffer const& __restrict buffer() const { return(buffer_); } + vk::DeviceSize const activesizebytes() const { return(activesizebytes_); } + vk::DeviceSize const maxsizebytes() const { return(maxsizebytes_); } + bool const isBufferActiveSizeDelta() const { return(bActiveDelta); } +private: + vk::Buffer buffer_{}; + VmaAllocation allocation_{}; + VmaAllocationInfo mem_{}; + vk::DeviceSize activesizebytes_ = 0, + maxsizebytes_ = 0; + bool bActiveDelta = false; + +private: + GenericBuffer(GenericBuffer const&) = delete; + GenericBuffer& operator=(GenericBuffer const&) = delete; +}; + +/// This class is a specialisation of GenericBuffer for high performance vertex buffers on the GPU. /// You must upload the contents before use. class VertexBuffer : public GenericBuffer { public: VertexBuffer() { } - VertexBuffer(const vk::Device &device, const vk::PhysicalDeviceMemoryProperties &memprops, size_t size) : GenericBuffer(device, memprops, vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eTransferDst, size, vk::MemoryPropertyFlagBits::eDeviceLocal) { + VertexBuffer(size_t const size, bool const bDedicatedMemory = false) : GenericBuffer(vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eTransferDst, size, vk::MemoryPropertyFlagBits::eDeviceLocal, VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE, bDedicatedMemory) { + } + + VertexBuffer(VertexBuffer&& relegate) + : GenericBuffer(std::forward(relegate)) + { } + VertexBuffer& operator=(VertexBuffer&& relegate) + { + GenericBuffer::operator=(std::forward(relegate)); + return(*this); + } +private: + VertexBuffer(VertexBuffer const&) = delete; + VertexBuffer& operator=(VertexBuffer const&) = delete; +}; + +struct VertexBufferPartition +{ + uint32_t active_vertex_count = 0, vertex_start_offset = 0; + + VertexBufferPartition() = default; +}; + +class DynamicVertexBuffer : public GenericBuffer { +public: + DynamicVertexBuffer() : partition_(nullptr) { + } + + DynamicVertexBuffer(size_t size, bool const bDedicatedMemory = false) + : partition_(nullptr), GenericBuffer( + vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eTransferDst, size, vk::MemoryPropertyFlagBits::eDeviceLocal, VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE, bDedicatedMemory) { + } + + ~DynamicVertexBuffer() + { + SAFE_DELETE_ARRAY(partition_); + } + + DynamicVertexBuffer(DynamicVertexBuffer&& relegate) + : GenericBuffer(std::forward(relegate)) + { + } + DynamicVertexBuffer& operator=(DynamicVertexBuffer&& relegate) + { + GenericBuffer::operator=(std::forward(relegate)); + + partition_ = relegate.partition_; + relegate.partition_ = nullptr; + partition_count_ = relegate.partition_count_; + relegate.partition_count_ = 0; + + return(*this); + } + + // Total Size of buffer used converted to -> Vertices + template + uint32_t const ActiveVertexCount() const { return((uint32_t const)(((size_t)activesizebytes()) / sizeof(T))); } + + uint32_t const partition_count() const { return(partition_count_); } + VertexBufferPartition* const __restrict& __restrict partitions() const { return(partition_); } + + void createPartitions(uint32_t const num_partitions) { + + partition_ = new VertexBufferPartition[num_partitions]{}; + partition_count_ = num_partitions; + } +private: + VertexBufferPartition* partition_; + uint32_t partition_count_; + +private: + DynamicVertexBuffer(DynamicVertexBuffer const&) = delete; + DynamicVertexBuffer& operator=(DynamicVertexBuffer const&) = delete; }; /// This class is a specialisation of GenericBuffer for low performance vertex buffers on the host. @@ -1419,8 +1926,8 @@ class HostVertexBuffer : public GenericBuffer { } template - HostVertexBuffer(const vk::Device &device, const vk::PhysicalDeviceMemoryProperties &memprops, const std::vector &value) : GenericBuffer(device, memprops, vk::BufferUsageFlagBits::eVertexBuffer, value.size() * sizeof(Type), vk::MemoryPropertyFlagBits::eHostVisible) { - updateLocal(device, value); + HostVertexBuffer(const std::vector &value) : GenericBuffer(vk::BufferUsageFlagBits::eVertexBuffer, value.size() * sizeof(Type), vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible) { + updateLocal(value); } }; @@ -1431,8 +1938,46 @@ class IndexBuffer : public GenericBuffer { IndexBuffer() { } - IndexBuffer(const vk::Device &device, const vk::PhysicalDeviceMemoryProperties &memprops, vk::DeviceSize size) : GenericBuffer(device, memprops, vk::BufferUsageFlagBits::eIndexBuffer | vk::BufferUsageFlagBits::eTransferDst, size, vk::MemoryPropertyFlagBits::eDeviceLocal) { + IndexBuffer(vk::DeviceSize const size) : GenericBuffer(vk::BufferUsageFlagBits::eIndexBuffer | vk::BufferUsageFlagBits::eTransferDst, size, vk::MemoryPropertyFlagBits::eDeviceLocal, VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE) { + } + + IndexBuffer(IndexBuffer&& relegate) + : GenericBuffer(std::forward(relegate)) + { } + IndexBuffer& operator=(IndexBuffer&& relegate) + { + GenericBuffer::operator=(std::forward(relegate)); + return(*this); + } +private: + IndexBuffer(IndexBuffer const&) = delete; + IndexBuffer& operator=(IndexBuffer const&) = delete; +}; + +class DynamicIndexBuffer : public GenericBuffer { +public: + DynamicIndexBuffer() { + } + + DynamicIndexBuffer(vk::DeviceSize const size) + : GenericBuffer( + vk::BufferUsageFlagBits::eIndexBuffer | vk::BufferUsageFlagBits::eTransferDst, size, vk::MemoryPropertyFlagBits::eDeviceLocal, VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE) { + } + + DynamicIndexBuffer(DynamicIndexBuffer&& relegate) + : GenericBuffer(std::forward(relegate)) + { + } + DynamicIndexBuffer& operator=(DynamicIndexBuffer&& relegate) + { + GenericBuffer::operator=(std::forward(relegate)); + return(*this); + } + +private: + DynamicIndexBuffer(DynamicIndexBuffer const&) = delete; + DynamicIndexBuffer& operator=(DynamicIndexBuffer const&) = delete; }; /// This class is a specialisation of GenericBuffer for low performance vertex buffers in CPU memory. @@ -1442,8 +1987,8 @@ class HostIndexBuffer : public GenericBuffer { } template - HostIndexBuffer(const vk::Device &device, const vk::PhysicalDeviceMemoryProperties &memprops, const std::vector &value) : GenericBuffer(device, memprops, vk::BufferUsageFlagBits::eIndexBuffer, value.size() * sizeof(Type), vk::MemoryPropertyFlagBits::eHostVisible) { - updateLocal(device, value); + HostIndexBuffer(const std::vector &value) : GenericBuffer(vk::BufferUsageFlagBits::eIndexBuffer, value.size() * sizeof(Type), vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible) { + updateLocal(value); } }; @@ -1454,28 +1999,146 @@ class UniformBuffer : public GenericBuffer { } /// Device local uniform buffer. - UniformBuffer(const vk::Device &device, const vk::PhysicalDeviceMemoryProperties &memprops, size_t size) : GenericBuffer(device, memprops, vk::BufferUsageFlagBits::eUniformBuffer|vk::BufferUsageFlagBits::eTransferDst, (vk::DeviceSize)size, vk::MemoryPropertyFlagBits::eDeviceLocal) { + UniformBuffer(size_t const size) : GenericBuffer(vk::BufferUsageFlagBits::eUniformBuffer|vk::BufferUsageFlagBits::eTransferDst, (vk::DeviceSize)size, vk::MemoryPropertyFlagBits::eDeviceLocal, VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE) { + } + + UniformBuffer(UniformBuffer&& relegate) + : GenericBuffer(std::forward(relegate)) + { } + UniformBuffer& operator=(UniformBuffer&& relegate) + { + GenericBuffer::operator=(std::forward(relegate)); + return(*this); + } + +private: + UniformBuffer(UniformBuffer const&) = delete; + UniformBuffer& operator=(UniformBuffer const&) = delete; +}; + +/// This class is a specialisation of GenericBuffer for uniform texel buffers. +class UniformTexelBuffer : public GenericBuffer { +public: + UniformTexelBuffer() { + } + + /// Device local uniform buffer. + UniformTexelBuffer(vk::Device const& __restrict device, size_t const size, vk::Format const image_format, bool const bDedicatedMemory = false, bool const bPersistantMapping = false) : GenericBuffer(vk::BufferUsageFlagBits::eUniformTexelBuffer | vk::BufferUsageFlagBits::eTransferDst, (vk::DeviceSize)size, vk::MemoryPropertyFlagBits::eDeviceLocal, VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE, bDedicatedMemory, bPersistantMapping) { + + vk::BufferViewCreateInfo viewInfo{}; + viewInfo.buffer = buffer(); + viewInfo.range = maxsizebytes(); + viewInfo.format = image_format; + + bufferView_ = device.createBufferViewUnique(viewInfo).value; + } + + UniformTexelBuffer(UniformTexelBuffer&& relegate) + : GenericBuffer(std::forward(relegate)) + { + } + UniformTexelBuffer& operator=(UniformTexelBuffer&& relegate) + { + GenericBuffer::operator=(std::forward(relegate)); + return(*this); + } + + vk::BufferView const bufferView() const { return(*bufferView_); } + +private: + vk::UniqueBufferView bufferView_{}; +private: + UniformTexelBuffer(UniformTexelBuffer const&) = delete; + UniformTexelBuffer& operator=(UniformTexelBuffer const&) = delete; + +public: + ~UniformTexelBuffer() + { + bufferView_.release(); + } +}; + +class StorageBuffer : public GenericBuffer { +public: + StorageBuffer() { + } + + // additionalFlags : vk::BufferUsageFlagBits::eTransferDst, vk::BufferUsageFlagBits::eTransferSrc + StorageBuffer(size_t const size, bool const bDedicatedMemory = false, vk::BufferUsageFlags const additionalFlags = {}) : GenericBuffer(vk::BufferUsageFlagBits::eStorageBuffer | additionalFlags, size, vk::MemoryPropertyFlagBits::eDeviceLocal, VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE, bDedicatedMemory) { + } + + StorageBuffer(StorageBuffer&& relegate) + : GenericBuffer(std::forward(relegate)) + { + } + StorageBuffer& operator=(StorageBuffer&& relegate) + { + GenericBuffer::operator=(std::forward(relegate)); + return(*this); + } + +private: + StorageBuffer(StorageBuffer const&) = delete; + StorageBuffer& operator=(StorageBuffer const&) = delete; +}; + +class HostStorageBuffer : public GenericBuffer { +public: + HostStorageBuffer() { + } + + template + HostStorageBuffer(const Type& value) : GenericBuffer(vk::BufferUsageFlagBits::eStorageBuffer, sizeof(Type), vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible) { + updateLocal(value); + } + template + HostStorageBuffer(const std::vector& value) : GenericBuffer(vk::BufferUsageFlagBits::eStorageBuffer, value.size() * sizeof(Type), vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible) { + updateLocal(value); + } +}; + +class IndirectBuffer : public GenericBuffer { +public: + IndirectBuffer() { + } + + IndirectBuffer(size_t const size, bool const bDedicatedMemory = false) + : GenericBuffer(vk::BufferUsageFlagBits::eIndirectBuffer | vk::BufferUsageFlagBits::eTransferDst, size, vk::MemoryPropertyFlagBits::eDeviceLocal, VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE, bDedicatedMemory) { + } + + IndirectBuffer(IndirectBuffer&& relegate) + : GenericBuffer(std::forward(relegate)) + { + } + IndirectBuffer& operator=(IndirectBuffer&& relegate) + { + GenericBuffer::operator=(std::forward(relegate)); + return(*this); + } + +private: + IndirectBuffer(IndirectBuffer const&) = delete; + IndirectBuffer& operator=(IndirectBuffer const&) = delete; }; /// Convenience class for updating descriptor sets (uniforms) class DescriptorSetUpdater { public: - DescriptorSetUpdater(int maxBuffers = 10, int maxImages = 10, int maxBufferViews = 0) { + DescriptorSetUpdater(int const maxBuffers = MAX_NUM_STORAGE_BUFFERS, int const maxImages = MAX_NUM_IMAGES, int const maxBufferViews = MAX_NUM_BUFFER_VIEWS) { // we must pre-size these buffers as we take pointers to their members. - bufferInfo_.resize(maxBuffers); - imageInfo_.resize(maxImages); - bufferViews_.resize(maxBufferViews); + bufferInfo_.reserve(maxBuffers); bufferInfo_.resize(maxBuffers); + imageInfo_.reserve(maxImages); imageInfo_.resize(maxImages); + bufferViews_.reserve(maxBufferViews); bufferViews_.resize(maxBufferViews); } /// Call this to begin a new descriptor set. - DescriptorSetUpdater& beginDescriptorSet(vk::DescriptorSet dstSet) { + void beginDescriptorSet(vk::DescriptorSet dstSet) { dstSet_ = dstSet; - return *this; } /// Call this to begin a new set of images. - DescriptorSetUpdater& beginImages(uint32_t dstBinding, uint32_t dstArrayElement, vk::DescriptorType descriptorType) { + void beginImages(uint32_t dstBinding, uint32_t dstArrayElement, vk::DescriptorType descriptorType) { vk::WriteDescriptorSet wdesc{}; wdesc.dstSet = dstSet_; wdesc.dstBinding = dstBinding; @@ -1484,22 +2147,23 @@ class DescriptorSetUpdater { wdesc.descriptorType = descriptorType; wdesc.pImageInfo = imageInfo_.data() + numImages_; descriptorWrites_.push_back(wdesc); - return *this; } /// Call this to add a combined image sampler. - DescriptorSetUpdater& image(vk::Sampler sampler, vk::ImageView imageView, vk::ImageLayout imageLayout) { + void image(vk::Sampler sampler, vk::ImageView imageView, vk::ImageLayout imageLayout) { if (!descriptorWrites_.empty() && numImages_ != imageInfo_.size() && descriptorWrites_.back().pImageInfo) { descriptorWrites_.back().descriptorCount++; imageInfo_[numImages_++] = vk::DescriptorImageInfo{sampler, imageView, imageLayout}; } else { +#ifndef NDEBUG + fmt::print(fg(fmt::color::red), "\n limit reached, cap of {:d} images\n", numImages_); +#endif ok_ = false; } - return *this; } /// Call this to start defining buffers. - DescriptorSetUpdater& beginBuffers(uint32_t dstBinding, uint32_t dstArrayElement, vk::DescriptorType descriptorType) { + void beginBuffers(uint32_t dstBinding, uint32_t dstArrayElement, vk::DescriptorType descriptorType) { vk::WriteDescriptorSet wdesc{}; wdesc.dstSet = dstSet_; wdesc.dstBinding = dstBinding; @@ -1508,18 +2172,19 @@ class DescriptorSetUpdater { wdesc.descriptorType = descriptorType; wdesc.pBufferInfo = bufferInfo_.data() + numBuffers_; descriptorWrites_.push_back(wdesc); - return *this; } /// Call this to add a new buffer. - DescriptorSetUpdater& buffer(vk::Buffer buffer, vk::DeviceSize offset, vk::DeviceSize range) { + void buffer(vk::Buffer buffer, vk::DeviceSize offset, vk::DeviceSize range) { if (!descriptorWrites_.empty() && numBuffers_ != bufferInfo_.size() && descriptorWrites_.back().pBufferInfo) { descriptorWrites_.back().descriptorCount++; bufferInfo_[numBuffers_++] = vk::DescriptorBufferInfo{buffer, offset, range}; } else { +#ifndef NDEBUG + fmt::print(fg(fmt::color::red), "\n limit reached, cap of {:d} buffers\n", numBuffers_); +#endif ok_ = false; } - return *this; } /// Call this to start adding buffer views. (for example, writable images). @@ -1536,10 +2201,13 @@ class DescriptorSetUpdater { /// Call this to add a buffer view. (Texel images) void bufferView(vk::BufferView view) { - if (!descriptorWrites_.empty() && numBufferViews_ != bufferViews_.size() && descriptorWrites_.back().pImageInfo) { + if (!descriptorWrites_.empty() && numBufferViews_ != bufferViews_.size() && descriptorWrites_.back().pTexelBufferView) { descriptorWrites_.back().descriptorCount++; bufferViews_[numBufferViews_++] = view; } else { +#ifndef NDEBUG + fmt::print(fg(fmt::color::red), "\n limit reached, cap of {:d} buffer views\n", numBufferViews_); +#endif ok_ = false; } } @@ -1575,41 +2243,27 @@ class DescriptorSetLayoutMaker { DescriptorSetLayoutMaker() { } - DescriptorSetLayoutMaker& buffer(uint32_t binding, vk::DescriptorType descriptorType, vk::ShaderStageFlags stageFlags, uint32_t descriptorCount) { + void buffer(uint32_t binding, vk::DescriptorType descriptorType, vk::ShaderStageFlags stageFlags, uint32_t descriptorCount) { s.bindings.emplace_back(binding, descriptorType, descriptorCount, stageFlags, nullptr); - return *this; } - DescriptorSetLayoutMaker& image(uint32_t binding, vk::DescriptorType descriptorType, vk::ShaderStageFlags stageFlags, uint32_t descriptorCount) { - s.bindings.emplace_back(binding, descriptorType, descriptorCount, stageFlags, nullptr); - return *this; + void image(uint32_t binding, vk::DescriptorType descriptorType, vk::ShaderStageFlags stageFlags, uint32_t descriptorCount, vk::Sampler const* const __restrict immutableSamplers = nullptr) { + s.bindings.emplace_back(binding, descriptorType, descriptorCount, stageFlags, immutableSamplers); } - DescriptorSetLayoutMaker& samplers(uint32_t binding, vk::DescriptorType descriptorType, vk::ShaderStageFlags stageFlags, const std::vector immutableSamplers) { - s.samplers.push_back(immutableSamplers); - auto pImmutableSamplers = s.samplers.back().data(); - s.bindings.emplace_back(binding, descriptorType, (uint32_t)immutableSamplers.size(), stageFlags, pImmutableSamplers); - return *this; - } - - DescriptorSetLayoutMaker& bufferView(uint32_t binding, vk::DescriptorType descriptorType, vk::ShaderStageFlags stageFlags, uint32_t descriptorCount) { + void bufferView(uint32_t binding, vk::DescriptorType descriptorType, vk::ShaderStageFlags stageFlags, uint32_t descriptorCount) { s.bindings.emplace_back(binding, descriptorType, descriptorCount, stageFlags, nullptr); - return *this; } /// Create a self-deleting descriptor set object. vk::UniqueDescriptorSetLayout createUnique(vk::Device device) const { - vk::DescriptorSetLayoutCreateInfo dsci{}; - dsci.bindingCount = (uint32_t)s.bindings.size(); - dsci.pBindings = s.bindings.data(); - return device.createDescriptorSetLayoutUnique(dsci); + + return ( device.createDescriptorSetLayoutUnique(vk::DescriptorSetLayoutCreateInfo((vk::DescriptorSetLayoutCreateFlags const)0U, (uint32_t const)s.bindings.size(), s.bindings.data()) ).value ); } private: struct State { std::vector bindings; - std::vector > samplers; - int numSamplers = 0; }; State s; @@ -1623,9 +2277,8 @@ class DescriptorSetMaker { } /// Add another layout describing a descriptor set. - DescriptorSetMaker &layout(vk::DescriptorSetLayout layout) { - s.layouts.push_back(layout); - return *this; + void layout(vk::DescriptorSetLayout layout) { + s.layouts.emplace_back(layout); } /// Allocate a vector of non-self-deleting descriptor sets @@ -1635,17 +2288,18 @@ class DescriptorSetMaker { dsai.descriptorPool = descriptorPool; dsai.descriptorSetCount = (uint32_t)s.layouts.size(); dsai.pSetLayouts = s.layouts.data(); - return device.allocateDescriptorSets(dsai); + return device.allocateDescriptorSets(dsai).value; } /// Allocate a vector of self-deleting descriptor sets. + /* std::vector createUnique(vk::Device device, vk::DescriptorPool descriptorPool) const { vk::DescriptorSetAllocateInfo dsai{}; dsai.descriptorPool = descriptorPool; dsai.descriptorSetCount = (uint32_t)s.layouts.size(); dsai.pSetLayouts = s.layouts.data(); return device.allocateDescriptorSetsUnique(dsai); - } + }*/ private: struct State { @@ -1662,45 +2316,86 @@ class GenericImage { GenericImage() { } - GenericImage(vk::Device device, const vk::PhysicalDeviceMemoryProperties &memprops, const vk::ImageCreateInfo &info, vk::ImageViewType viewType, vk::ImageAspectFlags aspectMask, bool makeHostImage) { - create(device, memprops, info, viewType, aspectMask, makeHostImage); + GenericImage(vk::Device device, const vk::ImageCreateInfo &info, vk::ImageViewType viewType, vk::ImageAspectFlags aspectMask, bool makeHostImage) { + create(device, info, viewType, aspectMask, makeHostImage); } - vk::Image image() const { return *s.image; } - vk::ImageView imageView() const { return *s.imageView; } - vk::DeviceMemory mem() const { return *s.mem; } + __inline vk::Image const& __restrict image() const { return(s.image); } + __inline vk::ImageView const imageView() const { return(*s.imageView); } - /// Clear the colour of an image. - void clear(vk::CommandBuffer cb, const std::array colour = {1, 1, 1, 1}) { - setLayout(cb, vk::ImageLayout::eTransferDstOptimal); - vk::ClearColorValue ccv(colour); - vk::ImageSubresourceRange range{vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1}; - cb.clearColorImage(*s.image, vk::ImageLayout::eTransferDstOptimal, ccv, range); + // Ondemand creation of view specific to mip level - texture arrays not supported + // *** lazy function - assumes it will be called in ascending order of mip levels, starrting at mip level 1 + // *** otherwise the mipViews will not correspond to the correct mip level, function could also crash accessing out of bounds index + __inline vk::ImageView const mipView(uint32_t const mipLevel, vk::Device const& __restrict device, vk::ImageAspectFlags const aspectMask = vk::ImageAspectFlagBits::eColor) { + + vk::ImageViewCreateInfo viewInfo{}; + viewInfo.image = s.image; + viewInfo.viewType = (vk::ImageViewType) s.info.imageType; // only works for 1D, 2D, 3D , ImageType enum integer levels match ImageViewType + viewInfo.format = s.info.format; + viewInfo.components = { vk::ComponentSwizzle::eR, vk::ComponentSwizzle::eG, vk::ComponentSwizzle::eB, vk::ComponentSwizzle::eA }; + viewInfo.subresourceRange = vk::ImageSubresourceRange{ aspectMask, mipLevel, 1, 0, 1 }; + s.mipView.emplace_back(device.createImageViewUnique(viewInfo).value); + + return(*s.mipView[mipLevel]); + } + void create_mipViews(vk::Device const& __restrict device, vk::ImageAspectFlags const aspectMask = vk::ImageAspectFlagBits::eColor) // creates and stores image views for all mips in s.mipView + { + for (uint32_t i = 0; i < s.info.mipLevels; ++i) { + mipView(i, device, aspectMask); + } } - /// Update the image with an array of pixels. (Currently 2D only) - void update(vk::Device device, const void *data, vk::DeviceSize bytesPerPixel) { - const uint8_t *src = (const uint8_t *)data; - for (uint32_t mipLevel = 0; mipLevel != info().mipLevels; ++mipLevel) { - // Array images are layed out horizontally. eg. [left][front][right] etc. - for (uint32_t arrayLayer = 0; arrayLayer != info().arrayLayers; ++arrayLayer) { - vk::ImageSubresource subresource{vk::ImageAspectFlagBits::eColor, mipLevel, arrayLayer}; - auto srlayout = device.getImageSubresourceLayout(*s.image, subresource); - uint8_t *dest = (uint8_t *)device.mapMemory(*s.mem, 0, s.size, vk::MemoryMapFlags{}) + srlayout.offset; - size_t bytesPerLine = s.info.extent.width * bytesPerPixel; - size_t srcStride = bytesPerLine * info().arrayLayers; - for (int y = 0; y != s.info.extent.height; ++y) { - memcpy(dest, src + arrayLayer * bytesPerLine, bytesPerLine); - src += srcStride; - dest += srlayout.rowPitch; - } - } - } - device.unmapMemory(*s.mem); + // **** lazy function - assumes mipView has already been created, that mipLevel passed in is valid (not greater than image mip levels) etc etc + __inline vk::ImageView const mipView(uint32_t const mipLevel) const { + + return(*s.mipView[mipLevel]); + } + + // *** note this is the slow way of clearing an image in vulkan, do not use every frame - good for startup and periodic loading only *** // + + // Clear the colour of an image. sets the transferdstoptimal layout by default, can be false for batching, etc + template + void clear(vk::CommandBuffer& __restrict cb, std::array const color = {0, 0, 0, 0}) { + + if constexpr (bSetLayout) { + setLayout(cb, vk::ImageLayout::eTransferDstOptimal); + } + vk::ImageSubresourceRange const range{vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1}; + cb.clearColorImage(s.image, vk::ImageLayout::eTransferDstOptimal, vk::ClearColorValue(color), range); + } + + // *** note this is the slow way of clearing an image in vulkan, do not use every frame - good for startup and periodic loading only *** // + + // *** vk::ImageUsageFlagBits::eTransferDst REQUIRED *** does not require a command buffer, executes immediately, good for clearing images that have just been created. (ensure 100% clear image, not random noise. GPU ZeroMemory) + // leaves image in the layout it was originally in before the clear (no change) + void clear(vk::Device const& __restrict device, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue, std::array const color = { 0, 0, 0, 0 }) { + + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + + auto const original_layout(s.currentLayout); + + setLayout(cb, vk::ImageLayout::eTransferDstOptimal); + vk::ImageSubresourceRange const range{ vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 }; + cb.clearColorImage(s.image, vk::ImageLayout::eTransferDstOptimal, vk::ClearColorValue(color), range); + setLayout(cb, original_layout); + + }); + } + /// Copy another image to this one. This also changes the layout. SPECIFIC MIPLEVEL + void copy(vk::CommandBuffer& __restrict cb, vku::GenericImage& __restrict srcImage, uint32_t const mipLevel) { + srcImage.setLayout(cb, vk::ImageLayout::eTransferSrcOptimal); + setLayout(cb, vk::ImageLayout::eTransferDstOptimal); + + vk::ImageCopy region{}; + region.srcSubresource = { vk::ImageAspectFlagBits::eColor, mipLevel, 0, 1 }; + region.dstSubresource = { vk::ImageAspectFlagBits::eColor, mipLevel, 0, 1 }; + region.extent = s.info.extent; + cb.copyImage(srcImage.image(), vk::ImageLayout::eTransferSrcOptimal, s.image, vk::ImageLayout::eTransferDstOptimal, region); + } /// Copy another image to this one. This also changes the layout. - void copy(vk::CommandBuffer cb, vku::GenericImage &srcImage) { + void copy(vk::CommandBuffer& __restrict cb, vku::GenericImage & __restrict srcImage) { srcImage.setLayout(cb, vk::ImageLayout::eTransferSrcOptimal); setLayout(cb, vk::ImageLayout::eTransferDstOptimal); for (uint32_t mipLevel = 0; mipLevel != info().mipLevels; ++mipLevel) { @@ -1708,12 +2403,12 @@ class GenericImage { region.srcSubresource = {vk::ImageAspectFlagBits::eColor, mipLevel, 0, 1}; region.dstSubresource = {vk::ImageAspectFlagBits::eColor, mipLevel, 0, 1}; region.extent = s.info.extent; - cb.copyImage(srcImage.image(), vk::ImageLayout::eTransferSrcOptimal, *s.image, vk::ImageLayout::eTransferDstOptimal, region); + cb.copyImage(srcImage.image(), vk::ImageLayout::eTransferSrcOptimal, s.image, vk::ImageLayout::eTransferDstOptimal, region); } } /// Copy a subimage in a buffer to this image. - void copy(vk::CommandBuffer cb, vk::Buffer buffer, uint32_t mipLevel, uint32_t arrayLayer, uint32_t width, uint32_t height, uint32_t depth, uint32_t offset) { + void copy(vk::CommandBuffer& __restrict cb, vk::Buffer const& __restrict buffer, uint32_t const mipLevel, uint32_t const arrayLayer, uint32_t const width, uint32_t const height, uint32_t const depth, uint32_t const offset) { setLayout(cb, vk::ImageLayout::eTransferDstOptimal); vk::BufferImageCopy region{}; region.bufferOffset = offset; @@ -1723,51 +2418,436 @@ class GenericImage { extent.depth = depth; region.imageSubresource = {vk::ImageAspectFlagBits::eColor, mipLevel, arrayLayer, 1}; region.imageExtent = extent; - cb.copyBufferToImage(buffer, *s.image, vk::ImageLayout::eTransferDstOptimal, region); - } + cb.copyBufferToImage(buffer, s.image, vk::ImageLayout::eTransferDstOptimal, region); + } + + // for a single layer upload, mipmapping levels not supported - only the source size for a layer of n bytes is considered. the target texture for upload must not have mipmaps, and should also enough layers (total layers > targetLayer) + template< bool const DoSetFinalLayout = true, vk::ImageLayout const FinalLayout = vk::ImageLayout::eShaderReadOnlyOptimal, typename T > + void upload(vk::Device device, T const* const __restrict bytes, size_t const sizeLayer, uint32_t const targetLayer, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue) { + vku::GenericBuffer stagingBuffer((vk::BufferUsageFlags)vk::BufferUsageFlagBits::eTransferSrc, (vk::DeviceSize)sizeLayer, vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible, VMA_MEMORY_USAGE_AUTO_PREFER_HOST, vku::eMappedAccess::Sequential); + stagingBuffer.updateLocal(bytes, sizeLayer); + + // Copy the staging buffer to the GPU texture and set the layout. + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + auto bp = getBlockParams(s.info.format); + vk::Buffer buf = stagingBuffer.buffer(); + + auto width = mipScale(s.info.extent.width, 0); + auto height = mipScale(s.info.extent.height, 0); + auto depth = mipScale(s.info.extent.depth, 0); + + copy(cb, buf, 0, targetLayer, width, height, depth, 0); + + if constexpr (DoSetFinalLayout) { + + setLayout(cb, FinalLayout); + } + }); + } + + // for a single layer upload, mipmapping levels not supported - only the source size for a layer of n bytes is considered. the target texture for upload must not have mipmaps, and should also enough layers (total layers > targetLayer) + template< bool const DoSetFinalLayout = true, vk::ImageLayout const FinalLayout = vk::ImageLayout::eShaderReadOnlyOptimal > + void upload(vk::Device device, vku::GenericBuffer const& __restrict stagingBuffer, uint32_t const targetLayer, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue) { + + // Copy the staging buffer to the GPU texture and set the layout. + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + auto bp = getBlockParams(s.info.format); + vk::Buffer buf = stagingBuffer.buffer(); + + auto width = mipScale(s.info.extent.width, 0); + auto height = mipScale(s.info.extent.height, 0); + auto depth = mipScale(s.info.extent.depth, 0); + + copy(cb, buf, 0, targetLayer, width, height, depth, 0); + + if constexpr (DoSetFinalLayout) { + + setLayout(cb, FinalLayout); + } + }); + } + + template< bool const DoSetFinalLayout = true, vk::ImageLayout const FinalLayout = vk::ImageLayout::eShaderReadOnlyOptimal, typename T > + void upload(vk::Device device, T const* const __restrict bytes, size_t const size, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue) { + vku::GenericBuffer stagingBuffer((vk::BufferUsageFlags)vk::BufferUsageFlagBits::eTransferSrc, (vk::DeviceSize)size, vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible, VMA_MEMORY_USAGE_AUTO_PREFER_HOST, vku::eMappedAccess::Sequential); + stagingBuffer.updateLocal(bytes, size); + + // Copy the staging buffer to the GPU texture and set the layout. + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + auto bp = getBlockParams(s.info.format); + vk::Buffer buf = stagingBuffer.buffer(); + uint32_t offset = 0; + for (uint32_t mipLevel = 0; mipLevel != s.info.mipLevels; ++mipLevel) { + auto width = mipScale(s.info.extent.width, mipLevel); + auto height = mipScale(s.info.extent.height, mipLevel); + auto depth = mipScale(s.info.extent.depth, mipLevel); + for (uint32_t face = 0; face != s.info.arrayLayers; ++face) { + copy(cb, buf, mipLevel, face, width, height, depth, offset); + offset += ((bp.bytesPerBlock + 3) & ~3) * (width * height); + } + } + + if constexpr (DoSetFinalLayout) { + + setLayout(cb, FinalLayout); + } + }); + } + + template< bool const DoSetFinalLayout = true, vk::ImageLayout const FinalLayout = vk::ImageLayout::eShaderReadOnlyOptimal > + void upload(vk::Device const& __restrict device, vku::GenericBuffer const& __restrict stagingBuffer, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue) { + + // Copy the staging buffer to the GPU texture and set the layout. + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + auto bp = getBlockParams(s.info.format); + vk::Buffer buf = stagingBuffer.buffer(); + uint32_t offset = 0; + for (uint32_t mipLevel = 0; mipLevel != s.info.mipLevels; ++mipLevel) { + auto width = mipScale(s.info.extent.width, mipLevel); + auto height = mipScale(s.info.extent.height, mipLevel); + auto depth = mipScale(s.info.extent.depth, mipLevel); + for (uint32_t face = 0; face != s.info.arrayLayers; ++face) { + copy(cb, buf, mipLevel, face, width, height, depth, offset); + offset += ((bp.bytesPerBlock + 3) & ~3) * (width * height); + } + } + + if constexpr (DoSetFinalLayout) { + + setLayout(cb, FinalLayout); + } + }); + } + + template< bool const DoSetFinalLayout = true, vk::ImageLayout const FinalLayout = vk::ImageLayout::eShaderReadOnlyOptimal > + void uploadDeferred(vk::CommandBuffer& __restrict cb, vku::GenericBuffer const& __restrict stagingBuffer) { + + auto bp = getBlockParams(s.info.format); + vk::Buffer buf = stagingBuffer.buffer(); + uint32_t offset = 0; + for (uint32_t mipLevel = 0; mipLevel != s.info.mipLevels; ++mipLevel) { + auto width = mipScale(s.info.extent.width, mipLevel); + auto height = mipScale(s.info.extent.height, mipLevel); + auto depth = mipScale(s.info.extent.depth, mipLevel); + for (uint32_t face = 0; face != s.info.arrayLayers; ++face) { + copy(cb, buf, mipLevel, face, width, height, depth, offset); + offset += ((bp.bytesPerBlock + 3) & ~3) * (width * height); + } + } - void upload(vk::Device device, std::vector &bytes, vk::CommandPool commandPool, vk::PhysicalDeviceMemoryProperties memprops, vk::Queue queue, vk::ImageLayout finalLayout=vk::ImageLayout::eShaderReadOnlyOptimal) { - return upload(device, bytes.data(), bytes.size(), commandPool, memprops, queue, finalLayout); + if constexpr (DoSetFinalLayout) { + + setLayout(cb, FinalLayout); + } } - - void upload(vk::Device device, const uint8_t *bytes, size_t bytesSize, vk::CommandPool commandPool, vk::PhysicalDeviceMemoryProperties memprops, vk::Queue queue, vk::ImageLayout finalLayout=vk::ImageLayout::eShaderReadOnlyOptimal) { - vku::GenericBuffer stagingBuffer(device, memprops, (vk::BufferUsageFlags)vk::BufferUsageFlagBits::eTransferSrc, (vk::DeviceSize)bytesSize, vk::MemoryPropertyFlagBits::eHostVisible); - stagingBuffer.updateLocal(device, (const void*)bytes, bytesSize); - - // Copy the staging buffer to the GPU texture and set the layout. - vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { - auto bp = getBlockParams(s.info.format); - vk::Buffer buf = stagingBuffer.buffer(); - uint32_t offset = 0; - for (uint32_t mipLevel = 0; mipLevel != s.info.mipLevels; ++mipLevel) { - auto width = mipScale(s.info.extent.width, mipLevel); - auto height = mipScale(s.info.extent.height, mipLevel); - auto depth = mipScale(s.info.extent.depth, mipLevel); - for (uint32_t face = 0; face != s.info.arrayLayers; ++face) { - copy(cb, buf, mipLevel, face, width, height, depth, offset); - offset += ((bp.bytesPerBlock + 3) & ~3) * (width * height); - } + + template< bool const DoSetFinalLayout = true, vk::ImageLayout const FinalLayout = vk::ImageLayout::eShaderReadOnlyOptimal > + void upload(vk::Device device, std::vector &bytes, vk::CommandPool commandPool, vk::Queue queue) { + upload< DoSetFinalLayout, FinalLayout >(device, bytes.data(), bytes.size(), commandPool, queue); + } + + template< bool const DoSetFinalLayout = true, vk::ImageLayout const FinalLayout = vk::ImageLayout::eShaderReadOnlyOptimal, typename T> + void upload(vk::Device const& __restrict device, T const* const __restrict bytes, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue) { + upload< DoSetFinalLayout, FinalLayout >(device, bytes, s.size, commandPool, queue); + } + + void finalizeUpload(vk::Device const& __restrict device, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue, + vk::ImageLayout const FinalLayout = vk::ImageLayout::eShaderReadOnlyOptimal) + { + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + + setLayout(cb, FinalLayout); + + }); + } + /* These constants are defined in vku_addon.hpp + static constexpr int32_t const + ACCESS_READONLY(0), + ACCESS_READWRITE(1), + ACCESS_WRITEONLY(-1) + */ + template< bool const bDontCareSrcUndefined = false> + void setLayoutCompute(vk::CommandBuffer const& __restrict cb, int32_t const ComputeAccessRequired, vk::ImageAspectFlags aspectMask = vk::ImageAspectFlagBits::eColor) { + + // Put barrier on top (default) - invalid for many access types + vk::PipelineStageFlags srcStageMask{ vk::PipelineStageFlagBits::eTopOfPipe }; + vk::PipelineStageFlags dstStageMask{ vk::PipelineStageFlagBits::eTopOfPipe }; + vk::DependencyFlags dependencyFlags{}; + vk::AccessFlags srcMask{}; + vk::AccessFlags dstMask{}; + typedef vk::PipelineStageFlagBits psfb; + typedef vk::AccessFlagBits afb; + typedef vk::ImageLayout il; + + /* newLayout */ + vk::ImageLayout oldLayout = s.currentLayout; + + // input layout can be undefined if the contents are not needed to persist between frames + if constexpr (bDontCareSrcUndefined) { + oldLayout = s.currentLayout = il::eUndefined; // bugfix, ensure that layout for compute is set, regardless of currentLayout state. Fixes validation error at startup. } - setLayout(cb, finalLayout); - }); - } - /// Change the layout of this image using a memory barrier. - void setLayout(vk::CommandBuffer cb, vk::ImageLayout newLayout, vk::ImageAspectFlags aspectMask = vk::ImageAspectFlagBits::eColor) { - if (newLayout == s.currentLayout) return; - vk::ImageLayout oldLayout = s.currentLayout; - s.currentLayout = newLayout; + dstStageMask = psfb::eComputeShader; + if (0 == ComputeAccessRequired) { // read only // + + if (il::eShaderReadOnlyOptimal == s.currentLayout) return; + s.currentLayout = il::eShaderReadOnlyOptimal; + + dstMask = afb::eShaderRead; + } + else if (ComputeAccessRequired < 0) { // write only // + + if (il::eGeneral == s.currentLayout) return; + s.currentLayout = il::eGeneral; + + dstMask = afb::eShaderWrite; + } + else { // read-write // + + if (il::eGeneral == s.currentLayout) return; + s.currentLayout = il::eGeneral; + + dstMask = afb::eShaderWrite | afb::eShaderRead; + } + + vk::ImageMemoryBarrier imageMemoryBarriers = {}; + imageMemoryBarriers.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + imageMemoryBarriers.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + imageMemoryBarriers.oldLayout = oldLayout; + imageMemoryBarriers.newLayout = s.currentLayout; + imageMemoryBarriers.image = s.image; + imageMemoryBarriers.subresourceRange = { aspectMask, 0, s.info.mipLevels, 0, s.info.arrayLayers }; + + // Is it me, or are these the same? + switch (oldLayout) { + case il::eUndefined: break; + case il::eGeneral: + srcMask = afb::eShaderWrite; // assumes only compute and it was write-only + srcStageMask = psfb::eComputeShader; + break; + case il::eColorAttachmentOptimal: srcMask = afb::eColorAttachmentWrite; srcStageMask = psfb::eColorAttachmentOutput; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilAttachmentOptimal: srcMask = afb::eDepthStencilAttachmentWrite; srcStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilReadOnlyOptimal: srcMask = afb::eDepthStencilAttachmentRead; srcStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eShaderReadOnlyOptimal: srcMask = afb::eShaderRead; srcStageMask = psfb::eFragmentShader | psfb::eComputeShader; /*assumes frag or compute shader*/ dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eTransferSrcOptimal: srcMask = afb::eTransferRead; srcStageMask = psfb::eTransfer; break; + case il::eTransferDstOptimal: srcMask = afb::eTransferWrite; srcStageMask = psfb::eTransfer; break; + case il::ePreinitialized: srcMask = afb::eTransferWrite | afb::eHostWrite; break; + case il::ePresentSrcKHR: srcMask = afb::eMemoryRead; srcStageMask = psfb::eBottomOfPipe; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + } + + imageMemoryBarriers.srcAccessMask = srcMask; + imageMemoryBarriers.dstAccessMask = dstMask; + auto memoryBarriers = nullptr; + auto bufferMemoryBarriers = nullptr; + + if (srcStageMask != dstStageMask || (srcStageMask == dstStageMask && (srcMask != dstMask))) { + cb.pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, memoryBarriers, bufferMemoryBarriers, imageMemoryBarriers); + } + } + + void setLayoutFragmentFromCompute(vk::CommandBuffer const& __restrict cb, int32_t const ComputeAccessUsed, vk::ImageAspectFlags aspectMask = vk::ImageAspectFlagBits::eColor) { + typedef vk::ImageLayout il; + if (il::eShaderReadOnlyOptimal == s.currentLayout) return; + vk::ImageLayout oldLayout = s.currentLayout; + s.currentLayout = il::eShaderReadOnlyOptimal; + + // case il::eShaderReadOnlyOptimal: dstMask = afb::eShaderRead; dstStageMask = psfb::eFragmentShader | psfb::eComputeShader; break; // assumes not texture access in vertex shader, etc + vk::ImageMemoryBarrier imageMemoryBarriers = {}; + imageMemoryBarriers.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + imageMemoryBarriers.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + imageMemoryBarriers.oldLayout = oldLayout; + imageMemoryBarriers.newLayout = s.currentLayout; + imageMemoryBarriers.image = s.image; + imageMemoryBarriers.subresourceRange = { aspectMask, 0, s.info.mipLevels, 0, s.info.arrayLayers }; + + // Put barrier on top (default) - invalid for many access types + vk::PipelineStageFlags srcStageMask{ vk::PipelineStageFlagBits::eTopOfPipe }; + vk::PipelineStageFlags dstStageMask{ vk::PipelineStageFlagBits::eTopOfPipe }; + vk::DependencyFlags const dependencyFlags{ vk::DependencyFlagBits::eByRegion }; + vk::AccessFlags srcMask{}; + vk::AccessFlags dstMask{}; + + typedef vk::PipelineStageFlagBits psfb; + typedef vk::AccessFlagBits afb; + + dstMask = afb::eShaderRead; dstStageMask = psfb::eFragmentShader; // assumes not texture access in vertex shader, etc + + /* oldLayout */ + switch (oldLayout) { + case il::eUndefined: break; + case il::eGeneral: + { + srcStageMask = psfb::eComputeShader; + if (0 == ComputeAccessUsed) { // read only // +#ifndef NDEBUG + assert_print(false, "setLayoutFragmentFromCompute logical error, old layout cannot be General while AccessUsed is readonly"); +#endif + } + else if (ComputeAccessUsed < 0) { // write only // + srcMask = afb::eShaderWrite; + } + else { // read-write // + srcMask = afb::eShaderWrite | afb::eShaderRead; + } + break; + } + } + + imageMemoryBarriers.srcAccessMask = srcMask; + imageMemoryBarriers.dstAccessMask = dstMask; + auto memoryBarriers = nullptr; + auto bufferMemoryBarriers = nullptr; + + if (srcStageMask != dstStageMask || (srcStageMask == dstStageMask && (srcMask != dstMask))) { + cb.pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, memoryBarriers, bufferMemoryBarriers, imageMemoryBarriers); + } + } + + // For specifying the specific source and destination stages vk::PipelineStageFlagBits (advanced usage): + template< bool const bDontCareSrcUndefined = false> + void setLayout(vk::CommandBuffer const& __restrict cb, vk::ImageLayout newLayout, vk::PipelineStageFlags srcStageMask, int32_t const AccessUsed, vk::PipelineStageFlags dstStageMask, int32_t const AccessRequired, vk::ImageAspectFlags aspectMask = vk::ImageAspectFlagBits::eColor, vk::ImageLayout const ForceLayoutUpdate = vk::ImageLayout::eUndefined) { + + vk::ImageLayout oldLayout; + + if constexpr (bDontCareSrcUndefined) { + oldLayout = vk::ImageLayout::eUndefined; + srcStageMask = vk::PipelineStageFlagBits::eTopOfPipe; + } + else { + if (vk::ImageLayout::eUndefined == ForceLayoutUpdate) { + if (newLayout == s.currentLayout && AccessUsed == AccessRequired) return; + + oldLayout = s.currentLayout; + } + else { + if (vk::ImageLayout::eUndefined != s.currentLayout) + oldLayout = ForceLayoutUpdate; + else + oldLayout = s.currentLayout; + } + } + + s.currentLayout = newLayout; + + vk::ImageMemoryBarrier imageMemoryBarriers = {}; + imageMemoryBarriers.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + imageMemoryBarriers.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + imageMemoryBarriers.oldLayout = oldLayout; + imageMemoryBarriers.newLayout = newLayout; + imageMemoryBarriers.image = s.image; + imageMemoryBarriers.subresourceRange = { aspectMask, 0, s.info.mipLevels, 0, s.info.arrayLayers }; + + vk::DependencyFlags dependencyFlags{}; + vk::AccessFlags srcMask{}; + vk::AccessFlags dstMask{}; + + typedef vk::ImageLayout il; + typedef vk::PipelineStageFlagBits psfb; + typedef vk::AccessFlagBits afb; + + // Is it me, or are these the same? + switch (oldLayout) { + case il::eUndefined: break; + case il::eGeneral: + if (0 == AccessUsed) { // read only // + /*case il::eGeneral:*/ srcMask = afb::eShaderRead; + } + else if (AccessUsed < 0) { // write only // + /*case il::eGeneral:*/ srcMask = afb::eShaderWrite; + } + else { // read-write // + /*case il::eGeneral:*/ srcMask = afb::eShaderWrite | afb::eShaderRead; + } + dependencyFlags = vk::DependencyFlagBits::eByRegion; + break; // srcstagemask must be suitably set + case il::eColorAttachmentOptimal: srcMask = afb::eColorAttachmentWrite; srcStageMask = psfb::eColorAttachmentOutput; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilAttachmentOptimal: srcMask = afb::eDepthStencilAttachmentWrite; srcStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilReadOnlyOptimal: srcMask = afb::eDepthStencilAttachmentRead; srcStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eShaderReadOnlyOptimal: // this is compatible w/compute and fragment by using correct passed in srcStageMask + srcMask = afb::eShaderRead; + dependencyFlags = vk::DependencyFlagBits::eByRegion; + break; // srcstagemask must be suitably set + case il::eTransferSrcOptimal: srcMask = afb::eTransferRead; srcStageMask = psfb::eTransfer; break; + case il::eTransferDstOptimal: srcMask = afb::eTransferWrite; srcStageMask = psfb::eTransfer; break; + case il::ePreinitialized: srcMask = afb::eTransferWrite | afb::eHostWrite; break; + case il::ePresentSrcKHR: srcMask = afb::eMemoryRead; srcStageMask = psfb::eBottomOfPipe; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + } + + switch (newLayout) { + case il::eUndefined: break; + case il::eGeneral: + if (0 == AccessRequired) { // read only // +#ifndef NDEBUG + assert_print(false, "setLayout logical error, new layout cannot be General while AccessRequired is readonly"); +#endif + } + else if (AccessRequired < 0) { // write only // + /*case il::eGeneral:*/ dstMask = afb::eShaderWrite; + } + else { // read-write // + /*case il::eGeneral:*/ dstMask = afb::eShaderWrite | afb::eShaderRead; + } + dependencyFlags = vk::DependencyFlagBits::eByRegion; + break; // dststagemask must be suitably set + case il::eColorAttachmentOptimal: dstMask = afb::eColorAttachmentWrite; dstStageMask = psfb::eColorAttachmentOutput; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilAttachmentOptimal: dstMask = afb::eDepthStencilAttachmentWrite; dstStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilReadOnlyOptimal: dstMask = afb::eDepthStencilAttachmentRead; dstStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eShaderReadOnlyOptimal: // this is compatible w/compute and fragment by using correct passed in dstStageMask + dstMask = afb::eShaderRead; + dependencyFlags = vk::DependencyFlagBits::eByRegion; + break; // dststagemask must be suitably set + case il::eTransferSrcOptimal: dstMask = afb::eTransferRead; dstStageMask = psfb::eTransfer; break; + case il::eTransferDstOptimal: dstMask = afb::eTransferWrite; dstStageMask = psfb::eTransfer; break; + case il::ePreinitialized: dstMask = afb::eTransferWrite | afb::eHostWrite; break; + case il::ePresentSrcKHR: dstMask = afb::eMemoryRead; dstStageMask = psfb::eBottomOfPipe; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + } + + imageMemoryBarriers.srcAccessMask = srcMask; + imageMemoryBarriers.dstAccessMask = dstMask; + auto memoryBarriers = nullptr; + auto bufferMemoryBarriers = nullptr; + + if (srcStageMask != dstStageMask || (srcStageMask == dstStageMask && (srcMask != dstMask))) { + cb.pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, memoryBarriers, bufferMemoryBarriers, imageMemoryBarriers); + } + } + + /// Change the layout of this image using a memory barrier. (simple automatic usage - covers most cases) + // ForceLayoutUpdate s good for recording those pesky cbs hat wont set the layout properly due to this classes state tracking + // ForceLayoutUpdate should be set to the expected OLD layout being transitioned from + template< bool const bDontCareSrcUndefined = false> + void setLayout(vk::CommandBuffer const& __restrict cb, vk::ImageLayout newLayout, vk::ImageAspectFlags aspectMask = vk::ImageAspectFlagBits::eColor, vk::ImageLayout const ForceLayoutUpdate = vk::ImageLayout::eUndefined) { + + vk::ImageLayout oldLayout; + + if constexpr (bDontCareSrcUndefined) { + oldLayout = vk::ImageLayout::eUndefined; + } + else { + if (vk::ImageLayout::eUndefined == ForceLayoutUpdate) { + if (newLayout == s.currentLayout) return; + + oldLayout = s.currentLayout; + } + else { + if (vk::ImageLayout::eUndefined != s.currentLayout) + oldLayout = ForceLayoutUpdate; + else + oldLayout = s.currentLayout; + } + } + + s.currentLayout = newLayout; vk::ImageMemoryBarrier imageMemoryBarriers = {}; imageMemoryBarriers.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imageMemoryBarriers.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imageMemoryBarriers.oldLayout = oldLayout; imageMemoryBarriers.newLayout = newLayout; - imageMemoryBarriers.image = *s.image; + imageMemoryBarriers.image = s.image; imageMemoryBarriers.subresourceRange = {aspectMask, 0, s.info.mipLevels, 0, s.info.arrayLayers}; - // Put barrier on top - // https://www.khronos.org/registry/vulkan/specs/1.2/html/chap7.html#synchronization-access-types-supported + // Put barrier on top (default) - invalid for many access types vk::PipelineStageFlags srcStageMask{vk::PipelineStageFlagBits::eTopOfPipe}; vk::PipelineStageFlags dstStageMask{vk::PipelineStageFlagBits::eTopOfPipe}; vk::DependencyFlags dependencyFlags{}; @@ -1775,95 +2855,393 @@ class GenericImage { vk::AccessFlags dstMask{}; typedef vk::ImageLayout il; + typedef vk::PipelineStageFlagBits psfb; typedef vk::AccessFlagBits afb; // Is it me, or are these the same? switch (oldLayout) { case il::eUndefined: break; - case il::eGeneral: srcMask = afb::eTransferWrite; srcStageMask=vk::PipelineStageFlagBits::eTransfer; break; - case il::eColorAttachmentOptimal: srcMask = afb::eColorAttachmentWrite; srcStageMask=vk::PipelineStageFlagBits::eColorAttachmentOutput; break; - case il::eDepthStencilAttachmentOptimal: srcMask = afb::eDepthStencilAttachmentWrite; srcStageMask=vk::PipelineStageFlagBits::eEarlyFragmentTests; break; - case il::eDepthStencilReadOnlyOptimal: srcMask = afb::eDepthStencilAttachmentRead; srcStageMask=vk::PipelineStageFlagBits::eEarlyFragmentTests; break; - case il::eShaderReadOnlyOptimal: srcMask = afb::eShaderRead; srcStageMask=vk::PipelineStageFlagBits::eVertexShader; break; - case il::eTransferSrcOptimal: srcMask = afb::eTransferRead; srcStageMask=vk::PipelineStageFlagBits::eTransfer; break; - case il::eTransferDstOptimal: srcMask = afb::eTransferWrite; srcStageMask=vk::PipelineStageFlagBits::eTransfer; break; - case il::ePreinitialized: srcMask = afb::eTransferWrite|afb::eHostWrite; srcStageMask=vk::PipelineStageFlagBits::eTransfer|vk::PipelineStageFlagBits::eHost; break; - case il::ePresentSrcKHR: srcMask = afb::eMemoryRead; break; + case il::eGeneral: srcMask = afb::eShaderWrite | afb::eShaderRead; srcStageMask = psfb::eComputeShader; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eColorAttachmentOptimal: srcMask = afb::eColorAttachmentWrite; srcStageMask = psfb::eColorAttachmentOutput; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilAttachmentOptimal: srcMask = afb::eDepthStencilAttachmentWrite; srcStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilReadOnlyOptimal: srcMask = afb::eDepthStencilAttachmentRead; srcStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eShaderReadOnlyOptimal: srcMask = afb::eShaderRead; srcStageMask = psfb::eFragmentShader; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; // assumes not texture access in vertex shader, etc + case il::eTransferSrcOptimal: srcMask = afb::eTransferRead; srcStageMask = psfb::eTransfer; break; + case il::eTransferDstOptimal: srcMask = afb::eTransferWrite; srcStageMask = psfb::eTransfer; break; + case il::ePreinitialized: srcMask = afb::eTransferWrite|afb::eHostWrite; break; + case il::ePresentSrcKHR: srcMask = afb::eMemoryRead; srcStageMask = psfb::eBottomOfPipe; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; } - switch (newLayout) { - case il::eUndefined: break; - case il::eGeneral: dstMask = afb::eTransferWrite; dstStageMask=vk::PipelineStageFlagBits::eTransfer; break; - case il::eColorAttachmentOptimal: dstMask = afb::eColorAttachmentWrite; dstStageMask=vk::PipelineStageFlagBits::eColorAttachmentOutput; break; - case il::eDepthStencilAttachmentOptimal: dstMask = afb::eDepthStencilAttachmentWrite; dstStageMask=vk::PipelineStageFlagBits::eEarlyFragmentTests; break; - case il::eDepthStencilReadOnlyOptimal: dstMask = afb::eDepthStencilAttachmentRead; dstStageMask=vk::PipelineStageFlagBits::eEarlyFragmentTests; break; - case il::eShaderReadOnlyOptimal: dstMask = afb::eShaderRead; dstStageMask=vk::PipelineStageFlagBits::eVertexShader; break; - case il::eTransferSrcOptimal: dstMask = afb::eTransferRead; dstStageMask=vk::PipelineStageFlagBits::eTransfer; break; - case il::eTransferDstOptimal: dstMask = afb::eTransferWrite; dstStageMask=vk::PipelineStageFlagBits::eTransfer; break; - case il::ePreinitialized: dstMask = afb::eTransferWrite; dstStageMask=vk::PipelineStageFlagBits::eTransfer; break; - case il::ePresentSrcKHR: dstMask = afb::eMemoryRead; break; - } -//printf("%08x %08x\n", (VkFlags)srcMask, (VkFlags)dstMask); + switch (newLayout) { + case il::eUndefined: break; + case il::eGeneral: dstMask = afb::eShaderWrite; dstStageMask = psfb::eComputeShader; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eColorAttachmentOptimal: dstMask = afb::eColorAttachmentWrite; dstStageMask = psfb::eColorAttachmentOutput; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilAttachmentOptimal: dstMask = afb::eDepthStencilAttachmentWrite; dstStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilReadOnlyOptimal: dstMask = afb::eDepthStencilAttachmentRead; dstStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eShaderReadOnlyOptimal: dstMask = afb::eShaderRead; dstStageMask = psfb::eFragmentShader; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; // assumes not texture access in vertex shader, etc + case il::eTransferSrcOptimal: dstMask = afb::eTransferRead; dstStageMask = psfb::eTransfer; break; + case il::eTransferDstOptimal: dstMask = afb::eTransferWrite; dstStageMask = psfb::eTransfer; break; + case il::ePreinitialized: dstMask = afb::eTransferWrite | afb::eHostWrite; break; + case il::ePresentSrcKHR: dstMask = afb::eMemoryRead; dstStageMask = psfb::eBottomOfPipe; dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + } imageMemoryBarriers.srcAccessMask = srcMask; imageMemoryBarriers.dstAccessMask = dstMask; auto memoryBarriers = nullptr; auto bufferMemoryBarriers = nullptr; - cb.pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, memoryBarriers, bufferMemoryBarriers, imageMemoryBarriers); + + if (srcStageMask != dstStageMask || (srcStageMask == dstStageMask && (srcMask != dstMask))) { + cb.pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, memoryBarriers, bufferMemoryBarriers, imageMemoryBarriers); + } } + // batched / multiple barriers stages src and dst are same for all images in batch + // For specifying the specific source and destination stages vk::PipelineStageFlagBits (advanced usage): + template + static void setLayout(std::array const& __restrict images, + vk::CommandBuffer const& __restrict cb, vk::ImageLayout const newLayout, vk::PipelineStageFlags srcStageMask, int32_t const AccessUsed, vk::PipelineStageFlags const dstStageMask, int32_t const AccessRequired, vk::ImageAspectFlags const aspectMask = vk::ImageAspectFlagBits::eColor, vk::ImageLayout const ForceLayoutUpdate = vk::ImageLayout::eUndefined) { + + vk::DependencyFlags dependencyFlags{}; + std::array imbs; + uint32_t used_image_count(0); + bool bDstMaskSrcMask(false); + + for (uint32_t i = 0; i < image_count; ++i) { + + vk::ImageLayout oldLayout; + + if constexpr (bDontCareSrcUndefined) { + oldLayout = vk::ImageLayout::eUndefined; + srcStageMask = vk::PipelineStageFlagBits::eTopOfPipe; + } + else { + if (vk::ImageLayout::eUndefined == ForceLayoutUpdate) { + if (newLayout == images[i]->s.currentLayout && AccessUsed == AccessRequired) continue; + + oldLayout = images[i]->s.currentLayout; + } + else { + if (vk::ImageLayout::eUndefined != images[i]->s.currentLayout) + oldLayout = ForceLayoutUpdate; + else + oldLayout = images[i]->s.currentLayout; + } + } + + images[i]->s.currentLayout = newLayout; + + imbs[used_image_count].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + imbs[used_image_count].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + imbs[used_image_count].oldLayout = oldLayout; + imbs[used_image_count].newLayout = newLayout; + imbs[used_image_count].image = images[i]->s.image; + imbs[used_image_count].subresourceRange = { aspectMask, 0, images[i]->s.info.mipLevels, 0, images[i]->s.info.arrayLayers }; + + vk::AccessFlags srcMask{}; + vk::AccessFlags dstMask{}; + + typedef vk::ImageLayout il; + typedef vk::PipelineStageFlagBits psfb; + typedef vk::AccessFlagBits afb; + + // Is it me, or are these the same? + switch (oldLayout) { + case il::eUndefined: break; + case il::eGeneral: + if (0 == AccessUsed) { // read only // +#ifndef NDEBUG + assert_print(false, "setLayout logical error, old layout cannot be General while AccessUsed is readonly"); +#endif + } + else if (AccessUsed < 0) { // write only // + /*case il::eGeneral:*/ srcMask = afb::eShaderWrite; + } + else { // read-write // + /*case il::eGeneral:*/ srcMask = afb::eShaderWrite | afb::eShaderRead; + } + dependencyFlags = vk::DependencyFlagBits::eByRegion; + break; // srcstagemask must be suitably set + case il::eColorAttachmentOptimal: srcMask = afb::eColorAttachmentWrite; /*srcStageMask = psfb::eColorAttachmentOutput;*/ dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilAttachmentOptimal: srcMask = afb::eDepthStencilAttachmentWrite; /*srcStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests;*/ dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilReadOnlyOptimal: srcMask = afb::eDepthStencilAttachmentRead; /*srcStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests;*/ dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eShaderReadOnlyOptimal: // this is compatible w/compute and fragment by using correct passed in srcStageMask + srcMask = afb::eShaderRead; + dependencyFlags = vk::DependencyFlagBits::eByRegion; + break; // srcstagemask must be suitably set + case il::eTransferSrcOptimal: srcMask = afb::eTransferRead; /*srcStageMask = psfb::eTransfer;*/ break; + case il::eTransferDstOptimal: srcMask = afb::eTransferWrite; /*srcStageMask = psfb::eTransfer;*/ break; + case il::ePreinitialized: srcMask = afb::eTransferWrite | afb::eHostWrite; break; + case il::ePresentSrcKHR: srcMask = afb::eMemoryRead; /*srcStageMask = psfb::eBottomOfPipe;*/ dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + } + + switch (newLayout) { + case il::eUndefined: break; + case il::eGeneral: + if (0 == AccessRequired) { // read only // +#ifndef NDEBUG + assert_print(false, "setLayout logical error, new layout cannot be General while AccessRequired is readonly"); +#endif + } + else if (AccessRequired < 0) { // write only // + /*case il::eGeneral:*/ dstMask = afb::eShaderWrite; + } + else { // read-write // + /*case il::eGeneral:*/ dstMask = afb::eShaderWrite | afb::eShaderRead; + } + dependencyFlags = vk::DependencyFlagBits::eByRegion; + break; // dststagemask must be suitably set + case il::eColorAttachmentOptimal: dstMask = afb::eColorAttachmentWrite; /*dstStageMask = psfb::eColorAttachmentOutput;*/ dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilAttachmentOptimal: dstMask = afb::eDepthStencilAttachmentWrite; /*dstStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests;*/ dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eDepthStencilReadOnlyOptimal: dstMask = afb::eDepthStencilAttachmentRead; /*dstStageMask = psfb::eEarlyFragmentTests | psfb::eLateFragmentTests;*/ dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + case il::eShaderReadOnlyOptimal: // this is compatible w/compute and fragment by using correct passed in dstStageMask + dstMask = afb::eShaderRead; + dependencyFlags = vk::DependencyFlagBits::eByRegion; + break; // dststagemask must be suitably set + case il::eTransferSrcOptimal: dstMask = afb::eTransferRead; /*dstStageMask = psfb::eTransfer;*/ break; + case il::eTransferDstOptimal: dstMask = afb::eTransferWrite; /*dstStageMask = psfb::eTransfer;*/ break; + case il::ePreinitialized: dstMask = afb::eTransferWrite | afb::eHostWrite; break; + case il::ePresentSrcKHR: dstMask = afb::eMemoryRead; /*dstStageMask = psfb::eBottomOfPipe;*/ dependencyFlags = vk::DependencyFlagBits::eByRegion; break; + } + + imbs[used_image_count].srcAccessMask = srcMask; + imbs[used_image_count].dstAccessMask = dstMask; + bDstMaskSrcMask |= (srcMask == dstMask); + + ++used_image_count; + } + + if (srcStageMask != dstStageMask || (srcStageMask == dstStageMask && !bDstMaskSrcMask)) { + cb.pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, 0, nullptr, 0, nullptr, used_image_count, imbs.data()); + } + } + + // **** use these for "undefined" / "don't care" source instances: + // + // setlayout when the data is in a don't care state (undefined) + void setLayoutFromUndefined(vk::CommandBuffer const& __restrict cb, vk::ImageLayout const newLayout, vk::ImageAspectFlags const aspectMask = vk::ImageAspectFlagBits::eColor) { + setLayout(cb, newLayout, aspectMask); + } + // batched version + template + static void setLayoutFromUndefined(std::array const& __restrict images, + vk::CommandBuffer const& __restrict cb, vk::ImageLayout const newLayout, vk::PipelineStageFlags const dstStageMask, int32_t const AccessRequired, vk::ImageAspectFlags const aspectMask = vk::ImageAspectFlagBits::eColor) { + GenericImage::setLayout(images, cb, newLayout, vk::PipelineStageFlagBits::eTopOfPipe, 0/*N/A*/, dstStageMask, AccessRequired, aspectMask); + } /// Set what the image thinks is its current layout (ie. the old layout in an image barrier). void setCurrentLayout(vk::ImageLayout oldLayout) { s.currentLayout = oldLayout; } - vk::Format format() const { return s.info.format; } - vk::Extent3D extent() const { return s.info.extent; } - const vk::ImageCreateInfo &info() const { return s.info; } + + vk::Format format() const { return(s.info.format); } + vk::Extent3D extent() const { return(s.info.extent); } + vk::ImageCreateInfo const& __restrict info() const { return(s.info); } + vk::DeviceSize const& __restrict size() const { return(s.size); } protected: - void create(vk::Device device, const vk::PhysicalDeviceMemoryProperties &memprops, const vk::ImageCreateInfo &info, vk::ImageViewType viewType, vk::ImageAspectFlags aspectMask, bool hostImage) { + void create(vk::Device device, const vk::ImageCreateInfo &info, vk::ImageViewType const viewType, vk::ImageAspectFlags const aspectMask, bool const hostImage = false, bool const bDedicatedMemory = false) { s.currentLayout = info.initialLayout; s.info = info; - s.image = device.createImageUnique(info); - // Find out how much memory and which heap to allocate from. - auto memreq = device.getImageMemoryRequirements(*s.image); - vk::MemoryPropertyFlags search{}; - if (hostImage) search = vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible; +#ifndef NDEBUG + if (vk::ImageUsageFlagBits::eStorage == (info.usage & vk::ImageUsageFlagBits::eStorage)) { + assert_print(vk::SampleCountFlagBits::e1 == info.samples, "Storage bit enabled for multisampled image incorrectly\n"); + } +#endif - // Create a memory object to bind to the buffer. - // Note: we don't expect to be able to map the buffer. - vk::MemoryAllocateInfo mai{}; - mai.allocationSize = s.size = memreq.size; - mai.memoryTypeIndex = vku::findMemoryTypeIndex(memprops, memreq.memoryTypeBits, search); - s.mem = device.allocateMemoryUnique(mai); + VmaAllocationCreateInfo allocInfo{}; + allocInfo.usage = (hostImage ? VMA_MEMORY_USAGE_AUTO_PREFER_HOST : VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE); // default to gpu only if 0/unknown is passed in + allocInfo.requiredFlags = (VkMemoryPropertyFlags)(hostImage ? (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); + allocInfo.preferredFlags = allocInfo.requiredFlags; + allocInfo.flags = (bDedicatedMemory ? VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT : (VmaAllocationCreateFlags)0); - device.bindImageMemory(*s.image, *s.mem, 0); + VmaAllocationInfo image_alloc_info{}; + vmaCreateImage(vma_, (VkImageCreateInfo const* const)&s.info, &allocInfo, (VkImage*)&s.image, &s.allocation, &image_alloc_info); + + s.size = image_alloc_info.size; if (!hostImage) { vk::ImageViewCreateInfo viewInfo{}; - viewInfo.image = *s.image; + viewInfo.image = s.image; viewInfo.viewType = viewType; viewInfo.format = info.format; viewInfo.components = { vk::ComponentSwizzle::eR, vk::ComponentSwizzle::eG, vk::ComponentSwizzle::eB, vk::ComponentSwizzle::eA }; viewInfo.subresourceRange = vk::ImageSubresourceRange{aspectMask, 0, info.mipLevels, 0, info.arrayLayers}; - s.imageView = device.createImageViewUnique(viewInfo); + s.imageView = device.createImageViewUnique(viewInfo).value; } } + public: + vk::UniqueImageView createImageView(vk::Device const& __restrict device, vk::ImageViewType const viewType, uint32_t const baseMipLevel = 0, vk::ImageAspectFlags const aspectMask = vk::ImageAspectFlagBits::eColor) + { + vk::ImageViewCreateInfo viewInfo{}; + viewInfo.image = s.image; + viewInfo.viewType = viewType; + viewInfo.format = s.info.format; + viewInfo.components = { vk::ComponentSwizzle::eR, vk::ComponentSwizzle::eG, vk::ComponentSwizzle::eB, vk::ComponentSwizzle::eA }; + viewInfo.subresourceRange = vk::ImageSubresourceRange{ aspectMask, baseMipLevel, s.info.mipLevels, 0, s.info.arrayLayers }; + + return(device.createImageViewUnique(viewInfo).value); + } + void changeImageView(vk::Device const& __restrict device, vk::ImageViewType const viewType, uint32_t const baseMipLevel = 0, vk::ImageAspectFlags const aspectMask = vk::ImageAspectFlagBits::eColor) + { + // overloaded assignment opeator works on && reference, releasing the old image view and replacing it with the new one via std::move + s.imageView = std::move(createImageView(device, viewType, baseMipLevel, aspectMask)); + } + + protected: struct State { - vk::UniqueImage image; + vk::Image image; vk::UniqueImageView imageView; - vk::UniqueDeviceMemory mem; - vk::DeviceSize size; + std::vector mipView; + VmaAllocation allocation; + vk::DeviceSize size{}; vk::ImageLayout currentLayout; vk::ImageCreateInfo info; + + void release() + { + size = 0; + for (auto& mip : mipView) { + mip.release(); + } + imageView.release(); + + if (allocation) { + vmaDestroyImage(vma_, image, allocation); + image = nullptr; + allocation = nullptr; + } + } }; State s; + + public: + GenericImage & operator=(GenericImage && other) + { + s = std::move(other.s); + + other.s.size = 0; + for (auto& mip : other.s.mipView) { + mip.reset(nullptr); + } + other.s.imageView.reset(nullptr); + other.s.image = nullptr; + other.s.allocation = nullptr; + + return(*this); + } + void release() + { + s.release(); + } + ~GenericImage() + { + release(); + } +private: +}; + +class TextureImage1DArray : public GenericImage { +public: + TextureImage1DArray() { + } + + // For Immutable Simple 1D Texture Array resource + TextureImage1DArray(vk::Device device, uint32_t const width, uint32_t const layers, vk::Format format = vk::Format::eB8G8R8A8Unorm, bool hostImage = false, bool const bDedicatedMemory = false) { + vk::ImageCreateInfo info; + info.flags = {}; + info.imageType = vk::ImageType::e1D; + info.format = format; + info.extent = vk::Extent3D{ width, 1U, 1U }; + info.mipLevels = 1; + info.arrayLayers = layers; + info.samples = vk::SampleCountFlagBits::e1; + info.tiling = hostImage ? vk::ImageTiling::eLinear : vk::ImageTiling::eOptimal; + info.usage = vk::ImageUsageFlagBits::eSampled | vk::ImageUsageFlagBits::eTransferDst; + info.sharingMode = vk::SharingMode::eExclusive; + info.queueFamilyIndexCount = 0; + info.pQueueFamilyIndices = nullptr; + info.initialLayout = hostImage ? vk::ImageLayout::ePreinitialized : vk::ImageLayout::eUndefined; + create(device, info, vk::ImageViewType::e1DArray, vk::ImageAspectFlagBits::eColor, hostImage, bDedicatedMemory); + } +private: +}; + + +class TextureImage2DArray : public GenericImage { +public: + TextureImage2DArray() { + } + + // For Immutable Simple 2D Texture Array resource + TextureImage2DArray(vk::Device device, uint32_t const width, uint32_t const height, uint32_t const layers, vk::Format format = vk::Format::eB8G8R8A8Unorm, bool hostImage = false, bool const bDedicatedMemory = false) { + vk::ImageCreateInfo info; + info.flags = {}; + info.imageType = vk::ImageType::e2D; + info.format = format; + info.extent = vk::Extent3D{ width, height, 1U }; + info.mipLevels = 1; + info.arrayLayers = layers; + info.samples = vk::SampleCountFlagBits::e1; + info.tiling = hostImage ? vk::ImageTiling::eLinear : vk::ImageTiling::eOptimal; + info.usage = vk::ImageUsageFlagBits::eSampled | vk::ImageUsageFlagBits::eTransferDst; + info.sharingMode = vk::SharingMode::eExclusive; + info.queueFamilyIndexCount = 0; + info.pQueueFamilyIndices = nullptr; + info.initialLayout = hostImage ? vk::ImageLayout::ePreinitialized : vk::ImageLayout::eUndefined; + create(device, info, vk::ImageViewType::e2DArray, vk::ImageAspectFlagBits::eColor, hostImage, bDedicatedMemory); + } +private: +}; + +/// A 2D texture image living on the GPU or a staging buffer visible to the CPU. +class TextureImage1D : public GenericImage { +public: + TextureImage1D() { + } + + // For Immutable Simple 2D Texture resource + TextureImage1D(vk::Device device, uint32_t const width, vk::Format const format = vk::Format::eB8G8R8A8Unorm, bool const hostImage = false, bool const bDedicatedMemory = false) { + vk::ImageCreateInfo info; + info.flags = {}; + info.imageType = vk::ImageType::e1D; + info.format = format; + info.extent = vk::Extent3D{ width, 1U, 1U }; + info.mipLevels = 1; + info.arrayLayers = 1; + info.samples = vk::SampleCountFlagBits::e1; + info.tiling = hostImage ? vk::ImageTiling::eLinear : vk::ImageTiling::eOptimal; + info.usage = vk::ImageUsageFlagBits::eSampled | vk::ImageUsageFlagBits::eTransferDst; + info.sharingMode = vk::SharingMode::eExclusive; + info.queueFamilyIndexCount = 0; + info.pQueueFamilyIndices = nullptr; + info.initialLayout = hostImage ? vk::ImageLayout::ePreinitialized : vk::ImageLayout::eUndefined; + create(device, info, vk::ImageViewType::e1D, vk::ImageAspectFlagBits::eColor, hostImage, bDedicatedMemory); + } + + TextureImage1D(vk::Device device, uint32_t const width, uint32_t const mipLevels = 1, vk::Format const format = vk::Format::eB8G8R8A8Unorm, bool const hostImage = false, bool const bDedicatedMemory = false) { + vk::ImageCreateInfo info; + info.flags = {}; + info.imageType = vk::ImageType::e2D; + info.format = format; + info.extent = vk::Extent3D{ width, 1U, 1U }; + info.mipLevels = mipLevels; + info.arrayLayers = 1; + info.samples = vk::SampleCountFlagBits::e1; + info.tiling = hostImage ? vk::ImageTiling::eLinear : vk::ImageTiling::eOptimal; + info.usage = vk::ImageUsageFlagBits::eSampled | vk::ImageUsageFlagBits::eTransferDst; + info.sharingMode = vk::SharingMode::eExclusive; + info.queueFamilyIndexCount = 0; + info.pQueueFamilyIndices = nullptr; + info.initialLayout = hostImage ? vk::ImageLayout::ePreinitialized : vk::ImageLayout::eUndefined; + create(device, info, vk::ImageViewType::e1D, vk::ImageAspectFlagBits::eColor, hostImage, bDedicatedMemory); + } +private: }; +// TextureImageStorage1DArray was tested - very fucking slow in compute shader vs a combined sampler equivalent /// A 2D texture image living on the GPU or a staging buffer visible to the CPU. class TextureImage2D : public GenericImage { @@ -1871,7 +3249,26 @@ class TextureImage2D : public GenericImage { TextureImage2D() { } - TextureImage2D(vk::Device device, const vk::PhysicalDeviceMemoryProperties &memprops, uint32_t width, uint32_t height, uint32_t mipLevels=1, vk::Format format = vk::Format::eR8G8B8A8Unorm, bool hostImage = false) { + // For Immutable Simple 2D Texture resource + TextureImage2D(vk::Device const& __restrict device, uint32_t const width, uint32_t const height, vk::Format const format = vk::Format::eB8G8R8A8Unorm, bool hostImage = false, bool const bDedicatedMemory = false) { + vk::ImageCreateInfo info; + info.flags = {}; + info.imageType = vk::ImageType::e2D; + info.format = format; + info.extent = vk::Extent3D{ width, height, 1U }; + info.mipLevels = 1; + info.arrayLayers = 1; + info.samples = vk::SampleCountFlagBits::e1; + info.tiling = hostImage ? vk::ImageTiling::eLinear : vk::ImageTiling::eOptimal; + info.usage = vk::ImageUsageFlagBits::eSampled | vk::ImageUsageFlagBits::eTransferDst; + info.sharingMode = vk::SharingMode::eExclusive; + info.queueFamilyIndexCount = 0; + info.pQueueFamilyIndices = nullptr; + info.initialLayout = hostImage ? vk::ImageLayout::ePreinitialized : vk::ImageLayout::eUndefined; + create(device, info, vk::ImageViewType::e2D, vk::ImageAspectFlagBits::eColor, hostImage, bDedicatedMemory); + } + + TextureImage2D(vk::Device const& __restrict device, uint32_t const width, uint32_t const height, uint32_t const mipLevels=1, vk::Format const format = vk::Format::eB8G8R8A8Unorm, bool hostImage = false, bool const bDedicatedMemory = false) { vk::ImageCreateInfo info; info.flags = {}; info.imageType = vk::ImageType::e2D; @@ -1881,23 +3278,135 @@ class TextureImage2D : public GenericImage { info.arrayLayers = 1; info.samples = vk::SampleCountFlagBits::e1; info.tiling = hostImage ? vk::ImageTiling::eLinear : vk::ImageTiling::eOptimal; - info.usage = vk::ImageUsageFlagBits::eSampled|vk::ImageUsageFlagBits::eTransferSrc|vk::ImageUsageFlagBits::eTransferDst; + info.usage = vk::ImageUsageFlagBits::eSampled|vk::ImageUsageFlagBits::eTransferDst; info.sharingMode = vk::SharingMode::eExclusive; info.queueFamilyIndexCount = 0; info.pQueueFamilyIndices = nullptr; info.initialLayout = hostImage ? vk::ImageLayout::ePreinitialized : vk::ImageLayout::eUndefined; - create(device, memprops, info, vk::ImageViewType::e2D, vk::ImageAspectFlagBits::eColor, hostImage); + create(device, info, vk::ImageViewType::e2D, vk::ImageAspectFlagBits::eColor, hostImage, bDedicatedMemory); } private: }; +/// A 3D texture image living on the GPU or a staging buffer visible to the CPU. +class TextureImage3D : public GenericImage { +public: + TextureImage3D() { + } + + // For Immutable Simple 3D Texture resource + TextureImage3D(vk::Device const& __restrict device, uint32_t const width, uint32_t const height, uint32_t const depth, vk::Format format = vk::Format::eB8G8R8A8Unorm, bool hostImage = false, bool const bDedicatedMemory = false) { + vk::ImageCreateInfo info; + info.flags = {}; + info.imageType = vk::ImageType::e3D; + info.format = format; + info.extent = vk::Extent3D{ width, height, depth }; + info.mipLevels = 1; + info.arrayLayers = 1; + info.samples = vk::SampleCountFlagBits::e1; + info.tiling = hostImage ? vk::ImageTiling::eLinear : vk::ImageTiling::eOptimal; + info.usage = vk::ImageUsageFlagBits::eSampled | vk::ImageUsageFlagBits::eTransferDst; + info.sharingMode = vk::SharingMode::eExclusive; + info.queueFamilyIndexCount = 0; + info.pQueueFamilyIndices = nullptr; + info.initialLayout = hostImage ? vk::ImageLayout::ePreinitialized : vk::ImageLayout::eUndefined; + create(device, info, vk::ImageViewType::e3D, vk::ImageAspectFlagBits::eColor, hostImage, bDedicatedMemory); + } + + // vk::ImageUsageFlagBits::eSampled (if image will be read from pixel shader) + // vk::ImageUsageFlagBits::eTransferSrc (if image is a source for a transfer/copy from/... image operation) + // vk::ImageUsageFlagBits::eTransferDst (if image is a destination for a transfer/copy to/clear image operation) + TextureImage3D(vk::ImageUsageFlags const ImageUsage, vk::Device device, uint32_t width, uint32_t height, uint32_t depth, uint32_t mipLevels = 1U, vk::Format format = vk::Format::eB8G8R8A8Unorm, bool hostImage = false, bool const bDedicatedMemory = false) { + vk::ImageCreateInfo info; + info.flags = {}; + info.imageType = vk::ImageType::e3D; + info.format = format; + info.extent = vk::Extent3D{ width, height, depth }; + info.mipLevels = mipLevels; + info.arrayLayers = 1; + info.samples = vk::SampleCountFlagBits::e1; + info.tiling = hostImage ? vk::ImageTiling::eLinear : vk::ImageTiling::eOptimal; + info.usage = ImageUsage; + info.sharingMode = vk::SharingMode::eExclusive; + info.queueFamilyIndexCount = 0; + info.pQueueFamilyIndices = nullptr; + info.initialLayout = hostImage ? vk::ImageLayout::ePreinitialized : vk::ImageLayout::eUndefined; + create(device, info, vk::ImageViewType::e3D, vk::ImageAspectFlagBits::eColor, hostImage, bDedicatedMemory); + } + +private: +}; +class TextureImageStorage2D : public GenericImage { +public: + TextureImageStorage2D() { + } + + // Image Usage can be a combination of + // vk::ImageUsageFlagBits::eSampled (if image will be read from pixel shader) + // vk::ImageUsageFlagBits::eStorage (if image will be read or written to in computer shader) + // vk::ImageUsageFlagBits::eTransferSrc (if image is a source for a transfer/copy from/... image operation) + // vk::ImageUsageFlagBits::eTransferDst (if image is a destination for a transfer/copy to/clear image operation) + // TextureImageStorage2D is specific for compute shaders + // and the Image Usage should be specific aswell to optimize access to image resource + TextureImageStorage2D(vk::ImageUsageFlags const ImageUsage, vk::Device device, uint32_t const width, uint32_t const height, uint32_t const mipLevels = 1U, vk::SampleCountFlagBits const msaaSamples = vk::SampleCountFlagBits::e1, vk::Format format = vk::Format::eB8G8R8A8Unorm, bool hostImage = false, bool const bDedicatedMemory = false) { + vk::ImageCreateInfo info; + info.flags = {}; + info.imageType = vk::ImageType::e2D; + info.format = format; + info.extent = vk::Extent3D{ width, height, 1U }; + info.mipLevels = mipLevels; + info.arrayLayers = 1; + info.samples = msaaSamples; + info.tiling = hostImage ? vk::ImageTiling::eLinear : vk::ImageTiling::eOptimal; + info.usage = ImageUsage | vk::ImageUsageFlagBits::eStorage; + info.sharingMode = vk::SharingMode::eExclusive; + info.queueFamilyIndexCount = 0; + info.pQueueFamilyIndices = nullptr; + info.initialLayout = hostImage ? vk::ImageLayout::ePreinitialized : vk::ImageLayout::eUndefined; + create(device, info, vk::ImageViewType::e2D, vk::ImageAspectFlagBits::eColor, hostImage, bDedicatedMemory); + } +private: +}; + +class TextureImageStorage3D : public GenericImage { +public: + TextureImageStorage3D() { + } + + // Image Usage can be a combination of + // vk::ImageUsageFlagBits::eSampled (if image will be read from pixel shader) + // vk::ImageUsageFlagBits::eStorage (if image will be read or written to in computer shader) + // vk::ImageUsageFlagBits::eTransferSrc (if image is a source for a transfer/copy from/... image operation) + // vk::ImageUsageFlagBits::eTransferDst (if image is a destination for a transfer/copy to/clear image operation) + // TextureImageStorage3D is specific for compute shaders + // and the Image Usage should be specific aswell to optimize access to image resource + TextureImageStorage3D(vk::ImageUsageFlags const ImageUsage, vk::Device device, uint32_t width, uint32_t height, uint32_t depth, uint32_t mipLevels = 1U, vk::Format format = vk::Format::eB8G8R8A8Unorm, bool hostImage = false, bool const bDedicatedMemory = false) { + vk::ImageCreateInfo info; + info.flags = {}; + info.imageType = vk::ImageType::e3D; + info.format = format; + info.extent = vk::Extent3D{ width, height, depth }; + info.mipLevels = mipLevels; + info.arrayLayers = 1; + info.samples = vk::SampleCountFlagBits::e1; + info.tiling = hostImage ? vk::ImageTiling::eLinear : vk::ImageTiling::eOptimal; + info.usage = ImageUsage | vk::ImageUsageFlagBits::eStorage; + info.sharingMode = vk::SharingMode::eExclusive; + info.queueFamilyIndexCount = 0; + info.pQueueFamilyIndices = nullptr; + info.initialLayout = hostImage ? vk::ImageLayout::ePreinitialized : vk::ImageLayout::eUndefined; + create(device, info, vk::ImageViewType::e3D, vk::ImageAspectFlagBits::eColor, hostImage, bDedicatedMemory); + } +private: +}; + /// A cube map texture image living on the GPU or a staging buffer visible to the CPU. class TextureImageCube : public GenericImage { public: TextureImageCube() { } - TextureImageCube(vk::Device device, const vk::PhysicalDeviceMemoryProperties &memprops, uint32_t width, uint32_t height, uint32_t mipLevels=1, vk::Format format = vk::Format::eR8G8B8A8Unorm, bool hostImage = false) { + TextureImageCube(vk::Device device, uint32_t width, uint32_t height, uint32_t mipLevels=1, vk::Format format = vk::Format::eB8G8R8A8Unorm, bool hostImage = false) { vk::ImageCreateInfo info; info.flags = {vk::ImageCreateFlagBits::eCubeCompatible}; info.imageType = vk::ImageType::e2D; @@ -1907,52 +3416,123 @@ class TextureImageCube : public GenericImage { info.arrayLayers = 6; info.samples = vk::SampleCountFlagBits::e1; info.tiling = hostImage ? vk::ImageTiling::eLinear : vk::ImageTiling::eOptimal; - info.usage = vk::ImageUsageFlagBits::eColorAttachment|vk::ImageUsageFlagBits::eSampled|vk::ImageUsageFlagBits::eTransferSrc|vk::ImageUsageFlagBits::eTransferDst; + info.usage = vk::ImageUsageFlagBits::eSampled|vk::ImageUsageFlagBits::eTransferDst; info.sharingMode = vk::SharingMode::eExclusive; info.queueFamilyIndexCount = 0; info.pQueueFamilyIndices = nullptr; info.initialLayout = hostImage ? vk::ImageLayout::ePreinitialized : vk::ImageLayout::eUndefined; - //info.initialLayout = vk::ImageLayout::ePreinitialized; - create(device, memprops, info, vk::ImageViewType::eCube, vk::ImageAspectFlagBits::eColor, hostImage); + create(device, info, vk::ImageViewType::eCube, vk::ImageAspectFlagBits::eColor, hostImage); } private: }; /// An image to use as a depth buffer on a renderpass. -class DepthStencilImage : public GenericImage { +class DepthAttachmentImage : public GenericImage { // default format is 32bit float depth, no stencil public: - DepthStencilImage() { - } - - DepthStencilImage(vk::Device device, const vk::PhysicalDeviceMemoryProperties &memprops, uint32_t width, uint32_t height, vk::Format format = vk::Format::eD24UnormS8Uint) { + DepthAttachmentImage() { + } + // D32 FLOAT is the best choice, as in most cases it is faster than D16 !!! due to DCC (Compression) + // note: ** if sampled, subsequent operations (test/writes) on depth buffer are uncompressed for the current frame, resulting in a performance hit + // D32 FLOAT format is same performance as D24 INT formats on GCN gpu hardware. + // also noticed that D32 FLOAT with or without stencil is the only depth formats that can use "optimal" image memory (vulkan caps viewer) + // D16 has a slight performance boost due to requiring less memory bandwidth + // D16 Precision seems to be enough for orthographic projection (linear z buffer!!!) - noticed some artifacts while raymarching - switch to 32bit float instead + DepthAttachmentImage(vk::Device device, uint32_t const width, uint32_t const height, vk::SampleCountFlagBits const msaaSamples, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue, bool const isSampled = false, bool const isInputAttachment = false) { vk::ImageCreateInfo info; info.flags = {}; info.imageType = vk::ImageType::e2D; - info.format = format; + info.format = vk::Format::eD32Sfloat; info.extent = vk::Extent3D{ width, height, 1U }; info.mipLevels = 1; info.arrayLayers = 1; - info.samples = vk::SampleCountFlagBits::e1; + info.samples = msaaSamples; info.tiling = vk::ImageTiling::eOptimal; - info.usage = vk::ImageUsageFlagBits::eDepthStencilAttachment|vk::ImageUsageFlagBits::eTransferSrc|vk::ImageUsageFlagBits::eSampled; - info.sharingMode = vk::SharingMode::eExclusive; + info.usage = vk::ImageUsageFlagBits::eDepthStencilAttachment | (isSampled ? vk::ImageUsageFlagBits::eSampled : vk::ImageUsageFlagBits::eTransientAttachment) | (isInputAttachment ? vk::ImageUsageFlagBits::eInputAttachment : (vk::ImageUsageFlagBits)0); + info.sharingMode = vk::SharingMode::eExclusive; info.queueFamilyIndexCount = 0; info.pQueueFamilyIndices = nullptr; info.initialLayout = vk::ImageLayout::eUndefined; + typedef vk::ImageAspectFlagBits iafb; - create(device, memprops, info, vk::ImageViewType::e2D, iafb::eDepth, false); + create(device, info, vk::ImageViewType::e2D, iafb::eDepth, false, true); + + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + setLayout(cb, vk::ImageLayout::eDepthStencilAttachmentOptimal, vk::ImageAspectFlagBits::eDepth); + }); } private: }; +/// An image to use as a stencil buffer on a renderpass. +class StencilAttachmentImage : public GenericImage { // default format is stencil nothing else +public: + StencilAttachmentImage() { + } + StencilAttachmentImage(vk::Device device, uint32_t const width, uint32_t const height, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue) { + vk::ImageCreateInfo info; + info.flags = {}; + + info.imageType = vk::ImageType::e2D; + info.format = vk::Format::eS8Uint; + info.extent = vk::Extent3D{ width, height, 1U }; + info.mipLevels = 1; + info.arrayLayers = 1; + info.samples = vk::SampleCountFlagBits::e1; + info.tiling = vk::ImageTiling::eOptimal; + info.usage = vk::ImageUsageFlagBits::eDepthStencilAttachment; + info.sharingMode = vk::SharingMode::eExclusive; + info.queueFamilyIndexCount = 0; + info.pQueueFamilyIndices = nullptr; + info.initialLayout = vk::ImageLayout::eUndefined; + + typedef vk::ImageAspectFlagBits iafb; + create(device, info, vk::ImageViewType::e2D, iafb::eStencil, false, true); + + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + setLayout(cb, vk::ImageLayout::eDepthReadOnlyStencilAttachmentOptimal, vk::ImageAspectFlagBits::eStencil); + }); + } +private: +}; + + +// for down sampled copy and full resolution copy too +class DepthImage : public GenericImage { // default format is 32bit float color +public: + DepthImage() { + } + // R32F + DepthImage(vk::Device device, uint32_t const width, uint32_t const height, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue, bool const isColorAttachment, bool const isStorage, vk::Format const format = vk::Format::eR32Sfloat) { + vk::ImageCreateInfo info; + info.flags = {}; + + info.imageType = vk::ImageType::e2D; + info.format = format; + info.extent = vk::Extent3D{ width, height, 1U }; + info.mipLevels = 1U; + info.arrayLayers = 1; + info.samples = vk::SampleCountFlagBits::e1; + info.tiling = vk::ImageTiling::eOptimal; + info.usage = vk::ImageUsageFlagBits::eInputAttachment | vk::ImageUsageFlagBits::eSampled | (isColorAttachment ? vk::ImageUsageFlagBits::eColorAttachment : (vk::ImageUsageFlagBits)0) | (isStorage ? vk::ImageUsageFlagBits::eStorage : (vk::ImageUsageFlagBits)0); + info.sharingMode = vk::SharingMode::eExclusive; + info.queueFamilyIndexCount = 0; + info.pQueueFamilyIndices = nullptr; + info.initialLayout = vk::ImageLayout::eUndefined; + + typedef vk::ImageAspectFlagBits iafb; + create(device, info, vk::ImageViewType::e2D, iafb::eColor, false, true); + } +private: +}; + /// An image to use as a colour buffer on a renderpass. class ColorAttachmentImage : public GenericImage { public: ColorAttachmentImage() { } - ColorAttachmentImage(vk::Device device, const vk::PhysicalDeviceMemoryProperties &memprops, uint32_t width, uint32_t height, vk::Format format = vk::Format::eR8G8B8A8Unorm) { + ColorAttachmentImage(vk::Device device, uint32_t const width, uint32_t const height, vk::SampleCountFlagBits const msaaSamples, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue, bool const isSampled = false, bool const isInputAttachment = false, bool const isCopyable = false, vk::Format const format = vk::Format::eB8G8R8A8Unorm, vk::ImageUsageFlags const additional_flags = (vk::ImageUsageFlagBits)0 ) { vk::ImageCreateInfo info; info.flags = {}; @@ -1961,15 +3541,36 @@ class ColorAttachmentImage : public GenericImage { info.extent = vk::Extent3D{ width, height, 1U }; info.mipLevels = 1; info.arrayLayers = 1; - info.samples = vk::SampleCountFlagBits::e1; + info.samples = msaaSamples; info.tiling = vk::ImageTiling::eOptimal; - info.usage = vk::ImageUsageFlagBits::eColorAttachment|vk::ImageUsageFlagBits::eTransferSrc|vk::ImageUsageFlagBits::eTransferDst|vk::ImageUsageFlagBits::eSampled; - info.sharingMode = vk::SharingMode::eExclusive; + + info.usage = vk::ImageUsageFlagBits::eColorAttachment | additional_flags; + if (isSampled) { + info.usage |= vk::ImageUsageFlagBits::eSampled; + } + if (isInputAttachment) { + info.usage |= vk::ImageUsageFlagBits::eInputAttachment; + } + if (isCopyable) { + info.usage |= vk::ImageUsageFlagBits::eTransferSrc; + } + + if (!isSampled && !isCopyable) { + info.usage |= vk::ImageUsageFlagBits::eTransientAttachment; + } + + info.sharingMode = vk::SharingMode::eExclusive; info.queueFamilyIndexCount = 0; info.pQueueFamilyIndices = nullptr; info.initialLayout = vk::ImageLayout::eUndefined; typedef vk::ImageAspectFlagBits iafb; - create(device, memprops, info, vk::ImageViewType::e2D, iafb::eColor, false); + create(device, info, vk::ImageViewType::e2D, iafb::eColor, false, true); + // bug fix - transition to colorattachmentoptimal immediately + // so that render target can be "loaded" instead of cleared if need be + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + setLayout(cb, vk::ImageLayout::eColorAttachmentOptimal); + }); + } private: }; @@ -1986,16 +3587,16 @@ class SamplerMaker { s.info.magFilter = vk::Filter::eNearest; s.info.minFilter = vk::Filter::eNearest; s.info.mipmapMode = vk::SamplerMipmapMode::eNearest; - s.info.addressModeU = vk::SamplerAddressMode::eRepeat; - s.info.addressModeV = vk::SamplerAddressMode::eRepeat; - s.info.addressModeW = vk::SamplerAddressMode::eRepeat; + s.info.addressModeU = vk::SamplerAddressMode::eClampToEdge; + s.info.addressModeV = vk::SamplerAddressMode::eClampToEdge; + s.info.addressModeW = vk::SamplerAddressMode::eClampToEdge; s.info.mipLodBias = 0.0f; - s.info.anisotropyEnable = 0; + s.info.anisotropyEnable = VK_FALSE; s.info.maxAnisotropy = 0.0f; s.info.compareEnable = 0; - s.info.compareOp = vk::CompareOp::eNever; + s.info.compareOp = vk::CompareOp::eAlways; s.info.minLod = 0; - s.info.maxLod = 0; + s.info.maxLod = 5.0f; s.info.borderColor = vk::BorderColor{}; s.info.unnormalizedCoordinates = 0; } @@ -2020,6 +3621,7 @@ class SamplerMaker { SamplerMaker &addressModeU(vk::SamplerAddressMode value) { s.info.addressModeU = value; return *this; } SamplerMaker &addressModeV(vk::SamplerAddressMode value) { s.info.addressModeV = value; return *this; } SamplerMaker &addressModeW(vk::SamplerAddressMode value) { s.info.addressModeW = value; return *this; } + SamplerMaker& addressModeUVW(vk::SamplerAddressMode const value) { s.info.addressModeU = s.info.addressModeV = s.info.addressModeW = value; return *this; } SamplerMaker &mipLodBias(float value) { s.info.mipLodBias = value; return *this; } SamplerMaker &anisotropyEnable(vk::Bool32 value) { s.info.anisotropyEnable = value; return *this; } SamplerMaker &maxAnisotropy(float value) { s.info.maxAnisotropy = value; return *this; } @@ -2032,12 +3634,12 @@ class SamplerMaker { /// Allocate a self-deleting image. vk::UniqueSampler createUnique(vk::Device device) const { - return device.createSamplerUnique(s.info); + return device.createSamplerUnique(s.info).value; } /// Allocate a non self-deleting Sampler. vk::Sampler create(vk::Device device) const { - return device.createSampler(s.info); + return device.createSampler(s.info).value; } private: @@ -2049,14 +3651,27 @@ class SamplerMaker { }; /// KTX files use OpenGL format values. This converts some common ones to Vulkan equivalents. -inline vk::Format GLtoVKFormat(uint32_t glFormat) { +STATIC_INLINE_PURE vk::Format const GLtoVKFormat(uint32_t const glFormat) { switch (glFormat) { + case 0x8229: return vk::Format::eR8Unorm; + case 0x1903: return vk::Format::eR8Unorm; + + case 0x822B: return vk::Format::eR8G8Unorm; + case 0x8227: return vk::Format::eR8G8Unorm; + case 0x1907: return vk::Format::eR8G8B8Unorm; // GL_RGB + case 0x8C41: return vk::Format::eR8G8B8Srgb; // GL_RGB + + case 0x8058: return vk::Format::eR8G8B8A8Unorm; // GL_RGBA case 0x1908: return vk::Format::eR8G8B8A8Unorm; // GL_RGBA + case 0x8C43: return vk::Format::eR8G8B8A8Srgb; // GL_RGBA + case 0x83F0: return vk::Format::eBc1RgbUnormBlock; // GL_COMPRESSED_RGB_S3TC_DXT1_EXT case 0x83F1: return vk::Format::eBc1RgbaUnormBlock; // GL_COMPRESSED_RGBA_S3TC_DXT1_EXT case 0x83F2: return vk::Format::eBc3UnormBlock; // GL_COMPRESSED_RGBA_S3TC_DXT3_EXT case 0x83F3: return vk::Format::eBc5UnormBlock; // GL_COMPRESSED_RGBA_S3TC_DXT5_EXT + case 0x8E8C: return vk::Format::eBc7UnormBlock; // GL_COMPRESSED_RGBA_BPTC_UNORM_ARB + case 0x8E8D: return vk::Format::eBc7SrgbBlock; } return vk::Format::eUndefined; } @@ -2064,25 +3679,26 @@ inline vk::Format GLtoVKFormat(uint32_t glFormat) { /// Layout of a KTX file in a buffer. +template class KTXFileLayout { public: KTXFileLayout() { } - KTXFileLayout(uint8_t *begin, uint8_t *end) { - uint8_t *p = begin; + KTXFileLayout(uint8_t const* const __restrict begin, uint8_t const* const __restrict end) { + uint8_t const * p = begin; if (p + sizeof(Header) > end) return; header = *(Header*)p; - static const uint8_t magic[] = { + static constexpr uint8_t magic[] = { 0xAB, 0x4B, 0x54, 0x58, 0x20, 0x31, 0x31, 0xBB, 0x0D, 0x0A, 0x1A, 0x0A }; - - + if (memcmp(magic, header.identifier, sizeof(magic))) { return; } - if (header.endianness != 0x04030201) { + static constexpr uint32_t const KTX_ENDIAN_REF(0x04030201); + if (KTX_ENDIAN_REF != header.endianness) { swap(header.glType); swap(header.glTypeSize); swap(header.glFormat); @@ -2102,7 +3718,7 @@ class KTXFileLayout { header.numberOfMipmapLevels = std::max(1U, header.numberOfMipmapLevels); header.pixelDepth = std::max(1U, header.pixelDepth); - format_ = GLtoVKFormat(header.glFormat); + format_ = GLtoVKFormat(header.glInternalFormat); if (format_ == vk::Format::eUndefined) return; p += sizeof(Header); @@ -2110,7 +3726,7 @@ class KTXFileLayout { for (uint32_t i = 0; i < header.bytesOfKeyValueData; ) { uint32_t keyAndValueByteSize = *(uint32_t*)(p + i); - if (header.endianness != 0x04030201) swap(keyAndValueByteSize); + if (KTX_ENDIAN_REF != header.endianness) swap(keyAndValueByteSize); std::string kv(p + i + 4, p + i + 4 + keyAndValueByteSize); i += keyAndValueByteSize + 4; i = (i + 3) & ~3; @@ -2118,31 +3734,46 @@ class KTXFileLayout { p += header.bytesOfKeyValueData; for (uint32_t mipLevel = 0; mipLevel != header.numberOfMipmapLevels; ++mipLevel) { - uint32_t imageSize = *(uint32_t*)(p); - imageSize = (imageSize + 3) & ~3; - uint32_t incr = imageSize * header.numberOfFaces * header.numberOfArrayElements; - incr = (incr + 3) & ~3; - - if (p + incr > end) { - // see https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glPixelStore.xhtml - // fix bugs... https://github.com/dariomanesku/cmft/issues/29 - header.numberOfMipmapLevels = mipLevel; - break; - } - if (header.endianness != 0x04030201) swap(imageSize); - //printf("%08x: is=%08x / %08x\n", p-begin, imageSize, end - begin); - p += 4; + // bugfix for arraylayers and faces not being factored into final size for this mip + uint32_t layerImageSize; + if constexpr (WorkaroundLayerSizeDoubledInFileBug) { // KTX ImageViewer export array texture doubles layer size written to file, sometimes... + layerImageSize = *(uint32_t*)(p) / header.numberOfArrayElements; + } + else { + layerImageSize = *(uint32_t*)(p); + } + + layerImageSize = (layerImageSize + 3) & ~3; + if (KTX_ENDIAN_REF != header.endianness) swap(layerImageSize); + + layerImageSizes_.push_back(layerImageSize); + + uint32_t imageSize = layerImageSize * header.numberOfFaces * header.numberOfArrayElements; + + imageSize = (imageSize + 3) & ~3; + if (KTX_ENDIAN_REF != header.endianness) swap(imageSize); + + imageSizes_.push_back(imageSize); + + p += 4; // offset for reading layer imagesize above imageOffsets_.push_back((uint32_t)(p - begin)); - imageSizes_.push_back(imageSize); - p += incr; + + if (p + imageSize > end) { + // see https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glPixelStore.xhtml + // fix bugs... https://github.com/dariomanesku/cmft/issues/29 + header.numberOfMipmapLevels = mipLevel + 1; + break; + } + p += imageSize; // next mip offset if there is one } ok_ = true; } - uint32_t offset(uint32_t mipLevel, uint32_t arrayLayer, uint32_t face) { - return imageOffsets_[mipLevel] + (arrayLayer * header.numberOfFaces + face) * imageSizes_[mipLevel]; + uint32_t offset(uint32_t mipLevel, uint32_t arrayLayer, uint32_t face) const { + + return imageOffsets_[mipLevel] + (arrayLayer * header.numberOfFaces + face) * layerImageSizes_[mipLevel]; } uint32_t size(uint32_t mipLevel) { @@ -2158,25 +3789,49 @@ class KTXFileLayout { uint32_t height(uint32_t mipLevel) const { return mipScale(header.pixelHeight, mipLevel); } uint32_t depth(uint32_t mipLevel) const { return mipScale(header.pixelDepth, mipLevel); } - void upload(vk::Device device, vku::GenericImage &image, std::vector &bytes, vk::CommandPool commandPool, vk::PhysicalDeviceMemoryProperties memprops, vk::Queue queue) { - vku::GenericBuffer stagingBuffer(device, memprops, (vk::BufferUsageFlags)vk::BufferUsageFlagBits::eTransferSrc, (vk::DeviceSize)bytes.size(), vk::MemoryPropertyFlagBits::eHostVisible); - stagingBuffer.updateLocal(device, (const void*)bytes.data(), bytes.size()); + void upload(vk::Device device, vku::GenericImage & __restrict image, uint8_t const* const __restrict pFileBegin, vk::CommandPool commandPool, vk::Queue queue) const { + uint32_t totalActualSize(0); + + for (auto const& size : imageSizes_) { + totalActualSize += size; + } + + if (0 == totalActualSize) + return; + + // bugfix: sometimes the image size is greater than the actual binary size of the data, due to an "upgrade" in alignment + // so source buffer must have the same size as the image being copied too. The copy into the source buffer only copies the actual size of data, + // with the rest being zeroed out. + vk::DeviceSize const alignedSize(std::max(image.size(), (vk::DeviceSize)totalActualSize)); + + vku::GenericBuffer stagingBuffer((vk::BufferUsageFlags)vk::BufferUsageFlagBits::eTransferSrc, alignedSize, vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible, VMA_MEMORY_USAGE_AUTO_PREFER_HOST, vku::eMappedAccess::Sequential); + + uint32_t const baseOffset = offset(0, 0, 0); + stagingBuffer.updateLocal(pFileBegin + baseOffset, totalActualSize); // Copy the staging buffer to the GPU texture and set the layout. - vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { vk::Buffer buf = stagingBuffer.buffer(); for (uint32_t mipLevel = 0; mipLevel != mipLevels(); ++mipLevel) { - auto width = this->width(mipLevel); - auto height = this->height(mipLevel); - auto depth = this->depth(mipLevel); - for (uint32_t face = 0; face != faces(); ++face) { - image.copy(cb, buf, mipLevel, face, width, height, depth, offset(mipLevel, 0, face)); + auto width = this->width(mipLevel); + auto height = this->height(mipLevel); + auto depth = this->depth(mipLevel); + for (uint32_t face = 0; face != arrayLayers(); ++face) { + image.copy(cb, buf, mipLevel, face, width, height, depth, (offset(mipLevel, face, 0) - baseOffset)); } } - image.setLayout(cb, vk::ImageLayout::eShaderReadOnlyOptimal); }); } + void finalizeUpload(vk::Device const& __restrict device, vku::GenericImage& __restrict image, vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue, + vk::ImageLayout const FinalLayout = vk::ImageLayout::eShaderReadOnlyOptimal) const + { + + vku::executeImmediately(device, commandPool, queue, [&](vk::CommandBuffer cb) { + image.setLayout(cb, FinalLayout); + + }); + } private: static void swap(uint32_t &value) { value = value >> 24 | (value & 0xff0000) >> 8 | (value & 0xff00) << 8 | value << 24; @@ -2204,6 +3859,7 @@ class KTXFileLayout { bool ok_ = false; std::vector imageOffsets_; std::vector imageSizes_; + std::vector layerImageSizes_; }; diff --git a/include/vku/vku_addon.hpp b/include/vku/vku_addon.hpp new file mode 100644 index 0000000..0436039 --- /dev/null +++ b/include/vku/vku_addon.hpp @@ -0,0 +1,220 @@ +#pragma once + +// no includes of vulkan dependencies allowed in this file // + +#define BETTER_ENUMS_CONSTEXPR +#define BETTER_ENUMS_NO_EXCEPTIONS +#include + +#include + +#include "vkNames.h" +#include + +#define SHADER_PATH SHADER_BINARY_DIR +#define SHADER_POSTQUAD L"postquad.vert.bin" +#define SHADER_CHECKERBOARD_EVEN L"stencilcheckerboard_even.frag.bin" +#define SHADER_CHECKERBOARD_ODD L"stencilcheckerboard_odd.frag.bin" +#define SHADER_CHECKERBOARD(path, odd) (odd ? path SHADER_CHECKERBOARD_ODD : path SHADER_CHECKERBOARD_EVEN) + +#ifdef VKU_IMPLEMENTATION // #define VKU_IMPLEMENTATION in a single cpp file just before inclusion of vku_framework.hpp +namespace vku +{ + struct resource_control + { + public: + static __forceinline void stage_resources(uint32_t const resource_index); + + private: + resource_control() = delete; + ~resource_control() = delete; + resource_control(resource_control const&) = delete; + resource_control(resource_control&&) = delete; + resource_control const& operator-(resource_control const&) = delete; + resource_control&& operator=(resource_control&&) = delete; + }; + +} +#endif + +#define PRINT_FEATURE(enabledFeature, text) { fmt::print(fg(enabledFeature ? (fmt::color::lime) : (fmt::color::red)), text "\n"); } + +#define ADD_EXTENSION(extensions, dm, extensionname, result) \ +{ \ + static constexpr char const szExtensionName[] = extensionname; \ + bool bFound(false); \ + for (auto extension : extensions) { \ + \ + if (0 == strncmp(extension.extensionName, szExtensionName, _countof(szExtensionName) + 1)) \ + { \ + bFound = true; \ + break; \ + } \ + } \ + if (bFound) { \ + dm.extension(szExtensionName); \ + fmt::print(fg(fmt::color::lime), extensionname "\n"); \ + result = true; \ + } \ + else { \ + fmt::print(fg(fmt::color::red), extensionname "\n"); \ + result = false; \ + } \ +} \ + +namespace vku { + + /* These constants are defined in vku_addon.hpp */ // vku.hpp line ~1550 for debuging when these constants are exceeded + static constexpr uint32_t const // **even numbers only** + MAX_NUM_DESCRIPTOR_SETS = 24, + MAX_NUM_UNIFORM_BUFFERS = 8, + MAX_NUM_IMAGES = 144, + MAX_NUM_STORAGE_BUFFERS = 24, + MAX_NUM_BUFFER_VIEWS = 2; + + static constexpr int32_t const + ACCESS_READONLY(0), + ACCESS_READWRITE(1), + ACCESS_WRITEONLY(-1); + + STATIC_INLINE_PURE point2D_t const __vectorcall getDownResolution(point2D_t const frameBufferSz) { // Downscaled resolution is always 50% of original resolution ** Half Resolution is almost identical, Third resolution is close but you can tell, Quarter resolution you can start to see the blockyness + return(p2D_shiftr(frameBufferSz, 1)); + } + + BETTER_ENUM(eCheckerboard, uint32_t const, + + EVEN = 0, + ODD + ); + + static constexpr uint32_t const STENCIL_CHECKER_REFERENCE = 0xffU; + + template + struct CommandBufferContainer + { + std::vector cb[wide]; + std::vector fence[wide]; + std::vector queued[wide]; + std::vector recorded[wide]; + + template + uint32_t const size() const { + return((uint32_t)cb[index_wide].size()); + } + + template + void allocate(vk::Device const& device, vk::CommandBufferAllocateInfo const& cbai) { + + cb[index_wide] = device.allocateCommandBuffersUnique(cbai).value; + + uint32_t const numBuffers = (uint32_t)cb[index_wide].size(); + + fence[index_wide].reserve(numBuffers); + queued[index_wide].reserve(numBuffers); + recorded[index_wide].reserve(numBuffers); + + vk::CommandBufferBeginInfo bi(vk::CommandBufferUsageFlagBits::eOneTimeSubmit); + vk::FenceCreateInfo fci{}; + fci.flags = vk::FenceCreateFlagBits::eSignaled; + for (uint32_t i = 0; i < numBuffers; ++i) { + + fence[index_wide].emplace_back(device.createFence(fci).value); + queued[index_wide].emplace_back(true); // initial state is queued because fence is signaled initially too + recorded[index_wide].emplace_back(false); + + vk::CommandBuffer cb_(*(cb[index_wide][i])); + cb_.begin(bi); + cb_.end(); + + } + } + + void release(vk::Device& device) + { + for (uint32_t i = 0; i < wide; ++i) { + + for (auto& f : fence[i]) { + device.destroyFence(f); + } + for (auto& c : cb[i]) { + c.reset(); + } + } + } + + CommandBufferContainer() = default; + CommandBufferContainer(vk::Device const& device, vk::CommandBufferAllocateInfo const& cbai) { + allocate(device, cbai); + } + }; + + // for avoiding lamda heap + typedef void const(* const execute_function)(vk::CommandBuffer&& __restrict); + + typedef struct { + vk::CommandBuffer cb_transfer; + vk::CommandBuffer cb_transfer_light; + vk::CommandBuffer cb_render_light; + // [[deprecated]] vk::CommandBuffer cb_render_texture; + uint32_t resource_index; + + } compute_pass; + typedef bool const(*const compute_function)(compute_pass&& __restrict); + + typedef struct { + vk::CommandBuffer cb; + uint32_t resource_index; + + vk::RenderPassBeginInfo&& __restrict rpbiZ; + vk::RenderPassBeginInfo&& __restrict rpbiHalf; + vk::RenderPassBeginInfo&& __restrict rpbiFull; + vk::RenderPassBeginInfo&& __restrict rpbiMid; + vk::RenderPassBeginInfo&& __restrict rpbiOff; + + } static_renderpass; + typedef void(*const static_renderpass_function)(static_renderpass&& __restrict); + typedef void(*static_renderpass_function_unconst)(static_renderpass&& __restrict); + + typedef struct { + vk::CommandBuffer cb; + uint32_t resource_index; + + } dynamic_renderpass; + typedef void(*const dynamic_renderpass_function)(dynamic_renderpass&& __restrict); + + typedef struct { + vk::CommandBuffer* __restrict cb_transfer; + vk::CommandBuffer* __restrict cb_render; + uint32_t resource_index; + + vk::RenderPassBeginInfo&& __restrict rpbi; + + } overlay_renderpass; + typedef void(*const overlay_renderpass_function)(overlay_renderpass&& __restrict); + + + typedef struct { + + vk::CommandBuffer cb; + uint32_t resource_index; + + vk::RenderPassBeginInfo&& __restrict rpbi; + + } clear_renderpass; + typedef void(* const clear_renderpass_function)(clear_renderpass&& __restrict); + + typedef struct { + + vk::CommandBuffer cb; + uint32_t resource_index; + + vk::RenderPassBeginInfo&& __restrict rpbi_postAA0; + vk::RenderPassBeginInfo&& __restrict rpbi_postAA1; + vk::RenderPassBeginInfo&& __restrict rpbi_postAA2; + vk::RenderPassBeginInfo&& __restrict rpbi_final; + + } present_renderpass; + typedef void(*const present_renderpass_function)(present_renderpass&& __restrict); + + typedef void(* const gpu_readback_function)(vk::CommandBuffer&, uint32_t const); +} \ No newline at end of file diff --git a/include/vku/vku_doublebuffer.h b/include/vku/vku_doublebuffer.h new file mode 100644 index 0000000..0e0d4a8 --- /dev/null +++ b/include/vku/vku_doublebuffer.h @@ -0,0 +1,46 @@ +#pragma once +#include + +namespace vku +{ + // Helper Class // + template + struct alignas(CACHE_LINE_BYTES) double_buffer : no_copy + { + static constexpr uint32_t const count = 2u; + + T data[count]; + + __declspec(safebuffers) __forceinline T const& __restrict operator[](uint32_t const i) const { + return(data[i]); + } + __declspec(safebuffers) __forceinline T& __restrict operator[](uint32_t const i) { + return(data[i]); + } + + double_buffer(T&& __restrict a, T&& __restrict b) + : data{ std::forward(a), std::forward(b) } + {} + double_buffer(T const& __restrict a, T const& __restrict b) + : data{ a, b } + {} + + double_buffer(double_buffer&& __restrict moved) + : data{ std::move(moved.data) } + {} + double_buffer const& operator=(double_buffer&& __restrict moved) { + + std::move(moved.data, moved.data + 1, data); + return(*this); + } + + constexpr double_buffer() // allow constinit optimization. data also must have constexpr ctor + : data{} + {} + ~double_buffer() = default; + }; + +}; // end ns + + + diff --git a/include/vku/vku_framework.hpp b/include/vku/vku_framework.hpp index d50cc3a..20e69bd 100644 --- a/include/vku/vku_framework.hpp +++ b/include/vku/vku_framework.hpp @@ -2,30 +2,49 @@ // // Demo framework for the Vookoo for the Vookoo high level C++ Vulkan interface. // -// (C) Vookoo Contributors, MIT License +// (C) Andy Thomason 2017 MIT License // // This is an optional demo framework for the Vookoo high level C++ Vulkan interface. // //////////////////////////////////////////////////////////////////////////////// +// Additions & Fixes - +// Jason Tully +// 2022 +// (supports minimum spec Radeon 290, Hvidia GTX 970) + #ifndef VKU_FRAMEWORK_HPP #define VKU_FRAMEWORK_HPP #ifdef _WIN32 +#ifndef WIN32_LEAN_AND_MEAN +#define WIN32_LEAN_AND_MEAN +#endif +#ifndef VC_EXTRALEAN +#define VC_EXTRALEAN +#endif + +#ifndef VK_USE_PLATFORM_WIN32_KHR #define VK_USE_PLATFORM_WIN32_KHR +#endif #define GLFW_EXPOSE_NATIVE_WIN32 #define VKU_SURFACE "VK_KHR_win32_surface" #pragma warning(disable : 4005) -#elif defined(__APPLE__) -#define VK_USE_PLATFORM_METAL_EXT -#else // X11 +#else #define VK_USE_PLATFORM_XLIB_KHR #define GLFW_EXPOSE_NATIVE_X11 #define VKU_SURFACE "VK_KHR_xlib_surface" #endif +#ifndef NDEBUG +//#define VKU_VMA_DEBUG_ENABLED // optional debugging +#endif + +#include // must place here and ONLY here + #ifndef VKU_NO_GLFW -#include +#define GLFW_EXPOSE_NATIVE_WIN32 +//#define GLFW_INCLUDE_VULKAN // not required here, as Vulkan->h is already included #include #include #endif @@ -37,25 +56,43 @@ #undef min #include -#include -#include -#include #include -#include #include #include #include +#include +#include + +#include +#pragma intrinsic(memcpy) +#pragma intrinsic(memset) -#include -#include "vku.hpp" +// *** temporary *** // +#ifndef NDEBUG +#include + +// six arguments +#define getSrcSubpass() cmdline::getArgument(0) +#define getDstSubpass() cmdline::getArgument(1) +#define getSrcStageMask() cmdline::getArgument(2) +#define getDstStageMask() cmdline::getArgument(3) +#define getSrcAccessMask() cmdline::getArgument(4) +#define getDstAccessMask() cmdline::getArgument(5) + +#endif + +#ifdef VKU_IMPLEMENTATION +#include +#include +#endif + +#ifndef NDEBUG +extern void HandleCrash(); +#endif namespace vku { -struct FrameworkOptions -{ - int deviceID = 0; - bool useCompute = true; -} ; + static inline constexpr vk::SampleCountFlagBits const DefaultSampleCount(vk::SampleCountFlagBits::e4); // 4xMSAA guarenteed supported, higher not really needed and can be overriden in driver control panel (radeon/nvidia tweaking) by user if wanted to enhance at a great loss in performance /// This class provides an optional interface to the vulkan instance, devices and queues. /// It is not used by any of the other classes directly and so can be safely ignored if Vookoo @@ -63,29 +100,76 @@ struct FrameworkOptions /// See https://vulkan-tutorial.com for details of many operations here. class Framework { public: - FrameworkOptions options; - Framework() { } // Construct a framework containing the instance, a device and one or more queues. - Framework(vku::InstanceMaker &im, vku::DeviceMaker &dm, const FrameworkOptions &options_ = FrameworkOptions{}) : - options(options_) - { + void FrameworkCreate(const std::string &name) { + + uint32_t const apiVersion(VULKAN_API_VERSION_USED); + + vku::InstanceMaker im{}; + im.defaultLayers(); + im.applicationName(name.c_str()); + im.engineName("supersinfulsilicon"); + im.applicationVersion(1); + im.engineVersion(1); + im.apiVersion(apiVersion); + + // add additonal extensions + auto const eps = vk::enumerateInstanceExtensionProperties().value; + for (auto const& i : eps) + { + // if instance extension is available, add it. + + if (bHDRExtensionEnabled) { + // VK_EXT_swapchain_colorspace + if (std::string_view(VK_EXT_SWAPCHAIN_COLOR_SPACE_EXTENSION_NAME) == std::string_view(i.extensionName)) { + im.extension(VK_EXT_SWAPCHAIN_COLOR_SPACE_EXTENSION_NAME); + bExtendedColorspaceOn = true; + } + } + } + + // finally, create the actual instance // instance_ = im.createUnique(); +#ifndef NDEBUG callback_ = DebugCallback(*instance_); +#endif - auto pds = instance_->enumeratePhysicalDevices(); - physical_device_ = pds[options.deviceID]; + auto const pds = instance_->enumeratePhysicalDevices().value; + for (auto const& i : pds) + { + uint32_t const physicalDeviceApiVersion = i.getProperties().apiVersion; + if (physicalDeviceApiVersion >= apiVersion) { + physical_device_ = i; + fmt::print(fg(fmt::color::magenta), "[ Vulkan {:d}.{:d} ]" "\n", VK_VERSION_MAJOR(apiVersion), + VK_VERSION_MINOR(apiVersion)); + fmt::print(fg(fmt::color::white), "[ {:s} ]" "\n", (std::string_view const)i.getProperties().deviceName); + break; + } + } + if (!physical_device_) { + fmt::print(fg(fmt::color::red), "[ ! Vulkan {:d}.{:d} - Not supported by any gpu device ! ]" "\n", VK_VERSION_MAJOR(apiVersion), + VK_VERSION_MINOR(apiVersion)); + for (auto const& i : pds) + { + fmt::print(fg(fmt::color::red), "[ {:s} ]" "\n", (std::string_view const)i.getProperties().deviceName); + } + return; + } auto qprops = physical_device_.getQueueFamilyProperties(); - const auto badQueue = ~(uint32_t)0; - graphicsQueueFamilyIndex_ = badQueue; - computeQueueFamilyIndex_ = badQueue; - vk::QueueFlags search = vk::QueueFlagBits::eGraphics; - if (options.useCompute) - search |= vk::QueueFlagBits::eCompute; + graphicsQueueFamilyIndex_ = 0; + computeQueueFamilyIndex_ = 0; + transferQueueFamilyIndex_ = 0; + + vk::QueueFlags + searchGraphics = vk::QueueFlagBits::eGraphics, + searchCompute = vk::QueueFlagBits::eCompute; // **************** any ShaderReadOnlyOptimal (not general)sampler access in compute shader requires graphics queue aswell. Found out also that for compute to not stall the raphics pieline, it must be on a seperate queue, then it is correctly async compute + // speedy 8x8 granularity (multiple of 8) transfer queue is searched for differently (see below) + // ** resolution must be divisible by 8 (all normally are) // Look for an omnipurpose queue family first // It is better if we can schedule operations without barriers and semaphores. @@ -95,106 +179,275 @@ class Framework { // Also: All commands that are allowed on a queue that supports transfer operations are // also allowed on a queue that supports either graphics or compute operations... // As a result we can expect a queue family with at least all three and maybe all four modes. - for (uint32_t qi = 0; qi != qprops.size(); ++qi) { - auto &qprop = qprops[qi]; - std::cout << vk::to_string(qprop.queueFlags) << "\n"; - if ((qprop.queueFlags & search) == search) { - - graphicsQueueFamilyIndex_ = qi; - if (options.useCompute) - computeQueueFamilyIndex_ = qi; - - break; - } - } - - if (graphicsQueueFamilyIndex_ == badQueue) { - std::cout << "oops, missing a queue\n"; - return; - } - - if (options.useCompute && computeQueueFamilyIndex_ == badQueue) { - std::cout << "oops, missing a queue\n"; - return; - } - memprops_ = physical_device_.getMemoryProperties(); + uint32_t lastGranularity(0); - // todo: find optimal texture format - // auto rgbaprops = physical_device_.getFormatProperties(vk::Format::eR8G8B8A8Unorm); - - dm.queue(graphicsQueueFamilyIndex_); - - if (options.useCompute) - if (computeQueueFamilyIndex_ != graphicsQueueFamilyIndex_) - dm.queue(computeQueueFamilyIndex_); + for (int32_t qi = (int32_t)qprops.size() - 1; qi >= 0; --qi) { // start from back to capture unique queues first + auto &qprop = qprops[qi]; - device_ = dm.createUnique(physical_device_); + if (searchGraphics && (qprop.queueFlags & searchGraphics) == searchGraphics) { + graphicsQueueFamilyIndex_ = qi; + if (0 == qi) { + searchGraphics = (vk::QueueFlagBits)0; // prevent further search only if equal to zero for graphics queue (default index) + } + FMT_LOG_OK(GPU_LOG, "Graphics Queue Selected < {:s} {:d} >", vk::to_string(qprop.queueFlags), graphicsQueueFamilyIndex_); + } + if (searchCompute && ((qprop.queueFlags & searchCompute) == searchCompute) && qprop.queueCount >= 2) { // also ensure there is 2 available compute queues + computeQueueFamilyIndex_ = qi; + searchCompute = (vk::QueueFlagBits)0; // prevent further search + FMT_LOG_OK(GPU_LOG, "Compute Queue Selected < {:s} {:d} >", vk::to_string(qprop.queueFlags), computeQueueFamilyIndex_); + } + + if ((qprop.queueFlags & vk::QueueFlagBits::eTransfer) == vk::QueueFlagBits::eTransfer && + !((qprop.queueFlags & vk::QueueFlagBits::eCompute) == vk::QueueFlagBits::eCompute)) { // finding dedicated transfer queue (does not have compute capability) + // checked hw database, compatible with minimum spec of Radeon 290 and Nvidia GTX 970 + // will have at least 2 queues for transfer + uint32_t const granularity(qprop.minImageTransferGranularity.width + qprop.minImageTransferGranularity.height + qprop.minImageTransferGranularity.depth); + + if (granularity > lastGranularity) { + + // supporting only queues with: + // + // qprop.minImageTransferGranularity.width = 1 or is divisable by 8 + // qprop.minImageTransferGranularity.height = 1 or "" "" "" by 8 + // qprop.minImageTransferGranularity.depth = 1 or "" "" "" by 8 + + if ((3 == granularity) || (0 == (granularity % 8))) { + transferQueueFamilyIndex_ = qi; + lastGranularity = granularity; + } + } + } + } + // error out if there is *not* 2 compute queues or no compute queue at all + if (!searchCompute) { // search found compute queue + + if (!(qprops[computeQueueFamilyIndex_].queueCount >= 2)) { + FMT_LOG_FAIL(GPU_LOG, "Simultaneous Compute Queues not supported!!"); + return; + } + } + else { + FMT_LOG_FAIL(GPU_LOG, "No Compute Queue found!!"); + return; + } + // error out if there is *not* 2 transfer queues + if (!(qprops[transferQueueFamilyIndex_].queueCount >= 2)) { + FMT_LOG_FAIL(GPU_LOG, "Simultaneous Transfer Queues not supported!!"); + return; + } + + // Transfer quewe is selected by granularity. eg.) 8x8x8 min granularity allows for faster clears, uploads via dma if image has dimensions divisable by 8, etc. + FMT_LOG_OK(GPU_LOG, "Transfer Queue Selected < {:s} {:d} >", vk::to_string(qprops[transferQueueFamilyIndex_].queueFlags), transferQueueFamilyIndex_); + + vk::PhysicalDeviceVulkanMemoryModelFeatures supportedMemoryModel{}; + vk::PhysicalDevice8BitStorageFeatures supportedByteStorage{}; + + vk::PhysicalDeviceFeatures2 supportedFeatures{}; + + // ################ start of pNext linked list chain for query + supportedByteStorage.pNext = nullptr; + supportedMemoryModel.pNext = &supportedByteStorage; + supportedFeatures.pNext = &supportedMemoryModel; // ####### pNext chain ###### for query support of extensions // + + + physical_device_.getFeatures2(&supportedFeatures); + + vk::PhysicalDeviceFeatures enabledFeatures{}; + + enabledFeatures.geometryShader = supportedFeatures.features.geometryShader; + enabledFeatures.sampleRateShading = supportedFeatures.features.sampleRateShading; + enabledFeatures.depthClamp = supportedFeatures.features.depthClamp; + enabledFeatures.samplerAnisotropy = supportedFeatures.features.samplerAnisotropy; + //enabledFeatures.robustBufferAccess = supportedFeatures.features.robustBufferAccess; // safer but a lot slower good for debugging out of bounds access + enabledFeatures.textureCompressionBC = supportedFeatures.features.textureCompressionBC; + enabledFeatures.independentBlend = supportedFeatures.features.independentBlend; + enabledFeatures.shaderStorageImageExtendedFormats = supportedFeatures.features.shaderStorageImageExtendedFormats; + enabledFeatures.vertexPipelineStoresAndAtomics = supportedFeatures.features.vertexPipelineStoresAndAtomics; + enabledFeatures.fragmentStoresAndAtomics = supportedFeatures.features.fragmentStoresAndAtomics; + + PRINT_FEATURE(supportedMemoryModel.vulkanMemoryModel, "vulkan memory model"); if (!supportedMemoryModel.vulkanMemoryModel) return; + PRINT_FEATURE(supportedByteStorage.storageBuffer8BitAccess, "storage buffer 8bit"); if (!supportedByteStorage.storageBuffer8BitAccess) return; + PRINT_FEATURE(enabledFeatures.geometryShader, "geometry shader"); if (!enabledFeatures.geometryShader) return; + PRINT_FEATURE(enabledFeatures.sampleRateShading, "sample shading"); if (!enabledFeatures.sampleRateShading) return; + PRINT_FEATURE(enabledFeatures.depthClamp, "depth clamping"); if (!enabledFeatures.depthClamp) return; + PRINT_FEATURE(enabledFeatures.samplerAnisotropy, "anisotropic filtering"); if (!enabledFeatures.samplerAnisotropy) return; + PRINT_FEATURE(enabledFeatures.textureCompressionBC, "texture compression"); if (!enabledFeatures.textureCompressionBC) return; + PRINT_FEATURE(enabledFeatures.independentBlend, "independent blending"); if (!enabledFeatures.independentBlend) return; // independent (different) blend states for multiple color attachments + PRINT_FEATURE(enabledFeatures.shaderStorageImageExtendedFormats, "extended compute image formats"); if (!enabledFeatures.shaderStorageImageExtendedFormats) return; + PRINT_FEATURE(enabledFeatures.vertexPipelineStoresAndAtomics, "vertex image ops"); if (!enabledFeatures.vertexPipelineStoresAndAtomics) return; // use of image operations in vertex shader requires this feature to be enabled + PRINT_FEATURE(enabledFeatures.fragmentStoresAndAtomics, "fragment image ops"); if (!enabledFeatures.fragmentStoresAndAtomics) return; // use of image operations in vertex shader requires this feature to be enabled + + vku::DeviceMaker dm{}; + dm.defaultLayers(); + + // add extensions + bool supported(false), memorybudget(false), fullsubgroups(false); + auto const extensions = physical_device_.enumerateDeviceExtensionProperties().value; + + // Required Extensions // + // internally promoted in vulkan 1.2 ADD_EXTENSION(extensions, dm, VK_KHR_VULKAN_MEMORY_MODEL_EXTENSION_NAME, supported); if (!supported) return; + ADD_EXTENSION(extensions, dm, VK_EXT_MEMORY_BUDGET_EXTENSION_NAME, memorybudget); // optional, can use internal tracking of memory in vma if not available + ADD_EXTENSION(extensions, dm, VK_EXT_SUBGROUP_SIZE_CONTROL_EXTENSION_NAME, fullsubgroups); // optional, optimization for compute shader subgroup usage + ComputePipelineMaker::fullsubgroups_supported = fullsubgroups; + + // internally promoted in vulkan 1.1 ADD_EXTENSION(extensions, dm, VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, supported); if (!supported) return; + // internally promoted in vulkan 1.1 ADD_EXTENSION(extensions, dm, VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, supported); if (!supported) return; + // *bugfix - NVIDIA does not support this extension. It's not really needed - all queue priorities were the same anyway. ADD_EXTENSION(extensions, dm, VK_EXT_GLOBAL_PRIORITY_EXTENSION_NAME, supported); if (!supported) return; + // internally promoted in vulkan 1.2 ADD_EXTENSION(extensions, dm, VK_KHR_8BIT_STORAGE_EXTENSION_NAME, supported); if (!supported) return;// The code:StorageBuffer8BitAccess capability must: be supported by all + // implementations of this extension, so no need to query further details as only ssbo 8bit is used. Uniform buffer objects with 8bit is not used. + + // bugfix: theses extensions only allowe a difference between a depth multisample count and a color multisample count + // so a difference between a color and another color multisample count still cannot be different + // these extensions are not required + //ADD_EXTENSION(extensions, dm, VK_AMD_MIXED_ATTACHMENT_SAMPLES_EXTENSION_NAME, supported); // was for mouse picking + //ADD_EXTENSION(extensions, dm, VK_NV_FRAMEBUFFER_MIXED_SAMPLES_EXTENSION_NAME, supported); // was "" "" "" + + // Optional/Additional Extensions & detailed configuration if required by extension// +#if defined(FULLSCREEN_EXCLUSIVE) && defined(VK_EXT_full_screen_exclusive) + if (bFullScreenExclusiveExtensionEnabled) { + ADD_EXTENSION(extensions, dm, VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME, supported); + bFullScreenExclusiveExtensionSupported = supported; + } +#endif +#if defined(VK_EXT_hdr_metadata) + if (bHDRExtensionEnabled & bExtendedColorspaceOn) { + ADD_EXTENSION(extensions, dm, VK_EXT_HDR_METADATA_EXTENSION_NAME, supported); + bHDRExtensionSupported = supported; + } +#endif + + + // Create ****QUEUES**** // + // *bugfix - NVIDIA does not support this extension. It's not really needed - all queue priorities were the same anyway. + + // *bugfix - validation error, queues need to be in correct order + { + std::list queueIndices; + queueIndices.emplace_back(graphicsQueueFamilyIndex_); + queueIndices.emplace_back(computeQueueFamilyIndex_); + queueIndices.emplace_back(transferQueueFamilyIndex_); + + do { + + uint32_t minQueueIndex(UINT32_MAX); + for (auto queueIndex = queueIndices.cbegin(); queueIndex != queueIndices.cend(); ++queueIndex) { + + minQueueIndex = std::min(minQueueIndex, *queueIndex); + } + + uint32_t queueCount(0); + + if (graphicsQueueFamilyIndex_ == minQueueIndex) { + queueCount = 1; // single dedicated queue for graphics + } + else { + queueCount = 2; // compute and transfer have 2 dedicated queues each. + } + dm.queue(minQueueIndex, queueCount); // queue up the next family index, in ascending order as required for indices to properly match the queue family index + + // remove last min + queueIndices.remove(minQueueIndex); + } while (!queueIndices.empty()); + } + + // ################ start of pNext linked list chain for device creation + vk::PhysicalDeviceSubgroupSizeControlFeaturesEXT computeFullgroups{ + VK_TRUE, + fullsubgroups + }; + computeFullgroups.pNext = nullptr; + + vk::PhysicalDevice8BitStorageFeatures byteStorage{ + VK_TRUE, // - required (supportedByteStorage.storageBuffer8BitAccess) // + supportedByteStorage.uniformAndStorageBuffer8BitAccess, // - optional // + supportedByteStorage.storagePushConstant8 // - optional // + }; + if (fullsubgroups) { + byteStorage.pNext = &computeFullgroups; + } + else { + byteStorage.pNext = nullptr; + } + + vk::PhysicalDeviceVulkanMemoryModelFeatures memoryModel{ + VK_TRUE, // - required (supportedMemoryModel.vulkanMemoryModel) // + supportedMemoryModel.vulkanMemoryModelDeviceScope, // - optional // + supportedMemoryModel.vulkanMemoryModelAvailabilityVisibilityChains // - optional // + }; + memoryModel.pNext = &byteStorage; /// ######### pNext chain ############## (reference previous extension) + + + device_ = dm.createUnique(physical_device_, enabledFeatures, &memoryModel); +#ifndef NDEBUG + callback_.acquireDeviceFunctionPointers(*device_); +#endif + vk::PipelineCacheCreateInfo pipelineCacheInfo{}; - pipelineCache_ = device_->createPipelineCacheUnique(pipelineCacheInfo); + pipelineCache_ = device_->createPipelineCacheUnique(pipelineCacheInfo).value; std::vector poolSizes; - poolSizes.emplace_back(vk::DescriptorType::eUniformBuffer, 128); - poolSizes.emplace_back(vk::DescriptorType::eCombinedImageSampler, 128); - poolSizes.emplace_back(vk::DescriptorType::eStorageBuffer, 128); + poolSizes.emplace_back(vk::DescriptorType::eUniformBuffer, MAX_NUM_UNIFORM_BUFFERS); + poolSizes.emplace_back(vk::DescriptorType::eCombinedImageSampler, MAX_NUM_IMAGES); + poolSizes.emplace_back(vk::DescriptorType::eStorageBuffer, MAX_NUM_STORAGE_BUFFERS); // Create an arbitrary number of descriptors in a pool. // Allow the descriptors to be freed, possibly not optimal behaviour. vk::DescriptorPoolCreateInfo descriptorPoolInfo{}; - descriptorPoolInfo.flags = vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet; - descriptorPoolInfo.maxSets = 256; + //descriptorPoolInfo.flags = vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet; // not recommended by AMD + descriptorPoolInfo.maxSets = MAX_NUM_DESCRIPTOR_SETS; descriptorPoolInfo.poolSizeCount = (uint32_t)poolSizes.size(); descriptorPoolInfo.pPoolSizes = poolSizes.data(); - descriptorPool_ = device_->createDescriptorPoolUnique(descriptorPoolInfo); + descriptorPool_ = device_->createDescriptorPoolUnique(descriptorPoolInfo).value; - ok_ = true; - } + // create vma global singleton instance in vku framework + VmaAllocatorCreateInfo allocatorInfo{}; + allocatorInfo.vulkanApiVersion = VULKAN_API_VERSION_USED; + allocatorInfo.flags = VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT | (memorybudget ? VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT : (VmaAllocatorCreateFlags)0); + allocatorInfo.instance = *instance_; + allocatorInfo.physicalDevice = physical_device_; + allocatorInfo.device = *device_; + //allocatorInfo.pVulkanFunctions + + ok_ = (VkResult::VK_SUCCESS == vmaCreateAllocator(&allocatorInfo, &vma_)); // note, as requirement of application, allocator singleton can only be access by a single thread at any given time! - void dumpCaps(std::ostream &os) const { - os << "Memory Types\n"; - for (uint32_t i = 0; i != memprops_.memoryTypeCount; ++i) { - os << " type" << i << " heap" << memprops_.memoryTypes[i].heapIndex << " " << vk::to_string(memprops_.memoryTypes[i].propertyFlags) << "\n"; - } - os << "Heaps\n"; - for (uint32_t i = 0; i != memprops_.memoryHeapCount; ++i) { - os << " heap" << vk::to_string(memprops_.memoryHeaps[i].flags) << " " << memprops_.memoryHeaps[i].size << "\n"; - } } /// Get the Vulkan instance. - vk::Instance instance() const { return *instance_; } + const vk::Instance instance() const { return *instance_; } /// Get the Vulkan device. - vk::Device device() const { return *device_; } - - /// Get the queue used to submit graphics jobs - vk::Queue graphicsQueue() const { return device_->getQueue(graphicsQueueFamilyIndex_, 0); } - - /// Get the queue used to submit compute jobs - vk::Queue computeQueue() const { return device_->getQueue(computeQueueFamilyIndex_, 0); } + const vk::Device device() const { return *device_; } /// Get the physical device. const vk::PhysicalDevice &physicalDevice() const { return physical_device_; } /// Get the default pipeline cache (you can use your own if you like). - vk::PipelineCache pipelineCache() const { return *pipelineCache_; } + const vk::PipelineCache pipelineCache() const { return *pipelineCache_; } /// Get the default descriptor pool (you can use your own if you like). - vk::DescriptorPool descriptorPool() const { return *descriptorPool_; } + const vk::DescriptorPool descriptorPool() const { return *descriptorPool_; } /// Get the family index for the graphics queues. - uint32_t graphicsQueueFamilyIndex() const { return graphicsQueueFamilyIndex_; } + uint32_t const graphicsQueueFamilyIndex() const { return graphicsQueueFamilyIndex_; } /// Get the family index for the compute queues. - uint32_t computeQueueFamilyIndex() const { return computeQueueFamilyIndex_; } + uint32_t const computeQueueFamilyIndex() const { return computeQueueFamilyIndex_; } - const vk::PhysicalDeviceMemoryProperties &memprops() const { return memprops_; } + /// Get the family index for the compute queues. + uint32_t const transferQueueFamilyIndex() const { return transferQueueFamilyIndex_; } /// Clean up the framework satisfying the Vulkan verification layers. ~Framework() { + if (device_) { device_->waitIdle(); + + if (vma_) { + vmaDestroyAllocator(vma_); vma_ = nullptr; + } + if (pipelineCache_) { pipelineCache_.reset(); } @@ -205,44 +458,96 @@ class Framework { } if (instance_) { +#ifndef NDEBUG callback_.reset(); +#endif instance_.reset(); } } Framework &operator=(Framework &&rhs) = default; + // extensions supported ? // + bool const isFullScreenExclusiveExtensionSupported() const { + return(bFullScreenExclusiveExtensionEnabled & bFullScreenExclusiveExtensionSupported); + } + void setFullScreenExclusiveEnabled(bool const bEnabled) { + bFullScreenExclusiveExtensionEnabled = bEnabled; + } + + + bool const isHDRExtensionSupported() const { + return(bHDRExtensionEnabled & bHDRExtensionSupported); + } + uint32_t const getMaximumNits() const { + return(max_hdr_monitor_nits); + } + void setHDREnabled(bool const bEnabled, uint32_t const max_nits) { + + if (bEnabled && 0 != max_nits) // prevent zero max nits being a valid state while hdr is enabled. + { + bHDRExtensionEnabled = true; + max_hdr_monitor_nits = max_nits; + } + else { + bHDRExtensionEnabled = false; + max_hdr_monitor_nits = 0; + } + } + /// Returns true if the Framework has been built correctly. bool ok() const { return ok_; } private: vk::UniqueInstance instance_; +#ifndef NDEBUG vku::DebugCallback callback_; +#endif vk::UniqueDevice device_; - //vk::DebugReportCallbackEXT callback_; vk::PhysicalDevice physical_device_; vk::UniquePipelineCache pipelineCache_; vk::UniqueDescriptorPool descriptorPool_; uint32_t graphicsQueueFamilyIndex_; uint32_t computeQueueFamilyIndex_; - vk::PhysicalDeviceMemoryProperties memprops_; + uint32_t transferQueueFamilyIndex_; + + // extensions supported ? // + bool bFullScreenExclusiveExtensionEnabled = false, + bFullScreenExclusiveExtensionSupported = false; + + uint32_t max_hdr_monitor_nits = 0u; + bool bExtendedColorspaceOn = false, + bHDRExtensionEnabled = false, + bHDRExtensionSupported = false; + bool ok_ = false; }; -/// This class wraps a window, a surface and a swap chain for that surface. + +BETTER_ENUM(eCommandPools, uint32_t const, DEFAULT_POOL = 0, OVERLAY_POOL, TRANSIENT_POOL, DMA_TRANSFER_POOL_PRIMARY, DMA_TRANSFER_POOL_SECONDARY, COMPUTE_POOL_PRIMARY, COMPUTE_POOL_SECONDARY); +BETTER_ENUM(eFrameBuffers, uint32_t const, DEPTH, HALF_COLOR_ONLY, FULL_COLOR_ONLY, MID_COLOR_DEPTH, COLOR_DEPTH, POSTAA_0, POSTAA_1, POSTAA_2, PRESENT, CLEAR, OFFSCREEN); +BETTER_ENUM(eOverlayBuffers, uint32_t const, TRANSFER, RENDER); +BETTER_ENUM(eComputeBuffers, uint32_t const, TRANSFER, TRANSFER_LIGHT, COMPUTE_LIGHT); + class Window { + + Framework const& fw_; // reference to framework! + public: - Window() { - } + Window(vku::Framework const& fw ) : fw_(fw) {} #ifndef VKU_NO_GLFW /// Construct a window, surface and swapchain using a GLFW window. - Window(const vk::Instance &instance, const vk::Device &device, const vk::PhysicalDevice &physicalDevice, uint32_t graphicsQueueFamilyIndex, GLFWwindow *window) { + Window(vku::Framework const & fw, const vk::Device &device, const vk::PhysicalDevice &physicalDevice, uint32_t const graphicsQueueFamilyIndex, uint32_t const computeQueueFamilyIndex, uint32_t const transferQueueFamilyIndex, GLFWwindow * const window) + : fw_(fw) + { #ifdef VK_USE_PLATFORM_WIN32_KHR - auto module = GetModuleHandle(nullptr); - auto handle = glfwGetWin32Window(window); - auto ci = vk::Win32SurfaceCreateInfoKHR{{}, module, handle}; - auto surface = instance.createWin32SurfaceKHR(ci); + auto module_handle = GetModuleHandle(nullptr); + auto const handle = glfwGetWin32Window(window); + glfwSetWindowUserPointer(window, this); + auto const ci = vk::Win32SurfaceCreateInfoKHR{{}, module_handle, handle}; + auto const surface = fw.instance().createWin32SurfaceKHR(ci).value; + auto const monitor = MonitorFromWindow(handle, MONITOR_DEFAULTTOPRIMARY); #endif #ifdef VK_USE_PLATFORM_XLIB_KHR auto display = glfwGetX11Display(); @@ -250,121 +555,1666 @@ class Window { auto ci = vk::XlibSurfaceCreateInfoKHR{{}, display, x11window}; auto surface = instance.createXlibSurfaceKHR(ci); #endif -#ifdef VK_EXT_METAL_SURFACE_EXTENSION_NAME - vk::SurfaceKHR surface; - glfwCreateWindowSurface(instance, window, - nullptr, - reinterpret_cast(&surface)); -#endif - init(instance, device, physicalDevice, graphicsQueueFamilyIndex, surface); + init(fw.instance(), device, physicalDevice, graphicsQueueFamilyIndex, computeQueueFamilyIndex, transferQueueFamilyIndex, surface, monitor); } #endif - Window(const vk::Instance &instance, const vk::Device &device, const vk::PhysicalDevice &physicalDevice, uint32_t graphicsQueueFamilyIndex, vk::SurfaceKHR surface) { - init(instance, device, physicalDevice, graphicsQueueFamilyIndex, surface); - } - - void init(const vk::Instance &instance, const vk::Device &device, const vk::PhysicalDevice &physicalDevice, uint32_t graphicsQueueFamilyIndex, vk::SurfaceKHR surface) { - //surface_ = vk::UniqueSurfaceKHR(surface); - surface_ = vk::UniqueSurfaceKHR(surface, vk::ObjectDestroy(instance)); - // surface_ = surface; - graphicsQueueFamilyIndex_ = graphicsQueueFamilyIndex; - physicalDevice_ = physicalDevice; - instance_ = instance; - device_ = device; - presentQueueFamily_ = 0; - auto &pd = physicalDevice; - auto qprops = pd.getQueueFamilyProperties(); - bool found = false; - for (uint32_t qi = 0; qi != qprops.size(); ++qi) { - auto &qprop = qprops[qi]; - if (pd.getSurfaceSupportKHR(qi, surface_.get()) && (qprop.queueFlags & vk::QueueFlagBits::eGraphics) == vk::QueueFlagBits::eGraphics) { - presentQueueFamily_ = qi; - found = true; - break; - } - } - - if (!found) { - std::cout << "No Vulkan present queues found\n"; - return; - } - - auto fmts = pd.getSurfaceFormatsKHR(surface_.get()); - swapchainImageFormat_ = fmts[0].format; - swapchainColorSpace_ = fmts[0].colorSpace; - if (fmts.size() == 1 && swapchainImageFormat_ == vk::Format::eUndefined) { - swapchainImageFormat_ = vk::Format::eB8G8R8A8Unorm; - swapchainColorSpace_ = vk::ColorSpaceKHR::eSrgbNonlinear; - } else { - for (auto &fmt : fmts) { - if (fmt.format == vk::Format::eB8G8R8A8Unorm) { - swapchainImageFormat_ = fmt.format; - swapchainColorSpace_ = fmt.colorSpace; - } - } - } - - createSwapchain(); - - createImages(); - - createDepthStencil(); - - createRenderPass(); + /* void downsampleDepth(vk::CommandBuffer const&__restrict cb) + { + // layout transitions must be set appropriately b4 function - createFrameBuffers(); + vk::ImageSubresourceLayers const srcLayer(vk::ImageAspectFlagBits::eDepth, 0, 0, 1); + vk::ImageSubresourceLayers const dstLayer(vk::ImageAspectFlagBits::eDepth, 0, 0, 1); - vk::SemaphoreCreateInfo sci; - imageAcquireSemaphore_ = device.createSemaphoreUnique(sci); - commandCompleteSemaphore_ = device.createSemaphoreUnique(sci); - dynamicSemaphore_ = device.createSemaphoreUnique(sci); + std::array const srcOffsets = { vk::Offset3D(), vk::Offset3D(width_, height_, 1) }; + std::array const dstOffsets = { vk::Offset3D(), vk::Offset3D(width_ / vku::DOWN_RES_FACTOR, height_ / vku::DOWN_RES_FACTOR, 1) }; - typedef vk::CommandPoolCreateFlagBits ccbits; + vk::ImageBlit const region(srcLayer, srcOffsets, dstLayer, dstOffsets); - vk::CommandPoolCreateInfo cpci{ ccbits::eTransient|ccbits::eResetCommandBuffer, graphicsQueueFamilyIndex }; - commandPool_ = device.createCommandPoolUnique(cpci); + cb.blitImage(depthImage_.image(), vk::ImageLayout::eTransferSrcOptimal, depthImageDown_.image(), vk::ImageLayout::eTransferDstOptimal, 1, ®ion, vk::Filter::eNearest); + } + */ + /* + void copyLastRenderedImage(vk::CommandBuffer const& __restrict cb, vku::TextureImage2D* const __restrict dstImage, uint32_t const last_image_index) + { + // layout transitions must be set appropriately b4 function for destination image + // swap chain image is managed inside this function only + vk::ImageMemoryBarrier imageMemoryBarriers = {}; + imageMemoryBarriers.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + imageMemoryBarriers.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + imageMemoryBarriers.image = images_[last_image_index]; + imageMemoryBarriers.subresourceRange = { vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 }; + + vk::PipelineStageFlags srcStageMask{}; + vk::PipelineStageFlags dstStageMask{}; + vk::DependencyFlags dependencyFlags{}; + vk::AccessFlags srcMask{}; + vk::AccessFlags dstMask{}; + + typedef vk::ImageLayout il; + typedef vk::PipelineStageFlagBits psfb; + typedef vk::AccessFlagBits afb; + + imageMemoryBarriers.oldLayout = vk::ImageLayout::ePresentSrcKHR; + imageMemoryBarriers.newLayout = vk::ImageLayout::eTransferSrcOptimal; + srcMask = afb::eMemoryRead; srcStageMask = psfb::eBottomOfPipe; + dstMask = afb::eTransferRead; dstStageMask = psfb::eTransfer; + + imageMemoryBarriers.srcAccessMask = srcMask; + imageMemoryBarriers.dstAccessMask = dstMask; + auto memoryBarriers = nullptr; + auto bufferMemoryBarriers = nullptr; + cb.pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, memoryBarriers, bufferMemoryBarriers, imageMemoryBarriers); + + + // do gpu -> gpu local blit + // must be a blit because we need it back in linear color space, swapchain images are srgb textures + // the blit performs the conversion back to linear! + { + vk::ImageSubresourceLayers const srcLayer(vk::ImageAspectFlagBits::eColor, 0, 0, 1); + vk::ImageSubresourceLayers const dstLayer(vk::ImageAspectFlagBits::eColor, 0, 0, 1); + + std::array const srcOffsets = { vk::Offset3D(), vk::Offset3D(width_, height_, 1) }; + std::array const dstOffsets = { vk::Offset3D(), vk::Offset3D(width_, height_, 1) }; + + vk::ImageBlit const region(srcLayer, srcOffsets, dstLayer, dstOffsets); + + cb.blitImage(images_[last_image_index], vk::ImageLayout::eTransferSrcOptimal, dstImage->image(), vk::ImageLayout::eTransferDstOptimal, 1, ®ion, vk::Filter::eNearest); + } + + + // automatically transition last rendered swapchain image back to swapchain friendly layout + imageMemoryBarriers.oldLayout = vk::ImageLayout::eTransferSrcOptimal; + imageMemoryBarriers.newLayout = vk::ImageLayout::ePresentSrcKHR; + srcMask = afb::eTransferRead; srcStageMask = psfb::eTransfer; + dstMask = afb::eMemoryRead; dstStageMask = psfb::eBottomOfPipe; + + imageMemoryBarriers.srcAccessMask = srcMask; + imageMemoryBarriers.dstAccessMask = dstMask; + cb.pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, memoryBarriers, bufferMemoryBarriers, imageMemoryBarriers); + }*/ + + private: + + bool const recreateSwapChain() + { + fmt::print(fg(fmt::color::lime_green), "creating swapchain.... " "\n"); + + vk::SurfaceCapabilities2KHR surfaceCaps{}; + vk::PhysicalDeviceSurfaceInfo2KHR surfaceInfo(surface_); + + surfaceCaps.pNext = nullptr; // safe + +#if defined(FULLSCREEN_EXCLUSIVE) && defined(VK_EXT_full_screen_exclusive) + vk::SurfaceFullScreenExclusiveWin32InfoEXT full_screen_exclusive_win32(monitor_); + vk::SurfaceFullScreenExclusiveInfoEXT full_screen_exclusive{ vk::FullScreenExclusiveEXT::eApplicationControlled }; + vk::SurfaceCapabilitiesFullScreenExclusiveEXT surfaceCapFullscreenExclusive{}; + + if (nullptr == monitor_) { + fmt::print(fg(fmt::color::orange), "fullscreen exclusive disabled." "\n"); + } + else { + + if (fw_.isFullScreenExclusiveExtensionSupported()) { + full_screen_exclusive.pNext = &full_screen_exclusive_win32; + surfaceInfo.pNext = &full_screen_exclusive; + surfaceCaps.pNext = &surfaceCapFullscreenExclusive; + } + } +#endif - // Create static draw buffers - vk::CommandBufferAllocateInfo cbai{ *commandPool_, vk::CommandBufferLevel::ePrimary, (uint32_t)framebuffers_.size() }; - staticDrawBuffers_ = device.allocateCommandBuffersUnique(cbai); - dynamicDrawBuffers_ = device.allocateCommandBuffersUnique(cbai); + physicalDevice_.getSurfaceCapabilities2KHR(&surfaceInfo, &surfaceCaps); + width_ = surfaceCaps.surfaceCapabilities.currentExtent.width; + height_ = surfaceCaps.surfaceCapabilities.currentExtent.height; + +#if defined(FULLSCREEN_EXCLUSIVE) && defined(VK_EXT_full_screen_exclusive) + if (monitor_ && fw_.isFullScreenExclusiveExtensionSupported()) { + bFullScreenExclusiveOn = surfaceCapFullscreenExclusive.fullScreenExclusiveSupported; + if (bFullScreenExclusiveOn) { + fmt::print(fg(fmt::color::lime_green), "fullscreen exclusive\n"); + } + } + else { // Extension doesn't exist or user settings ini has disabled exclusivity, silently fail/disable exclusive fullscreen + bFullScreenExclusiveOn = false; + } +#endif - // Create a set of fences to protect the command buffers from re-writing. - for (int i = 0; i != staticDrawBuffers_.size(); ++i) { - vk::FenceCreateInfo fci; - fci.flags = vk::FenceCreateFlagBits::eSignaled; - commandBufferFences_.emplace_back(device.createFence(fci)); - } + auto const fmts = physicalDevice_.getSurfaceFormats2KHR(surfaceInfo).value; + // default to first format + swapchainImageFormat_ = fmts[0].surfaceFormat.format; + swapchainColorSpace_ = fmts[0].surfaceFormat.colorSpace; + + // returned errornouse result from driver? Default to preferred 8bit format. + if (fmts.size() == 1 && swapchainImageFormat_ == vk::Format::eUndefined) { + swapchainImageFormat_ = vk::Format::eB8G8R8A8Unorm; + swapchainColorSpace_ = vk::ColorSpaceKHR::eSrgbNonlinear; + } + else { // otherwise find optimal format + + // search for 10bit HDR target + if (bFullScreenExclusiveOn & fw_.isHDRExtensionSupported()) { // if fullscreen exclusive is on (enabled & supported & turned on) only. HDR does not work in windowed mode properly unless "Windows HDR" is toggled on in settings for the users computer + for (auto const& fmt : fmts) { // But there is no way of query the state of "Windows HDR" being on for the application. So if Windows HDR is off, then the windowed mode with hdr on here would be incorrect. + // however, if fullscreen exclusive is on (default), then HDR can be properly controlled within the application. + if ((vk::Format::eA2R10G10B10UnormPack32 == fmt.surfaceFormat.format && vk::ColorSpaceKHR::eHdr10St2084EXT == fmt.surfaceFormat.colorSpace) || // *bugfix - amd is rgb for hdr target, nvidia is bgr for hdr target + (vk::Format::eA2B10G10R10UnormPack32 == fmt.surfaceFormat.format && vk::ColorSpaceKHR::eHdr10St2084EXT == fmt.surfaceFormat.colorSpace)) { + swapchainImageFormat_ = fmt.surfaceFormat.format; + swapchainColorSpace_ = fmt.surfaceFormat.colorSpace; + bHDROn = true; + break; + } + } + } + + // if no 10 bit target exists, + if (!bHDROn) { // search for preferred 8bit target + for (auto const& fmt : fmts) { + if (vk::Format::eB8G8R8A8Unorm == fmt.surfaceFormat.format && vk::ColorSpaceKHR::eSrgbNonlinear == fmt.surfaceFormat.colorSpace) { + swapchainImageFormat_ = fmt.surfaceFormat.format; + swapchainColorSpace_ = fmt.surfaceFormat.colorSpace; + break; + } + } + } + } + + if ((vk::Format::eA2R10G10B10UnormPack32 == swapchainImageFormat_ && vk::ColorSpaceKHR::eHdr10St2084EXT == swapchainColorSpace_) || // *bugfix - amd is rgb for hdr target, nvidia is bgr for hdr target + (vk::Format::eA2B10G10R10UnormPack32 == swapchainImageFormat_ && vk::ColorSpaceKHR::eHdr10St2084EXT == swapchainColorSpace_)) { + + fmt::print(fg(fmt::color::hot_pink), "10bit Backbuffer - HDR10"); + } + else if (swapchainImageFormat_ == vk::Format::eB8G8R8A8Unorm && swapchainColorSpace_ == vk::ColorSpaceKHR::eSrgbNonlinear) { + fmt::print(fg(fmt::color::hot_pink), "8bit Backbuffer - SRGB"); + } + else { + fmt::print(fg(fmt::color::red), "[FAIL] No compatible backbuffer format / color space found!"); + return(false); // this is critical, would make everything extremely washed out or extremely dark, fail launch completely so game never pubicly looks like this + } + + auto const pms = physicalDevice_.getSurfacePresentModes2EXT(surfaceInfo).value; + vk::PresentModeKHR swapchainPresentMode = pms[0]; // default to first available + + // in order of preference - triple buffering and lowest latency + /*if (std::find(pms.begin(), pms.end(), vk::PresentModeKHR::eMailbox) != pms.end()) { // lowest latency, best mode for 3 swapchain images (no tearing) [nvidia only?] + swapchainPresentMode = vk::PresentModeKHR::eMailbox; + } + else if (std::find(pms.begin(), pms.end(), vk::PresentModeKHR::eImmediate) != pms.end()) { // lowest latency (tearing) - ** bugfix ** preferred over vsync options. vsync causes microstuttering when vsync is on. tearing is non-existant - especially on a variable framerate display. + swapchainPresentMode = vk::PresentModeKHR::eImmediate; + } + else if (std::find(pms.begin(), pms.end(), vk::PresentModeKHR::eFifoRelaxed) != pms.end()) { // vsync partial on (possible tearing) [micro-stuttering] + swapchainPresentMode = vk::PresentModeKHR::eFifoRelaxed; + } + else*/ if (std::find(pms.begin(), pms.end(), vk::PresentModeKHR::eFifo) != pms.end()) { // vsync on (no tearing) [micro-stuttering, high latency, application locked to fps] + swapchainPresentMode = vk::PresentModeKHR::eFifo; + } + + vk::SwapchainCreateInfoKHR swapinfo{}; + std::array const queueFamilyIndices = { graphicsQueueFamilyIndex_ }; + + uint32_t const imageCount = SFM::min(max_image_count, surfaceCaps.surfaceCapabilities.maxImageCount); + + fmt::print(fg(fmt::color::hot_pink), " < {:s} >\n", vk::to_string(swapchainPresentMode)); + + swapinfo.surface = surface_; + swapinfo.minImageCount = imageCount; // everything is setup for double buffering, triple buffering does not work. less latency > more fps ? + swapinfo.imageFormat = swapchainImageFormat_; + swapinfo.imageColorSpace = swapchainColorSpace_; + swapinfo.imageExtent = surfaceCaps.surfaceCapabilities.currentExtent; + swapinfo.imageArrayLayers = 1; + swapinfo.imageUsage = vk::ImageUsageFlagBits::eColorAttachment; + swapinfo.imageSharingMode = vk::SharingMode::eExclusive; // best to use Exclusive Sharing Mode for performance optimizaion: https://gpuopen.com/vulkan-and-doom/ + swapinfo.queueFamilyIndexCount = 1; + swapinfo.pQueueFamilyIndices = queueFamilyIndices.data(); + swapinfo.preTransform = surfaceCaps.surfaceCapabilities.currentTransform; + swapinfo.compositeAlpha = vk::CompositeAlphaFlagBitsKHR::eOpaque; + swapinfo.presentMode = swapchainPresentMode; + swapinfo.clipped = VK_TRUE; + swapinfo.oldSwapchain = (swapchain_ ? *swapchain_ : vk::SwapchainKHR{}); + +#if defined(FULLSCREEN_EXCLUSIVE) && defined(VK_EXT_full_screen_exclusive) + if (bFullScreenExclusiveOn) { + swapinfo.pNext = &full_screen_exclusive; + } +#endif - for (int i = 0; i != staticDrawBuffers_.size(); ++i) { - vk::CommandBuffer cb = *staticDrawBuffers_[i]; - vk::CommandBufferBeginInfo bi{}; - cb.begin(bi); - cb.end(); - } + // release old image views if they exists + for (auto& iv : imageViews_) { + device_.destroyImageView(iv); + } + images_.clear(); + images_.reserve(max_image_count); + imageViews_.reserve(max_image_count); + + vk::UniqueSwapchainKHR swapchain = device_.createSwapchainKHRUnique(swapinfo).value; + if (swapchain_) { + device_.destroySwapchainKHR(*swapchain_); + } + swapchain_.swap(swapchain); + + images_ = device_.getSwapchainImagesKHR(*swapchain_).value; + for (auto& img : images_) { + vk::ImageViewCreateInfo ci{}; + ci.image = img; + ci.viewType = vk::ImageViewType::e2D; + ci.format = swapchainImageFormat_; + ci.subresourceRange = { vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 }; + imageViews_.emplace_back(device_.createImageView(ci).value); + } + + return(true); + } - // Create a set of fences to protect the dynamic command buffers from re-writing. - for (int i = 0; i != dynamicDrawBuffers_.size(); ++i) { - vk::FenceCreateInfo fci; - fci.flags = vk::FenceCreateFlagBits::eSignaled; - dynamicCommandBufferFences_.emplace_back(device.createFence(fci)); - } + void initializeCheckerboardStencilBufferImages(vk::CommandPool const& __restrict commandPool, vk::Queue const& __restrict queue) + { + struct sCHECKERBOARDDATA + { + vk::UniquePipelineLayout pipelineLayout; + vk::Pipeline pipeline; + vk::UniqueDescriptorSetLayout descLayout; + std::vectorsets; + + sCHECKERBOARDDATA() + {} + + ~sCHECKERBOARDDATA() + { + pipelineLayout.release(); + sets.clear(); sets.shrink_to_fit(); + descLayout.release(); + } + } checkData[eCheckerboard::_size()]; + + // temporary renderpass ############################################################################################################### + vk::UniqueRenderPass renderPass_checkered; + + // Build the renderpass using two attachments, colour and depth/stencil. (regular rendering pass) + { + vku::RenderpassMaker rpm; + + // The stencil attachment. + rpm.attachmentBegin(stencilCheckerboard_[0].format()); // 0 // same format used for even and odd + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eStore); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eDepthStencilReadOnlyOptimal); + + // A subpass to render using the above attachment + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassDepthStencilAttachment(vk::ImageLayout::eDepthReadOnlyStencilAttachmentOptimal, 0); // optimal format (read/write) during subpass + + // A dependency to reset the layout of both attachments. + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eTopOfPipe); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencySrcAccessMask((vk::AccessFlags)0); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(0, VK_SUBPASS_EXTERNAL); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // Use the maker object to construct the vulkan object + renderPass_checkered = rpm.createUnique(device_); + } + + vku::ShaderModule const vert_{ device_, SHADER_PATH SHADER_POSTQUAD }; + + for (uint32_t odd = 0; odd < eCheckerboard::_size(); ++odd) // verified alternating checkerboard + { + // temporary framebuffer ############################################################################################################### + vk::UniqueFramebuffer frameBuffer_checkered; + + point2D const frameBufferSz(width_,height_); + point2D_t const downResFrameBufferSz(vku::getDownResolution(frameBufferSz)); + + vk::ImageView const attachments[1] = { stencilCheckerboard_[odd].imageView() }; + vk::FramebufferCreateInfo const fbci{ {}, *renderPass_checkered, _countof(attachments), attachments, uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y), 1 }; + frameBuffer_checkered = device_.createFramebufferUnique(fbci).value; + + + // temporary pipeline ################################################################################################################### + vku::ShaderModule const frag_{ device_, SHADER_CHECKERBOARD(SHADER_PATH, odd) }; + + // *bugfix - empty descriptor set - not used (no buffers, images are in the descriptor set) + // Build a template for descriptor sets that use these shaders. + //vku::DescriptorSetLayoutMaker dslm; + //checkData[odd].descLayout = dslm.createUnique(device_); + // We need to create a descriptor set to tell the shader where + // our buffers are. + //vku::DescriptorSetMaker dsm; + //dsm.layout(*checkData[odd].descLayout); + //checkData[odd].sets = dsm.create(device_, fw_.descriptorPool()); + + // Make a default pipeline layout. This shows how pointers + // to resources are layed out. + // + vku::PipelineLayoutMaker plm; + //plm.descriptorSetLayout(*checkData[odd].descLayout); + checkData[odd].pipelineLayout = plm.createUnique(device_); + + // Make a pipeline to use the vertex format and shaders. + vku::PipelineMaker pm(uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y)); + pm.shader(vk::ShaderStageFlagBits::eVertex, vert_); + pm.shader(vk::ShaderStageFlagBits::eFragment, frag_); + + pm.depthCompareOp(vk::CompareOp::eAlways); + pm.depthClampEnable(VK_FALSE); + pm.depthTestEnable(VK_FALSE); + pm.depthWriteEnable(VK_FALSE); + // ################################ + pm.stencilTestEnable(VK_TRUE); // only stencil + vk::StencilOpState const stencilOp{ + /*vk::StencilOp failOp_ =*/ vk::StencilOp::eKeep, + /*vk::StencilOp passOp_ =*/ vk::StencilOp::eReplace, + /*vk::StencilOp depthFailOp_ =*/ vk::StencilOp::eKeep, + /*vk::CompareOp compareOp_ =*/ vk::CompareOp::eAlways, + /*uint32_t compareMask_ =*/ (uint32_t)0xff, + /*uint32_t writeMask_ =*/ (uint32_t)0xff, + /*uint32_t reference_ =*/ (uint32_t)STENCIL_CHECKER_REFERENCE + }; + pm.front(stencilOp); + pm.back(stencilOp); + + // ################################ + pm.cullMode(vk::CullModeFlagBits::eBack); + pm.frontFace(vk::FrontFace::eClockwise); + + pm.blendBegin(VK_FALSE); + pm.blendColorWriteMask((vk::ColorComponentFlagBits)0); // no color writes + + // Create a pipeline using a renderPass + pm.subPass(0); + pm.rasterizationSamples(vk::SampleCountFlagBits::e1); + + auto& cache = fw_.pipelineCache(); + checkData[odd].pipeline = pm.create(device_, cache, *checkData[odd].pipelineLayout, *renderPass_checkered); + + + // render checkerboard into stencil ######################################################################################################### + // must wait, device is only locked inside lambda. So any operations occuring on the main thread involving the device or queue + // could be dangerous. This just so happens to occur at one of those times during init. + vku::executeImmediately(device_, commandPool, queue, [&](vk::CommandBuffer cb) { + + VKU_SET_CMD_BUFFER_LABEL(cb, vkNames::CommandBuffer::CHECKERBOARD); + + point2D const frameBufferSz(width_, height_); + point2D_t const downResFrameBufferSz(vku::getDownResolution(frameBufferSz)); + + vk::RenderPassBeginInfo rpbi; + rpbi.renderPass = *renderPass_checkered; + rpbi.framebuffer = *frameBuffer_checkered; + rpbi.renderArea = vk::Rect2D{ {0, 0}, {uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y)} }; + rpbi.clearValueCount = 0; + rpbi.pClearValues = nullptr; + + cb.beginRenderPass(rpbi, vk::SubpassContents::eInline); + + uint32_t offsets(0); + //cb.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, *checkData[odd].pipelineLayout, 0, checkData[odd].sets.size(), &checkData[odd].sets[0], 0, &offsets); + cb.bindPipeline(vk::PipelineBindPoint::eGraphics, checkData[odd].pipeline); + cb.draw(3, 1, 0, 0); + + cb.endRenderPass(); + }); + + frameBuffer_checkered.release(); + + } // for + + renderPass_checkered.release(); + + // final layout is transitioned for both odd and even stencil checkerboard at end of renderpass to eDepthStencilReadOnlyOptimal by renderpass automatically + // no further transitions needed or allowed + } - for (int i = 0; i != dynamicDrawBuffers_.size(); ++i) { - vk::CommandBuffer cb = *dynamicDrawBuffers_[i]; - vk::CommandBufferBeginInfo bi{}; - cb.begin(bi); - cb.end(); - } +#ifndef NDEBUG + // debug builds only - debugging purposes only for debug_barrier + private: + // for debuging only + static constexpr vk::AccessFlags const AllAccessFlags = // in order lowest to highest value // + vk::AccessFlagBits::eIndirectCommandRead | + vk::AccessFlagBits::eIndexRead | + vk::AccessFlagBits::eVertexAttributeRead | + vk::AccessFlagBits::eUniformRead | + vk::AccessFlagBits::eInputAttachmentRead | + vk::AccessFlagBits::eShaderRead | + vk::AccessFlagBits::eShaderWrite | + vk::AccessFlagBits::eColorAttachmentRead | + vk::AccessFlagBits::eColorAttachmentWrite | + vk::AccessFlagBits::eDepthStencilAttachmentRead | + vk::AccessFlagBits::eDepthStencilAttachmentWrite | + vk::AccessFlagBits::eTransferRead | + vk::AccessFlagBits::eTransferWrite | + vk::AccessFlagBits::eHostRead | + vk::AccessFlagBits::eHostWrite | + vk::AccessFlagBits::eMemoryRead | + vk::AccessFlagBits::eMemoryWrite; + + public: + // for command buffers (outside of renderpass) + static void debug_barrier(vk::CommandBuffer& cb) + { + vku::memory_barrier(cb, vk::PipelineStageFlagBits::eAllCommands, vk::PipelineStageFlagBits::eAllCommands, AllAccessFlags, AllAccessFlags); + } + + static void debug_hook(vk::CommandBuffer& cb) + { + FMT_LOG_DEBUG("srcStageMask( {:d} ), dstStageMask( {:d} )", getSrcStageMask(), getDstStageMask()); + FMT_LOG_DEBUG("srcAccessMask( {:d} ), dstAccessMask( {:d} )", getSrcAccessMask(), getDstAccessMask()); + + vku::memory_barrier(cb, (vk::PipelineStageFlagBits)getSrcStageMask(), (vk::PipelineStageFlagBits)getDstStageMask(), (vk::AccessFlagBits)getSrcAccessMask(), (vk::AccessFlagBits)getDstAccessMask()); + } + private: + // for subpass dependencies + void debug_barrier(vku::RenderpassMaker& rpm, uint32_t const srcSubpass, uint32_t const dstSubpass) const + { + rpm.dependencyBegin(srcSubpass, dstSubpass); + + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eAllGraphics); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eAllGraphics); + + rpm.dependencySrcAccessMask(AllAccessFlags); + rpm.dependencyDstAccessMask(AllAccessFlags); + + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + } + + // for subpass dependencies + void debug_hook(vku::RenderpassMaker& rpm) const + { + rpm.dependencyBegin(getSrcSubpass(), getDstSubpass()); + FMT_LOG_DEBUG("srcSubpass( {:d} ), dstSubpass( {:d} )", getSrcSubpass(), getDstSubpass()); + + rpm.dependencySrcStageMask((vk::PipelineStageFlagBits)getSrcStageMask()); + rpm.dependencyDstStageMask((vk::PipelineStageFlagBits)getDstStageMask()); + FMT_LOG_DEBUG("srcStageMask( {:d} ), dstStageMask( {:d} )", getSrcStageMask(), getDstStageMask()); + + rpm.dependencySrcAccessMask((vk::AccessFlagBits)getSrcAccessMask()); + rpm.dependencyDstAccessMask((vk::AccessFlagBits)getDstAccessMask()); + FMT_LOG_DEBUG("srcAccessMask( {:d} ), dstAccessMask( {:d} )", getSrcAccessMask(), getDstAccessMask()); + + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + } +#endif - ok_ = true; + public: + + void init(const vk::Instance &instance, const vk::Device &device, const vk::PhysicalDevice &physicalDevice, uint32_t const graphicsQueueFamilyIndex, uint32_t const computeQueueFamilyIndex, uint32_t const transferQueueFamilyIndex, vk::SurfaceKHR const surface, HMONITOR const& monitor) { + + surface_ = surface; + instance_ = instance; + device_ = device; + + // neccessary to cache for hot swapchain recreation + physicalDevice_ = physicalDevice; + graphicsQueueFamilyIndex_ = graphicsQueueFamilyIndex; + monitor_ = monitor; + + { // major bugfix: graphics queue is now ALWAYS the presenting queue. It has the lowest latency for present, allows overlap of dma transfers queues used + // in beginning of vku render as a transfer queue is no longer tied up with "presenting". It also has the greatest compatibility among graphics cards. + // ** do not change ** + + if (!physicalDevice_.getSurfaceSupportKHR(graphicsQueueFamilyIndex_, surface_).value) { /// required by validation to atleast check queue against surface support + FMT_LOG_FAIL(GPU_LOG, "Graphics Queue does not support presentable surface requirements! ( {:d} )", graphicsQueueFamilyIndex_); + } + } + // save queues + graphicsQueue_ = device.getQueue(graphicsQueueFamilyIndex, 0); + VKU_SET_OBJECT_NAME(vk::ObjectType::eQueue, (VkQueue)graphicsQueue_, vkNames::Queue::GRAPHICS); + + computeQueue_[0] = device.getQueue(computeQueueFamilyIndex, 0); + VKU_SET_OBJECT_NAME(vk::ObjectType::eQueue, (VkQueue)computeQueue_[0], vkNames::Queue::COMPUTE); + computeQueue_[1] = device.getQueue(computeQueueFamilyIndex, 1); + VKU_SET_OBJECT_NAME(vk::ObjectType::eQueue, (VkQueue)computeQueue_[1], vkNames::Queue::COMPUTE); + + transferQueue_[0] = device.getQueue(transferQueueFamilyIndex, 0); + VKU_SET_OBJECT_NAME(vk::ObjectType::eQueue, (VkQueue)transferQueue_[0], vkNames::Queue::TRANSFER); + transferQueue_[1] = device.getQueue(transferQueueFamilyIndex, 1); + VKU_SET_OBJECT_NAME(vk::ObjectType::eQueue, (VkQueue)transferQueue_[1], vkNames::Queue::TRANSFER); + + // initial creation of swapchain + if (!recreateSwapChain()) { + FMT_LOG_FAIL(GPU_LOG, "Major swapchain fail"); + return; + } + + { + vk::CommandPoolCreateInfo cpci{ vk::CommandPoolCreateFlagBits::eTransient | vk::CommandPoolCreateFlagBits::eResetCommandBuffer, graphicsQueueFamilyIndex }; + commandPool_[eCommandPools::TRANSIENT_POOL] = device.createCommandPoolUnique(cpci).value; + } + + point2D const frameBufferSz(width_, height_); + point2D_t const downResFrameBufferSz(vku::getDownResolution(frameBufferSz)); + + { + // only for simplifying this critical section / initialization of all color attachments, depth attachments for readability + auto const& __restrict transientCommandPool = *commandPool_[eCommandPools::TRANSIENT_POOL]; + + colorImage_ = vku::ColorAttachmentImage(device, width_, height_, vku::DefaultSampleCount, transientCommandPool, graphicsQueue_, false, false, false, vk::Format::eB8G8R8A8Unorm); // not sampled, not inputattachment, not copyable + lastColorImage_ = vku::ColorAttachmentImage(device, width_, height_, vk::SampleCountFlagBits::e1, transientCommandPool, graphicsQueue_, true, false, false, vk::Format::eB8G8R8A8Unorm); // is sampled, not inputattachment, not copyable + depthImage_ = vku::DepthAttachmentImage(device, width_, height_, vku::DefaultSampleCount, transientCommandPool, graphicsQueue_, false, true); // is inputattachment + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)colorImage_.image(), vkNames::Image::colorImage); + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)lastColorImage_.image(), vkNames::Image::lastColorImage); + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)depthImage_.image(), vkNames::Image::depthImage); + + mouseImage_.multisampled = vku::ColorAttachmentImage(device, width_, height_, vku::DefaultSampleCount, transientCommandPool, graphicsQueue_, false, false, false, vk::Format::eR16G16Unorm); // not sampled, not inputattachment, not copyable + mouseImage_.resolved = vku::ColorAttachmentImage(device, width_, height_, vk::SampleCountFlagBits::e1, transientCommandPool, graphicsQueue_, false, false, true, vk::Format::eR16G16Unorm); // not sampled, not inputattachment, copyable + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)mouseImage_.multisampled.image(), vkNames::Image::mouseImage_multisampled); + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)mouseImage_.resolved.image(), vkNames::Image::mouseImage_resolved); + + depthImageResolve_[0] = vku::DepthImage(device, width_, height_, transientCommandPool, graphicsQueue_, true, false); // depth only image - is colorattachment + depthImageResolve_[1] = vku::DepthImage(device, uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y), transientCommandPool, graphicsQueue_, false, true); // depth only image - is storage + stencilCheckerboard_[0] = vku::StencilAttachmentImage(device, uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y), transientCommandPool, graphicsQueue_); + stencilCheckerboard_[1] = vku::StencilAttachmentImage(device, uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y), transientCommandPool, graphicsQueue_); + + for (uint32_t i = 0; i < 2; ++i) { + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)depthImageResolve_[i].image(), vkNames::Image::depthImageResolve); + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)stencilCheckerboard_[i].image(), vkNames::Image::stencilCheckerboard); + } + + // vk::ImageUsageFlagBits::eTransferDst no longer needed as temporal blending has been enabled for reconstruction (no clears!) + colorVolumetricImage_.checkered = vku::TextureImageStorage2D(vk::ImageUsageFlagBits::eSampled /*| vk::ImageUsageFlagBits::eTransferDst*/, device, uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y), 1U, vk::SampleCountFlagBits::e1, vk::Format::eB8G8R8A8Unorm, false, true); // not host image, is dedicated + colorVolumetricImage_.resolved = vku::ColorAttachmentImage(device, uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y), vk::SampleCountFlagBits::e1, transientCommandPool, graphicsQueue_, true, false, false, vk::Format::eB8G8R8A8Unorm); // is sampled, not inputattachment, not copyable + colorVolumetricImage_.upsampled = vku::ColorAttachmentImage(device, width_, height_, vk::SampleCountFlagBits::e1, transientCommandPool, graphicsQueue_, true, true, false, vk::Format::eB8G8R8A8Unorm, vk::ImageUsageFlagBits::eTransferDst); // is sampled, is inputattachment, not copyable + colorVolumetricImage_.upsampled.clear(device, transientCommandPool, graphicsQueue_); // temporally sampled image must ensure cleared for first usage. + + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)colorVolumetricImage_.checkered.image(), vkNames::Image::colorVolumetricImage_checkered); + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)colorVolumetricImage_.resolved.image(), vkNames::Image::colorVolumetricImage_resolved); + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)colorVolumetricImage_.upsampled.image(), vkNames::Image::colorVolumetricImage_upsampled); + + // reflections are captured in screen space (2D) on a half-res render target + colorReflectionImage_.checkered = vku::TextureImageStorage2D(vk::ImageUsageFlagBits::eSampled /*| vk::ImageUsageFlagBits::eTransferDst*/, device, uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y), 1U, vk::SampleCountFlagBits::e1, vk::Format::eB8G8R8A8Unorm, false, true); // not host image, is dedicated + colorReflectionImage_.resolved = vku::ColorAttachmentImage(device, uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y), vk::SampleCountFlagBits::e1, transientCommandPool, graphicsQueue_, true, false, false, vk::Format::eB8G8R8A8Unorm); // is sampled, not inputattachment, not copyable + colorReflectionImage_.upsampled = vku::ColorAttachmentImage(device, width_, height_, vk::SampleCountFlagBits::e1, transientCommandPool, graphicsQueue_, true, true, false, vk::Format::eB8G8R8A8Unorm, vk::ImageUsageFlagBits::eTransferDst); // is sampled, is inputattachment, not copyable + colorReflectionImage_.upsampled.clear(device, transientCommandPool, graphicsQueue_); // temporally sampled image must ensure cleared for first usage. + + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)colorReflectionImage_.checkered.image(), vkNames::Image::colorReflectionImage_checkered); + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)colorReflectionImage_.resolved.image(), vkNames::Image::colorReflectionImage_resolved); + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)colorReflectionImage_.upsampled.image(), vkNames::Image::colorReflectionImage_upsampled); + + guiImage_.multisampled = vku::ColorAttachmentImage(device, width_, height_, vku::DefaultSampleCount, transientCommandPool, graphicsQueue_, false, false, false); // not sampled, not inputattachment, not copyable + guiImage_.resolved = vku::ColorAttachmentImage(device, width_, height_, vk::SampleCountFlagBits::e1, transientCommandPool, graphicsQueue_, false, true, false); // not sampled, is inputattachment, not copyable + + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)guiImage_.multisampled.image(), vkNames::Image::guiImage); + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)guiImage_.resolved.image(), vkNames::Image::guiImage); + + offscreenImage_.multisampled = vku::ColorAttachmentImage(device, width_, height_, vku::DefaultSampleCount, transientCommandPool, graphicsQueue_, false, false, false); // not sampled, not inputattachment, not copyable + offscreenImage_.resolved = vku::ColorAttachmentImage(device, width_, height_, vk::SampleCountFlagBits::e1, transientCommandPool, graphicsQueue_, true, false, true); // sampled, not inputattachment, copyable + + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)offscreenImage_.multisampled.image(), vkNames::Image::offscreenImage); + VKU_SET_OBJECT_NAME(vk::ObjectType::eImage, (VkImage)offscreenImage_.resolved.image(), vkNames::Image::offscreenImage); + + colorDummy_ = vku::ColorAttachmentImage(device, width_, height_, vk::SampleCountFlagBits::e1, transientCommandPool, graphicsQueue_, false, false, false, vk::Format::eB8G8R8A8Unorm); // not sampled, not inputattachment, not copyable + + vku::executeImmediately(device, transientCommandPool, graphicsQueue_, [&](vk::CommandBuffer cb) { + + // never changes layout setup : // + colorVolumetricDownResCheckeredImage().setLayout(cb, vk::ImageLayout::eGeneral); + colorReflectionDownResCheckeredImage().setLayout(cb, vk::ImageLayout::eGeneral); + + // volumetric & reflection (upsampled) start up requirement + colorVolumetricImage().setLayout(cb, vk::ImageLayout::eShaderReadOnlyOptimal); + colorReflectionImage().setLayout(cb, vk::ImageLayout::eShaderReadOnlyOptimal); + + // gui image start up requirement + guiImage().setLayout(cb, vk::ImageLayout::eShaderReadOnlyOptimal); + + // remains a color attachment forever, do not transition to other layouts + colorDummy_.setLayout(cb, vk::ImageLayout::eColorAttachmentOptimal); + + }); + } + // Build the renderpass using two attachments, colour and depth/stencil. (regular rendering pass) + { + vku::RenderpassMaker rpm; + + // **** SUBPASS 0 - Regular rendering - ZONLY No Color Writes & Clear Masks Alpha Writes (1st color attachment) // + + // The depth/stencil attachment. + rpm.attachmentBegin(depthImage_.format()); // 0 + rpm.attachmentSamples(vku::DefaultSampleCount); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eClear); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); // used in later renderpass + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eClear); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); // undefined should be used to reset beginning state if load op is clear + rpm.attachmentFinalLayout(vk::ImageLayout::eDepthStencilAttachmentOptimal); + + // The first colour attachment. (only alpha writes enabled in zpass for clearmasks) + rpm.attachmentBegin(colorImage_.format()); // 1 + rpm.attachmentSamples(vku::DefaultSampleCount); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eClear); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); // undefined should be used to reset beginning state if load op is clear + rpm.attachmentFinalLayout(vk::ImageLayout::eColorAttachmentOptimal); + + // The second colour attachment. // 2 + rpm.attachmentBegin(mouseImage_.multisampled.format()); + rpm.attachmentSamples(vku::DefaultSampleCount); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eClear); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); // not required to store - multisampled image is fully transient for this *renderpass* + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eColorAttachmentOptimal); + + // The resolved second colour attachment. // 3 + rpm.attachmentBegin(mouseImage_.resolved.format()); + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); // store required for resolved image + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eTransferSrcOptimal); + + // A subpass to render using the above attachment + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassDepthStencilAttachment(vk::ImageLayout::eDepthStencilAttachmentOptimal, 0); // optimal format (read/write) during subpass + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 1); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 2); + rpm.subpassResolveSkipAttachment(); // skip over 1st color attachment, only resolving mouse image: + rpm.subpassResolveAttachment(vk::ImageLayout::eColorAttachmentOptimal, 3); + + // **** SUBPASS 1 - Depth buffer custom resolve // + + // The depth/stencil attachment. + rpm.attachmentBegin(depthImage_.format()); // 4 + rpm.attachmentSamples(vku::DefaultSampleCount); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); // read only access + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eDepthStencilAttachmentOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eDepthStencilReadOnlyOptimal); // depth shall remain readonly for the rest of the frame + + // The only colour attachment. + rpm.attachmentBegin(depthImageResolve_[0].format()); // 5 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // A subpass to render using the above two attachments. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassInputAttachment(vk::ImageLayout::eDepthStencilReadOnlyOptimal, 4); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 5); + + // A dependency to reset the layout of both attachments. + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead | vk::AccessFlagBits::eDepthStencilAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eTopOfPipe); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask((vk::AccessFlags)0); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 1); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eTopOfPipe); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask((vk::AccessFlags)0); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // *bugfix - load op for depth attachment requires transition [memory_read] due to LOAD_OP_LOAD, with last subpass its an external dependency somehow, possibly because LOAD_OP_LOAD doesn't know what it's loading. It cannot assume its the depth buffer from the previous subpass. + // however here we define that dependency to remove the read after write hazard reported by synchronization validation. + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 1); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eTopOfPipe); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eMemoryRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(0, 1); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead | vk::AccessFlagBits::eDepthStencilAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eInputAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(1, VK_SUBPASS_EXTERNAL); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eInputAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(1, VK_SUBPASS_EXTERNAL); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eInputAttachmentRead); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // mouse resolve + rpm.dependencyBegin(0, VK_SUBPASS_EXTERNAL); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eTransfer); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite | vk::AccessFlagBits::eColorAttachmentRead); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eTransferRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // Use the maker object to construct the vulkan object + zPass_ = rpm.createUnique(device); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eRenderPass, (VkRenderPass)*zPass_, vkNames::Renderpass::ZPASS); + } + + framebuffers_[eFrameBuffers::DEPTH] = new vk::UniqueFramebuffer[double_buffer_count]; + for (int i = 0; i != double_buffer_count; ++i) { + vk::ImageView const attachments[6] = { depthImage_.imageView()/*cleared*/, colorImage_.imageView()/*cleared*/, mouseImage_.multisampled.imageView()/*cleared*/, mouseImage_.resolved.imageView(), + depthImage_.imageView(), depthImageResolve_[0].imageView() + }; + vk::FramebufferCreateInfo const fbci{ {}, *zPass_, _countof(attachments), attachments, width_, height_, 1 }; + framebuffers_[eFrameBuffers::DEPTH][i] = std::move(device.createFramebufferUnique(fbci).value); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eFramebuffer, (VkFramebuffer)*framebuffers_[eFrameBuffers::DEPTH][i], vkNames::FrameBuffer::DEPTH); + } + + // (down - rezzed - resolution pass) **vku::DOWN_RES_FACTOR sets resolution factor of framebuffer + { + vku::RenderpassMaker rpm; + + // SUBPASS 0 - Raymarch + + // The stencil (checkerboard) attachment. + rpm.attachmentBegin(stencilCheckerboard_[0].format()); // 0 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eLoad); // stencil only + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eDepthStencilReadOnlyOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eDepthStencilReadOnlyOptimal); + + // The input attachment. + rpm.attachmentBegin(depthImageResolve_[1].format()); // 1 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); // not used outside renderpass + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eGeneral); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // A subpass to render using the above attachment. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassDepthStencilAttachment(vk::ImageLayout::eDepthStencilReadOnlyOptimal, 0); + rpm.subpassInputAttachment(vk::ImageLayout::eShaderReadOnlyOptimal, 1); + + // *** SUBPASS 1 - Resolve Raymarch outputs (volumetric and reflection) + + // The colour attachment. + rpm.attachmentBegin(colorVolumetricImage_.resolved.format()); // 2 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + + // The colour attachment. + rpm.attachmentBegin(colorReflectionImage_.resolved.format()); // 3 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // A subpass to render using the above attachment. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 2); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 3); + + // stencil test readonly dependency + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // *bugfix - load op for this attachment requires transition [memory_read], which is in an earlier stage than before with the fragment shader using it in a later stage. + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eTopOfPipe); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eShaderWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eMemoryRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // transition image stored in general to input attachments + rpm.dependencyBegin(0, 1); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eShaderWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eShaderRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // transition color attachments to shaderreadonly + rpm.dependencyBegin(1, VK_SUBPASS_EXTERNAL); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eShaderRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // Use the maker object to construct the vulkan object + downPass_ = rpm.createUnique(device); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eRenderPass, (VkRenderPass)*downPass_, vkNames::Renderpass::DOWNPASS); + } + + // even, odd -or- even, odd, even, odd - imageViews must be even for this to wrap around correctly + framebuffers_[eFrameBuffers::HALF_COLOR_ONLY] = new vk::UniqueFramebuffer[double_buffer_count]; + for (int i = 0; i != double_buffer_count; ++i) { + + int const odd = i & 1; // auto-magical alternating checkerboard stencil usage + + // subpass 0 + vk::ImageView const attachments[4] = { stencilCheckerboard_[odd].imageView(), depthImageResolve_[1].imageView(), + // subpass 1 + colorVolumetricImage_.resolved.imageView(), colorReflectionImage_.resolved.imageView() + }; + vk::FramebufferCreateInfo const fbci{ {}, *downPass_, _countof(attachments), attachments, uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y), 1 }; + framebuffers_[eFrameBuffers::HALF_COLOR_ONLY][i] = std::move(device.createFramebufferUnique(fbci).value); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eFramebuffer, (VkFramebuffer)*framebuffers_[eFrameBuffers::HALF_COLOR_ONLY][i], vkNames::FrameBuffer::HALF_COLOR_ONLY); + } + + + // (up - rezzed - resolution pass) + { + vku::RenderpassMaker rpm; + + // *** SUBPASS 0 - Upsampling of haLF res volumetric pass & reflection + // The colour attachment. + rpm.attachmentBegin(colorVolumetricImage_.upsampled.format()); // 0 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // The colour attachment. + rpm.attachmentBegin(colorReflectionImage_.upsampled.format()); // 1 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // The input attachment. + rpm.attachmentBegin(depthImageResolve_[0].format()); // 2 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); // not used outside renderpass + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // A subpass to render using the above attachment. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 0); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 1); + rpm.subpassInputAttachment(vk::ImageLayout::eShaderReadOnlyOptimal, 2); + + // *bugfix - found correct depedendies thru automation + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eTopOfPipe | vk::PipelineStageFlagBits::eFragmentShader | vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eColorAttachmentRead | vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // transition color attachments to input attachments for next renderpass + rpm.dependencyBegin(0, VK_SUBPASS_EXTERNAL); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eInputAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // Use the maker object to construct the vulkan object + upPass_ = rpm.createUnique(device); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eRenderPass, (VkRenderPass)*upPass_, vkNames::Renderpass::UPPASS); + } + + framebuffers_[eFrameBuffers::FULL_COLOR_ONLY] = new vk::UniqueFramebuffer[double_buffer_count]; + for (int i = 0; i != double_buffer_count; ++i) { + // subpass 0 + vk::ImageView const attachments[3] = { colorVolumetricImage_.upsampled.imageView(), colorReflectionImage_.upsampled.imageView(), depthImageResolve_[0].imageView() + }; + vk::FramebufferCreateInfo const fbci{ {}, *upPass_, _countof(attachments), attachments, width_, height_, 1 }; + framebuffers_[eFrameBuffers::FULL_COLOR_ONLY][i] = std::move(device.createFramebufferUnique(fbci).value); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eFramebuffer, (VkFramebuffer)*framebuffers_[eFrameBuffers::FULL_COLOR_ONLY][i], vkNames::FrameBuffer::FULL_COLOR_ONLY); + } + + + + // Build the renderpass using one attachment, colour (mid/intermediatte pass) + { + vku::RenderpassMaker rpm; + + // *** SUBPASS 0 - Regular rendering // + + // The only colour attachment. + rpm.attachmentBegin(colorImage_.format()); // 0 + rpm.attachmentSamples(vku::DefaultSampleCount); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eColorAttachmentOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eColorAttachmentOptimal); + + // The depth/stencil attachment. + rpm.attachmentBegin(depthImage_.format()); // 1 + rpm.attachmentSamples(vku::DefaultSampleCount); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); // used readonly + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eDepthStencilReadOnlyOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eDepthStencilReadOnlyOptimal); + + // The input attachment. (reflection) + rpm.attachmentBegin(colorReflectionImage_.upsampled.format()); // 2 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // A subpass to render using the above two attachments. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 0); + rpm.subpassDepthStencilAttachment(vk::ImageLayout::eDepthStencilReadOnlyOptimal, 1); // optimal format (read/write) during subpass + rpm.subpassInputAttachment(vk::ImageLayout::eShaderReadOnlyOptimal, 2); + + + + // *** SUBPASS 1 - Upsampled volumetric blend and resolve to lastColor // + + // The input attachment. + rpm.attachmentBegin(colorVolumetricImage_.upsampled.format()); // 3 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); // not used outside renderpass + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // The resolved colour attachment. // resolve for voxel transparency // 4 + rpm.attachmentBegin(lastColorImage_.format()); // output color attachment + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); // requires store of resolved attachment, used later on in different renderpass + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // A subpass to render using the above two attachments. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 0); + rpm.subpassInputAttachment(vk::ImageLayout::eShaderReadOnlyOptimal, 3); + rpm.subpassResolveAttachment(vk::ImageLayout::eColorAttachmentOptimal, 4); + + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); // In + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eTopOfPipe | vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask((vk::AccessFlagBits)0); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + /* + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); // In + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); // regular rendering dependent on reflections and real depth + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eInputAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + */ + + rpm.dependencyBegin(0, 1); // upsample blend dependent color output finished ,,, + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(1, VK_SUBPASS_EXTERNAL); // Out // resolved "lastColor" for transparency in overlay pass + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eShaderRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // Use the maker object to construct the vulkan object + midPass_ = rpm.createUnique(device); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eRenderPass, (VkRenderPass)*midPass_, vkNames::Renderpass::MIDPASS); + } + + framebuffers_[eFrameBuffers::MID_COLOR_DEPTH] = new vk::UniqueFramebuffer[double_buffer_count]; + for (int i = 0; i != double_buffer_count; ++i) { + + vk::ImageView const attachments[5] = { + // subpass 0 + colorImage_.imageView(), depthImage_.imageView(), colorReflectionImage_.upsampled.imageView(), + // subpass 1 + colorVolumetricImage_.upsampled.imageView(), lastColorImage_.imageView() + }; + vk::FramebufferCreateInfo const fbci{ {}, *midPass_, _countof(attachments), attachments, width_, height_, 1 }; + framebuffers_[eFrameBuffers::MID_COLOR_DEPTH][i] = std::move(device.createFramebufferUnique(fbci).value); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eFramebuffer, (VkFramebuffer)*framebuffers_[eFrameBuffers::MID_COLOR_DEPTH][i], vkNames::FrameBuffer::MID_COLOR_DEPTH); + } + + + + // Build the renderpass (overlay / transparency pass) + { + vku::RenderpassMaker rpm; + + // *** 1st SUBPASS - Transparent Voxels + // The colour attachment. // 0 + rpm.attachmentBegin(colorImage_.format()); + rpm.attachmentSamples(vku::DefaultSampleCount); + // Don't clear the framebuffer for overlay on top of main renderpass + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); // does not need to be stored, is fully transient in this renderpass, and not used later for reading in any subsequent renderpasses + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eColorAttachmentOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eColorAttachmentOptimal); + + // The input attachment. (reflection) + rpm.attachmentBegin(colorReflectionImage_.upsampled.format()); // 1 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // The depth/stencil attachment. + rpm.attachmentBegin(depthImage_.format()); + rpm.attachmentSamples(vku::DefaultSampleCount); // 2 + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eDepthStencilReadOnlyOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eDepthStencilReadOnlyOptimal); + + // The resolved colour attachment. // resolve for everything else that needs final color buffer w/o Post Postprocessing & GUI + rpm.attachmentBegin(lastColorImage_.format()); // output color attachment + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); // 3 + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); // is sampled by next renderpass in post processing + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // A subpass to render using the above attachment. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 0); + rpm.subpassInputAttachment(vk::ImageLayout::eShaderReadOnlyOptimal, 1); + rpm.subpassDepthStencilAttachment(vk::ImageLayout::eDepthStencilReadOnlyOptimal, 2); + rpm.subpassResolveAttachment(vk::ImageLayout::eColorAttachmentOptimal, 3); + + // *** 2nd SUBPASS - Nuklear GUI + // The colour attachment. + rpm.attachmentBegin(guiImage_.multisampled.format()); + rpm.attachmentSamples(vku::DefaultSampleCount); + // must clear + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eClear); // 4 + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eColorAttachmentOptimal); + + // The resolved colour attachment. // resolve for GUI + rpm.attachmentBegin(guiImage_.resolved.format()); + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); // 5 + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // A subpass to render using the above attachment. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 4); + rpm.subpassResolveAttachment(vk::ImageLayout::eColorAttachmentOptimal, 5); + + // 2 dependency to reset the layout of attachment. + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); // In + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // reflection already in correct state (previous midpass), no dependency needed already input attachment - shaderreadonly + + rpm.dependencyBegin(0, 1); // subpass -> subpass + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(1, VK_SUBPASS_EXTERNAL); // Out + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eShaderRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // Use the maker object to construct the vulkan object + overlayPass_ = rpm.createUnique(device); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eRenderPass, (VkRenderPass)*overlayPass_, vkNames::Renderpass::OVERLAY); + } + + framebuffers_[eFrameBuffers::COLOR_DEPTH] = new vk::UniqueFramebuffer[double_buffer_count]; + for (int i = 0; i != double_buffer_count; ++i) { + // 1st subpass + vk::ImageView attachments[6] = { colorImage_.imageView(), colorReflectionImage_.upsampled.imageView(), depthImage_.imageView(), + // 2nd subpass + lastColorImage_.imageView(), + guiImage_.multisampled.imageView()/*cleared*/, guiImage_.resolved.imageView() }; + + vk::FramebufferCreateInfo fbci{ {}, *overlayPass_, _countof(attachments), attachments, width_, height_, 1 }; + framebuffers_[eFrameBuffers::COLOR_DEPTH][i] = std::move(device.createFramebufferUnique(fbci).value); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eFramebuffer, (VkFramebuffer)*framebuffers_[eFrameBuffers::COLOR_DEPTH][i], vkNames::FrameBuffer::COLOR_DEPTH); + } + + // Post AA + + for (uint32_t pass = 0; pass < 3; ++pass) + { + vku::RenderpassMaker rpm; + + // The colour attachment. (resolved) + rpm.attachmentBegin(colorDummy_.format()); + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); // 0 + + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eColorAttachmentOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eColorAttachmentOptimal); + + // A subpass to render using the above attachment. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 0); + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eShaderWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eShaderRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(0, VK_SUBPASS_EXTERNAL); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eShaderWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eShaderRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // Use the maker object to construct the vulkan object + postAAPass_[pass] = rpm.createUnique(device); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eRenderPass, (VkRenderPass)*postAAPass_[pass], vkNames::Renderpass::POSTAA); + } + + // 3 postaa framebuffers + framebuffers_[eFrameBuffers::POSTAA_0] = new vk::UniqueFramebuffer[max_image_count]; + for (int i = 0; i != max_image_count; ++i) { + + vk::ImageView const attachments[1] = { colorDummy_.imageView()}; + vk::FramebufferCreateInfo const fbci{ {}, *postAAPass_[0], _countof(attachments), attachments, width_, height_, 1 }; + framebuffers_[eFrameBuffers::POSTAA_0][i] = std::move(device.createFramebufferUnique(fbci).value); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eFramebuffer, (VkFramebuffer)*framebuffers_[eFrameBuffers::POSTAA_0][i], vkNames::FrameBuffer::POSTAA); + } + + framebuffers_[eFrameBuffers::POSTAA_1] = new vk::UniqueFramebuffer[max_image_count]; + for (int i = 0; i != max_image_count; ++i) { + + vk::ImageView const attachments[1] = { colorDummy_.imageView() }; + vk::FramebufferCreateInfo const fbci{ {}, *postAAPass_[1], _countof(attachments), attachments, width_, height_, 1 }; + framebuffers_[eFrameBuffers::POSTAA_1][i] = std::move(device.createFramebufferUnique(fbci).value); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eFramebuffer, (VkFramebuffer)*framebuffers_[eFrameBuffers::POSTAA_1][i], vkNames::FrameBuffer::POSTAA); + } + + framebuffers_[eFrameBuffers::POSTAA_2] = new vk::UniqueFramebuffer[max_image_count]; + for (int i = 0; i != max_image_count; ++i) { + + vk::ImageView const attachments[1] = { colorDummy_.imageView() }; + vk::FramebufferCreateInfo const fbci{ {}, *postAAPass_[2], _countof(attachments), attachments, width_, height_, 1 }; + framebuffers_[eFrameBuffers::POSTAA_2][i] = std::move(device.createFramebufferUnique(fbci).value); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eFramebuffer, (VkFramebuffer)*framebuffers_[eFrameBuffers::POSTAA_2][i], vkNames::FrameBuffer::POSTAA); + } + + // Final Pass to Present + { + vku::RenderpassMaker rpm; + + // The colour attachment. /*cleared*/ + rpm.attachmentBegin(swapchainImageFormat_); + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); // 0 + + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::ePresentSrcKHR); + + // The input attachment. (gui) + rpm.attachmentBegin(guiImage_.resolved.format()); + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); // 1 + + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // A subpass to render using the above attachment. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 0); + rpm.subpassInputAttachment(vk::ImageLayout::eShaderReadOnlyOptimal, 1); + /* + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + */ + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eBottomOfPipe); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask((vk::AccessFlagBits)0); // working ok part of *bugfix to not clear the presented images (uneccessary, all pixels are written by shader) (fastest) + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentRead | vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eShaderWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eShaderRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eInputAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + /* Chapter 32 of Vulkan Spec + When transitioning the image to VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR or VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, there is no need to delay subsequent processing, or perform any visibility operations (as vkQueuePresentKHR performs automatic visibility operations). To achieve this, the dstAccessMask member of the VkImageMemoryBarrier should be set to 0, and the dstStageMask parameter should be set to VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT. + */ + + rpm.dependencyBegin(0, VK_SUBPASS_EXTERNAL); // Out To Present + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eBottomOfPipe); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentRead | vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask((vk::AccessFlagBits)0); // *bugfix - working ok no delay to present (fastest) + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // Use the maker object to construct the vulkan object + finalPass_ = rpm.createUnique(device); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eRenderPass, (VkRenderPass)*finalPass_, vkNames::Renderpass::FINAL); + } + + framebuffers_[eFrameBuffers::PRESENT] = new vk::UniqueFramebuffer[max_image_count]; + for (int i = 0; i != max_image_count; ++i) { + + vk::ImageView const attachments[2] = { imageViews_[i], guiImage_.resolved.imageView() }; + vk::FramebufferCreateInfo const fbci{ {}, *finalPass_, _countof(attachments), attachments, width_, height_, 1 }; + framebuffers_[eFrameBuffers::PRESENT][i] = std::move(device.createFramebufferUnique(fbci).value); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eFramebuffer, (VkFramebuffer)*framebuffers_[eFrameBuffers::PRESENT][i], vkNames::FrameBuffer::PRESENT); + } + + // Clearing Pass to Async to Present + { + vku::RenderpassMaker rpm; + + // A subpass to render using the above attachment. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + + // Use the maker object to construct the vulkan object + clearPass_ = rpm.createUnique(device); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eRenderPass, (VkRenderPass)*clearPass_, vkNames::Renderpass::CLEAR); + } + + framebuffers_[eFrameBuffers::CLEAR] = new vk::UniqueFramebuffer[max_image_count]; + for (int i = 0; i != max_image_count; ++i) { + + vk::FramebufferCreateInfo const fbci{ {}, *clearPass_, 0, nullptr, width_, height_, 1 }; + framebuffers_[eFrameBuffers::CLEAR][i] = std::move(device.createFramebufferUnique(fbci).value); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eFramebuffer, (VkFramebuffer)*framebuffers_[eFrameBuffers::CLEAR][i], vkNames::FrameBuffer::CLEAR); + } + + // ###### Offscreen Special RenderPass + // Build the renderpass using one attachment, colour (mid/intermediatte pass) + { + vku::RenderpassMaker rpm; + + // *** SUBPASS 0 - Isolated regular rendering // + + // The only colour attachment. + rpm.attachmentBegin(offscreenImage_.multisampled.format()); // 0 + rpm.attachmentSamples(vku::DefaultSampleCount); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eClear); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eColorAttachmentOptimal); + + // The depth/stencil attachment. + rpm.attachmentBegin(depthImage_.format()); // 1 + rpm.attachmentSamples(vku::DefaultSampleCount); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eDepthStencilReadOnlyOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eDepthStencilReadOnlyOptimal); + + // The input attachment. (reflection) + rpm.attachmentBegin(colorReflectionImage_.upsampled.format()); // 2 + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eLoad); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); + + // The resolved colour attachment. // resolve for offscreen + rpm.attachmentBegin(offscreenImage_.resolved.format()); + rpm.attachmentSamples(vk::SampleCountFlagBits::e1); // 3 + rpm.attachmentLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); + rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); + rpm.attachmentStencilStoreOp(vk::AttachmentStoreOp::eDontCare); + rpm.attachmentInitialLayout(vk::ImageLayout::eUndefined); + rpm.attachmentFinalLayout(vk::ImageLayout::eShaderReadOnlyOptimal); // allow sampling, for copy external image barriers are used only when a copy is enabled + + // A subpass to render using the above two attachments. + rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); + rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 0); + rpm.subpassDepthStencilAttachment(vk::ImageLayout::eDepthStencilReadOnlyOptimal, 1); // optimal format (read/write) during subpass + rpm.subpassInputAttachment(vk::ImageLayout::eShaderReadOnlyOptimal, 2); + rpm.subpassResolveAttachment(vk::ImageLayout::eColorAttachmentOptimal, 3); + + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eTopOfPipe); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); + rpm.dependencySrcAccessMask((vk::AccessFlags)0); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // reflection already in correct state (previous midpass), no dependency needed already input attachment - shaderreadonly + + rpm.dependencyBegin(0, VK_SUBPASS_EXTERNAL); + rpm.dependencySrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); // offscreen available for sampling + rpm.dependencyDstStageMask(vk::PipelineStageFlagBits::eFragmentShader); + rpm.dependencySrcAccessMask(vk::AccessFlagBits::eColorAttachmentWrite); + rpm.dependencyDstAccessMask(vk::AccessFlagBits::eShaderRead); + rpm.dependencyDependencyFlags(vk::DependencyFlagBits::eByRegion); + + // Use the maker object to construct the vulkan object + offscreenPass_ = rpm.createUnique(device); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eRenderPass, (VkRenderPass)*offscreenPass_, vkNames::Renderpass::OFFSCREEN); + } + + framebuffers_[eFrameBuffers::OFFSCREEN] = new vk::UniqueFramebuffer[double_buffer_count]; + for (int i = 0; i != double_buffer_count; ++i) { + vk::ImageView const attachments[4] = { offscreenImage_.multisampled.imageView(), depthImage_.imageView(), colorReflectionImage_.upsampled.imageView(), offscreenImage_.resolved.imageView() }; + vk::FramebufferCreateInfo const fbci{ {}, *offscreenPass_, _countof(attachments), attachments, width_, height_, 1 }; + framebuffers_[eFrameBuffers::OFFSCREEN][i] = std::move(device.createFramebufferUnique(fbci).value); + + VKU_SET_OBJECT_NAME(vk::ObjectType::eFramebuffer, (VkFramebuffer)*framebuffers_[eFrameBuffers::OFFSCREEN][i], vkNames::FrameBuffer::OFFSCREEN); + } + + { + vk::SemaphoreCreateInfo sci; + for (uint32_t i = 0; i < double_buffer_count; ++i) { + semaphores[i].transferCompleteSemaphore_[0] = device.createSemaphoreUnique(sci).value; // compute transfer + semaphores[i].transferCompleteSemaphore_[1] = device.createSemaphoreUnique(sci).value; // dynamic transfer + semaphores[i].computeCompleteSemaphore_ = device.createSemaphoreUnique(sci).value; // compute process light + semaphores[i].staticCompleteSemaphore_ = device.createSemaphoreUnique(sci).value; // static render + } + + for (int i = 0; i != max_image_count; ++i) { + imageAcquireSemaphore_[i] = device.createSemaphoreUnique(sci).value; + commandCompleteSemaphore_[i] = device.createSemaphoreUnique(sci).value; + } + } + + typedef vk::CommandPoolCreateFlagBits ccbits; + + { + vk::CommandPoolCreateInfo cpci{ ccbits::eResetCommandBuffer, graphicsQueueFamilyIndex }; + commandPool_[eCommandPools::DEFAULT_POOL] = device.createCommandPoolUnique(cpci).value; // only pool that has non-transient command buffers (command buffers that are reused if there are no changes, until there are changes to warrant re-recording the command buffer) + } + { + vk::CommandPoolCreateInfo cpci{ ccbits::eTransient | ccbits::eResetCommandBuffer, graphicsQueueFamilyIndex }; + commandPool_[eCommandPools::OVERLAY_POOL] = device.createCommandPoolUnique(cpci).value; + } + { + + vk::CommandPoolCreateInfo cpci{ ccbits::eTransient | ccbits::eResetCommandBuffer, transferQueueFamilyIndex }; + commandPool_[eCommandPools::DMA_TRANSFER_POOL_PRIMARY] = device.createCommandPoolUnique(cpci).value; + commandPool_[eCommandPools::DMA_TRANSFER_POOL_SECONDARY] = device.createCommandPoolUnique(cpci).value; + } + { + vk::CommandPoolCreateInfo cpci{ ccbits::eTransient | ccbits::eResetCommandBuffer, computeQueueFamilyIndex }; + commandPool_[eCommandPools::COMPUTE_POOL_PRIMARY] = device.createCommandPoolUnique(cpci).value; + commandPool_[eCommandPools::COMPUTE_POOL_SECONDARY] = device.createCommandPoolUnique(cpci).value; + } + + // Create draw buffers + { // static + uint32_t const resource_count((uint32_t)double_buffer_count); + vk::CommandBufferAllocateInfo cbai{ *commandPool_[eCommandPools::DEFAULT_POOL], vk::CommandBufferLevel::ePrimary, resource_count }; + staticDrawBuffers_.allocate(device, cbai); + + for (uint32_t resource_index = 0; resource_index < resource_count; ++resource_index) { + staticCommandsDirty_[resource_index] = false; + VKU_SET_OBJECT_NAME(vk::ObjectType::eCommandBuffer, (VkCommandBuffer)*staticDrawBuffers_.cb[0][resource_index], vkNames::CommandBuffer::STATIC); + } + } + + { // gpureadback command buffer is fully static and cannot be changed - no dirty flag + uint32_t const resource_count((uint32_t)double_buffer_count); + vk::CommandBufferAllocateInfo cbai{ *commandPool_[eCommandPools::DMA_TRANSFER_POOL_PRIMARY], vk::CommandBufferLevel::ePrimary, resource_count }; + gpuReadbackBuffers_.allocate(device, cbai); + for (uint32_t resource_index = 0; resource_index < resource_count; ++resource_index) { + VKU_SET_OBJECT_NAME(vk::ObjectType::eCommandBuffer, (VkCommandBuffer)*gpuReadbackBuffers_.cb[0][resource_index], vkNames::CommandBuffer::GPU_READBACK); + } + } + { // present command buffer is fully static and cannot be changed - no dirty flag (need default pool (non-transient)) + uint32_t const resource_count((uint32_t)max_image_count); + vk::CommandBufferAllocateInfo cbai{ *commandPool_[eCommandPools::DEFAULT_POOL], vk::CommandBufferLevel::ePrimary, resource_count }; + presentDrawBuffers_.allocate(device, cbai); + for (uint32_t resource_index = 0; resource_index < resource_count; ++resource_index) { + VKU_SET_OBJECT_NAME(vk::ObjectType::eCommandBuffer, (VkCommandBuffer)*presentDrawBuffers_.cb[0][resource_index], vkNames::CommandBuffer::PRESENT); + } + } + { // clear command buffer is fully static and cannot be changed - no dirty flag (need default pool (non-transient)) + uint32_t const resource_count((uint32_t)max_image_count); + vk::CommandBufferAllocateInfo cbai{ *commandPool_[eCommandPools::DEFAULT_POOL], vk::CommandBufferLevel::ePrimary, resource_count }; + clearDrawBuffers_.allocate(device, cbai); + for (uint32_t resource_index = 0; resource_index < resource_count; ++resource_index) { + VKU_SET_OBJECT_NAME(vk::ObjectType::eCommandBuffer, (VkCommandBuffer)*clearDrawBuffers_.cb[0][resource_index], vkNames::CommandBuffer::CLEAR); + } + } + { // overlay render + uint32_t const resource_count((uint32_t)double_buffer_count); + vk::CommandBufferAllocateInfo cbai{ *commandPool_[eCommandPools::OVERLAY_POOL], vk::CommandBufferLevel::ePrimary, resource_count }; + overlayDrawBuffers_.allocate(device, cbai); + for (uint32_t resource_index = 0; resource_index < resource_count; ++resource_index) { + VKU_SET_OBJECT_NAME(vk::ObjectType::eCommandBuffer, (VkCommandBuffer)*overlayDrawBuffers_.cb[eOverlayBuffers::RENDER][resource_index], vkNames::CommandBuffer::OVERLAY_RENDER); + } + } + + { + { // dynamic + uint32_t const resource_count((uint32_t)double_buffer_count); + vk::CommandBufferAllocateInfo cbai{ *commandPool_[eCommandPools::DMA_TRANSFER_POOL_SECONDARY], vk::CommandBufferLevel::ePrimary, resource_count }; + dynamicDrawBuffers_.allocate(device, cbai); + for (uint32_t resource_index = 0; resource_index < resource_count; ++resource_index) { + VKU_SET_OBJECT_NAME(vk::ObjectType::eCommandBuffer, (VkCommandBuffer)* dynamicDrawBuffers_.cb[0][resource_index], vkNames::CommandBuffer::DYNAMIC); + } + } + { // overlay transfer + uint32_t const resource_count((uint32_t)double_buffer_count); + vk::CommandBufferAllocateInfo cbai{ *commandPool_[eCommandPools::DMA_TRANSFER_POOL_SECONDARY], vk::CommandBufferLevel::ePrimary, resource_count }; + overlayDrawBuffers_.allocate(device, cbai); + for (uint32_t resource_index = 0; resource_index < resource_count; ++resource_index) { + VKU_SET_OBJECT_NAME(vk::ObjectType::eCommandBuffer, (VkCommandBuffer)*overlayDrawBuffers_.cb[eOverlayBuffers::TRANSFER][resource_index], vkNames::CommandBuffer::OVERLAY_TRANSFER); + } + } + { // compute transfer + { + uint32_t const resource_count(transfer_queue_count); + vk::CommandBufferAllocateInfo cbai{ *commandPool_[eCommandPools::DMA_TRANSFER_POOL_SECONDARY], vk::CommandBufferLevel::ePrimary, resource_count }; // 2 resources + computeDrawBuffers_.allocate(device, cbai); + for (uint32_t resource_index = 0; resource_index < resource_count; ++resource_index) { + VKU_SET_OBJECT_NAME(vk::ObjectType::eCommandBuffer, (VkCommandBuffer)*computeDrawBuffers_.cb[eComputeBuffers::TRANSFER][resource_index], vkNames::CommandBuffer::TRANSFER); + } + } + { + uint32_t const resource_count(transfer_queue_count); + vk::CommandBufferAllocateInfo cbai{ *commandPool_[eCommandPools::DMA_TRANSFER_POOL_PRIMARY], vk::CommandBufferLevel::ePrimary, resource_count }; // 2 resources + computeDrawBuffers_.allocate(device, cbai); + for (uint32_t resource_index = 0; resource_index < resource_count; ++resource_index) { + VKU_SET_OBJECT_NAME(vk::ObjectType::eCommandBuffer, (VkCommandBuffer)*computeDrawBuffers_.cb[eComputeBuffers::TRANSFER_LIGHT][resource_index], vkNames::CommandBuffer::TRANSFER_LIGHT); + } + } + } + } + { // compute render + uint32_t const resource_count(compute_queue_count); + vk::CommandBufferAllocateInfo cbai{ *commandPool_[eCommandPools::COMPUTE_POOL_PRIMARY], vk::CommandBufferLevel::ePrimary, resource_count }; // 2 resources + computeDrawBuffers_.allocate(device, cbai); + for (uint32_t resource_index = 0; resource_index < resource_count; ++resource_index) { + VKU_SET_OBJECT_NAME(vk::ObjectType::eCommandBuffer, (VkCommandBuffer)* computeDrawBuffers_.cb[eComputeBuffers::COMPUTE_LIGHT][resource_index], vkNames::CommandBuffer::COMPUTE_LIGHT); + } + } + /* { // [[deprecated]] compute textureShaders + uint32_t const resource_count(2U); + vk::CommandBufferAllocateInfo cbai{ *commandPool_[eCommandPools::COMPUTE_POOL_SECONDARY], vk::CommandBufferLevel::ePrimary, resource_count }; // 2 resources + computeDrawBuffers_.allocate(device, cbai); + for (uint32_t resource_index = 0; resource_index < resource_count; ++resource_index) { + VKU_SET_OBJECT_NAME(vk::ObjectType::eCommandBuffer, (VkCommandBuffer)*computeDrawBuffers_.cb[eComputeBuffers::COMPUTE_TEXTURE][resource_index], vkNames::CommandBuffer::COMPUTE_TEXTURE); + } + }*/ + + initializeCheckerboardStencilBufferImages(*commandPool_[eCommandPools::TRANSIENT_POOL], graphicsQueue_); + + ok_ = true; } - /// Dump the capabilities of the physical device used by this window. + /// Dump the capabilities of the physical device used by this window. + /* void dumpCaps(std::ostream &os, vk::PhysicalDevice pd) const { os << "Surface formats\n"; - auto fmts = pd.getSurfaceFormatsKHR(surface_.get()); + auto fmts = pd.getSurfaceFormatsKHR(surface_).value; for (auto &fmt : fmts) { auto fmtstr = vk::to_string(fmt.format); auto cstr = vk::to_string(fmt.colorSpace); @@ -372,152 +2222,601 @@ class Window { } os << "Present Modes\n"; - auto presentModes = pd.getSurfacePresentModesKHR(surface_.get()); + auto presentModes = pd.getSurfacePresentModesKHR(surface_).value; for (auto pm : presentModes) { std::cout << vk::to_string(pm) << "\n"; } } + */ - static void defaultRenderFunc(vk::CommandBuffer cb, int imageIndex, vk::RenderPassBeginInfo &rpbi) { - vk::CommandBufferBeginInfo bi{}; + static void defaultRenderFunc(vk::CommandBuffer cb, int imageIndex, vk::RenderPassBeginInfo const&rpbi) { + vk::CommandBufferBeginInfo bi{ vk::CommandBufferUsageFlagBits::eOneTimeSubmit }; cb.begin(bi); cb.end(); } - typedef void (renderFunc_t)(vk::CommandBuffer cb, int imageIndex, vk::RenderPassBeginInfo &rpbi); + constinit static inline static_renderpass_function_unconst staticCommandCache{}; + + /// Build a static draw buffer. This will be rendered after any dynamic content generated in draw() + void setStaticCommands(static_renderpass_function static_function, int32_t const iImageIndex = -1) { + + // alpha channel ust atleast be cleared to 1 for transparency "clear masks" + // it is faster to clear all channels to 1 or 0 + constinit static vk::ClearValue const clearArray_zPass[] = { vk::ClearDepthStencilValue{1.0f, 0}, vk::ClearColorValue{ std::array{0.0f, 0.0f, 0.0f, 0.0f}}, vk::ClearColorValue{ std::array{0.0f, 0.0f, 0.0f, 0.0f}}, {}, {}, {}, {} }; + constinit static vk::ClearValue const clear_offscreenPass{ vk::ClearColorValue{ std::array{0.0f, 0.0f, 0.0f, 1.0f}} }; // require opaque alpha, no alpha component writes in voxel shader due to clear masks + + point2D const frameBufferSz(width_, height_); + point2D_t const downResFrameBufferSz(vku::getDownResolution(frameBufferSz)); + + vk::RenderPassBeginInfo rpbi[5]; + + rpbi[eFrameBuffers::DEPTH].renderPass = *zPass_; + rpbi[eFrameBuffers::DEPTH].renderArea = vk::Rect2D{ {0, 0}, {width_, height_} }; + rpbi[eFrameBuffers::DEPTH].clearValueCount = (uint32_t)_countof(clearArray_zPass); + rpbi[eFrameBuffers::DEPTH].pClearValues = clearArray_zPass; + + rpbi[eFrameBuffers::HALF_COLOR_ONLY].renderPass = *downPass_; + rpbi[eFrameBuffers::HALF_COLOR_ONLY].renderArea = vk::Rect2D{ {0, 0}, {uint32_t(downResFrameBufferSz.x), uint32_t(downResFrameBufferSz.y)} }; + rpbi[eFrameBuffers::HALF_COLOR_ONLY].clearValueCount = 0;; + rpbi[eFrameBuffers::HALF_COLOR_ONLY].pClearValues = nullptr; + + rpbi[eFrameBuffers::FULL_COLOR_ONLY].renderPass = *upPass_; + rpbi[eFrameBuffers::FULL_COLOR_ONLY].renderArea = vk::Rect2D{ {0, 0}, {width_, height_} }; + rpbi[eFrameBuffers::FULL_COLOR_ONLY].clearValueCount = 0;; + rpbi[eFrameBuffers::FULL_COLOR_ONLY].pClearValues = nullptr; + + rpbi[eFrameBuffers::MID_COLOR_DEPTH].renderPass = *midPass_; + rpbi[eFrameBuffers::MID_COLOR_DEPTH].renderArea = vk::Rect2D{ {0, 0}, {width_, height_} }; + rpbi[eFrameBuffers::MID_COLOR_DEPTH].clearValueCount = 0; + rpbi[eFrameBuffers::MID_COLOR_DEPTH].pClearValues = nullptr; + + static constexpr uint32_t const OFFSCREEN_OFFSET(eFrameBuffers::OFFSCREEN - 6); + rpbi[OFFSCREEN_OFFSET].renderPass = *offscreenPass_; + rpbi[OFFSCREEN_OFFSET].renderArea = vk::Rect2D{ {0, 0}, {width_, height_} }; + rpbi[OFFSCREEN_OFFSET].clearValueCount = 1; + rpbi[OFFSCREEN_OFFSET].pClearValues = &clear_offscreenPass; + + if (iImageIndex < 0) { // both resource of double buffer have command buffers set + for (uint32_t image_index = 0; image_index != staticDrawBuffers_.size(); ++image_index) { + vk::CommandBuffer const cb = *staticDrawBuffers_.cb[0][image_index]; + rpbi[eFrameBuffers::DEPTH].framebuffer = *framebuffers_[eFrameBuffers::DEPTH][image_index]; + rpbi[eFrameBuffers::HALF_COLOR_ONLY].framebuffer = *framebuffers_[eFrameBuffers::HALF_COLOR_ONLY][image_index]; + rpbi[eFrameBuffers::FULL_COLOR_ONLY].framebuffer = *framebuffers_[eFrameBuffers::FULL_COLOR_ONLY][image_index]; + rpbi[eFrameBuffers::MID_COLOR_DEPTH].framebuffer = *framebuffers_[eFrameBuffers::MID_COLOR_DEPTH][image_index]; + rpbi[OFFSCREEN_OFFSET].framebuffer = *framebuffers_[eFrameBuffers::OFFSCREEN][image_index]; + + static_function(std::forward({ cb, image_index, + std::move(rpbi[eFrameBuffers::DEPTH]), + std::move(rpbi[eFrameBuffers::HALF_COLOR_ONLY]), + std::move(rpbi[eFrameBuffers::FULL_COLOR_ONLY]), + std::move(rpbi[eFrameBuffers::MID_COLOR_DEPTH]), + std::move(rpbi[OFFSCREEN_OFFSET]) })); + + staticCommandsDirty_[image_index] = false; + } + + staticCommandCache = static_function; + } + else { // only the target resource of the double buffer has the command buffer set + vk::CommandBuffer const cb = *staticDrawBuffers_.cb[0][iImageIndex]; + rpbi[eFrameBuffers::DEPTH].framebuffer = *framebuffers_[eFrameBuffers::DEPTH][iImageIndex]; + rpbi[eFrameBuffers::HALF_COLOR_ONLY].framebuffer = *framebuffers_[eFrameBuffers::HALF_COLOR_ONLY][iImageIndex]; + rpbi[eFrameBuffers::FULL_COLOR_ONLY].framebuffer = *framebuffers_[eFrameBuffers::FULL_COLOR_ONLY][iImageIndex]; + rpbi[eFrameBuffers::MID_COLOR_DEPTH].framebuffer = *framebuffers_[eFrameBuffers::MID_COLOR_DEPTH][iImageIndex]; + rpbi[OFFSCREEN_OFFSET].framebuffer = *framebuffers_[eFrameBuffers::OFFSCREEN][iImageIndex]; + + static_function(std::forward({ cb, (uint32_t const)iImageIndex, + std::move(rpbi[eFrameBuffers::DEPTH]), + std::move(rpbi[eFrameBuffers::HALF_COLOR_ONLY]), + std::move(rpbi[eFrameBuffers::FULL_COLOR_ONLY]), + std::move(rpbi[eFrameBuffers::MID_COLOR_DEPTH]), + std::move(rpbi[OFFSCREEN_OFFSET]) })); + + staticCommandsDirty_[iImageIndex] = false; + } + } + + void setStaticCommandsDirty(static_renderpass_function static_function) { + + if (static_function == staticCommandCache) { + + staticCommandsDirty_[0] = staticCommandsDirty_[1] = true; // both buffers must be reset so that they are in sync from frame to frame - /// Build a static draw buffer. This will be rendered after any dynamic - /// content generated in draw() - void setStaticCommands(const std::function &func) { - this->func = func; - buildStaticCBs(); + } +#ifndef NDEBUG + assert_print(static_function == staticCommandCache, "[FAIL] No static command cache match"); +#endif } - void buildStaticCBs() { - if(func) { - for (int i = 0; i != staticDrawBuffers_.size(); ++i) { - vk::CommandBuffer cb = *staticDrawBuffers_[i]; - - vk::ClearDepthStencilValue clearDepthValue{1.0f, 0}; - std::array clearColours{ - vk::ClearValue{clearColorValue()}, clearDepthValue}; - vk::RenderPassBeginInfo rpbi; - rpbi.renderPass = *renderPass_; - rpbi.framebuffer = *framebuffers_[i]; - rpbi.renderArea = vk::Rect2D{{0, 0}, {width_, height_}}; - rpbi.clearValueCount = (uint32_t)clearColours.size(); - rpbi.pClearValues = clearColours.data(); - - func(cb, i, rpbi); - } - } + /// Build a static draw buffer. + void setStaticPresentCommands(present_renderpass_function present_function) { // only allowed to be called once + + vk::RenderPassBeginInfo rpbi[3]; + + for (uint32_t pass = 0; pass < 3; ++pass) { + rpbi[pass].renderPass = *postAAPass_[pass]; + rpbi[pass].renderArea = vk::Rect2D{ {0, 0}, {width_, height_} }; + rpbi[pass].clearValueCount = 0U; + rpbi[pass].pClearValues = nullptr; + } + + vk::RenderPassBeginInfo rpbi_final; + rpbi_final.renderPass = *finalPass_; + rpbi_final.renderArea = vk::Rect2D{ {0, 0}, {width_, height_} }; + rpbi_final.clearValueCount = 0U; //*bugfix no need to clear imageview that is presented, all pixels are written to by shader. + rpbi_final.pClearValues = nullptr; + + for (uint32_t resource_index = 0; resource_index != presentDrawBuffers_.size(); ++resource_index) { + vk::CommandBuffer const cb = *presentDrawBuffers_.cb[0][resource_index]; + rpbi[0].framebuffer = *framebuffers_[eFrameBuffers::POSTAA_0][resource_index]; + rpbi[1].framebuffer = *framebuffers_[eFrameBuffers::POSTAA_1][resource_index]; + rpbi[2].framebuffer = *framebuffers_[eFrameBuffers::POSTAA_2][resource_index]; + rpbi_final.framebuffer = *framebuffers_[eFrameBuffers::PRESENT][resource_index]; + + present_function(std::forward({ cb, resource_index, std::move(rpbi[0]), std::move(rpbi[1]), std::move(rpbi[2]), std::move(rpbi_final)})); + } } - /// Queue the static command buffer for the next image in the swap chain. Optionally call a function to create a dynamic command buffer - /// for uploading textures, changing uniforms etc. - void draw(const vk::Device &device, const vk::Queue &graphicsQueue, const std::function &dynamic = defaultRenderFunc) { - static auto start = std::chrono::high_resolution_clock::now(); - auto time = std::chrono::high_resolution_clock::now(); - auto delta = time - start; - start = time; - // uncomment to get frame time. - //std::cout << std::chrono::duration_cast(delta).count() << "us frame time\n"; - - auto umax = std::numeric_limits::max(); - uint32_t imageIndex = 0; - auto acquired = device.acquireNextImageKHR(*swapchain_, umax, *imageAcquireSemaphore_, vk::Fence(), &imageIndex); - if (acquired != vk::Result::eSuccess) { - recreate(); - return; - } - vk::PipelineStageFlags waitStages = vk::PipelineStageFlagBits::eColorAttachmentOutput; - vk::Semaphore ccSema = *commandCompleteSemaphore_; - vk::Semaphore iaSema = *imageAcquireSemaphore_; - vk::Semaphore psSema = *dynamicSemaphore_; - vk::CommandBuffer cb = *staticDrawBuffers_[imageIndex]; - vk::CommandBuffer pscb = *dynamicDrawBuffers_[imageIndex]; - - - vk::Fence rpcbFence = dynamicCommandBufferFences_[imageIndex]; - device.waitForFences(rpcbFence, 1, umax); - device.resetFences(rpcbFence); - - - vk::ClearDepthStencilValue clearDepthValue{ 1.0f, 0 }; - std::array clearColours{vk::ClearValue{clearColorValue()}, clearDepthValue}; - vk::RenderPassBeginInfo rpbi; - rpbi.renderPass = *renderPass_; - rpbi.framebuffer = *framebuffers_[imageIndex]; - rpbi.renderArea = vk::Rect2D{{0, 0}, {width_, height_}}; - rpbi.clearValueCount = (uint32_t)clearColours.size(); - rpbi.pClearValues = clearColours.data(); - dynamic(pscb, imageIndex, rpbi); - - vk::SubmitInfo submit; - submit.waitSemaphoreCount = 1; - submit.pWaitSemaphores = &iaSema; - submit.pWaitDstStageMask = &waitStages; - submit.commandBufferCount = 1; - submit.pCommandBuffers = &pscb; - submit.signalSemaphoreCount = 1; - submit.pSignalSemaphores = &psSema; - graphicsQueue.submit(1, &submit, rpcbFence); - - - vk::Fence cbFence = commandBufferFences_[imageIndex]; - device.waitForFences(cbFence, 1, umax); - device.resetFences(cbFence); - - - submit.waitSemaphoreCount = 1; - submit.pWaitSemaphores = &psSema; - submit.pWaitDstStageMask = &waitStages; - submit.commandBufferCount = 1; - submit.pCommandBuffers = &cb; - submit.signalSemaphoreCount = 1; - submit.pSignalSemaphores = &ccSema; - graphicsQueue.submit(1, &submit, cbFence); - - vk::PresentInfoKHR presentInfo; - vk::SwapchainKHR swapchain = *swapchain_; - presentInfo.pSwapchains = &swapchain; - presentInfo.swapchainCount = 1; - presentInfo.pImageIndices = &imageIndex; - presentInfo.waitSemaphoreCount = 1; - presentInfo.pWaitSemaphores = &ccSema; - try { - presentQueue().presentKHR(presentInfo); - } catch (const vk::OutOfDateKHRError) { - recreate(); - } + /// Build a static draw buffer. + void setStaticClearCommands(clear_renderpass_function clear_function) { // only allowed to be called once + + vk::RenderPassBeginInfo clear_rpbi; + clear_rpbi.renderPass = *clearPass_; + clear_rpbi.renderArea = vk::Rect2D{ {0, 0}, {width_, height_} }; + clear_rpbi.clearValueCount = 0U; + clear_rpbi.pClearValues = nullptr; + + for (uint32_t resource_index = 0; resource_index != presentDrawBuffers_.size(); ++resource_index) { + + vk::CommandBuffer const clear_cb = *clearDrawBuffers_.cb[0][resource_index]; + clear_rpbi.framebuffer = *framebuffers_[eFrameBuffers::CLEAR][resource_index]; + + clear_function(std::forward({ clear_cb, resource_index, std::move(clear_rpbi)})); + } } + + void setGpuReadbackCommands(gpu_readback_function readback_function) { - /// Return the queue family index used to present the surface to the display. - uint32_t presentQueueFamily() const { return presentQueueFamily_; } + for (uint32_t resource_index = 0; resource_index != gpuReadbackBuffers_.size(); ++resource_index) { + readback_function(*gpuReadbackBuffers_.cb[0][resource_index], resource_index); + } + } +#ifdef VKU_IMPLEMENTATION + + private: + NO_INLINE bool const fail_acquire_or_present(vk::Result const result, uint32_t& imageIndex, uint32_t& resource_index) + { + bool bReturn(false); + + switch (result) + { + case vk::Result::eSuccess: // should never get here but if we do silently ignore + break; + case vk::Result::eSuboptimalKHR: // silently recreate the swap chain, then pre-acquire first image, reset image and resource indices + case vk::Result::eErrorOutOfDateKHR: + { + device_.waitIdle(); // safetly continue after idle detect + recreateSwapChain(); + + imageIndex = 0; + resource_index = 0; + bReturn = true; + } + break; + default: + FMT_LOG_FAIL(GPU_LOG, "Major failure in main render method, < {:s} > ", vk::to_string(result)); + break; + }; + + return(bReturn); // indicating current render frame should be aborted and re attempted next frame + } + + private: + static constexpr uint64_t const umax = nanoseconds(milliseconds(async_long_task::beats::half_second)).count(); + + bool const presentation_acquire(const vk::Device& __restrict device, vk::Semaphore& __restrict iaSema, uint32_t& __restrict imageIndex, uint32_t& __restrict resource_index) + { + vk::Result result(vk::Result::eSuccess); + + iaSema = *imageAcquireSemaphore_[imageIndex]; //*bugfix - imageIndex allows for a unique input acquire semaphore per frame. + + result = device.acquireNextImageKHR(*swapchain_, umax, iaSema, vk::Fence(), &imageIndex); // **** driver does all of its waiting / spinning here blocking any further execution until ready!!! + // do any / all updates before this call to spend the time wisely + [[unlikely]] if (vk::Result::eSuccess != result || vk::Result::eSuccess != _presentResult) { + if (fail_acquire_or_present(result, imageIndex, resource_index)) + return(false); + } + + return(true); + } + + void presentation(const vk::Device& __restrict device, vk::Semaphore& __restrict ccSema, uint32_t& __restrict imageIndex) + { + // clears - *bugfix - added command buffer to presentation queue submission, if done after right present there is a long wait for its queue submission (nvidia nsight) + // eaxct same submission parameters so refactored to one queue submission for both command buffers // + { + vk::Fence const cbFence{ presentDrawBuffers_.fence[0][imageIndex] }; // clear cb fence can safetly be omitted/ignored for this queue submission only requires one fence + device.waitForFences(cbFence, VK_TRUE, umax); + + vk::CommandBuffer const pb{ *presentDrawBuffers_.cb[0][imageIndex] }; // previously written by setStaticPresentCommands (above) + + //----------// PRESENT (POST AA) FINAL SUBMIT // **waiting on nothing + + vk::SubmitInfo submit{}; + submit.waitSemaphoreCount = 0; + submit.pWaitSemaphores = nullptr; + submit.pWaitDstStageMask = 0; + submit.commandBufferCount = 1; + submit.pCommandBuffers = &pb; // submitting presents' static cb + submit.signalSemaphoreCount = 1; + submit.pSignalSemaphores = &ccSema; // signalling commands complete + + device.resetFences(cbFence); // have to wait on associatted fence, and reset for next iteration + graphicsQueue_.submit(1, &submit, cbFence); + } + + // ######## Present *currentframe* // + vk::PresentInfoKHR presentInfo{}; + presentInfo.pSwapchains = &(*swapchain_); + presentInfo.swapchainCount = 1; + presentInfo.pImageIndices = &imageIndex; + presentInfo.waitSemaphoreCount = 1; + presentInfo.pWaitSemaphores = &ccSema; // waiting on completion + _presentResult = graphicsQueue_.presentKHR(presentInfo); // submit/present to screen queue + + // clearing part can execute independently from the present, present is not dependent on these clears which prepare the opacity volume for next frame. + { + vk::Fence const cbFence{ clearDrawBuffers_.fence[0][imageIndex] }; // clear cb fence can safetly be omitted/ignored for this queue submission only requires one fence + device.waitForFences(cbFence, VK_TRUE, umax); + + vk::CommandBuffer const cb{ *clearDrawBuffers_.cb[0][imageIndex] }; // previously written by setStaticClearCommands (above) + + //----------//CLEAR SUBMIT // **waiting on nothing + + vk::SubmitInfo submit{}; + submit.waitSemaphoreCount = 0; + submit.pWaitSemaphores = nullptr; + submit.pWaitDstStageMask = 0; + submit.commandBufferCount = 1; + submit.pCommandBuffers = &cb; // submitting presents' static cb + submit.signalSemaphoreCount = 0; + submit.pSignalSemaphores = nullptr; // signalling commands complete + + device.resetFences(cbFence); // have to wait on associatted fence, and reset for next iteration + graphicsQueue_.submit(1, &submit, cbFence); + } + } + + public: + + //*bugfix: this is a highly tuned function - do not change - very smooth motion and framerate + uint32_t const draw(const vk::Device& __restrict device, + compute_function gpu_compute, dynamic_renderpass_function dynamic_function, overlay_renderpass_function overlay_function) { // returns the "free" resource index to use + + // [ RENDERGRAPH ]-------------------------------------------------------------------------------------------------------------------------------------------- + // + // || RESOURCE INDEX DEPENDENT ||||||||||||||||||||||||||||||||||||||||||||||||||| || IMAGE INDEX DEPENDENT |||||||||||||||||||||||| + // ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||| + // ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||| + // + // + // [ COMPUTE [[deprecated]] (TEXTURESHADERS) ] ---| + // [ WAIT NEXTIMAGEINDEX ] ----| + // [ UPLOAD (LIGHT) ] ---------[ COMPUTE (LIGHT) ] ----------------------------------------------------------[ STATIC ]-----[ OVERLAY ]-----[ POST & PRESENT ] + // [ UPLOAD (DYNAMIC + OVERLAY) ] ------------------| + // + // ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||| + // ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||| + // ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||| + // + // ------------------------------------------------------------------------------------------------------------------------------------------------------------ + + // utilize the time between a present() and acquireNextImage() + + constinit static uint32_t + resource_index{}; // **** only "compute, dynamic, post_submit_render" should use the resource_index, otherwise use imageIndex ****** + // dynamic uses imageIndex, but uses resource_index to refer to the objects worked on in post_submit_render + + vk::Semaphore const tcSema[2]{ *semaphores[resource_index].transferCompleteSemaphore_[0], *semaphores[resource_index].transferCompleteSemaphore_[1] }; + vk::Semaphore const cSema{ *semaphores[resource_index].computeCompleteSemaphore_ }; + + vk::Fence const overlay_dynamic_fence[2]{ overlayDrawBuffers_.fence[eOverlayBuffers::TRANSFER][resource_index], dynamicDrawBuffers_.fence[0][resource_index] }; // bugfix: now properly double-buffered, no longer serializes frame by having 0 here instead of resource_index! + + int64_t task_compute_light(0); + bool bAsyncCompute(false); + + resource_control::stage_resources(resource_index); // <---- HOT PATH - CPU HOTSPOT // + + //----// UPLOAD (LIGHT) // // **waiting on nothing + { + vk::Fence const dma_transfer_fence = computeDrawBuffers_.fence[eComputeBuffers::TRANSFER][resource_index]; // only one fence is required for the submission of TRANSFER and TRANSFER_LIGHT command buffers. + if (computeDrawBuffers_.queued[eComputeBuffers::TRANSFER][resource_index]) { + device.waitForFences(dma_transfer_fence, VK_TRUE, umax); // protect + computeDrawBuffers_.queued[eComputeBuffers::TRANSFER][resource_index] = false; // reset + } + computeDrawBuffers_.queued[eComputeBuffers::TRANSFER_LIGHT][resource_index] = false; // reset + + vk::CommandBuffer const compute_uploads[3] = { *computeDrawBuffers_.cb[eComputeBuffers::TRANSFER][resource_index], *computeDrawBuffers_.cb[eComputeBuffers::TRANSFER_LIGHT][resource_index], nullptr }; + + // upload light + bool const upload_light = gpu_compute(std::forward({ compute_uploads[eComputeBuffers::TRANSFER], compute_uploads[eComputeBuffers::TRANSFER_LIGHT], compute_uploads[eComputeBuffers::COMPUTE_LIGHT], resource_index })); + + // COMPUTE DMA TRANSFER SUBMIT // + + vk::SubmitInfo submit{}; + submit.waitSemaphoreCount = 0; + submit.pWaitSemaphores = nullptr; // **waiting on nothing + submit.pWaitDstStageMask = nullptr; + submit.commandBufferCount = 1 + (uint32_t)upload_light; // submitting dma cb + submit.pCommandBuffers = &compute_uploads[eComputeBuffers::TRANSFER]; + submit.signalSemaphoreCount = (uint32_t)upload_light; + submit.pSignalSemaphores = upload_light ? &tcSema[0] : nullptr; // signal for compute + + device.resetFences(dma_transfer_fence); + transferQueue_[resource_index].submit(1, &submit, dma_transfer_fence); + + computeDrawBuffers_.queued[eComputeBuffers::TRANSFER][resource_index] = true; + + if (upload_light) { + //--------------// COMPUTE SUBMIT (LIGHT) // // **waiting on upload light + computeDrawBuffers_.queued[eComputeBuffers::TRANSFER_LIGHT][resource_index] = true; + bAsyncCompute = true; + + //task_compute_light = async_long_task::enqueue( + // non-blocking submit + //[=] { + vk::CommandBuffer const compute_process[3] = { nullptr, nullptr, *computeDrawBuffers_.cb[eComputeBuffers::COMPUTE_LIGHT][resource_index] }; + + vk::Fence const compute_fence = computeDrawBuffers_.fence[eComputeBuffers::COMPUTE_LIGHT][resource_index]; + if (computeDrawBuffers_.queued[eComputeBuffers::COMPUTE_LIGHT][resource_index]) { + device.waitForFences(compute_fence, VK_TRUE, umax); + computeDrawBuffers_.queued[eComputeBuffers::COMPUTE_LIGHT][resource_index] = false; // reset + } + + gpu_compute(std::forward({ compute_process[eComputeBuffers::TRANSFER], compute_process[eComputeBuffers::TRANSFER_LIGHT], compute_process[eComputeBuffers::COMPUTE_LIGHT], resource_index })); // compute part resets the dirty state that transfer set + + vk::PipelineStageFlags waitStages{ vk::PipelineStageFlagBits::eComputeShader }; + + vk::SubmitInfo submit{}; + submit.waitSemaphoreCount = (uint32_t)computeDrawBuffers_.queued[eComputeBuffers::TRANSFER_LIGHT][resource_index]; + submit.pWaitSemaphores = &tcSema[0]; // waiting on transfer completion only if transfer in progress, otherwise waiting on nothing + submit.pWaitDstStageMask = &waitStages; + submit.commandBufferCount = 1; + submit.pCommandBuffers = &compute_process[eComputeBuffers::COMPUTE_LIGHT]; // submitting compute cb + submit.signalSemaphoreCount = 1; + submit.pSignalSemaphores = &cSema; // signalling compute cb completion + + device.resetFences(compute_fence); + computeQueue_[resource_index].submit(1, &submit, compute_fence); + + computeDrawBuffers_.queued[eComputeBuffers::COMPUTE_LIGHT][resource_index] = true; + //}); + } + } + + //----// UPLOAD & OVERLAY // // **waiting on nothing + { + device.waitForFences(2, overlay_dynamic_fence, VK_TRUE, umax); // protect + + vk::CommandBuffer do_cb[2] = { *dynamicDrawBuffers_.cb[0][resource_index], *overlayDrawBuffers_.cb[eOverlayBuffers::TRANSFER][resource_index] }; + + { // ######### begin overlay transfer cb update (spawned) + // staging + overlay_function(std::forward({ &do_cb[1], nullptr, resource_index, std::forward(vk::RenderPassBeginInfo{}) })); // submission of staged data to gpu // build transfer cb + } + + { // ######### begin dynamic transfer cb update (main thread) + // staging + dynamic_function(std::forward({ do_cb[0], resource_index })); // submission of staged data to gpu + } + + // DYNAMIC & OVERLAY DYNAMIC SUBMIT // + { + vk::SubmitInfo submit{}; + submit.waitSemaphoreCount = 0; + submit.pWaitSemaphores = nullptr; // **waiting on nothing + submit.pWaitDstStageMask = nullptr; + submit.commandBufferCount = 2; // submitting dynamic cb & overlay's dynamic cb + submit.pCommandBuffers = do_cb; + submit.signalSemaphoreCount = 1; + submit.pSignalSemaphores = &tcSema[1]; // signal for dynamic cb in slot 0, signal for overlay dynamic cb in slot 1 (completion) + + device.resetFences(2, overlay_dynamic_fence); + transferQueue_[!resource_index].submit(1, &submit, overlay_dynamic_fence[1]); // <---- this is opposite transfer queue on purpose so dma transfers are simultaneous + } + } + + //----// COMPUTE SUBMIT [[deprecated]] (TEXTURESHADERS)// // **waiting on nothing + /*vk::Semaphore const ctexSema = {*semaphores[resource_index].computeCompleteSemaphore_[1]}; + { + vk::CommandBuffer const compute_process[4] = { nullptr, nullptr, nullptr, *computeDrawBuffers_.cb[eComputeBuffers::COMPUTE_TEXTURE][resource_index] }; + + vk::Fence const compute_fence = computeDrawBuffers_.fence[eComputeBuffers::COMPUTE_TEXTURE][resource_index]; + if (computeDrawBuffers_.queued[eComputeBuffers::COMPUTE_TEXTURE][resource_index]) { + device.waitForFences(compute_fence, VK_TRUE, umax); + device.resetFences(compute_fence); + computeDrawBuffers_.queued[eComputeBuffers::COMPUTE_TEXTURE][resource_index] = false; // reset + } + + gpu_compute(std::forward({ compute_process[eComputeBuffers::TRANSFER], compute_process[eComputeBuffers::TRANSFER_LIGHT], compute_process[eComputeBuffers::COMPUTE_LIGHT], compute_process[eComputeBuffers::COMPUTE_TEXTURE], resource_index })); // compute part resets the dirty state that transfer set + + //vk::PipelineStageFlags waitStages{ vk::PipelineStageFlagBits::eComputeShader }; + vk::SubmitInfo submit{}; + submit.waitSemaphoreCount = 0; + submit.pWaitSemaphores = nullptr; // **waiting on nothing + submit.pWaitDstStageMask = nullptr; + submit.commandBufferCount = 1; + submit.pCommandBuffers = &compute_process[eComputeBuffers::COMPUTE_TEXTURE]; // submitting compute cb + submit.signalSemaphoreCount = 1; + submit.pSignalSemaphores = &ctexSema; // signalling compute cb completion + + computeQueue_[!resource_index].submit(1, &submit, compute_fence); // always use "other" compute queue so they potentially can be running independently and in parallel + + computeDrawBuffers_.queued[eComputeBuffers::COMPUTE_TEXTURE][resource_index] = true; + }*/ + + // upload & compute + // | + // graphics + + //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%// + // ANY WORK THAT CAN BE DONE (COMPUTE, TRANSFERS, ANYTHING THAT DOES NOT DEPEND ON IMAGEINDEX) SHOULD BE DONE ABOVE // + //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%// + uint32_t imageIndex(0); + vk::Semaphore iaSema; + [[unlikely]] if (!presentation_acquire(device, iaSema, imageIndex, resource_index)) + return(resource_index); // doesn't change resource_index on failure in normal path (frames 0 & 1) + + //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%// + //[[likely]] if (bAsyncCompute) { // *bugfix - required - must ensure compute has started, was submitted prior to this graphics submission + // async_long_task::wait(task_compute_light, "compute light"); + //} + + vk::Semaphore const iatccSema[3] = { iaSema, tcSema[1], cSema }; + vk::Semaphore const staticSema = *semaphores[imageIndex].staticCompleteSemaphore_; + + { // graphics path + //----------// STATIC SUBMIT // // **waiting on input acquire, textureshaders, upload & overlay, compute light + { + vk::Fence const static_fence = staticDrawBuffers_.fence[0][imageIndex]; + + if (staticCommandsDirty_[imageIndex]) { + device.waitForFences(static_fence, VK_TRUE, umax); + + setStaticCommands(staticCommandCache, imageIndex); + } + + vk::CommandBuffer const cb = *staticDrawBuffers_.cb[0][imageIndex]; + vk::PipelineStageFlags waitStages[3] = { vk::PipelineStageFlagBits::eVertexInput, vk::PipelineStageFlagBits::eFragmentShader, vk::PipelineStageFlagBits::eFragmentShader }; // wait at stage data is required + + vk::SubmitInfo submit{}; + submit.waitSemaphoreCount = 2 + (uint32_t)bAsyncCompute; + submit.pWaitSemaphores = iatccSema; // waiting on dynamic transfer & input acquire & compute processing (both texture and light) + submit.pWaitDstStageMask = waitStages; + submit.commandBufferCount = 1; + submit.pCommandBuffers = &cb; // submitting static cb + submit.signalSemaphoreCount = 1; + submit.pSignalSemaphores = &staticSema; // signalling static cb completion + + // ########### FRAMES FIRST USAGE OF GRAPHICS QUEUE ################ // + device.resetFences(static_fence); + graphicsQueue_.submit(1, &submit, static_fence); + } + + // graphics + // | | + // graphics transfer + + async_long_task::enqueue( + // non-blocking submit + [=] { + vk::Fence const cbFenceReadback = gpuReadbackBuffers_.fence[0][imageIndex]; + device.waitForFences(cbFenceReadback, VK_TRUE, umax); + + vk::CommandBuffer const gb = *gpuReadbackBuffers_.cb[0][imageIndex]; + vk::PipelineStageFlags waitStages{ vk::PipelineStageFlagBits::eTransfer }; + + vk::SubmitInfo submit{}; + submit.waitSemaphoreCount = 1; + submit.pWaitSemaphores = &staticSema; // waiting on static completion + submit.pWaitDstStageMask = &waitStages; + submit.commandBufferCount = 1; + submit.pCommandBuffers = &gb; // submitting gpu readbacks' static cb + submit.signalSemaphoreCount = 0; + submit.pSignalSemaphores = nullptr; + + device.resetFences(cbFenceReadback); // have to wait on associatted fence, and reset for next iteration + transferQueue_[resource_index].submit(1, &submit, cbFenceReadback); + }); + + // graphics + // | + // graphics + + // **inherent wait between graphics queue operations. they serialize and it is not neccessary to signal a semaphore as there is no inter-queue dependencies. + +//----------// OVERLAY SUBMIT // **waiting on overlay upload is not necessary as the wait has already taken place in static. The semaphore combines dynamic upload + overlay upload. Static depends on dynamic uploads completion. Single semaphore. Single signal & wait finished in STATIC. + { + vk::CommandBuffer ob{ *overlayDrawBuffers_.cb[eOverlayBuffers::RENDER][imageIndex] }; + + // fence not required .... + static vk::ClearValue const clearArray[] = { {}, {}, {}, {}, vk::ClearValue{ std::array{0, 0, 0, 0}}, {} }; + overlay_function(overlay_renderpass{ nullptr, &ob, imageIndex, + std::forward(vk::RenderPassBeginInfo(*overlayPass_, *framebuffers_[eFrameBuffers::COLOR_DEPTH][imageIndex], vk::Rect2D{ {0, 0}, {width_, height_} }, _countof(clearArray), clearArray)) }); // build render cb + + vk::SubmitInfo submit{}; + submit.waitSemaphoreCount = 0; + submit.pWaitSemaphores = nullptr; // prior submit already waited on &tcSema[1] (contains semaphor that represents dynamic + overlay transfer) + submit.pWaitDstStageMask = nullptr; + submit.commandBufferCount = 1; + submit.pCommandBuffers = &ob; // submitting overlay's static cb + submit.signalSemaphoreCount = 0; + submit.pSignalSemaphores = nullptr; // signalling commands complete + + // fence already reset in batched op above + graphicsQueue_.submit(1, &submit, overlay_dynamic_fence[0]); + } + + // graphics + // | + // graphics + presentation(device, *commandCompleteSemaphore_[imageIndex], imageIndex); + } + // swapping resources + resource_index = !resource_index; + + return(resource_index); + } - /// Get the queue used to submit graphics jobs - vk::Queue presentQueue() const { return device_.getQueue(presentQueueFamily_, 0); } +#endif /// Return true if this window was created sucessfully. bool ok() const { return ok_; } /// Return the renderpass used by this window. - vk::RenderPass renderPass() const { return *renderPass_; } - - /// Return the frame buffers used by this window - const std::vector &framebuffers() const { return framebuffers_; } + vk::RenderPass const& __restrict zPass() const { return(*zPass_); } + vk::RenderPass const& __restrict downPass() const { return(*downPass_); } + vk::RenderPass const& __restrict upPass() const { return(*upPass_); } + vk::RenderPass const& __restrict midPass() const { return(*midPass_); } + vk::RenderPass const& __restrict overlayPass() const { return(*overlayPass_); } + vk::RenderPass const& __restrict postAAPass(uint32_t const index) const { return(*postAAPass_[index]); } + vk::RenderPass const& __restrict finalPass() const { return(*finalPass_); } + vk::RenderPass const& __restrict clearPass() const { return(*clearPass_); } + vk::RenderPass const& __restrict offscreenPass() const { return(*offscreenPass_); } /// Destroy resources when shutting down. ~Window() { - for (auto &iv : imageViews_) { - device_.destroyImageView(iv); - } - for (auto &f : commandBufferFences_) { - device_.destroyFence(f); - } - for (auto &f : dynamicCommandBufferFences_) { - device_.destroyFence(f); - } + +#if defined(FULLSCREEN_EXCLUSIVE) && defined(VK_EXT_full_screen_exclusive) + if (bFullScreenExclusiveOn) { + vkReleaseFullScreenExclusiveModeEXT(device_, *swapchain_); + } +#endif + + for (uint32_t fb = 0; fb < eFrameBuffers::_size(); ++fb) { + SAFE_DELETE_ARRAY(framebuffers_[fb]); + } + zPass_.release(); + downPass_.release(); + upPass_.release(); + midPass_.release(); + overlayPass_.release(); + for (uint32_t p = 0; p < _countof(postAAPass_); ++p) { + postAAPass_[p].release(); + } + finalPass_.release(); + clearPass_.release(); + offscreenPass_.release(); + + for (auto& iv : imageViews_) { + device_.destroyImageView(iv); + } + + computeDrawBuffers_.release(device_); + staticDrawBuffers_.release(device_); + dynamicDrawBuffers_.release(device_); + overlayDrawBuffers_.release(device_); + swapchain_ = vk::UniqueSwapchainKHR{}; } @@ -529,6 +2828,44 @@ class Window { /// Return the height of the display. uint32_t height() const { return height_; } + // queues // + vk::Queue const& __restrict graphicsQueue() const { return(graphicsQueue_); } + vk::Queue const& __restrict computeQueue(uint32_t const index) const { return(computeQueue_[index]); } + vk::Queue const& __restrict transferQueue(uint32_t const index) const { return(transferQueue_[index]); } + + // return image views // + vk::ImageView const colorImageView() const { return(colorImage_.imageView()); } + vk::ImageView const guiImageView() const { return(guiImage_.resolved.imageView()); } + vk::ImageView const lastColorImageView() const { return(lastColorImage_.imageView()); } + + vk::ImageView const colorVolumetricDownResCheckeredImageView() const { return(colorVolumetricImage_.checkered.imageView()); } + vk::ImageView const colorVolumetricDownResImageView() const { return(colorVolumetricImage_.resolved.imageView()); } + vk::ImageView const colorVolumetricImageView() const { return(colorVolumetricImage_.upsampled.imageView()); } + + vk::ImageView const colorReflectionDownResCheckeredImageView() const { return(colorReflectionImage_.checkered.imageView()); } + vk::ImageView const colorReflectionDownResImageView() const { return(colorReflectionImage_.resolved.imageView()); } + vk::ImageView const colorReflectionImageView() const { return(colorReflectionImage_.upsampled.imageView()); } + + vk::ImageView const offscreenImageView() const { return(offscreenImage_.resolved.imageView()); } + + vk::ImageView const depthImageView() const { return(depthImage_.imageView()); } + vk::ImageView const depthResolvedImageView(uint32_t const index) const { return(depthImageResolve_[index].imageView()); } + + // return images // + vku::ColorAttachmentImage& colorImage() { return(colorImage_); } + vku::ColorAttachmentImage& mouseImage() { return(mouseImage_.resolved); } + vku::ColorAttachmentImage& lastColorImage() { return(lastColorImage_); } + vku::TextureImageStorage2D& colorVolumetricDownResCheckeredImage() { return(colorVolumetricImage_.checkered); } + vku::TextureImageStorage2D& colorReflectionDownResCheckeredImage() { return(colorReflectionImage_.checkered); } + vku::ColorAttachmentImage& colorVolumetricImage() { return(colorVolumetricImage_.upsampled); } + vku::ColorAttachmentImage& colorReflectionImage() { return(colorReflectionImage_.upsampled); } + vku::ColorAttachmentImage& offscreenImage() { return(offscreenImage_.resolved); } + vku::ColorAttachmentImage& guiImage() { return(guiImage_.resolved); } + vku::DepthImage& depthResolvedImage(uint32_t const index) { return(depthImageResolve_[index]); } + + /// Return the format of the back buffer. + vk::Format depthImageFormat() const { return depthImage_.format(); } + /// Return the format of the back buffer. vk::Format swapchainImageFormat() const { return swapchainImageFormat_; } @@ -536,196 +2873,113 @@ class Window { vk::ColorSpaceKHR swapchainColorSpace() const { return swapchainColorSpace_; } /// Return the swapchain object - vk::SwapchainKHR swapchain() const { return *swapchain_; } - - /// Return the views of the swap chain images - const std::vector &imageViews() const { return imageViews_; } + vk::SwapchainKHR const& __restrict swapchain() const { return(*swapchain_); } /// Return the swap chain images - const std::vector &images() const { return images_; } - - /// Return the static command buffers. - const std::vector &commandBuffers() const { return staticDrawBuffers_; } - - /// Return the fences used to control the static buffers. - const std::vector &commandBufferFences() const { return commandBufferFences_; } - - /// Return the fences used to control the dynamic buffers. - const std::vector &dynamicCommandBufferFences() const { return dynamicCommandBufferFences_; } - - /// Return the semaphore signalled when an image is acquired. - vk::Semaphore imageAcquireSemaphore() const { return *imageAcquireSemaphore_; } - - /// Return the semaphore signalled when the command buffers are finished. - vk::Semaphore commandCompleteSemaphore() const { return *commandCompleteSemaphore_; } + std::vector const& __restrict images() const { return(images_); } /// Return a defult command Pool to use to create new command buffers. - vk::CommandPool commandPool() const { return *commandPool_; } + vk::CommandPool const& __restrict commandPool(eCommandPools const index) const { return(*commandPool_[index]); } /// Return the number of swap chain images. int numImageIndices() const { return (int)images_.size(); } - /// Create a new swapchain and destroy the previous one if any. - void createSwapchain() { - auto pms = physicalDevice_.getSurfacePresentModesKHR(surface_.get()); - vk::PresentModeKHR presentMode = pms[0]; - if (std::find(pms.begin(), pms.end(), vk::PresentModeKHR::eFifo) != - pms.end()) { - presentMode = vk::PresentModeKHR::eFifo; - } else { - std::cout << "No fifo mode available\n"; - return; - } - - auto surfaceCaps = physicalDevice_.getSurfaceCapabilitiesKHR(surface_.get()); - width_ = surfaceCaps.currentExtent.width; - height_ = surfaceCaps.currentExtent.height; - vk::SwapchainCreateInfoKHR swapinfo{}; - std::array queueFamilyIndices = {graphicsQueueFamilyIndex_, - presentQueueFamily_}; - bool sameQueues = queueFamilyIndices[0] == queueFamilyIndices[1]; - vk::SharingMode sharingMode = !sameQueues ? vk::SharingMode::eConcurrent - : vk::SharingMode::eExclusive; - swapinfo.imageExtent = surfaceCaps.currentExtent; - swapinfo.surface = surface_.get(); - swapinfo.minImageCount = surfaceCaps.minImageCount + 1; - swapinfo.imageFormat = swapchainImageFormat_; - swapinfo.imageColorSpace = swapchainColorSpace_; - swapinfo.imageExtent = surfaceCaps.currentExtent; - swapinfo.imageArrayLayers = 1; - swapinfo.imageUsage = vk::ImageUsageFlagBits::eColorAttachment; - swapinfo.imageSharingMode = sharingMode; - swapinfo.queueFamilyIndexCount = !sameQueues ? 2 : 0; - swapinfo.pQueueFamilyIndices = queueFamilyIndices.data(); - swapinfo.preTransform = surfaceCaps.currentTransform; - ; - swapinfo.compositeAlpha = vk::CompositeAlphaFlagBitsKHR::eOpaque; - swapinfo.presentMode = presentMode; - swapinfo.clipped = 1; - swapinfo.oldSwapchain = *swapchain_; - swapchain_ = device_.createSwapchainKHRUnique(swapinfo); - } - - void createImages() { - images_ = device_.getSwapchainImagesKHR(*swapchain_); - for (auto &iv : imageViews_) { - device_.destroyImageView(iv); - } - imageViews_.clear(); - for (auto &img : images_) { - vk::ImageViewCreateInfo ci{}; - ci.image = img; - ci.viewType = vk::ImageViewType::e2D; - ci.format = swapchainImageFormat_; - ci.subresourceRange = {vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1}; - imageViews_.emplace_back(device_.createImageView(ci)); - } - } - - void createFrameBuffers() { - framebuffers_.clear(); - for (int i = 0; i != imageViews_.size(); ++i) { - vk::ImageView attachments[2] = {imageViews_[i], - depthStencilImage_.imageView()}; - vk::FramebufferCreateInfo fbci{{}, *renderPass_, 2, attachments, - width_, height_, 1}; - framebuffers_.push_back(device_.createFramebufferUnique(fbci)); - } - } - - void createDepthStencil() { - auto memprops = physicalDevice_.getMemoryProperties(); - depthStencilImage_ = - vku::DepthStencilImage(device_, memprops, width_, height_); - } - - void createRenderPass() { // Build the renderpass using two attachments, - // colour and depth/stencil. - RenderpassMaker rpm; - - // The only colour attachment. - rpm.attachmentBegin(swapchainImageFormat_); - rpm.attachmentLoadOp(vk::AttachmentLoadOp::eClear); - rpm.attachmentStoreOp(vk::AttachmentStoreOp::eStore); - rpm.attachmentFinalLayout(vk::ImageLayout::ePresentSrcKHR); - - // The depth/stencil attachment. - rpm.attachmentBegin(depthStencilImage_.format()); - rpm.attachmentLoadOp(vk::AttachmentLoadOp::eClear); - rpm.attachmentStencilLoadOp(vk::AttachmentLoadOp::eDontCare); - rpm.attachmentFinalLayout(vk::ImageLayout::eDepthStencilAttachmentOptimal); - - // A subpass to render using the above two attachments. - rpm.subpassBegin(vk::PipelineBindPoint::eGraphics); - rpm.subpassColorAttachment(vk::ImageLayout::eColorAttachmentOptimal, 0); - rpm.subpassDepthStencilAttachment( - vk::ImageLayout::eDepthStencilAttachmentOptimal, 1); - - // A dependency to reset the layout of both attachments. - rpm.dependencyBegin(VK_SUBPASS_EXTERNAL, 0); - rpm.dependencySrcStageMask( - vk::PipelineStageFlagBits::eColorAttachmentOutput); - rpm.dependencyDstStageMask( - vk::PipelineStageFlagBits::eColorAttachmentOutput); - rpm.dependencyDstAccessMask(vk::AccessFlagBits::eColorAttachmentRead | - vk::AccessFlagBits::eColorAttachmentWrite); - - // Use the maker object to construct the vulkan object - renderPass_ = rpm.createUnique(device_); - } - - void recreate() { - device_.waitForFences(commandBufferFences_, VK_TRUE, - std::numeric_limits::max()); - - createSwapchain(); - - createImages(); - - createDepthStencil(); - - createFrameBuffers(); - - buildStaticCBs(); - } - - vk::Device device() const { return device_; } - - std::array &clearColorValue() { return clearColorValue_; } + bool const isFullScreenExclusive() const { return(bFullScreenExclusiveOn); } + bool const isHDR() const { return(bHDROn); } private: + static constexpr uint32_t const double_buffer_count = 2; // *bugfix: + static constexpr uint32_t const max_image_count = 2; // double buffering only - alternating checkerboard pattern requirement: between 2 consecutive frames the pattern resets ok A|B, A|B,,, + static constexpr uint32_t const transfer_queue_count = 2; // however for 3 consecutive the pattern is off A|B|A A|B|A (the A meets an neighbouring A) + static constexpr uint32_t const compute_queue_count = 2; + + vk::Queue + transferQueue_[transfer_queue_count], + computeQueue_[compute_queue_count], + graphicsQueue_; + + constinit static inline vk::Result _presentResult{}; + vk::Instance instance_; - vk::PhysicalDevice physicalDevice_; - uint32_t graphicsQueueFamilyIndex_; - vk::UniqueSurfaceKHR surface_; + vk::SurfaceKHR surface_; vk::UniqueSwapchainKHR swapchain_; - vk::UniqueRenderPass renderPass_; - vk::UniqueSemaphore imageAcquireSemaphore_; - vk::UniqueSemaphore commandCompleteSemaphore_; - vk::UniqueSemaphore dynamicSemaphore_; - vk::UniqueCommandPool commandPool_; + vk::UniqueRenderPass zPass_, downPass_, upPass_, midPass_, overlayPass_, postAAPass_[3], finalPass_, clearPass_, offscreenPass_; + + struct semaphores { + vk::UniqueSemaphore staticCompleteSemaphore_; + vk::UniqueSemaphore transferCompleteSemaphore_[transfer_queue_count]; + vk::UniqueSemaphore computeCompleteSemaphore_; + + } semaphores[double_buffer_count]; + + vk::UniqueSemaphore imageAcquireSemaphore_[max_image_count]; + vk::UniqueSemaphore commandCompleteSemaphore_[max_image_count]; + + vk::UniqueCommandPool commandPool_[eCommandPools::_size()]; std::vector imageViews_; std::vector images_; - std::vector commandBufferFences_; - std::vector dynamicCommandBufferFences_; - std::vector framebuffers_; - std::vector staticDrawBuffers_; - std::vector dynamicDrawBuffers_; - /// \brief Function called to recreate the static buffers on window size - /// change. - std::function func; - - vku::DepthStencilImage depthStencilImage_; - - uint32_t presentQueueFamily_ = 0; + + vk::UniqueFramebuffer* framebuffers_[eFrameBuffers::_size()] = { nullptr }; + CommandBufferContainer computeDrawBuffers_; // one for transfer, one for transfering light, one for computing light + CommandBufferContainer<1> staticDrawBuffers_; + CommandBufferContainer<1> dynamicDrawBuffers_; + CommandBufferContainer overlayDrawBuffers_; // one for transfer, one for rendering + CommandBufferContainer<1> presentDrawBuffers_; + CommandBufferContainer<1> clearDrawBuffers_; + CommandBufferContainer<1> gpuReadbackBuffers_; + + vku::ColorAttachmentImage colorImage_; // multisampled only + vku::ColorAttachmentImage lastColorImage_; // not antialiased and does not contain GUI, for that use PostAA lastColorImage - cPostProcess->h + vku::ColorAttachmentImage colorDummy_; // post aa dummy image + + struct { + vku::ColorAttachmentImage multisampled; + vku::ColorAttachmentImage resolved; + } guiImage_; + + struct { + vku::ColorAttachmentImage multisampled; + vku::ColorAttachmentImage resolved; + } offscreenImage_; + + struct { + vku::ColorAttachmentImage multisampled; + vku::ColorAttachmentImage resolved; + } mouseImage_; + + struct { + vku::TextureImageStorage2D checkered; // half-resolution + vku::ColorAttachmentImage resolved; // half-resolution + vku::ColorAttachmentImage upsampled; // full-resolution + } colorVolumetricImage_; + + struct { + vku::TextureImageStorage2D checkered; // half-resolution + vku::ColorAttachmentImage resolved; // half-resolution + vku::ColorAttachmentImage upsampled; // full-resolution + } colorReflectionImage_; + + vku::DepthAttachmentImage depthImage_; + vku::DepthImage depthImageResolve_[2]; + vku::StencilAttachmentImage stencilCheckerboard_[2]; + + uint32_t graphicsQueueFamilyIndex_ = 0; uint32_t width_; uint32_t height_; - std::array clearColorValue_{0.75f, 0.75f, 0.75f, 1}; vk::Format swapchainImageFormat_ = vk::Format::eB8G8R8A8Unorm; vk::ColorSpaceKHR swapchainColorSpace_ = vk::ColorSpaceKHR::eSrgbNonlinear; vk::Device device_; + // neccessary for swapchain hot recreation: + vk::PhysicalDevice physicalDevice_; + HMONITOR monitor_ = nullptr; bool ok_ = false; + + vku::double_buffer staticCommandsDirty_{ false, false }; + + // extensions enabled & active ? // + bool bFullScreenExclusiveOn = false; + bool bHDROn = false; }; } // namespace vku diff --git a/include/vku/vma/.gitignore b/include/vku/vma/.gitignore new file mode 100644 index 0000000..dc84959 --- /dev/null +++ b/include/vku/vma/.gitignore @@ -0,0 +1,2 @@ +build/ + diff --git a/include/vku/vma/CHANGELOG.md b/include/vku/vma/CHANGELOG.md new file mode 100644 index 0000000..218a98b --- /dev/null +++ b/include/vku/vma/CHANGELOG.md @@ -0,0 +1,123 @@ +# 2.3.0 (2019-12-04) + +Major release after a year of development in "master" branch and feature branches. Notable new features: supporting Vulkan 1.1, supporting query for memory budget. + +Major changes: + +- Added support for Vulkan 1.1. + - Added member `VmaAllocatorCreateInfo::vulkanApiVersion`. + - When Vulkan 1.1 is used, there is no need to enable VK_KHR_dedicated_allocation or VK_KHR_bind_memory2 extensions, as they are promoted to Vulkan itself. +- Added support for query for memory budget and staying within the budget. + - Added function `vmaGetBudget`, structure `VmaBudget`. This can also serve as simple statistics, more efficient than `vmaCalculateStats`. + - By default the budget it is estimated based on memory heap sizes. It may be queried from the system using VK_EXT_memory_budget extension if you use `VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT` flag and `VmaAllocatorCreateInfo::instance` member. + - Added flag `VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT` that fails an allocation if it would exceed the budget. +- Added new memory usage options: + - `VMA_MEMORY_USAGE_CPU_COPY` for memory that is preferably not `DEVICE_LOCAL` but not guaranteed to be `HOST_VISIBLE`. + - `VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED` for memory that is `LAZILY_ALLOCATED`. +- Added support for VK_KHR_bind_memory2 extension: + - Added `VMA_ALLOCATION_CREATE_DONT_BIND_BIT` flag that lets you create both buffer/image and allocation, but don't bind them together. + - Added flag `VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT`, functions `vmaBindBufferMemory2`, `vmaBindImageMemory2` that let you specify additional local offset and `pNext` pointer while binding. +- Added functions `vmaSetPoolName`, `vmaGetPoolName` that let you assign string names to custom pools. JSON dump file format and VmaDumpVis tool is updated to show these names. +- Defragmentation is legal only on buffers and images in `VK_IMAGE_TILING_LINEAR`. This is due to the way it is currently implemented in the library and the restrictions of the Vulkan specification. Clarified documentation in this regard. See discussion in #59. + +Minor changes: + +- Made `vmaResizeAllocation` function deprecated, always returning failure. +- Made changes in the internal algorithm for the choice of memory type. Be careful! You may now get a type that is not `HOST_VISIBLE` or `HOST_COHERENT` if it's not stated as always ensured by some `VMA_MEMORY_USAGE_*` flag. +- Extended VmaReplay application with more detailed statistics printed at the end. +- Added macros `VMA_CALL_PRE`, `VMA_CALL_POST` that let you decorate declarations of all library functions if you want to e.g. export/import them as dynamically linked library. +- Optimized `VmaAllocation` objects to be allocated out of an internal free-list allocator. This makes allocation and deallocation causing 0 dynamic CPU heap allocations on average. +- Updated recording CSV file format version to 1.8, to support new functions. +- Many additions and fixes in documentation. Many compatibility fixes for various compilers and platforms. Other internal bugfixes, optimizations, updates, refactoring... + +# 2.2.0 (2018-12-13) + +Major release after many months of development in "master" branch and feature branches. Notable new features: defragmentation of GPU memory, buddy algorithm, convenience functions for sparse binding. + +Major changes: + +- New, more powerful defragmentation: + - Added structure `VmaDefragmentationInfo2`, functions `vmaDefragmentationBegin`, `vmaDefragmentationEnd`. + - Added support for defragmentation of GPU memory. + - Defragmentation of CPU memory now uses `memmove`, so it can move data to overlapping regions. + - Defragmentation of CPU memory is now available for memory types that are `HOST_VISIBLE` but not `HOST_COHERENT`. + - Added structure member `VmaVulkanFunctions::vkCmdCopyBuffer`. + - Major internal changes in defragmentation algorithm. + - VmaReplay: added parameters: `--DefragmentAfterLine`, `--DefragmentationFlags`. + - Old interface (structure `VmaDefragmentationInfo`, function `vmaDefragment`) is now deprecated. +- Added buddy algorithm, available for custom pools - flag `VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT`. +- Added convenience functions for multiple allocations and deallocations at once, intended for sparse binding resources - functions `vmaAllocateMemoryPages`, `vmaFreeMemoryPages`. +- Added function that tries to resize existing allocation in place: `vmaResizeAllocation`. +- Added flags for allocation strategy: `VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT`, `VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT`, `VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT`, and their aliases: `VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT`, `VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT`, `VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT`. + +Minor changes: + +- Changed behavior of allocation functions to return `VK_ERROR_VALIDATION_FAILED_EXT` when trying to allocate memory of size 0, create buffer with size 0, or image with one of the dimensions 0. +- VmaReplay: Added support for Windows end of lines. +- Updated recording CSV file format version to 1.5, to support new functions. +- Internal optimization: using read-write mutex on some platforms. +- Many additions and fixes in documentation. Many compatibility fixes for various compilers. Other internal bugfixes, optimizations, refactoring, added more internal validation... + +# 2.1.0 (2018-09-10) + +Minor bugfixes. + +# 2.1.0-beta.1 (2018-08-27) + +Major release after many months of development in "development" branch and features branches. Many new features added, some bugs fixed. API stays backward-compatible. + +Major changes: + +- Added linear allocation algorithm, accessible for custom pools, that can be used as free-at-once, stack, double stack, or ring buffer. See "Linear allocation algorithm" documentation chapter. + - Added `VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT`, `VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT`. +- Added feature to record sequence of calls to the library to a file and replay it using dedicated application. See documentation chapter "Record and replay". + - Recording: added `VmaAllocatorCreateInfo::pRecordSettings`. + - Replaying: added VmaReplay project. + - Recording file format: added document "docs/Recording file format.md". +- Improved support for non-coherent memory. + - Added functions: `vmaFlushAllocation`, `vmaInvalidateAllocation`. + - `nonCoherentAtomSize` is now respected automatically. + - Added `VmaVulkanFunctions::vkFlushMappedMemoryRanges`, `vkInvalidateMappedMemoryRanges`. +- Improved debug features related to detecting incorrect mapped memory usage. See documentation chapter "Debugging incorrect memory usage". + - Added debug macro `VMA_DEBUG_DETECT_CORRUPTION`, functions `vmaCheckCorruption`, `vmaCheckPoolCorruption`. + - Added debug macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to initialize contents of allocations with a bit pattern. + - Changed behavior of `VMA_DEBUG_MARGIN` macro - it now adds margin also before first and after last allocation in a block. +- Changed format of JSON dump returned by `vmaBuildStatsString` (not backward compatible!). + - Custom pools and memory blocks now have IDs that don't change after sorting. + - Added properties: "CreationFrameIndex", "LastUseFrameIndex", "Usage". + - Changed VmaDumpVis tool to use these new properties for better coloring. + - Changed behavior of `vmaGetAllocationInfo` and `vmaTouchAllocation` to update `allocation.lastUseFrameIndex` even if allocation cannot become lost. + +Minor changes: + +- Changes in custom pools: + - Added new structure member `VmaPoolStats::blockCount`. + - Changed behavior of `VmaPoolCreateInfo::blockSize` = 0 (default) - it now means that pool may use variable block sizes, just like default pools do. +- Improved logic of `vmaFindMemoryTypeIndex` for some cases, especially integrated GPUs. +- VulkanSample application: Removed dependency on external library MathFu. Added own vector and matrix structures. +- Changes that improve compatibility with various platforms, including: Visual Studio 2012, 32-bit code, C compilers. + - Changed usage of "VK_KHR_dedicated_allocation" extension in the code to be optional, driven by macro `VMA_DEDICATED_ALLOCATION`, for compatibility with Android. +- Many additions and fixes in documentation, including description of new features, as well as "Validation layer warnings". +- Other bugfixes. + +# 2.0.0 (2018-03-19) + +A major release with many compatibility-breaking changes. + +Notable new features: + +- Introduction of `VmaAllocation` handle that you must retrieve from allocation functions and pass to deallocation functions next to normal `VkBuffer` and `VkImage`. +- Introduction of `VmaAllocationInfo` structure that you can retrieve from `VmaAllocation` handle to access parameters of the allocation (like `VkDeviceMemory` and offset) instead of retrieving them directly from allocation functions. +- Support for reference-counted mapping and persistently mapped allocations - see `vmaMapMemory`, `VMA_ALLOCATION_CREATE_MAPPED_BIT`. +- Support for custom memory pools - see `VmaPool` handle, `VmaPoolCreateInfo` structure, `vmaCreatePool` function. +- Support for defragmentation (compaction) of allocations - see function `vmaDefragment` and related structures. +- Support for "lost allocations" - see appropriate chapter on documentation Main Page. + +# 1.0.1 (2017-07-04) + +- Fixes for Linux GCC compilation. +- Changed "CONFIGURATION SECTION" to contain #ifndef so you can define these macros before including this header, not necessarily change them in the file. + +# 1.0.0 (2017-06-16) + +First public release. diff --git a/include/vku/vma/LICENSE.txt b/include/vku/vma/LICENSE.txt new file mode 100644 index 0000000..67b0d01 --- /dev/null +++ b/include/vku/vma/LICENSE.txt @@ -0,0 +1,19 @@ +Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. diff --git a/include/vku/vma/README.md b/include/vku/vma/README.md new file mode 100644 index 0000000..030b517 --- /dev/null +++ b/include/vku/vma/README.md @@ -0,0 +1,122 @@ +# Vulkan Memory Allocator + +Easy to integrate Vulkan memory allocation library. + +**Documentation:** See [Vulkan Memory Allocator](https://gpuopen-librariesandsdks.github.io/VulkanMemoryAllocator/html/) (generated from Doxygen-style comments in [src/vk_mem_alloc.h](src/vk_mem_alloc.h)) + +**License:** MIT. See [LICENSE.txt](LICENSE.txt) + +**Changelog:** See [CHANGELOG.md](CHANGELOG.md) + +**Product page:** [Vulkan Memory Allocator on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/) + +**Build status:** + +- Windows: [![Build status](https://ci.appveyor.com/api/projects/status/4vlcrb0emkaio2pn/branch/master?svg=true)](https://ci.appveyor.com/project/adam-sawicki-amd/vulkanmemoryallocator/branch/master) +- Linux: [![Build Status](https://travis-ci.org/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator.svg?branch=master)](https://travis-ci.org/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator) + +# Problem + +Memory allocation and resource (buffer and image) creation in Vulkan is difficult (comparing to older graphics API-s, like D3D11 or OpenGL) for several reasons: + +- It requires a lot of boilerplate code, just like everything else in Vulkan, because it is a low-level and high-performance API. +- There is additional level of indirection: `VkDeviceMemory` is allocated separately from creating `VkBuffer`/`VkImage` and they must be bound together. +- Driver must be queried for supported memory heaps and memory types. Different IHVs provide different types of it. +- It is recommended practice to allocate bigger chunks of memory and assign parts of them to particular resources. + +# Features + +This library can help game developers to manage memory allocations and resource creation by offering some higher-level functions: + +1. Functions that help to choose correct and optimal memory type based on intended usage of the memory. + - Required or preferred traits of the memory are expressed using higher-level description comparing to Vulkan flags. +2. Functions that allocate memory blocks, reserve and return parts of them (`VkDeviceMemory` + offset + size) to the user. + - Library keeps track of allocated memory blocks, used and unused ranges inside them, finds best matching unused ranges for new allocations, respects all the rules of alignment and buffer/image granularity. +3. Functions that can create an image/buffer, allocate memory for it and bind them together - all in one call. + +Additional features: + +- Well-documented - description of all functions and structures provided, along with chapters that contain general description and example code. +- Thread-safety: Library is designed to be used by multithreaded code. +- Configuration: Fill optional members of CreateInfo structure to provide custom CPU memory allocator, pointers to Vulkan functions and other parameters. +- Customization: Predefine appropriate macros to provide your own implementation of all external facilities used by the library, from assert, mutex, and atomic, to vector and linked list. +- Support for memory mapping, reference-counted internally. Support for persistently mapped memory: Just allocate with appropriate flag and you get access to mapped pointer. +- Support for memory budget. VK_EXT_memory_budget extension is used internally if available to query for current usage and budget. If not available, it falls back to an estimation based on memory heap sizes. +- Support for non-coherent memory. Functions that flush/invalidate memory. `nonCoherentAtomSize` is respected automatically. +- Support for sparse binding and sparse residency: Convenience functions that allocate or free multiple memory pages at once. +- Custom memory pools: Create a pool with desired parameters (e.g. fixed or limited maximum size) and allocate memory out of it. +- Linear allocator: Create a pool with linear algorithm and use it for much faster allocations and deallocations in free-at-once, stack, double stack, or ring buffer fashion. +- Support for Vulkan 1.0 as well as 1.1. +- Support for VK_KHR_dedicated_allocation extension: Just enable it and it will be used automatically by the library. +- Defragmentation of GPU and CPU memory: Let the library move data around to free some memory blocks and make your allocations better compacted. +- Lost allocations: Allocate memory with appropriate flags and let the library remove allocations that are not used for many frames to make room for new ones. +- Statistics: Obtain detailed statistics about the amount of memory used, unused, number of allocated blocks, number of allocations etc. - globally, per memory heap, and per memory type. +- Debug annotations: Associate string with name or opaque pointer to your own data with every allocation. +- JSON dump: Obtain a string in JSON format with detailed map of internal state, including list of allocations and gaps between them. +- Convert this JSON dump into a picture to visualize your memory. See [tools/VmaDumpVis](tools/VmaDumpVis/README.md). +- Debugging incorrect memory usage: Enable initialization of all allocated memory with a bit pattern to detect usage of uninitialized or freed memory. Enable validation of a magic number before and after every allocation to detect out-of-bounds memory corruption. +- Record and replay sequence of calls to library functions to a file to check correctness, measure performance, and gather statistics. + +# Prequisites + +- Self-contained C++ library in single header file. No external dependencies other than standard C and C++ library and of course Vulkan. STL containers are not used by default. +- Public interface in C, in same convention as Vulkan API. Implementation in C++. +- Error handling implemented by returning `VkResult` error codes - same way as in Vulkan. +- Interface documented using Doxygen-style comments. +- Platform-independent, but developed and tested on Windows using Visual Studio. Continuous integration setup for Windows and Linux. Used also on Android, MacOS, and other platforms. + +# Example + +Basic usage of this library is very simple. Advanced features are optional. After you created global `VmaAllocator` object, a complete code needed to create a buffer may look like this: + +```cpp +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufferInfo.size = 65536; +bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +``` + +With this one function call: + +1. `VkBuffer` is created. +2. `VkDeviceMemory` block is allocated if needed. +3. An unused region of the memory block is bound to this buffer. + +`VmaAllocation` is an object that represents memory assigned to this buffer. It can be queried for parameters like Vulkan memory handle and offset. + +# Read more + +See **[Documentation](https://gpuopen-librariesandsdks.github.io/VulkanMemoryAllocator/html/)**. + +# Software using this library + +- **[Vulkan Samples](https://github.com/LunarG/VulkanSamples)** - official Khronos Vulkan samples. License: Apache-style. +- **[Anvil](https://github.com/GPUOpen-LibrariesAndSDKs/Anvil)** - cross-platform framework for Vulkan. License: MIT. +- **[Filament](https://github.com/google/filament)** - physically based rendering engine for Android, Windows, Linux and macOS, from Google. Apache License 2.0. +- **[Flax Engine](https://flaxengine.com/)** +- **[Lightweight Java Game Library (LWJGL)](https://www.lwjgl.org/)** - includes binding of the library for Java. License: BSD. +- **[PowerVR SDK](https://github.com/powervr-graphics/Native_SDK)** - C++ cross-platform 3D graphics SDK, from Imagination. License: MIT. +- **[Skia](https://github.com/google/skia)** - complete 2D graphic library for drawing Text, Geometries, and Images, from Google. +- **[The Forge](https://github.com/ConfettiFX/The-Forge)** - cross-platform rendering framework. Apache License 2.0. +- **[VK9](https://github.com/disks86/VK9)** - Direct3D 9 compatibility layer using Vulkan. Zlib lincese. +- **[vkDOOM3](https://github.com/DustinHLand/vkDOOM3)** - Vulkan port of GPL DOOM 3 BFG Edition. License: GNU GPL. +- **[vkQuake2](https://github.com/kondrak/vkQuake2)** - vanilla Quake 2 with Vulkan support. License: GNU GPL. +- **[Vulkan Best Practice for Mobile Developers](https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers)** from ARM. License: MIT. + +[Many other projects on GitHub](https://github.com/search?q=AMD_VULKAN_MEMORY_ALLOCATOR_H&type=Code) and some game development studios that use Vulkan in their games. + +# See also + +- **[D3D12 Memory Allocator](https://github.com/GPUOpen-LibrariesAndSDKs/D3D12MemoryAllocator)** - equivalent library for Direct3D 12. License: MIT. +- **[Awesome Vulkan](https://github.com/vinjn/awesome-vulkan)** - a curated list of awesome Vulkan libraries, debuggers and resources. +- **[VulkanMemoryAllocator-Hpp](https://github.com/malte-v/VulkanMemoryAllocator-Hpp)** - C++ binding for this library. License: CC0-1.0. +- **[PyVMA](https://github.com/realitix/pyvma)** - Python wrapper for this library. Author: Jean-Sébastien B. (@realitix). License: Apache 2.0. +- **[vk-mem](https://github.com/gwihlidal/vk-mem-rs)** - Rust binding for this library. Author: Graham Wihlidal. License: Apache 2.0 or MIT. +- **[vma_sample_sdl](https://github.com/rextimmy/vma_sample_sdl)** - SDL port of the sample app of this library (with the goal of running it on multiple platforms, including MacOS). Author: @rextimmy. License: MIT. +- **[vulkan-malloc](https://github.com/dylanede/vulkan-malloc)** - Vulkan memory allocation library for Rust. Based on version 1 of this library. Author: Dylan Ede (@dylanede). License: MIT / Apache 2.0. diff --git a/include/vku/vma/vk_mem_alloc.h b/include/vku/vma/vk_mem_alloc.h new file mode 100644 index 0000000..bdb4ff5 --- /dev/null +++ b/include/vku/vma/vk_mem_alloc.h @@ -0,0 +1,19604 @@ +// +// Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved. +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +// THE SOFTWARE. +// + +#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H +#define AMD_VULKAN_MEMORY_ALLOCATOR_H + +/** \mainpage Vulkan Memory Allocator + +Version 3.0.1 (2022-05-26) + +Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved. \n +License: MIT + +API documentation divided into groups: [Modules](modules.html) + +\section main_table_of_contents Table of contents + +- User guide + - \subpage quick_start + - [Project setup](@ref quick_start_project_setup) + - [Initialization](@ref quick_start_initialization) + - [Resource allocation](@ref quick_start_resource_allocation) + - \subpage choosing_memory_type + - [Usage](@ref choosing_memory_type_usage) + - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags) + - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types) + - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools) + - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations) + - \subpage memory_mapping + - [Mapping functions](@ref memory_mapping_mapping_functions) + - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory) + - [Cache flush and invalidate](@ref memory_mapping_cache_control) + - \subpage staying_within_budget + - [Querying for budget](@ref staying_within_budget_querying_for_budget) + - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage) + - \subpage resource_aliasing + - \subpage custom_memory_pools + - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex) + - [Linear allocation algorithm](@ref linear_algorithm) + - [Free-at-once](@ref linear_algorithm_free_at_once) + - [Stack](@ref linear_algorithm_stack) + - [Double stack](@ref linear_algorithm_double_stack) + - [Ring buffer](@ref linear_algorithm_ring_buffer) + - \subpage defragmentation + - \subpage statistics + - [Numeric statistics](@ref statistics_numeric_statistics) + - [JSON dump](@ref statistics_json_dump) + - \subpage allocation_annotation + - [Allocation user data](@ref allocation_user_data) + - [Allocation names](@ref allocation_names) + - \subpage virtual_allocator + - \subpage debugging_memory_usage + - [Memory initialization](@ref debugging_memory_usage_initialization) + - [Margins](@ref debugging_memory_usage_margins) + - [Corruption detection](@ref debugging_memory_usage_corruption_detection) + - \subpage opengl_interop +- \subpage usage_patterns + - [GPU-only resource](@ref usage_patterns_gpu_only) + - [Staging copy for upload](@ref usage_patterns_staging_copy_upload) + - [Readback](@ref usage_patterns_readback) + - [Advanced data uploading](@ref usage_patterns_advanced_data_uploading) + - [Other use cases](@ref usage_patterns_other_use_cases) +- \subpage configuration + - [Pointers to Vulkan functions](@ref config_Vulkan_functions) + - [Custom host memory allocator](@ref custom_memory_allocator) + - [Device memory allocation callbacks](@ref allocation_callbacks) + - [Device heap memory limit](@ref heap_memory_limit) +- Extension support + - \subpage vk_khr_dedicated_allocation + - \subpage enabling_buffer_device_address + - \subpage vk_ext_memory_priority + - \subpage vk_amd_device_coherent_memory +- \subpage general_considerations + - [Thread safety](@ref general_considerations_thread_safety) + - [Versioning and compatibility](@ref general_considerations_versioning_and_compatibility) + - [Validation layer warnings](@ref general_considerations_validation_layer_warnings) + - [Allocation algorithm](@ref general_considerations_allocation_algorithm) + - [Features not supported](@ref general_considerations_features_not_supported) + +\section main_see_also See also + +- [**Product page on GPUOpen**](https://gpuopen.com/gaming-product/vulkan-memory-allocator/) +- [**Source repository on GitHub**](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator) + +\defgroup group_init Library initialization + +\brief API elements related to the initialization and management of the entire library, especially #VmaAllocator object. + +\defgroup group_alloc Memory allocation + +\brief API elements related to the allocation, deallocation, and management of Vulkan memory, buffers, images. +Most basic ones being: vmaCreateBuffer(), vmaCreateImage(). + +\defgroup group_virtual Virtual allocator + +\brief API elements related to the mechanism of \ref virtual_allocator - using the core allocation algorithm +for user-defined purpose without allocating any real GPU memory. + +\defgroup group_stats Statistics + +\brief API elements that query current status of the allocator, from memory usage, budget, to full dump of the internal state in JSON format. +See documentation chapter: \ref statistics. +*/ + + +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef VULKAN_H_ + #include +#endif + +#if !defined(VMA_VULKAN_VERSION) + #if defined(VK_VERSION_1_3) + #define VMA_VULKAN_VERSION 1003000 + #elif defined(VK_VERSION_1_2) + #define VMA_VULKAN_VERSION 1002000 + #elif defined(VK_VERSION_1_1) + #define VMA_VULKAN_VERSION 1001000 + #else + #define VMA_VULKAN_VERSION 1000000 + #endif +#endif + +#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS + extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; + extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; + extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; + extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; + extern PFN_vkAllocateMemory vkAllocateMemory; + extern PFN_vkFreeMemory vkFreeMemory; + extern PFN_vkMapMemory vkMapMemory; + extern PFN_vkUnmapMemory vkUnmapMemory; + extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; + extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; + extern PFN_vkBindBufferMemory vkBindBufferMemory; + extern PFN_vkBindImageMemory vkBindImageMemory; + extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; + extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; + extern PFN_vkCreateBuffer vkCreateBuffer; + extern PFN_vkDestroyBuffer vkDestroyBuffer; + extern PFN_vkCreateImage vkCreateImage; + extern PFN_vkDestroyImage vkDestroyImage; + extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer; + #if VMA_VULKAN_VERSION >= 1001000 + extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; + extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; + extern PFN_vkBindBufferMemory2 vkBindBufferMemory2; + extern PFN_vkBindImageMemory2 vkBindImageMemory2; + extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2; + #endif // #if VMA_VULKAN_VERSION >= 1001000 +#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES + +#if !defined(VMA_DEDICATED_ALLOCATION) + #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation + #define VMA_DEDICATED_ALLOCATION 1 + #else + #define VMA_DEDICATED_ALLOCATION 0 + #endif +#endif + +#if !defined(VMA_BIND_MEMORY2) + #if VK_KHR_bind_memory2 + #define VMA_BIND_MEMORY2 1 + #else + #define VMA_BIND_MEMORY2 0 + #endif +#endif + +#if !defined(VMA_MEMORY_BUDGET) + #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000) + #define VMA_MEMORY_BUDGET 1 + #else + #define VMA_MEMORY_BUDGET 0 + #endif +#endif + +// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers. +#if !defined(VMA_BUFFER_DEVICE_ADDRESS) + #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000 + #define VMA_BUFFER_DEVICE_ADDRESS 1 + #else + #define VMA_BUFFER_DEVICE_ADDRESS 0 + #endif +#endif + +// Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers. +#if !defined(VMA_MEMORY_PRIORITY) + #if VK_EXT_memory_priority + #define VMA_MEMORY_PRIORITY 1 + #else + #define VMA_MEMORY_PRIORITY 0 + #endif +#endif + +// Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers. +#if !defined(VMA_EXTERNAL_MEMORY) + #if VK_KHR_external_memory + #define VMA_EXTERNAL_MEMORY 1 + #else + #define VMA_EXTERNAL_MEMORY 0 + #endif +#endif + +// Define these macros to decorate all public functions with additional code, +// before and after returned type, appropriately. This may be useful for +// exporting the functions when compiling VMA as a separate library. Example: +// #define VMA_CALL_PRE __declspec(dllexport) +// #define VMA_CALL_POST __cdecl +#ifndef VMA_CALL_PRE + #define VMA_CALL_PRE +#endif +#ifndef VMA_CALL_POST + #define VMA_CALL_POST +#endif + +// Define this macro to decorate pointers with an attribute specifying the +// length of the array they point to if they are not null. +// +// The length may be one of +// - The name of another parameter in the argument list where the pointer is declared +// - The name of another member in the struct where the pointer is declared +// - The name of a member of a struct type, meaning the value of that member in +// the context of the call. For example +// VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"), +// this means the number of memory heaps available in the device associated +// with the VmaAllocator being dealt with. +#ifndef VMA_LEN_IF_NOT_NULL + #define VMA_LEN_IF_NOT_NULL(len) +#endif + +// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang. +// see: https://clang.llvm.org/docs/AttributeReference.html#nullable +#ifndef VMA_NULLABLE + #ifdef __clang__ + #define VMA_NULLABLE _Nullable + #else + #define VMA_NULLABLE + #endif +#endif + +// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang. +// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull +#ifndef VMA_NOT_NULL + #ifdef __clang__ + #define VMA_NOT_NULL _Nonnull + #else + #define VMA_NOT_NULL + #endif +#endif + +// If non-dispatchable handles are represented as pointers then we can give +// then nullability annotations +#ifndef VMA_NOT_NULL_NON_DISPATCHABLE + #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) + #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL + #else + #define VMA_NOT_NULL_NON_DISPATCHABLE + #endif +#endif + +#ifndef VMA_NULLABLE_NON_DISPATCHABLE + #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) + #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE + #else + #define VMA_NULLABLE_NON_DISPATCHABLE + #endif +#endif + +#ifndef VMA_STATS_STRING_ENABLED + #define VMA_STATS_STRING_ENABLED 1 +#endif + +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// +// +// INTERFACE +// +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// + +// Sections for managing code placement in file, only for development purposes e.g. for convenient folding inside an IDE. +#ifndef _VMA_ENUM_DECLARATIONS + +/** +\addtogroup group_init +@{ +*/ + +/// Flags for created #VmaAllocator. +typedef enum VmaAllocatorCreateFlagBits +{ + /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. + + Using this flag may increase performance because internal mutexes are not used. + */ + VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001, + /** \brief Enables usage of VK_KHR_dedicated_allocation extension. + + The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. + When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. + + Using this extension will automatically allocate dedicated blocks of memory for + some buffers and images instead of suballocating place for them out of bigger + memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT + flag) when it is recommended by the driver. It may improve performance on some + GPUs. + + You may set this flag only if you found out that following device extensions are + supported, you enabled them while creating Vulkan device passed as + VmaAllocatorCreateInfo::device, and you want them to be used internally by this + library: + + - VK_KHR_get_memory_requirements2 (device extension) + - VK_KHR_dedicated_allocation (device extension) + + When this flag is set, you can experience following warnings reported by Vulkan + validation layer. You can ignore them. + + > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer. + */ + VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002, + /** + Enables usage of VK_KHR_bind_memory2 extension. + + The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. + When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. + + You may set this flag only if you found out that this device extension is supported, + you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, + and you want it to be used internally by this library. + + The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`, + which allow to pass a chain of `pNext` structures while binding. + This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2(). + */ + VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004, + /** + Enables usage of VK_EXT_memory_budget extension. + + You may set this flag only if you found out that this device extension is supported, + you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, + and you want it to be used internally by this library, along with another instance extension + VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted). + + The extension provides query for current memory usage and budget, which will probably + be more accurate than an estimation used by the library otherwise. + */ + VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008, + /** + Enables usage of VK_AMD_device_coherent_memory extension. + + You may set this flag only if you: + + - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, + - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device, + - want it to be used internally by this library. + + The extension and accompanying device feature provide access to memory types with + `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags. + They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR. + + When the extension is not enabled, such memory types are still enumerated, but their usage is illegal. + To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type, + returning `VK_ERROR_FEATURE_NOT_PRESENT`. + */ + VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010, + /** + Enables usage of "buffer device address" feature, which allows you to use function + `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader. + + You may set this flag only if you: + + 1. (For Vulkan version < 1.2) Found as available and enabled device extension + VK_KHR_buffer_device_address. + This extension is promoted to core Vulkan 1.2. + 2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`. + + When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA. + The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to + allocated memory blocks wherever it might be needed. + + For more information, see documentation chapter \ref enabling_buffer_device_address. + */ + VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020, + /** + Enables usage of VK_EXT_memory_priority extension in the library. + + You may set this flag only if you found available and enabled this device extension, + along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`, + while creating Vulkan device passed as VmaAllocatorCreateInfo::device. + + When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority + are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored. + + A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. + Larger values are higher priority. The granularity of the priorities is implementation-dependent. + It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`. + The value to be used for default priority is 0.5. + For more details, see the documentation of the VK_EXT_memory_priority extension. + */ + VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040, + + VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaAllocatorCreateFlagBits; +/// See #VmaAllocatorCreateFlagBits. +typedef VkFlags VmaAllocatorCreateFlags; + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/// \brief Intended usage of the allocated memory. +typedef enum VmaMemoryUsage +{ + /** No intended memory usage specified. + Use other members of VmaAllocationCreateInfo to specify your requirements. + */ + VMA_MEMORY_USAGE_UNKNOWN = 0, + /** + \deprecated Obsolete, preserved for backward compatibility. + Prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. + */ + VMA_MEMORY_USAGE_GPU_ONLY = 1, + /** + \deprecated Obsolete, preserved for backward compatibility. + Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`. + */ + VMA_MEMORY_USAGE_CPU_ONLY = 2, + /** + \deprecated Obsolete, preserved for backward compatibility. + Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. + */ + VMA_MEMORY_USAGE_CPU_TO_GPU = 3, + /** + \deprecated Obsolete, preserved for backward compatibility. + Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`. + */ + VMA_MEMORY_USAGE_GPU_TO_CPU = 4, + /** + \deprecated Obsolete, preserved for backward compatibility. + Prefers not `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. + */ + VMA_MEMORY_USAGE_CPU_COPY = 5, + /** + Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`. + Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation. + + Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`. + + Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + */ + VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6, + /** + Selects best memory type automatically. + This flag is recommended for most common use cases. + + When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), + you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT + in VmaAllocationCreateInfo::flags. + + It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. + vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() + and not with generic memory allocation functions. + */ + VMA_MEMORY_USAGE_AUTO = 7, + /** + Selects best memory type automatically with preference for GPU (device) memory. + + When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), + you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT + in VmaAllocationCreateInfo::flags. + + It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. + vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() + and not with generic memory allocation functions. + */ + VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE = 8, + /** + Selects best memory type automatically with preference for CPU (host) memory. + + When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), + you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT + in VmaAllocationCreateInfo::flags. + + It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. + vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() + and not with generic memory allocation functions. + */ + VMA_MEMORY_USAGE_AUTO_PREFER_HOST = 9, + + VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF +} VmaMemoryUsage; + +/// Flags to be passed as VmaAllocationCreateInfo::flags. +typedef enum VmaAllocationCreateFlagBits +{ + /** \brief Set this flag if the allocation should have its own memory block. + + Use it for special, big resources, like fullscreen images used as attachments. + */ + VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001, + + /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block. + + If new allocation cannot be placed in any of the existing blocks, allocation + fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. + + You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and + #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense. + */ + VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002, + /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it. + + Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData. + + It is valid to use this flag for allocation made from memory type that is not + `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is + useful if you need an allocation that is efficient to use on GPU + (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that + support it (e.g. Intel GPU). + */ + VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004, + /** \deprecated Preserved for backward compatibility. Consider using vmaSetAllocationName() instead. + + Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a + null-terminated string. Instead of copying pointer value, a local copy of the + string is made and stored in allocation's `pName`. The string is automatically + freed together with the allocation. It is also used in vmaBuildStatsString(). + */ + VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020, + /** Allocation will be created from upper stack in a double stack pool. + + This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag. + */ + VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040, + /** Create both buffer/image and allocation, but don't bind them together. + It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions. + The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage(). + Otherwise it is ignored. + + If you want to make sure the new buffer/image is not tied to the new memory allocation + through `VkMemoryDedicatedAllocateInfoKHR` structure in case the allocation ends up in its own memory block, + use also flag #VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT. + */ + VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080, + /** Create allocation only if additional device memory required for it, if any, won't exceed + memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + */ + VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100, + /** \brief Set this flag if the allocated memory will have aliasing resources. + + Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified. + Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors. + */ + VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200, + /** + Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT). + + - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value, + you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect. + - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`. + This includes allocations created in \ref custom_memory_pools. + + Declares that mapped memory will only be written sequentially, e.g. using `memcpy()` or a loop writing number-by-number, + never read or accessed randomly, so a memory type can be selected that is uncached and write-combined. + + \warning Violating this declaration may work correctly, but will likely be very slow. + Watch out for implicit reads introduced by doing e.g. `pMappedData[i] += x;` + Better prepare your data in a local variable and `memcpy()` it to the mapped pointer all at once. + */ + VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT = 0x00000400, + /** + Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT). + + - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value, + you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect. + - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`. + This includes allocations created in \ref custom_memory_pools. + + Declares that mapped memory can be read, written, and accessed in random order, + so a `HOST_CACHED` memory type is required. + */ + VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT = 0x00000800, + /** + Together with #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT, + it says that despite request for host access, a not-`HOST_VISIBLE` memory type can be selected + if it may improve performance. + + By using this flag, you declare that you will check if the allocation ended up in a `HOST_VISIBLE` memory type + (e.g. using vmaGetAllocationMemoryProperties()) and if not, you will create some "staging" buffer and + issue an explicit transfer to write/read your data. + To prepare for this possibility, don't forget to add appropriate flags like + `VK_BUFFER_USAGE_TRANSFER_DST_BIT`, `VK_BUFFER_USAGE_TRANSFER_SRC_BIT` to the parameters of created buffer or image. + */ + VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT = 0x00001000, + /** Allocation strategy that chooses smallest possible free range for the allocation + to minimize memory usage and fragmentation, possibly at the expense of allocation time. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = 0x00010000, + /** Allocation strategy that chooses first suitable free range for the allocation - + not necessarily in terms of the smallest offset but the one that is easiest and fastest to find + to minimize allocation time, possibly at the expense of allocation quality. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = 0x00020000, + /** Allocation strategy that chooses always the lowest offset in available space. + This is not the most efficient strategy but achieves highly packed data. + Used internally by defragmentation, not recomended in typical usage. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = 0x00040000, + /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT. + */ + VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT, + /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT. + */ + VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, + /** A bit mask to extract only `STRATEGY` bits from entire set of flags. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MASK = + VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT | + VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT | + VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, + + VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaAllocationCreateFlagBits; +/// See #VmaAllocationCreateFlagBits. +typedef VkFlags VmaAllocationCreateFlags; + +/// Flags to be passed as VmaPoolCreateInfo::flags. +typedef enum VmaPoolCreateFlagBits +{ + /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored. + + This is an optional optimization flag. + + If you always allocate using vmaCreateBuffer(), vmaCreateImage(), + vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator + knows exact type of your allocations so it can handle Buffer-Image Granularity + in the optimal way. + + If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(), + exact type of such allocations is not known, so allocator must be conservative + in handling Buffer-Image Granularity, which can lead to suboptimal allocation + (wasted memory). In that case, if you can make sure you always allocate only + buffers and linear images or only optimal images out of this pool, use this flag + to make allocator disregard Buffer-Image Granularity and so make allocations + faster and more optimal. + */ + VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002, + + /** \brief Enables alternative, linear allocation algorithm in this pool. + + Specify this flag to enable linear allocation algorithm, which always creates + new allocations after last one and doesn't reuse space from allocations freed in + between. It trades memory consumption for simplified algorithm and data + structure, which has better performance and uses less memory for metadata. + + By using this flag, you can achieve behavior of free-at-once, stack, + ring buffer, and double stack. + For details, see documentation chapter \ref linear_algorithm. + */ + VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004, + + /** Bit mask to extract only `ALGORITHM` bits from entire set of flags. + */ + VMA_POOL_CREATE_ALGORITHM_MASK = + VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT, + + VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaPoolCreateFlagBits; +/// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits. +typedef VkFlags VmaPoolCreateFlags; + +/// Flags to be passed as VmaDefragmentationInfo::flags. +typedef enum VmaDefragmentationFlagBits +{ + /* \brief Use simple but fast algorithm for defragmentation. + May not achieve best results but will require least time to compute and least allocations to copy. + */ + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT = 0x1, + /* \brief Default defragmentation algorithm, applied also when no `ALGORITHM` flag is specified. + Offers a balance between defragmentation quality and the amount of allocations and bytes that need to be moved. + */ + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT = 0x2, + /* \brief Perform full defragmentation of memory. + Can result in notably more time to compute and allocations to copy, but will achieve best memory packing. + */ + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT = 0x4, + /** \brief Use the most roboust algorithm at the cost of time to compute and number of copies to make. + Only available when bufferImageGranularity is greater than 1, since it aims to reduce + alignment issues between different types of resources. + Otherwise falls back to same behavior as #VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT. + */ + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT = 0x8, + + /// A bit mask to extract only `ALGORITHM` bits from entire set of flags. + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK = + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT | + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT | + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT | + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT, + + VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaDefragmentationFlagBits; +/// See #VmaDefragmentationFlagBits. +typedef VkFlags VmaDefragmentationFlags; + +/// Operation performed on single defragmentation move. See structure #VmaDefragmentationMove. +typedef enum VmaDefragmentationMoveOperation +{ + /// Buffer/image has been recreated at `dstTmpAllocation`, data has been copied, old buffer/image has been destroyed. `srcAllocation` should be changed to point to the new place. This is the default value set by vmaBeginDefragmentationPass(). + VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY = 0, + /// Set this value if you cannot move the allocation. New place reserved at `dstTmpAllocation` will be freed. `srcAllocation` will remain unchanged. + VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE = 1, + /// Set this value if you decide to abandon the allocation and you destroyed the buffer/image. New place reserved at `dstTmpAllocation` will be freed, along with `srcAllocation`, which will be destroyed. + VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY = 2, +} VmaDefragmentationMoveOperation; + +/** @} */ + +/** +\addtogroup group_virtual +@{ +*/ + +/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. +typedef enum VmaVirtualBlockCreateFlagBits +{ + /** \brief Enables alternative, linear allocation algorithm in this virtual block. + + Specify this flag to enable linear allocation algorithm, which always creates + new allocations after last one and doesn't reuse space from allocations freed in + between. It trades memory consumption for simplified algorithm and data + structure, which has better performance and uses less memory for metadata. + + By using this flag, you can achieve behavior of free-at-once, stack, + ring buffer, and double stack. + For details, see documentation chapter \ref linear_algorithm. + */ + VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001, + + /** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags. + */ + VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK = + VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT, + + VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaVirtualBlockCreateFlagBits; +/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits. +typedef VkFlags VmaVirtualBlockCreateFlags; + +/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. +typedef enum VmaVirtualAllocationCreateFlagBits +{ + /** \brief Allocation will be created from upper stack in a double stack pool. + + This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT, + /** \brief Allocation strategy that tries to minimize memory usage. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT, + /** \brief Allocation strategy that tries to minimize allocation time. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, + /** Allocation strategy that chooses always the lowest offset in available space. + This is not the most efficient strategy but achieves highly packed data. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, + /** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags. + + These strategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK, + + VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaVirtualAllocationCreateFlagBits; +/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits. +typedef VkFlags VmaVirtualAllocationCreateFlags; + +/** @} */ + +#endif // _VMA_ENUM_DECLARATIONS + +#ifndef _VMA_DATA_TYPES_DECLARATIONS + +/** +\addtogroup group_init +@{ */ + +/** \struct VmaAllocator +\brief Represents main object of this library initialized. + +Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it. +Call function vmaDestroyAllocator() to destroy it. + +It is recommended to create just one object of this type per `VkDevice` object, +right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed. +*/ +VK_DEFINE_HANDLE(VmaAllocator) + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/** \struct VmaPool +\brief Represents custom memory pool + +Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it. +Call function vmaDestroyPool() to destroy it. + +For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools). +*/ +VK_DEFINE_HANDLE(VmaPool) + +/** \struct VmaAllocation +\brief Represents single memory allocation. + +It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type +plus unique offset. + +There are multiple ways to create such object. +You need to fill structure VmaAllocationCreateInfo. +For more information see [Choosing memory type](@ref choosing_memory_type). + +Although the library provides convenience functions that create Vulkan buffer or image, +allocate memory for it and bind them together, +binding of the allocation to a buffer or an image is out of scope of the allocation itself. +Allocation object can exist without buffer/image bound, +binding can be done manually by the user, and destruction of it can be done +independently of destruction of the allocation. + +The object also remembers its size and some other information. +To retrieve this information, use function vmaGetAllocationInfo() and inspect +returned structure VmaAllocationInfo. +*/ +VK_DEFINE_HANDLE(VmaAllocation) + +/** \struct VmaDefragmentationContext +\brief An opaque object that represents started defragmentation process. + +Fill structure #VmaDefragmentationInfo and call function vmaBeginDefragmentation() to create it. +Call function vmaEndDefragmentation() to destroy it. +*/ +VK_DEFINE_HANDLE(VmaDefragmentationContext) + +/** @} */ + +/** +\addtogroup group_virtual +@{ +*/ + +/** \struct VmaVirtualAllocation +\brief Represents single memory allocation done inside VmaVirtualBlock. + +Use it as a unique identifier to virtual allocation within the single block. + +Use value `VK_NULL_HANDLE` to represent a null/invalid allocation. +*/ +VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaVirtualAllocation); + +/** @} */ + +/** +\addtogroup group_virtual +@{ +*/ + +/** \struct VmaVirtualBlock +\brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory. + +Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it. +For more information, see documentation chapter \ref virtual_allocator. + +This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally. +*/ +VK_DEFINE_HANDLE(VmaVirtualBlock) + +/** @} */ + +/** +\addtogroup group_init +@{ +*/ + +/// Callback function called after successful vkAllocateMemory. +typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryType, + VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, + VkDeviceSize size, + void* VMA_NULLABLE pUserData); + +/// Callback function called before vkFreeMemory. +typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryType, + VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, + VkDeviceSize size, + void* VMA_NULLABLE pUserData); + +/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`. + +Provided for informative purpose, e.g. to gather statistics about number of +allocations or total amount of memory allocated in Vulkan. + +Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. +*/ +typedef struct VmaDeviceMemoryCallbacks +{ + /// Optional, can be null. + PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate; + /// Optional, can be null. + PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree; + /// Optional, can be null. + void* VMA_NULLABLE pUserData; +} VmaDeviceMemoryCallbacks; + +/** \brief Pointers to some Vulkan functions - a subset used by the library. + +Used in VmaAllocatorCreateInfo::pVulkanFunctions. +*/ +typedef struct VmaVulkanFunctions +{ + /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS. + PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr; + /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS. + PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr; + PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties; + PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties; + PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory; + PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory; + PFN_vkMapMemory VMA_NULLABLE vkMapMemory; + PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory; + PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges; + PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges; + PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory; + PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory; + PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements; + PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements; + PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer; + PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer; + PFN_vkCreateImage VMA_NULLABLE vkCreateImage; + PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage; + PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer; +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + /// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension. + PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR; + /// Fetch "vkGetImageMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension. + PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR; +#endif +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + /// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension. + PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR; + /// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension. + PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR; +#endif +#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 + PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR; +#endif +#if VMA_VULKAN_VERSION >= 1003000 + /// Fetch from "vkGetDeviceBufferMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceBufferMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4. + PFN_vkGetDeviceBufferMemoryRequirements VMA_NULLABLE vkGetDeviceBufferMemoryRequirements; + /// Fetch from "vkGetDeviceImageMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceImageMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4. + PFN_vkGetDeviceImageMemoryRequirements VMA_NULLABLE vkGetDeviceImageMemoryRequirements; +#endif +} VmaVulkanFunctions; + +/// Description of a Allocator to be created. +typedef struct VmaAllocatorCreateInfo +{ + /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum. + VmaAllocatorCreateFlags flags; + /// Vulkan physical device. + /** It must be valid throughout whole lifetime of created allocator. */ + VkPhysicalDevice VMA_NOT_NULL physicalDevice; + /// Vulkan device. + /** It must be valid throughout whole lifetime of created allocator. */ + VkDevice VMA_NOT_NULL device; + /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional. + /** Set to 0 to use default, which is currently 256 MiB. */ + VkDeviceSize preferredLargeHeapBlockSize; + /// Custom CPU memory allocation callbacks. Optional. + /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */ + const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; + /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional. + /** Optional, can be null. */ + const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks; + /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap. + + If not NULL, it must be a pointer to an array of + `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on + maximum number of bytes that can be allocated out of particular Vulkan memory + heap. + + Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that + heap. This is also the default in case of `pHeapSizeLimit` = NULL. + + If there is a limit defined for a heap: + + - If user tries to allocate more memory from that heap using this allocator, + the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the + value of this limit will be reported instead when using vmaGetMemoryProperties(). + + Warning! Using this feature may not be equivalent to installing a GPU with + smaller amount of memory, because graphics driver doesn't necessary fail new + allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is + exceeded. It may return success and just silently migrate some device memory + blocks to system RAM. This driver behavior can also be controlled using + VK_AMD_memory_overallocation_behavior extension. + */ + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit; + + /** \brief Pointers to Vulkan functions. Can be null. + + For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions). + */ + const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions; + /** \brief Handle to Vulkan instance object. + + Starting from version 3.0.0 this member is no longer optional, it must be set! + */ + VkInstance VMA_NOT_NULL instance; + /** \brief Optional. The highest version of Vulkan that the application is designed to use. + + It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`. + The patch version number specified is ignored. Only the major and minor versions are considered. + It must be less or equal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`. + Only versions 1.0, 1.1, 1.2, 1.3 are supported by the current implementation. + Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`. + */ + uint32_t vulkanApiVersion; +#if VMA_EXTERNAL_MEMORY + /** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type. + + If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount` + elements, defining external memory handle types of particular Vulkan memory type, + to be passed using `VkExportMemoryAllocateInfoKHR`. + + Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type. + This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL. + */ + const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes; +#endif // #if VMA_EXTERNAL_MEMORY +} VmaAllocatorCreateInfo; + +/// Information about existing #VmaAllocator object. +typedef struct VmaAllocatorInfo +{ + /** \brief Handle to Vulkan instance object. + + This is the same value as has been passed through VmaAllocatorCreateInfo::instance. + */ + VkInstance VMA_NOT_NULL instance; + /** \brief Handle to Vulkan physical device object. + + This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice. + */ + VkPhysicalDevice VMA_NOT_NULL physicalDevice; + /** \brief Handle to Vulkan device object. + + This is the same value as has been passed through VmaAllocatorCreateInfo::device. + */ + VkDevice VMA_NOT_NULL device; +} VmaAllocatorInfo; + +/** @} */ + +/** +\addtogroup group_stats +@{ +*/ + +/** \brief Calculated statistics of memory usage e.g. in a specific memory type, heap, custom pool, or total. + +These are fast to calculate. +See functions: vmaGetHeapBudgets(), vmaGetPoolStatistics(). +*/ +typedef struct VmaStatistics +{ + /** \brief Number of `VkDeviceMemory` objects - Vulkan memory blocks allocated. + */ + uint32_t blockCount; + /** \brief Number of #VmaAllocation objects allocated. + + Dedicated allocations have their own blocks, so each one adds 1 to `allocationCount` as well as `blockCount`. + */ + uint32_t allocationCount; + /** \brief Number of bytes allocated in `VkDeviceMemory` blocks. + + \note To avoid confusion, please be aware that what Vulkan calls an "allocation" - a whole `VkDeviceMemory` object + (e.g. as in `VkPhysicalDeviceLimits::maxMemoryAllocationCount`) is called a "block" in VMA, while VMA calls + "allocation" a #VmaAllocation object that represents a memory region sub-allocated from such block, usually for a single buffer or image. + */ + VkDeviceSize blockBytes; + /** \brief Total number of bytes occupied by all #VmaAllocation objects. + + Always less or equal than `blockBytes`. + Difference `(blockBytes - allocationBytes)` is the amount of memory allocated from Vulkan + but unused by any #VmaAllocation. + */ + VkDeviceSize allocationBytes; +} VmaStatistics; + +/** \brief More detailed statistics than #VmaStatistics. + +These are slower to calculate. Use for debugging purposes. +See functions: vmaCalculateStatistics(), vmaCalculatePoolStatistics(). + +Previous version of the statistics API provided averages, but they have been removed +because they can be easily calculated as: + +\code +VkDeviceSize allocationSizeAvg = detailedStats.statistics.allocationBytes / detailedStats.statistics.allocationCount; +VkDeviceSize unusedBytes = detailedStats.statistics.blockBytes - detailedStats.statistics.allocationBytes; +VkDeviceSize unusedRangeSizeAvg = unusedBytes / detailedStats.unusedRangeCount; +\endcode +*/ +typedef struct VmaDetailedStatistics +{ + /// Basic statistics. + VmaStatistics statistics; + /// Number of free ranges of memory between allocations. + uint32_t unusedRangeCount; + /// Smallest allocation size. `VK_WHOLE_SIZE` if there are 0 allocations. + VkDeviceSize allocationSizeMin; + /// Largest allocation size. 0 if there are 0 allocations. + VkDeviceSize allocationSizeMax; + /// Smallest empty range size. `VK_WHOLE_SIZE` if there are 0 empty ranges. + VkDeviceSize unusedRangeSizeMin; + /// Largest empty range size. 0 if there are 0 empty ranges. + VkDeviceSize unusedRangeSizeMax; +} VmaDetailedStatistics; + +/** \brief General statistics from current state of the Allocator - +total memory usage across all memory heaps and types. + +These are slower to calculate. Use for debugging purposes. +See function vmaCalculateStatistics(). +*/ +typedef struct VmaTotalStatistics +{ + VmaDetailedStatistics memoryType[VK_MAX_MEMORY_TYPES]; + VmaDetailedStatistics memoryHeap[VK_MAX_MEMORY_HEAPS]; + VmaDetailedStatistics total; +} VmaTotalStatistics; + +/** \brief Statistics of current memory usage and available budget for a specific memory heap. + +These are fast to calculate. +See function vmaGetHeapBudgets(). +*/ +typedef struct VmaBudget +{ + /** \brief Statistics fetched from the library. + */ + VmaStatistics statistics; + /** \brief Estimated current memory usage of the program, in bytes. + + Fetched from system using VK_EXT_memory_budget extension if enabled. + + It might be different than `statistics.blockBytes` (usually higher) due to additional implicit objects + also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or + `VkDeviceMemory` blocks allocated outside of this library, if any. + */ + VkDeviceSize usage; + /** \brief Estimated amount of memory available to the program, in bytes. + + Fetched from system using VK_EXT_memory_budget extension if enabled. + + It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors + external to the program, decided by the operating system. + Difference `budget - usage` is the amount of additional memory that can probably + be allocated without problems. Exceeding the budget may result in various problems. + */ + VkDeviceSize budget; +} VmaBudget; + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/** \brief Parameters of new #VmaAllocation. + +To be used with functions like vmaCreateBuffer(), vmaCreateImage(), and many others. +*/ +typedef struct VmaAllocationCreateInfo +{ + /// Use #VmaAllocationCreateFlagBits enum. + VmaAllocationCreateFlags flags; + /** \brief Intended usage of memory. + + You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n + If `pool` is not null, this member is ignored. + */ + VmaMemoryUsage usage; + /** \brief Flags that must be set in a Memory Type chosen for an allocation. + + Leave 0 if you specify memory requirements in other way. \n + If `pool` is not null, this member is ignored.*/ + VkMemoryPropertyFlags requiredFlags; + /** \brief Flags that preferably should be set in a memory type chosen for an allocation. + + Set to 0 if no additional flags are preferred. \n + If `pool` is not null, this member is ignored. */ + VkMemoryPropertyFlags preferredFlags; + /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. + + Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if + it meets other requirements specified by this structure, with no further + restrictions on memory type index. \n + If `pool` is not null, this member is ignored. + */ + uint32_t memoryTypeBits; + /** \brief Pool that this allocation should be created in. + + Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: + `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. + */ + VmaPool VMA_NULLABLE pool; + /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). + + If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either + null or pointer to a null-terminated string. The string will be then copied to + internal buffer, so it doesn't need to be valid after allocation call. + */ + void* VMA_NULLABLE pUserData; + /** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. + + It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object + and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + Otherwise, it has the priority of a memory block where it is placed and this variable is ignored. + */ + float priority; +} VmaAllocationCreateInfo; + +/// Describes parameter of created #VmaPool. +typedef struct VmaPoolCreateInfo +{ + /** \brief Vulkan memory type index to allocate this pool from. + */ + uint32_t memoryTypeIndex; + /** \brief Use combination of #VmaPoolCreateFlagBits. + */ + VmaPoolCreateFlags flags; + /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional. + + Specify nonzero to set explicit, constant size of memory blocks used by this + pool. + + Leave 0 to use default and let the library manage block sizes automatically. + Sizes of particular blocks may vary. + In this case, the pool will also support dedicated allocations. + */ + VkDeviceSize blockSize; + /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty. + + Set to 0 to have no preallocated blocks and allow the pool be completely empty. + */ + size_t minBlockCount; + /** \brief Maximum number of blocks that can be allocated in this pool. Optional. + + Set to 0 to use default, which is `SIZE_MAX`, which means no limit. + + Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated + throughout whole lifetime of this pool. + */ + size_t maxBlockCount; + /** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations. + + It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object. + Otherwise, this variable is ignored. + */ + float priority; + /** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0. + + Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two. + It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough, + e.g. when doing interop with OpenGL. + */ + VkDeviceSize minAllocationAlignment; + /** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional. + + Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`. + It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`. + Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool. + + Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`, + can be attached automatically by this library when using other, more convenient of its features. + */ + void* VMA_NULLABLE pMemoryAllocateNext; +} VmaPoolCreateInfo; + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/// Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo(). +typedef struct VmaAllocationInfo +{ + /** \brief Memory type index that this allocation was allocated from. + + It never changes. + */ + uint32_t memoryType; + /** \brief Handle to Vulkan memory object. + + Same memory object can be shared by multiple allocations. + + It can change after the allocation is moved during \ref defragmentation. + */ + VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory; + /** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation. + + You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function + vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image, + not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation + and apply this offset automatically. + + It can change after the allocation is moved during \ref defragmentation. + */ + VkDeviceSize offset; + /** \brief Size of this allocation, in bytes. + + It never changes. + + \note Allocation size returned in this variable may be greater than the size + requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the + allocation is accessible for operations on memory e.g. using a pointer after + mapping with vmaMapMemory(), but operations on the resource e.g. using + `vkCmdCopyBuffer` must be limited to the size of the resource. + */ + VkDeviceSize size; + /** \brief Pointer to the beginning of this allocation as mapped data. + + If the allocation hasn't been mapped using vmaMapMemory() and hasn't been + created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null. + + It can change after call to vmaMapMemory(), vmaUnmapMemory(). + It can also change after the allocation is moved during \ref defragmentation. + */ + void* VMA_NULLABLE pMappedData; + /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData(). + + It can change after call to vmaSetAllocationUserData() for this allocation. + */ + void* VMA_NULLABLE pUserData; + /** \brief Custom allocation name that was set with vmaSetAllocationName(). + + It can change after call to vmaSetAllocationName() for this allocation. + + Another way to set custom name is to pass it in VmaAllocationCreateInfo::pUserData with + additional flag #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT set [DEPRECATED]. + */ + const char* VMA_NULLABLE pName; +} VmaAllocationInfo; + +/** \brief Parameters for defragmentation. + +To be used with function vmaBeginDefragmentation(). +*/ +typedef struct VmaDefragmentationInfo +{ + /// \brief Use combination of #VmaDefragmentationFlagBits. + VmaDefragmentationFlags flags; + /** \brief Custom pool to be defragmented. + + If null then default pools will undergo defragmentation process. + */ + VmaPool VMA_NULLABLE pool; + /** \brief Maximum numbers of bytes that can be copied during single pass, while moving allocations to different places. + + `0` means no limit. + */ + VkDeviceSize maxBytesPerPass; + /** \brief Maximum number of allocations that can be moved during single pass to a different place. + + `0` means no limit. + */ + uint32_t maxAllocationsPerPass; +} VmaDefragmentationInfo; + +/// Single move of an allocation to be done for defragmentation. +typedef struct VmaDefragmentationMove +{ + /// Operation to be performed on the allocation by vmaEndDefragmentationPass(). Default value is #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY. You can modify it. + VmaDefragmentationMoveOperation operation; + /// Allocation that should be moved. + VmaAllocation VMA_NOT_NULL srcAllocation; + /** \brief Temporary allocation pointing to destination memory that will replace `srcAllocation`. + + \warning Do not store this allocation in your data structures! It exists only temporarily, for the duration of the defragmentation pass, + to be used for binding new buffer/image to the destination memory using e.g. vmaBindBufferMemory(). + vmaEndDefragmentationPass() will destroy it and make `srcAllocation` point to this memory. + */ + VmaAllocation VMA_NOT_NULL dstTmpAllocation; +} VmaDefragmentationMove; + +/** \brief Parameters for incremental defragmentation steps. + +To be used with function vmaBeginDefragmentationPass(). +*/ +typedef struct VmaDefragmentationPassMoveInfo +{ + /// Number of elements in the `pMoves` array. + uint32_t moveCount; + /** \brief Array of moves to be performed by the user in the current defragmentation pass. + + Pointer to an array of `moveCount` elements, owned by VMA, created in vmaBeginDefragmentationPass(), destroyed in vmaEndDefragmentationPass(). + + For each element, you should: + + 1. Create a new buffer/image in the place pointed by VmaDefragmentationMove::dstMemory + VmaDefragmentationMove::dstOffset. + 2. Copy data from the VmaDefragmentationMove::srcAllocation e.g. using `vkCmdCopyBuffer`, `vkCmdCopyImage`. + 3. Make sure these commands finished executing on the GPU. + 4. Destroy the old buffer/image. + + Only then you can finish defragmentation pass by calling vmaEndDefragmentationPass(). + After this call, the allocation will point to the new place in memory. + + Alternatively, if you cannot move specific allocation, you can set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE. + + Alternatively, if you decide you want to completely remove the allocation: + + 1. Destroy its buffer/image. + 2. Set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY. + + Then, after vmaEndDefragmentationPass() the allocation will be freed. + */ + VmaDefragmentationMove* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(moveCount) pMoves; +} VmaDefragmentationPassMoveInfo; + +/// Statistics returned for defragmentation process in function vmaEndDefragmentation(). +typedef struct VmaDefragmentationStats +{ + /// Total number of bytes that have been copied while moving allocations to different places. + VkDeviceSize bytesMoved; + /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects. + VkDeviceSize bytesFreed; + /// Number of allocations that have been moved to different places. + uint32_t allocationsMoved; + /// Number of empty `VkDeviceMemory` objects that have been released to the system. + uint32_t deviceMemoryBlocksFreed; +} VmaDefragmentationStats; + +/** @} */ + +/** +\addtogroup group_virtual +@{ +*/ + +/// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock(). +typedef struct VmaVirtualBlockCreateInfo +{ + /** \brief Total size of the virtual block. + + Sizes can be expressed in bytes or any units you want as long as you are consistent in using them. + For example, if you allocate from some array of structures, 1 can mean single instance of entire structure. + */ + VkDeviceSize size; + + /** \brief Use combination of #VmaVirtualBlockCreateFlagBits. + */ + VmaVirtualBlockCreateFlags flags; + + /** \brief Custom CPU memory allocation callbacks. Optional. + + Optional, can be null. When specified, they will be used for all CPU-side memory allocations. + */ + const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; +} VmaVirtualBlockCreateInfo; + +/// Parameters of created virtual allocation to be passed to vmaVirtualAllocate(). +typedef struct VmaVirtualAllocationCreateInfo +{ + /** \brief Size of the allocation. + + Cannot be zero. + */ + VkDeviceSize size; + /** \brief Required alignment of the allocation. Optional. + + Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset. + */ + VkDeviceSize alignment; + /** \brief Use combination of #VmaVirtualAllocationCreateFlagBits. + */ + VmaVirtualAllocationCreateFlags flags; + /** \brief Custom pointer to be associated with the allocation. Optional. + + It can be any value and can be used for user-defined purposes. It can be fetched or changed later. + */ + void* VMA_NULLABLE pUserData; +} VmaVirtualAllocationCreateInfo; + +/// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo(). +typedef struct VmaVirtualAllocationInfo +{ + /** \brief Offset of the allocation. + + Offset at which the allocation was made. + */ + VkDeviceSize offset; + /** \brief Size of the allocation. + + Same value as passed in VmaVirtualAllocationCreateInfo::size. + */ + VkDeviceSize size; + /** \brief Custom pointer associated with the allocation. + + Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData(). + */ + void* VMA_NULLABLE pUserData; +} VmaVirtualAllocationInfo; + +/** @} */ + +#endif // _VMA_DATA_TYPES_DECLARATIONS + +#ifndef _VMA_FUNCTION_HEADERS + +/** +\addtogroup group_init +@{ +*/ + +/// Creates #VmaAllocator object. +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( + const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator); + +/// Destroys allocator object. +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( + VmaAllocator VMA_NULLABLE allocator); + +/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc. + +It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to +`VkPhysicalDevice`, `VkDevice` etc. every time using this function. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo); + +/** +PhysicalDeviceProperties are fetched from physicalDevice by the allocator. +You can access it here, without fetching it again on your own. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( + VmaAllocator VMA_NOT_NULL allocator, + const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties); + +/** +PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator. +You can access it here, without fetching it again on your own. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( + VmaAllocator VMA_NOT_NULL allocator, + const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties); + +/** +\brief Given Memory Type Index, returns Property Flags of this memory type. + +This is just a convenience function. Same information can be obtained using +vmaGetMemoryProperties(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryTypeIndex, + VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); + +/** \brief Sets index of the current frame. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t frameIndex); + +/** @} */ + +/** +\addtogroup group_stats +@{ +*/ + +/** \brief Retrieves statistics from current state of the Allocator. + +This function is called "calculate" not "get" because it has to traverse all +internal data structures, so it may be quite slow. Use it for debugging purposes. +For faster but more brief statistics suitable to be called every frame or every allocation, +use vmaGetHeapBudgets(). + +Note that when using allocator from multiple threads, returned information may immediately +become outdated. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics( + VmaAllocator VMA_NOT_NULL allocator, + VmaTotalStatistics* VMA_NOT_NULL pStats); + +/** \brief Retrieves information about current memory usage and budget for all memory heaps. + +\param allocator +\param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used. + +This function is called "get" not "calculate" because it is very fast, suitable to be called +every frame or every allocation. For more detailed statistics use vmaCalculateStatistics(). + +Note that when using allocator from multiple threads, returned information may immediately +become outdated. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets( + VmaAllocator VMA_NOT_NULL allocator, + VmaBudget* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pBudgets); + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/** +\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo. + +This algorithm tries to find a memory type that: + +- Is allowed by memoryTypeBits. +- Contains all the flags from pAllocationCreateInfo->requiredFlags. +- Matches intended usage. +- Has as many flags from pAllocationCreateInfo->preferredFlags as possible. + +\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result +from this function or any other allocating function probably means that your +device doesn't support any memory type with requested features for the specific +type of resource you want to use it for. Please check parameters of your +resource, like image layout (OPTIMAL versus LINEAR) or mip level count. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + uint32_t* VMA_NOT_NULL pMemoryTypeIndex); + +/** +\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo. + +It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. +It internally creates a temporary, dummy buffer that never has memory bound. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( + VmaAllocator VMA_NOT_NULL allocator, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + uint32_t* VMA_NOT_NULL pMemoryTypeIndex); + +/** +\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo. + +It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. +It internally creates a temporary, dummy image that never has memory bound. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( + VmaAllocator VMA_NOT_NULL allocator, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + uint32_t* VMA_NOT_NULL pMemoryTypeIndex); + +/** \brief Allocates Vulkan device memory and creates #VmaPool object. + +\param allocator Allocator object. +\param pCreateInfo Parameters of pool to create. +\param[out] pPool Handle to created pool. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( + VmaAllocator VMA_NOT_NULL allocator, + const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool); + +/** \brief Destroys #VmaPool object and frees Vulkan device memory. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NULLABLE pool); + +/** @} */ + +/** +\addtogroup group_stats +@{ +*/ + +/** \brief Retrieves statistics of existing #VmaPool object. + +\param allocator Allocator object. +\param pool Pool object. +\param[out] pPoolStats Statistics of specified pool. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool, + VmaStatistics* VMA_NOT_NULL pPoolStats); + +/** \brief Retrieves detailed statistics of existing #VmaPool object. + +\param allocator Allocator object. +\param pool Pool object. +\param[out] pPoolStats Statistics of specified pool. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool, + VmaDetailedStatistics* VMA_NOT_NULL pPoolStats); + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions. + +Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, +`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is +`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). + +Possible return values: + +- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool. +- `VK_SUCCESS` - corruption detection has been performed and succeeded. +- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations. + `VMA_ASSERT` is also fired in that case. +- Other value: Error returned by Vulkan, e.g. memory mapping failure. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool); + +/** \brief Retrieves name of a custom pool. + +After the call `ppName` is either null or points to an internally-owned null-terminated string +containing name of the pool that was previously set. The pointer becomes invalid when the pool is +destroyed or its name is changed using vmaSetPoolName(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool, + const char* VMA_NULLABLE* VMA_NOT_NULL ppName); + +/** \brief Sets name of a custom pool. + +`pName` can be either null or pointer to a null-terminated string with new name for the pool. +Function makes internal copy of the string, so it can be changed or freed immediately after this call. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool, + const char* VMA_NULLABLE pName); + +/** \brief General purpose memory allocation. + +\param allocator +\param pVkMemoryRequirements +\param pCreateInfo +\param[out] pAllocation Handle to allocated memory. +\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). + +It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(), +vmaCreateBuffer(), vmaCreateImage() instead whenever possible. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( + VmaAllocator VMA_NOT_NULL allocator, + const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements, + const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/** \brief General purpose memory allocation for multiple allocation objects at once. + +\param allocator Allocator object. +\param pVkMemoryRequirements Memory requirements for each allocation. +\param pCreateInfo Creation parameters for each allocation. +\param allocationCount Number of allocations to make. +\param[out] pAllocations Pointer to array that will be filled with handles to created allocations. +\param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations. + +You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). + +Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding. +It is just a general purpose allocation function able to make multiple allocations at once. +It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times. + +All allocations are made using same parameters. All of them are created out of the same memory pool and type. +If any allocation fails, all allocations already made within this function call are also freed, so that when +returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( + VmaAllocator VMA_NOT_NULL allocator, + const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements, + const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo, + size_t allocationCount, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations, + VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo); + +/** \brief Allocates memory suitable for given `VkBuffer`. + +\param allocator +\param buffer +\param pCreateInfo +\param[out] pAllocation Handle to allocated memory. +\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindBufferMemory(). + +This is a special-purpose function. In most cases you should use vmaCreateBuffer(). + +You must free the allocation using vmaFreeMemory() when no longer needed. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( + VmaAllocator VMA_NOT_NULL allocator, + VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, + const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/** \brief Allocates memory suitable for given `VkImage`. + +\param allocator +\param image +\param pCreateInfo +\param[out] pAllocation Handle to allocated memory. +\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindImageMemory(). + +This is a special-purpose function. In most cases you should use vmaCreateImage(). + +You must free the allocation using vmaFreeMemory() when no longer needed. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( + VmaAllocator VMA_NOT_NULL allocator, + VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, + const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage(). + +Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( + VmaAllocator VMA_NOT_NULL allocator, + const VmaAllocation VMA_NULLABLE allocation); + +/** \brief Frees memory and destroys multiple allocations. + +Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding. +It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(), +vmaAllocateMemoryPages() and other functions. +It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times. + +Allocations in `pAllocations` array can come from any memory pools and types. +Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( + VmaAllocator VMA_NOT_NULL allocator, + size_t allocationCount, + const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations); + +/** \brief Returns current information about specified allocation. + +Current paramteres of given allocation are returned in `pAllocationInfo`. + +Although this function doesn't lock any mutex, so it should be quite efficient, +you should avoid calling it too often. +You can retrieve same VmaAllocationInfo structure while creating your resource, from function +vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change +(e.g. due to defragmentation). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo); + +/** \brief Sets pUserData in given allocation to new value. + +The value of pointer `pUserData` is copied to allocation's `pUserData`. +It is opaque, so you can use it however you want - e.g. +as a pointer, ordinal number or some handle to you own data. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + void* VMA_NULLABLE pUserData); + +/** \brief Sets pName in given allocation to new value. + +`pName` must be either null, or pointer to a null-terminated string. The function +makes local copy of the string and sets it as allocation's `pName`. String +passed as pName doesn't need to be valid for whole lifetime of the allocation - +you can free it after this call. String previously pointed by allocation's +`pName` is freed from memory. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const char* VMA_NULLABLE pName); + +/** +\brief Given an allocation, returns Property Flags of its memory type. + +This is just a convenience function. Same information can be obtained using +vmaGetAllocationInfo() + vmaGetMemoryProperties(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); + +/** \brief Maps memory represented by given allocation and returns pointer to it. + +Maps memory represented by given allocation to make it accessible to CPU code. +When succeeded, `*ppData` contains pointer to first byte of this memory. + +\warning +If the allocation is part of a bigger `VkDeviceMemory` block, returned pointer is +correctly offsetted to the beginning of region assigned to this particular allocation. +Unlike the result of `vkMapMemory`, it points to the allocation, not to the beginning of the whole block. +You should not add VmaAllocationInfo::offset to it! + +Mapping is internally reference-counted and synchronized, so despite raw Vulkan +function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory` +multiple times simultaneously, it is safe to call this function on allocations +assigned to the same memory block. Actual Vulkan memory will be mapped on first +mapping and unmapped on last unmapping. + +If the function succeeded, you must call vmaUnmapMemory() to unmap the +allocation when mapping is no longer needed or before freeing the allocation, at +the latest. + +It also safe to call this function multiple times on the same allocation. You +must call vmaUnmapMemory() same number of times as you called vmaMapMemory(). + +It is also safe to call this function on allocation created with +#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time. +You must still call vmaUnmapMemory() same number of times as you called +vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the +"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. + +This function fails when used on allocation made in memory type that is not +`HOST_VISIBLE`. + +This function doesn't automatically flush or invalidate caches. +If the allocation is made from a memory types that is not `HOST_COHERENT`, +you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + void* VMA_NULLABLE* VMA_NOT_NULL ppData); + +/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory(). + +For details, see description of vmaMapMemory(). + +This function doesn't automatically flush or invalidate caches. +If the allocation is made from a memory types that is not `HOST_COHERENT`, +you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation); + +/** \brief Flushes memory of given allocation. + +Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation. +It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`. +Unmap operation doesn't do that automatically. + +- `offset` must be relative to the beginning of allocation. +- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. +- `offset` and `size` don't have to be aligned. + They are internally rounded down/up to multiply of `nonCoherentAtomSize`. +- If `size` is 0, this call is ignored. +- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, + this call is ignored. + +Warning! `offset` and `size` are relative to the contents of given `allocation`. +If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. +Do not pass allocation's offset as `offset`!!! + +This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is +called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize offset, + VkDeviceSize size); + +/** \brief Invalidates memory of given allocation. + +Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation. +It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`. +Map operation doesn't do that automatically. + +- `offset` must be relative to the beginning of allocation. +- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. +- `offset` and `size` don't have to be aligned. + They are internally rounded down/up to multiply of `nonCoherentAtomSize`. +- If `size` is 0, this call is ignored. +- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, + this call is ignored. + +Warning! `offset` and `size` are relative to the contents of given `allocation`. +If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. +Do not pass allocation's offset as `offset`!!! + +This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if +it is called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize offset, + VkDeviceSize size); + +/** \brief Flushes memory of given set of allocations. + +Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations. +For more information, see documentation of vmaFlushAllocation(). + +\param allocator +\param allocationCount +\param allocations +\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero. +\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. + +This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is +called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t allocationCount, + const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); + +/** \brief Invalidates memory of given set of allocations. + +Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations. +For more information, see documentation of vmaInvalidateAllocation(). + +\param allocator +\param allocationCount +\param allocations +\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero. +\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. + +This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is +called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t allocationCount, + const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); + +/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions. + +\param allocator +\param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked. + +Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, +`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are +`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). + +Possible return values: + +- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types. +- `VK_SUCCESS` - corruption detection has been performed and succeeded. +- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations. + `VMA_ASSERT` is also fired in that case. +- Other value: Error returned by Vulkan, e.g. memory mapping failure. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryTypeBits); + +/** \brief Begins defragmentation process. + +\param allocator Allocator object. +\param pInfo Structure filled with parameters of defragmentation. +\param[out] pContext Context object that must be passed to vmaEndDefragmentation() to finish defragmentation. +\returns +- `VK_SUCCESS` if defragmentation can begin. +- `VK_ERROR_FEATURE_NOT_PRESENT` if defragmentation is not supported. + +For more information about defragmentation, see documentation chapter: +[Defragmentation](@ref defragmentation). +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation( + VmaAllocator VMA_NOT_NULL allocator, + const VmaDefragmentationInfo* VMA_NOT_NULL pInfo, + VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext); + +/** \brief Ends defragmentation process. + +\param allocator Allocator object. +\param context Context object that has been created by vmaBeginDefragmentation(). +\param[out] pStats Optional stats for the defragmentation. Can be null. + +Use this function to finish defragmentation started by vmaBeginDefragmentation(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NOT_NULL context, + VmaDefragmentationStats* VMA_NULLABLE pStats); + +/** \brief Starts single defragmentation pass. + +\param allocator Allocator object. +\param context Context object that has been created by vmaBeginDefragmentation(). +\param[out] pPassInfo Computed informations for current pass. +\returns +- `VK_SUCCESS` if no more moves are possible. Then you can omit call to vmaEndDefragmentationPass() and simply end whole defragmentation. +- `VK_INCOMPLETE` if there are pending moves returned in `pPassInfo`. You need to perform them, call vmaEndDefragmentationPass(), + and then preferably try another pass with vmaBeginDefragmentationPass(). +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NOT_NULL context, + VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo); + +/** \brief Ends single defragmentation pass. + +\param allocator Allocator object. +\param context Context object that has been created by vmaBeginDefragmentation(). +\param pPassInfo Computed informations for current pass filled by vmaBeginDefragmentationPass() and possibly modified by you. + +Returns `VK_SUCCESS` if no more moves are possible or `VK_INCOMPLETE` if more defragmentations are possible. + +Ends incremental defragmentation pass and commits all defragmentation moves from `pPassInfo`. +After this call: + +- Allocations at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY + (which is the default) will be pointing to the new destination place. +- Allocation at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY + will be freed. + +If no more moves are possible you can end whole defragmentation. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NOT_NULL context, + VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo); + +/** \brief Binds buffer to allocation. + +Binds specified buffer to region of memory represented by specified allocation. +Gets `VkDeviceMemory` handle and offset from the allocation. +If you want to create a buffer, allocate memory for it and bind them together separately, +you should use this function for binding instead of standard `vkBindBufferMemory()`, +because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple +allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously +(which is illegal in Vulkan). + +It is recommended to use function vmaCreateBuffer() instead of this one. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer); + +/** \brief Binds buffer to allocation with additional parameters. + +\param allocator +\param allocation +\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. +\param buffer +\param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null. + +This function is similar to vmaBindBufferMemory(), but it provides additional parameters. + +If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag +or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize allocationLocalOffset, + VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, + const void* VMA_NULLABLE pNext); + +/** \brief Binds image to allocation. + +Binds specified image to region of memory represented by specified allocation. +Gets `VkDeviceMemory` handle and offset from the allocation. +If you want to create an image, allocate memory for it and bind them together separately, +you should use this function for binding instead of standard `vkBindImageMemory()`, +because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple +allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously +(which is illegal in Vulkan). + +It is recommended to use function vmaCreateImage() instead of this one. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkImage VMA_NOT_NULL_NON_DISPATCHABLE image); + +/** \brief Binds image to allocation with additional parameters. + +\param allocator +\param allocation +\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. +\param image +\param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null. + +This function is similar to vmaBindImageMemory(), but it provides additional parameters. + +If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag +or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize allocationLocalOffset, + VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, + const void* VMA_NULLABLE pNext); + +/** \brief Creates a new `VkBuffer`, allocates and binds memory for it. + +\param allocator +\param pBufferCreateInfo +\param pAllocationCreateInfo +\param[out] pBuffer Buffer that was created. +\param[out] pAllocation Allocation that was created. +\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +This function automatically: + +-# Creates buffer. +-# Allocates appropriate memory for it. +-# Binds the buffer with the memory. + +If any of these operations fail, buffer and allocation are not created, +returned value is negative error code, `*pBuffer` and `*pAllocation` are null. + +If the function succeeded, you must destroy both buffer and allocation when you +no longer need them using either convenience function vmaDestroyBuffer() or +separately, using `vkDestroyBuffer()` and vmaFreeMemory(). + +If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used, +VK_KHR_dedicated_allocation extension is used internally to query driver whether +it requires or prefers the new buffer to have dedicated allocation. If yes, +and if dedicated allocation is possible +(#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated +allocation for this buffer, just like when using +#VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + +\note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer, +although recommended as a good practice, is out of scope of this library and could be implemented +by the user as a higher-level logic on top of VMA. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( + VmaAllocator VMA_NOT_NULL allocator, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/** \brief Creates a buffer with additional minimum alignment. + +Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom, +minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g. +for interop with OpenGL. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment( + VmaAllocator VMA_NOT_NULL allocator, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + VkDeviceSize minAlignment, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/** \brief Creates a new `VkBuffer`, binds already created memory for it. + +\param allocator +\param allocation Allocation that provides memory to be used for binding new buffer to it. +\param pBufferCreateInfo +\param[out] pBuffer Buffer that was created. + +This function automatically: + +-# Creates buffer. +-# Binds the buffer with the supplied memory. + +If any of these operations fail, buffer is not created, +returned value is negative error code and `*pBuffer` is null. + +If the function succeeded, you must destroy the buffer when you +no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding +allocation you can use convenience function vmaDestroyBuffer(). +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer); + +/** \brief Destroys Vulkan buffer and frees allocated memory. + +This is just a convenience function equivalent to: + +\code +vkDestroyBuffer(device, buffer, allocationCallbacks); +vmaFreeMemory(allocator, allocation); +\endcode + +It is safe to pass null as buffer and/or allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( + VmaAllocator VMA_NOT_NULL allocator, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer, + VmaAllocation VMA_NULLABLE allocation); + +/// Function similar to vmaCreateBuffer(). +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( + VmaAllocator VMA_NOT_NULL allocator, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/// Function similar to vmaCreateAliasingBuffer(). +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage); + +/** \brief Destroys Vulkan image and frees allocated memory. + +This is just a convenience function equivalent to: + +\code +vkDestroyImage(device, image, allocationCallbacks); +vmaFreeMemory(allocator, allocation); +\endcode + +It is safe to pass null as image and/or allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( + VmaAllocator VMA_NOT_NULL allocator, + VkImage VMA_NULLABLE_NON_DISPATCHABLE image, + VmaAllocation VMA_NULLABLE allocation); + +/** @} */ + +/** +\addtogroup group_virtual +@{ +*/ + +/** \brief Creates new #VmaVirtualBlock object. + +\param pCreateInfo Parameters for creation. +\param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock( + const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaVirtualBlock VMA_NULLABLE* VMA_NOT_NULL pVirtualBlock); + +/** \brief Destroys #VmaVirtualBlock object. + +Please note that you should consciously handle virtual allocations that could remain unfreed in the block. +You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock() +if you are sure this is what you want. If you do neither, an assert is called. + +If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`, +don't forget to free them. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock( + VmaVirtualBlock VMA_NULLABLE virtualBlock); + +/** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations. +*/ +VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty( + VmaVirtualBlock VMA_NOT_NULL virtualBlock); + +/** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo); + +/** \brief Allocates new virtual allocation inside given #VmaVirtualBlock. + +If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned +(despite the function doesn't ever allocate actual GPU memory). +`pAllocation` is then set to `VK_NULL_HANDLE` and `pOffset`, if not null, it set to `UINT64_MAX`. + +\param virtualBlock Virtual block +\param pCreateInfo Parameters for the allocation +\param[out] pAllocation Returned handle of the new allocation +\param[out] pOffset Returned offset of the new allocation. Optional, can be null. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, + VkDeviceSize* VMA_NULLABLE pOffset); + +/** \brief Frees virtual allocation inside given #VmaVirtualBlock. + +It is correct to call this function with `allocation == VK_NULL_HANDLE` - it does nothing. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation); + +/** \brief Frees all virtual allocations inside given #VmaVirtualBlock. + +You must either call this function or free each virtual allocation individually with vmaVirtualFree() +before destroying a virtual block. Otherwise, an assert is called. + +If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`, +don't forget to free it as well. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock( + VmaVirtualBlock VMA_NOT_NULL virtualBlock); + +/** \brief Changes custom pointer associated with given virtual allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, + void* VMA_NULLABLE pUserData); + +/** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock. + +This function is fast to call. For more detailed statistics, see vmaCalculateVirtualBlockStatistics(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaStatistics* VMA_NOT_NULL pStats); + +/** \brief Calculates and returns detailed statistics about virtual allocations and memory usage in given #VmaVirtualBlock. + +This function is slow to call. Use for debugging purposes. +For less detailed statistics, see vmaGetVirtualBlockStatistics(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaDetailedStatistics* VMA_NOT_NULL pStats); + +/** @} */ + +#if VMA_STATS_STRING_ENABLED +/** +\addtogroup group_stats +@{ +*/ + +/** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock. +\param virtualBlock Virtual block. +\param[out] ppStatsString Returned string. +\param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStatistics(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces. + +Returned string must be freed using vmaFreeVirtualBlockStatsString(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString, + VkBool32 detailedMap); + +/// Frees a string returned by vmaBuildVirtualBlockStatsString(). +VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE pStatsString); + +/** \brief Builds and returns statistics as a null-terminated string in JSON format. +\param allocator +\param[out] ppStatsString Must be freed using vmaFreeStatsString() function. +\param detailedMap +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( + VmaAllocator VMA_NOT_NULL allocator, + char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString, + VkBool32 detailedMap); + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( + VmaAllocator VMA_NOT_NULL allocator, + char* VMA_NULLABLE pStatsString); + +/** @} */ + +#endif // VMA_STATS_STRING_ENABLED + +#endif // _VMA_FUNCTION_HEADERS + +#ifdef __cplusplus +} +#endif + +#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H + +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// +// +// IMPLEMENTATION +// +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// + +// For Visual Studio IntelliSense. +#if defined(__cplusplus) && defined(__INTELLISENSE__) +#define VMA_IMPLEMENTATION +#endif + +#ifdef VMA_IMPLEMENTATION +#undef VMA_IMPLEMENTATION + +#include +#include +#include +#include +#include + +#ifdef _MSC_VER + #include // For functions like __popcnt, _BitScanForward etc. +#endif +#if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20 + #include // For std::popcount +#endif + +/******************************************************************************* +CONFIGURATION SECTION + +Define some of these macros before each #include of this header or change them +here if you need other then default behavior depending on your environment. +*/ +#ifndef _VMA_CONFIGURATION + +/* +Define this macro to 1 to make the library fetch pointers to Vulkan functions +internally, like: + + vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; +*/ +#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES) + #define VMA_STATIC_VULKAN_FUNCTIONS 1 +#endif + +/* +Define this macro to 1 to make the library fetch pointers to Vulkan functions +internally, like: + + vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory"); + +To use this feature in new versions of VMA you now have to pass +VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as +VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null. +*/ +#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS) + #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1 +#endif + +#ifndef VMA_USE_STL_SHARED_MUTEX + // Compiler conforms to C++17. + #if __cplusplus >= 201703L + #define VMA_USE_STL_SHARED_MUTEX 1 + // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus + // Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2. + #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L + #define VMA_USE_STL_SHARED_MUTEX 1 + #else + #define VMA_USE_STL_SHARED_MUTEX 0 + #endif +#endif + +/* +Define this macro to include custom header files without having to edit this file directly, e.g.: + + // Inside of "my_vma_configuration_user_includes.h": + + #include "my_custom_assert.h" // for MY_CUSTOM_ASSERT + #include "my_custom_min.h" // for my_custom_min + #include + #include + + // Inside a different file, which includes "vk_mem_alloc.h": + + #define VMA_CONFIGURATION_USER_INCLUDES_H "my_vma_configuration_user_includes.h" + #define VMA_ASSERT(expr) MY_CUSTOM_ASSERT(expr) + #define VMA_MIN(v1, v2) (my_custom_min(v1, v2)) + #include "vk_mem_alloc.h" + ... + +The following headers are used in this CONFIGURATION section only, so feel free to +remove them if not needed. +*/ +#if !defined(VMA_CONFIGURATION_USER_INCLUDES_H) + #include // for assert + #include // for min, max + #include +#else + #include VMA_CONFIGURATION_USER_INCLUDES_H +#endif + +#ifndef VMA_NULL + // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0. + #define VMA_NULL nullptr +#endif + +#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16) +#include +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + // alignment must be >= sizeof(void*) + if(alignment < sizeof(void*)) + { + alignment = sizeof(void*); + } + + return memalign(alignment, size); +} +#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)) +#include + +#if defined(__APPLE__) +#include +#endif + +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + // Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4) + // Therefore, for now disable this specific exception until a proper solution is found. + //#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0)) + //#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0 + // // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only + // // with the MacOSX11.0 SDK in Xcode 12 (which is what adds + // // MAC_OS_X_VERSION_10_16), even though the function is marked + // // availabe for 10.15. That is why the preprocessor checks for 10.16 but + // // the __builtin_available checks for 10.15. + // // People who use C++17 could call aligned_alloc with the 10.15 SDK already. + // if (__builtin_available(macOS 10.15, iOS 13, *)) + // return aligned_alloc(alignment, size); + //#endif + //#endif + + // alignment must be >= sizeof(void*) + if(alignment < sizeof(void*)) + { + alignment = sizeof(void*); + } + + void *pointer; + if(posix_memalign(&pointer, alignment, size) == 0) + return pointer; + return VMA_NULL; +} +#elif defined(_WIN32) +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + return _aligned_malloc(size, alignment); +} +#else +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + return aligned_alloc(alignment, size); +} +#endif + +#if defined(_WIN32) +static void vma_aligned_free(void* ptr) +{ + _aligned_free(ptr); +} +#else +static void vma_aligned_free(void* VMA_NULLABLE ptr) +{ + free(ptr); +} +#endif + +// If your compiler is not compatible with C++11 and definition of +// aligned_alloc() function is missing, uncommeting following line may help: + +//#include + +// Normal assert to check for programmer's errors, especially in Debug configuration. +#ifndef VMA_ASSERT + #ifdef NDEBUG + #define VMA_ASSERT(expr) + #else + #define VMA_ASSERT(expr) assert(expr) + #endif +#endif + +// Assert that will be called very often, like inside data structures e.g. operator[]. +// Making it non-empty can make program slow. +#ifndef VMA_HEAVY_ASSERT + #ifdef NDEBUG + #define VMA_HEAVY_ASSERT(expr) + #else + #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr) + #endif +#endif + +#ifndef VMA_ALIGN_OF + #define VMA_ALIGN_OF(type) (__alignof(type)) +#endif + +#ifndef VMA_SYSTEM_ALIGNED_MALLOC + #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size)) +#endif + +#ifndef VMA_SYSTEM_ALIGNED_FREE + // VMA_SYSTEM_FREE is the old name, but might have been defined by the user + #if defined(VMA_SYSTEM_FREE) + #define VMA_SYSTEM_ALIGNED_FREE(ptr) VMA_SYSTEM_FREE(ptr) + #else + #define VMA_SYSTEM_ALIGNED_FREE(ptr) vma_aligned_free(ptr) + #endif +#endif + +#ifndef VMA_COUNT_BITS_SET + // Returns number of bits set to 1 in (v) + #define VMA_COUNT_BITS_SET(v) VmaCountBitsSet(v) +#endif + +#ifndef VMA_BITSCAN_LSB + // Scans integer for index of first nonzero value from the Least Significant Bit (LSB). If mask is 0 then returns UINT8_MAX + #define VMA_BITSCAN_LSB(mask) VmaBitScanLSB(mask) +#endif + +#ifndef VMA_BITSCAN_MSB + // Scans integer for index of first nonzero value from the Most Significant Bit (MSB). If mask is 0 then returns UINT8_MAX + #define VMA_BITSCAN_MSB(mask) VmaBitScanMSB(mask) +#endif + +#ifndef VMA_MIN + #define VMA_MIN(v1, v2) ((std::min)((v1), (v2))) +#endif + +#ifndef VMA_MAX + #define VMA_MAX(v1, v2) ((std::max)((v1), (v2))) +#endif + +#ifndef VMA_SWAP + #define VMA_SWAP(v1, v2) std::swap((v1), (v2)) +#endif + +#ifndef VMA_SORT + #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp) +#endif + +#ifndef VMA_DEBUG_LOG + #define VMA_DEBUG_LOG(format, ...) + /* + #define VMA_DEBUG_LOG(format, ...) do { \ + printf(format, __VA_ARGS__); \ + printf("\n"); \ + } while(false) + */ +#endif + +// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString. +#if VMA_STATS_STRING_ENABLED + static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num) + { + snprintf(outStr, strLen, "%u", static_cast(num)); + } + static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num) + { + snprintf(outStr, strLen, "%llu", static_cast(num)); + } + static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr) + { + snprintf(outStr, strLen, "%p", ptr); + } +#endif + +#ifndef VMA_MUTEX + class VmaMutex + { + public: + void Lock() { m_Mutex.lock(); } + void Unlock() { m_Mutex.unlock(); } + bool TryLock() { return m_Mutex.try_lock(); } + private: + std::mutex m_Mutex; + }; + #define VMA_MUTEX VmaMutex +#endif + +// Read-write mutex, where "read" is shared access, "write" is exclusive access. +#ifndef VMA_RW_MUTEX + #if VMA_USE_STL_SHARED_MUTEX + // Use std::shared_mutex from C++17. + #include + class VmaRWMutex + { + public: + void LockRead() { m_Mutex.lock_shared(); } + void UnlockRead() { m_Mutex.unlock_shared(); } + bool TryLockRead() { return m_Mutex.try_lock_shared(); } + void LockWrite() { m_Mutex.lock(); } + void UnlockWrite() { m_Mutex.unlock(); } + bool TryLockWrite() { return m_Mutex.try_lock(); } + private: + std::shared_mutex m_Mutex; + }; + #define VMA_RW_MUTEX VmaRWMutex + #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600 + // Use SRWLOCK from WinAPI. + // Minimum supported client = Windows Vista, server = Windows Server 2008. + class VmaRWMutex + { + public: + VmaRWMutex() { InitializeSRWLock(&m_Lock); } + void LockRead() { AcquireSRWLockShared(&m_Lock); } + void UnlockRead() { ReleaseSRWLockShared(&m_Lock); } + bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; } + void LockWrite() { AcquireSRWLockExclusive(&m_Lock); } + void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); } + bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; } + private: + SRWLOCK m_Lock; + }; + #define VMA_RW_MUTEX VmaRWMutex + #else + // Less efficient fallback: Use normal mutex. + class VmaRWMutex + { + public: + void LockRead() { m_Mutex.Lock(); } + void UnlockRead() { m_Mutex.Unlock(); } + bool TryLockRead() { return m_Mutex.TryLock(); } + void LockWrite() { m_Mutex.Lock(); } + void UnlockWrite() { m_Mutex.Unlock(); } + bool TryLockWrite() { return m_Mutex.TryLock(); } + private: + VMA_MUTEX m_Mutex; + }; + #define VMA_RW_MUTEX VmaRWMutex + #endif // #if VMA_USE_STL_SHARED_MUTEX +#endif // #ifndef VMA_RW_MUTEX + +/* +If providing your own implementation, you need to implement a subset of std::atomic. +*/ +#ifndef VMA_ATOMIC_UINT32 + #include + #define VMA_ATOMIC_UINT32 std::atomic +#endif + +#ifndef VMA_ATOMIC_UINT64 + #include + #define VMA_ATOMIC_UINT64 std::atomic +#endif + +#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY + /** + Every allocation will have its own memory block. + Define to 1 for debugging purposes only. + */ + #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0) +#endif + +#ifndef VMA_MIN_ALIGNMENT + /** + Minimum alignment of all allocations, in bytes. + Set to more than 1 for debugging purposes. Must be power of two. + */ + #ifdef VMA_DEBUG_ALIGNMENT // Old name + #define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT + #else + #define VMA_MIN_ALIGNMENT (1) + #endif +#endif + +#ifndef VMA_DEBUG_MARGIN + /** + Minimum margin after every allocation, in bytes. + Set nonzero for debugging purposes only. + */ + #define VMA_DEBUG_MARGIN (0) +#endif + +#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS + /** + Define this macro to 1 to automatically fill new allocations and destroyed + allocations with some bit pattern. + */ + #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0) +#endif + +#ifndef VMA_DEBUG_DETECT_CORRUPTION + /** + Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to + enable writing magic value to the margin after every allocation and + validating it, so that memory corruptions (out-of-bounds writes) are detected. + */ + #define VMA_DEBUG_DETECT_CORRUPTION (0) +#endif + +#ifndef VMA_DEBUG_GLOBAL_MUTEX + /** + Set this to 1 for debugging purposes only, to enable single mutex protecting all + entry calls to the library. Can be useful for debugging multithreading issues. + */ + #define VMA_DEBUG_GLOBAL_MUTEX (0) +#endif + +#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY + /** + Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity. + Set to more than 1 for debugging purposes only. Must be power of two. + */ + #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1) +#endif + +#ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT + /* + Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount + and return error instead of leaving up to Vulkan implementation what to do in such cases. + */ + #define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0) +#endif + +#ifndef VMA_SMALL_HEAP_MAX_SIZE + /// Maximum size of a memory heap in Vulkan to consider it "small". + #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024) +#endif + +#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE + /// Default size of a block allocated as single VkDeviceMemory from a "large" heap. + #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024) +#endif + +/* +Mapping hysteresis is a logic that launches when vmaMapMemory/vmaUnmapMemory is called +or a persistently mapped allocation is created and destroyed several times in a row. +It keeps additional +1 mapping of a device memory block to prevent calling actual +vkMapMemory/vkUnmapMemory too many times, which may improve performance and help +tools like RenderDOc. +*/ +#ifndef VMA_MAPPING_HYSTERESIS_ENABLED + #define VMA_MAPPING_HYSTERESIS_ENABLED 1 +#endif + +#ifndef VMA_CLASS_NO_COPY + #define VMA_CLASS_NO_COPY(className) \ + private: \ + className(const className&) = delete; \ + className& operator=(const className&) = delete; +#endif + +#define VMA_VALIDATE(cond) do { if(!(cond)) { \ + VMA_ASSERT(0 && "Validation failed: " #cond); \ + return false; \ + } } while(false) + +/******************************************************************************* +END OF CONFIGURATION +*/ +#endif // _VMA_CONFIGURATION + + +static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC; +static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF; +// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F. +static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666; + +// Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants. +static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040; +static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080; +static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000; +static const uint32_t VK_IMAGE_CREATE_DISJOINT_BIT_COPY = 0x00000200; +static const int32_t VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY = 1000158000; +static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u; +static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32; +static const uint32_t VMA_VENDOR_ID_AMD = 4098; + +// This one is tricky. Vulkan specification defines this code as available since +// Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131. +// See pull request #207. +#define VK_ERROR_UNKNOWN_COPY ((VkResult)-13) + + +#if VMA_STATS_STRING_ENABLED +// Correspond to values of enum VmaSuballocationType. +static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = +{ + "FREE", + "UNKNOWN", + "BUFFER", + "IMAGE_UNKNOWN", + "IMAGE_LINEAR", + "IMAGE_OPTIMAL", +}; +#endif + +static VkAllocationCallbacks VmaEmptyAllocationCallbacks = + { VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL }; + + +#ifndef _VMA_ENUM_DECLARATIONS + +enum VmaSuballocationType +{ + VMA_SUBALLOCATION_TYPE_FREE = 0, + VMA_SUBALLOCATION_TYPE_UNKNOWN = 1, + VMA_SUBALLOCATION_TYPE_BUFFER = 2, + VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3, + VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4, + VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5, + VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF +}; + +enum VMA_CACHE_OPERATION +{ + VMA_CACHE_FLUSH, + VMA_CACHE_INVALIDATE +}; + +enum class VmaAllocationRequestType +{ + Normal, + TLSF, + // Used by "Linear" algorithm. + UpperAddress, + EndOf1st, + EndOf2nd, +}; + +#endif // _VMA_ENUM_DECLARATIONS + +#ifndef _VMA_FORWARD_DECLARATIONS +// Opaque handle used by allocation algorithms to identify single allocation in any conforming way. +VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaAllocHandle); + +struct VmaMutexLock; +struct VmaMutexLockRead; +struct VmaMutexLockWrite; + +template +struct AtomicTransactionalIncrement; + +template +struct VmaStlAllocator; + +template +class VmaVector; + +template +class VmaSmallVector; + +template +class VmaPoolAllocator; + +template +struct VmaListItem; + +template +class VmaRawList; + +template +class VmaList; + +template +class VmaIntrusiveLinkedList; + +// Unused in this version +#if 0 +template +struct VmaPair; +template +struct VmaPairFirstLess; + +template +class VmaMap; +#endif + +#if VMA_STATS_STRING_ENABLED +class VmaStringBuilder; +class VmaJsonWriter; +#endif + +class VmaDeviceMemoryBlock; + +struct VmaDedicatedAllocationListItemTraits; +class VmaDedicatedAllocationList; + +struct VmaSuballocation; +struct VmaSuballocationOffsetLess; +struct VmaSuballocationOffsetGreater; +struct VmaSuballocationItemSizeLess; + +typedef VmaList> VmaSuballocationList; + +struct VmaAllocationRequest; + +class VmaBlockMetadata; +class VmaBlockMetadata_Linear; +class VmaBlockMetadata_TLSF; + +class VmaBlockVector; + +struct VmaPoolListItemTraits; + +struct VmaCurrentBudgetData; + +class VmaAllocationObjectAllocator; + +#endif // _VMA_FORWARD_DECLARATIONS + + +#ifndef _VMA_FUNCTIONS + +/* +Returns number of bits set to 1 in (v). + +On specific platforms and compilers you can use instrinsics like: + +Visual Studio: + return __popcnt(v); +GCC, Clang: + return static_cast(__builtin_popcount(v)); + +Define macro VMA_COUNT_BITS_SET to provide your optimized implementation. +But you need to check in runtime whether user's CPU supports these, as some old processors don't. +*/ +static inline uint32_t VmaCountBitsSet(uint32_t v) +{ +#if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20 + return std::popcount(v); +#else + uint32_t c = v - ((v >> 1) & 0x55555555); + c = ((c >> 2) & 0x33333333) + (c & 0x33333333); + c = ((c >> 4) + c) & 0x0F0F0F0F; + c = ((c >> 8) + c) & 0x00FF00FF; + c = ((c >> 16) + c) & 0x0000FFFF; + return c; +#endif +} + +static inline uint8_t VmaBitScanLSB(uint64_t mask) +{ +#if defined(_MSC_VER) && defined(_WIN64) + unsigned long pos; + if (_BitScanForward64(&pos, mask)) + return static_cast(pos); + return UINT8_MAX; +#elif defined __GNUC__ || defined __clang__ + return static_cast(__builtin_ffsll(mask)) - 1U; +#else + uint8_t pos = 0; + uint64_t bit = 1; + do + { + if (mask & bit) + return pos; + bit <<= 1; + } while (pos++ < 63); + return UINT8_MAX; +#endif +} + +static inline uint8_t VmaBitScanLSB(uint32_t mask) +{ +#ifdef _MSC_VER + unsigned long pos; + if (_BitScanForward(&pos, mask)) + return static_cast(pos); + return UINT8_MAX; +#elif defined __GNUC__ || defined __clang__ + return static_cast(__builtin_ffs(mask)) - 1U; +#else + uint8_t pos = 0; + uint32_t bit = 1; + do + { + if (mask & bit) + return pos; + bit <<= 1; + } while (pos++ < 31); + return UINT8_MAX; +#endif +} + +static inline uint8_t VmaBitScanMSB(uint64_t mask) +{ +#if defined(_MSC_VER) && defined(_WIN64) + unsigned long pos; + if (_BitScanReverse64(&pos, mask)) + return static_cast(pos); +#elif defined __GNUC__ || defined __clang__ + if (mask) + return 63 - static_cast(__builtin_clzll(mask)); +#else + uint8_t pos = 63; + uint64_t bit = 1ULL << 63; + do + { + if (mask & bit) + return pos; + bit >>= 1; + } while (pos-- > 0); +#endif + return UINT8_MAX; +} + +static inline uint8_t VmaBitScanMSB(uint32_t mask) +{ +#ifdef _MSC_VER + unsigned long pos; + if (_BitScanReverse(&pos, mask)) + return static_cast(pos); +#elif defined __GNUC__ || defined __clang__ + if (mask) + return 31 - static_cast(__builtin_clz(mask)); +#else + uint8_t pos = 31; + uint32_t bit = 1UL << 31; + do + { + if (mask & bit) + return pos; + bit >>= 1; + } while (pos-- > 0); +#endif + return UINT8_MAX; +} + +/* +Returns true if given number is a power of two. +T must be unsigned integer number or signed integer but always nonnegative. +For 0 returns true. +*/ +template +inline bool VmaIsPow2(T x) +{ + return (x & (x - 1)) == 0; +} + +// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16. +// Use types like uint32_t, uint64_t as T. +template +static inline T VmaAlignUp(T val, T alignment) +{ + VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); + return (val + alignment - 1) & ~(alignment - 1); +} + +// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8. +// Use types like uint32_t, uint64_t as T. +template +static inline T VmaAlignDown(T val, T alignment) +{ + VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); + return val & ~(alignment - 1); +} + +// Division with mathematical rounding to nearest number. +template +static inline T VmaRoundDiv(T x, T y) +{ + return (x + (y / (T)2)) / y; +} + +// Divide by 'y' and round up to nearest integer. +template +static inline T VmaDivideRoundingUp(T x, T y) +{ + return (x + y - (T)1) / y; +} + +// Returns smallest power of 2 greater or equal to v. +static inline uint32_t VmaNextPow2(uint32_t v) +{ + v--; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v++; + return v; +} + +static inline uint64_t VmaNextPow2(uint64_t v) +{ + v--; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v |= v >> 32; + v++; + return v; +} + +// Returns largest power of 2 less or equal to v. +static inline uint32_t VmaPrevPow2(uint32_t v) +{ + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v = v ^ (v >> 1); + return v; +} + +static inline uint64_t VmaPrevPow2(uint64_t v) +{ + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v |= v >> 32; + v = v ^ (v >> 1); + return v; +} + +static inline bool VmaStrIsEmpty(const char* pStr) +{ + return pStr == VMA_NULL || *pStr == '\0'; +} + +/* +Returns true if two memory blocks occupy overlapping pages. +ResourceA must be in less memory offset than ResourceB. + +Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)" +chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity". +*/ +static inline bool VmaBlocksOnSamePage( + VkDeviceSize resourceAOffset, + VkDeviceSize resourceASize, + VkDeviceSize resourceBOffset, + VkDeviceSize pageSize) +{ + VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0); + VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1; + VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1); + VkDeviceSize resourceBStart = resourceBOffset; + VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1); + return resourceAEndPage == resourceBStartPage; +} + +/* +Returns true if given suballocation types could conflict and must respect +VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer +or linear image and another one is optimal image. If type is unknown, behave +conservatively. +*/ +static inline bool VmaIsBufferImageGranularityConflict( + VmaSuballocationType suballocType1, + VmaSuballocationType suballocType2) +{ + if (suballocType1 > suballocType2) + { + VMA_SWAP(suballocType1, suballocType2); + } + + switch (suballocType1) + { + case VMA_SUBALLOCATION_TYPE_FREE: + return false; + case VMA_SUBALLOCATION_TYPE_UNKNOWN: + return true; + case VMA_SUBALLOCATION_TYPE_BUFFER: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL: + return false; + default: + VMA_ASSERT(0); + return true; + } +} + +static void VmaWriteMagicValue(void* pData, VkDeviceSize offset) +{ +#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION + uint32_t* pDst = (uint32_t*)((char*)pData + offset); + const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); + for (size_t i = 0; i < numberCount; ++i, ++pDst) + { + *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE; + } +#else + // no-op +#endif +} + +static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset) +{ +#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION + const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset); + const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); + for (size_t i = 0; i < numberCount; ++i, ++pSrc) + { + if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) + { + return false; + } + } +#endif + return true; +} + +/* +Fills structure with parameters of an example buffer to be used for transfers +during GPU memory defragmentation. +*/ +static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo) +{ + memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo)); + outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; + outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size. +} + + +/* +Performs binary search and returns iterator to first element that is greater or +equal to (key), according to comparison (cmp). + +Cmp should return true if first argument is less than second argument. + +Returned value is the found element, if present in the collection or place where +new element with value (key) should be inserted. +*/ +template +static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp) +{ + size_t down = 0, up = (end - beg); + while (down < up) + { + const size_t mid = down + (up - down) / 2; // Overflow-safe midpoint calculation + if (cmp(*(beg + mid), key)) + { + down = mid + 1; + } + else + { + up = mid; + } + } + return beg + down; +} + +template +IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp) +{ + IterT it = VmaBinaryFindFirstNotLess( + beg, end, value, cmp); + if (it == end || + (!cmp(*it, value) && !cmp(value, *it))) + { + return it; + } + return end; +} + +/* +Returns true if all pointers in the array are not-null and unique. +Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT. +T must be pointer type, e.g. VmaAllocation, VmaPool. +*/ +template +static bool VmaValidatePointerArray(uint32_t count, const T* arr) +{ + for (uint32_t i = 0; i < count; ++i) + { + const T iPtr = arr[i]; + if (iPtr == VMA_NULL) + { + return false; + } + for (uint32_t j = i + 1; j < count; ++j) + { + if (iPtr == arr[j]) + { + return false; + } + } + } + return true; +} + +template +static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct) +{ + newStruct->pNext = mainStruct->pNext; + mainStruct->pNext = newStruct; +} + +// This is the main algorithm that guides the selection of a memory type best for an allocation - +// converts usage to required/preferred/not preferred flags. +static bool FindMemoryPreferences( + bool isIntegratedGPU, + const VmaAllocationCreateInfo& allocCreateInfo, + VkFlags bufImgUsage, // VkBufferCreateInfo::usage or VkImageCreateInfo::usage. UINT32_MAX if unknown. + VkMemoryPropertyFlags& outRequiredFlags, + VkMemoryPropertyFlags& outPreferredFlags, + VkMemoryPropertyFlags& outNotPreferredFlags) +{ + outRequiredFlags = allocCreateInfo.requiredFlags; + outPreferredFlags = allocCreateInfo.preferredFlags; + outNotPreferredFlags = 0; + + switch(allocCreateInfo.usage) + { + case VMA_MEMORY_USAGE_UNKNOWN: + break; + case VMA_MEMORY_USAGE_GPU_ONLY: + if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + case VMA_MEMORY_USAGE_CPU_ONLY: + outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + break; + case VMA_MEMORY_USAGE_CPU_TO_GPU: + outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + case VMA_MEMORY_USAGE_GPU_TO_CPU: + outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; + break; + case VMA_MEMORY_USAGE_CPU_COPY: + outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + break; + case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED: + outRequiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; + break; + case VMA_MEMORY_USAGE_AUTO: + case VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE: + case VMA_MEMORY_USAGE_AUTO_PREFER_HOST: + { + if(bufImgUsage == UINT32_MAX) + { + VMA_ASSERT(0 && "VMA_MEMORY_USAGE_AUTO* values can only be used with functions like vmaCreateBuffer, vmaCreateImage so that the details of the created resource are known."); + return false; + } + // This relies on values of VK_IMAGE_USAGE_TRANSFER* being the same VK_BUFFER_IMAGE_TRANSFER*. + const bool deviceAccess = (bufImgUsage & ~(VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT)) != 0; + const bool hostAccessSequentialWrite = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT) != 0; + const bool hostAccessRandom = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) != 0; + const bool hostAccessAllowTransferInstead = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) != 0; + const bool preferDevice = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE; + const bool preferHost = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST; + + // CPU random access - e.g. a buffer written to or transferred from GPU to read back on CPU. + if(hostAccessRandom) + { + if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost) + { + // Nice if it will end up in HOST_VISIBLE, but more importantly prefer DEVICE_LOCAL. + // Omitting HOST_VISIBLE here is intentional. + // In case there is DEVICE_LOCAL | HOST_VISIBLE | HOST_CACHED, it will pick that one. + // Otherwise, this will give same weight to DEVICE_LOCAL as HOST_VISIBLE | HOST_CACHED and select the former if occurs first on the list. + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; + } + else + { + // Always CPU memory, cached. + outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; + } + } + // CPU sequential write - may be CPU or host-visible GPU memory, uncached and write-combined. + else if(hostAccessSequentialWrite) + { + // Want uncached and write-combined. + outNotPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; + + if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost) + { + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + } + else + { + outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + // Direct GPU access, CPU sequential write (e.g. a dynamic uniform buffer updated every frame) + if(deviceAccess) + { + // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose GPU memory. + if(preferHost) + outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + else + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + // GPU no direct access, CPU sequential write (e.g. an upload buffer to be transferred to the GPU) + else + { + // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose CPU memory. + if(preferDevice) + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + else + outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + } + } + // No CPU access + else + { + // GPU access, no CPU access (e.g. a color attachment image) - prefer GPU memory + if(deviceAccess) + { + // ...unless there is a clear preference from the user not to do so. + if(preferHost) + outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + else + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + // No direct GPU access, no CPU access, just transfers. + // It may be staging copy intended for e.g. preserving image for next frame (then better GPU memory) or + // a "swap file" copy to free some GPU memory (then better CPU memory). + // Up to the user to decide. If no preferece, assume the former and choose GPU memory. + if(preferHost) + outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + else + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + } + default: + VMA_ASSERT(0); + } + + // Avoid DEVICE_COHERENT unless explicitly requested. + if(((allocCreateInfo.requiredFlags | allocCreateInfo.preferredFlags) & + (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0) + { + outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY; + } + + return true; +} + +//////////////////////////////////////////////////////////////////////////////// +// Memory allocation + +static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment) +{ + void* result = VMA_NULL; + if ((pAllocationCallbacks != VMA_NULL) && + (pAllocationCallbacks->pfnAllocation != VMA_NULL)) + { + result = (*pAllocationCallbacks->pfnAllocation)( + pAllocationCallbacks->pUserData, + size, + alignment, + VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); + } + else + { + result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment); + } + VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed."); + return result; +} + +static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr) +{ + if ((pAllocationCallbacks != VMA_NULL) && + (pAllocationCallbacks->pfnFree != VMA_NULL)) + { + (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr); + } + else + { + VMA_SYSTEM_ALIGNED_FREE(ptr); + } +} + +template +static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks) +{ + return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T)); +} + +template +static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count) +{ + return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T)); +} + +#define vma_new(allocator, type) new(VmaAllocate(allocator))(type) + +#define vma_new_array(allocator, type, count) new(VmaAllocateArray((allocator), (count)))(type) + +template +static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr) +{ + ptr->~T(); + VmaFree(pAllocationCallbacks, ptr); +} + +template +static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count) +{ + if (ptr != VMA_NULL) + { + for (size_t i = count; i--; ) + { + ptr[i].~T(); + } + VmaFree(pAllocationCallbacks, ptr); + } +} + +static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr) +{ + if (srcStr != VMA_NULL) + { + const size_t len = strlen(srcStr); + char* const result = vma_new_array(allocs, char, len + 1); + memcpy(result, srcStr, len + 1); + return result; + } + return VMA_NULL; +} + +#if VMA_STATS_STRING_ENABLED +static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen) +{ + if (srcStr != VMA_NULL) + { + char* const result = vma_new_array(allocs, char, strLen + 1); + memcpy(result, srcStr, strLen); + result[strLen] = '\0'; + return result; + } + return VMA_NULL; +} +#endif // VMA_STATS_STRING_ENABLED + +static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str) +{ + if (str != VMA_NULL) + { + const size_t len = strlen(str); + vma_delete_array(allocs, str, len + 1); + } +} + +template +size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value) +{ + const size_t indexToInsert = VmaBinaryFindFirstNotLess( + vector.data(), + vector.data() + vector.size(), + value, + CmpLess()) - vector.data(); + VmaVectorInsert(vector, indexToInsert, value); + return indexToInsert; +} + +template +bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value) +{ + CmpLess comparator; + typename VectorT::iterator it = VmaBinaryFindFirstNotLess( + vector.begin(), + vector.end(), + value, + comparator); + if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) + { + size_t indexToRemove = it - vector.begin(); + VmaVectorRemove(vector, indexToRemove); + return true; + } + return false; +} +#endif // _VMA_FUNCTIONS + +#ifndef _VMA_STATISTICS_FUNCTIONS + +static void VmaClearStatistics(VmaStatistics& outStats) +{ + outStats.blockCount = 0; + outStats.allocationCount = 0; + outStats.blockBytes = 0; + outStats.allocationBytes = 0; +} + +static void VmaAddStatistics(VmaStatistics& inoutStats, const VmaStatistics& src) +{ + inoutStats.blockCount += src.blockCount; + inoutStats.allocationCount += src.allocationCount; + inoutStats.blockBytes += src.blockBytes; + inoutStats.allocationBytes += src.allocationBytes; +} + +static void VmaClearDetailedStatistics(VmaDetailedStatistics& outStats) +{ + VmaClearStatistics(outStats.statistics); + outStats.unusedRangeCount = 0; + outStats.allocationSizeMin = VK_WHOLE_SIZE; + outStats.allocationSizeMax = 0; + outStats.unusedRangeSizeMin = VK_WHOLE_SIZE; + outStats.unusedRangeSizeMax = 0; +} + +static void VmaAddDetailedStatisticsAllocation(VmaDetailedStatistics& inoutStats, VkDeviceSize size) +{ + inoutStats.statistics.allocationCount++; + inoutStats.statistics.allocationBytes += size; + inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, size); + inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, size); +} + +static void VmaAddDetailedStatisticsUnusedRange(VmaDetailedStatistics& inoutStats, VkDeviceSize size) +{ + inoutStats.unusedRangeCount++; + inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, size); + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, size); +} + +static void VmaAddDetailedStatistics(VmaDetailedStatistics& inoutStats, const VmaDetailedStatistics& src) +{ + VmaAddStatistics(inoutStats.statistics, src.statistics); + inoutStats.unusedRangeCount += src.unusedRangeCount; + inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, src.allocationSizeMin); + inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, src.allocationSizeMax); + inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, src.unusedRangeSizeMin); + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, src.unusedRangeSizeMax); +} + +#endif // _VMA_STATISTICS_FUNCTIONS + +#ifndef _VMA_MUTEX_LOCK +// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope). +struct VmaMutexLock +{ + VMA_CLASS_NO_COPY(VmaMutexLock) +public: + VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) : + m_pMutex(useMutex ? &mutex : VMA_NULL) + { + if (m_pMutex) { m_pMutex->Lock(); } + } + ~VmaMutexLock() { if (m_pMutex) { m_pMutex->Unlock(); } } + +private: + VMA_MUTEX* m_pMutex; +}; + +// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading. +struct VmaMutexLockRead +{ + VMA_CLASS_NO_COPY(VmaMutexLockRead) +public: + VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) : + m_pMutex(useMutex ? &mutex : VMA_NULL) + { + if (m_pMutex) { m_pMutex->LockRead(); } + } + ~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } } + +private: + VMA_RW_MUTEX* m_pMutex; +}; + +// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing. +struct VmaMutexLockWrite +{ + VMA_CLASS_NO_COPY(VmaMutexLockWrite) +public: + VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) + : m_pMutex(useMutex ? &mutex : VMA_NULL) + { + if (m_pMutex) { m_pMutex->LockWrite(); } + } + ~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } } + +private: + VMA_RW_MUTEX* m_pMutex; +}; + +#if VMA_DEBUG_GLOBAL_MUTEX + static VMA_MUTEX gDebugGlobalMutex; + #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true); +#else + #define VMA_DEBUG_GLOBAL_MUTEX_LOCK +#endif +#endif // _VMA_MUTEX_LOCK + +#ifndef _VMA_ATOMIC_TRANSACTIONAL_INCREMENT +// An object that increments given atomic but decrements it back in the destructor unless Commit() is called. +template +struct AtomicTransactionalIncrement +{ +public: + typedef std::atomic AtomicT; + + ~AtomicTransactionalIncrement() + { + if(m_Atomic) + --(*m_Atomic); + } + + void Commit() { m_Atomic = nullptr; } + T Increment(AtomicT* atomic) + { + m_Atomic = atomic; + return m_Atomic->fetch_add(1); + } + +private: + AtomicT* m_Atomic = nullptr; +}; +#endif // _VMA_ATOMIC_TRANSACTIONAL_INCREMENT + +#ifndef _VMA_STL_ALLOCATOR +// STL-compatible allocator. +template +struct VmaStlAllocator +{ + const VkAllocationCallbacks* const m_pCallbacks; + typedef T value_type; + + VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) {} + template + VmaStlAllocator(const VmaStlAllocator& src) : m_pCallbacks(src.m_pCallbacks) {} + VmaStlAllocator(const VmaStlAllocator&) = default; + VmaStlAllocator& operator=(const VmaStlAllocator&) = delete; + + T* allocate(size_t n) { return VmaAllocateArray(m_pCallbacks, n); } + void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); } + + template + bool operator==(const VmaStlAllocator& rhs) const + { + return m_pCallbacks == rhs.m_pCallbacks; + } + template + bool operator!=(const VmaStlAllocator& rhs) const + { + return m_pCallbacks != rhs.m_pCallbacks; + } +}; +#endif // _VMA_STL_ALLOCATOR + +#ifndef _VMA_VECTOR +/* Class with interface compatible with subset of std::vector. +T must be POD because constructors and destructors are not called and memcpy is +used for these objects. */ +template +class VmaVector +{ +public: + typedef T value_type; + typedef T* iterator; + typedef const T* const_iterator; + + VmaVector(const AllocatorT& allocator); + VmaVector(size_t count, const AllocatorT& allocator); + // This version of the constructor is here for compatibility with pre-C++14 std::vector. + // value is unused. + VmaVector(size_t count, const T& value, const AllocatorT& allocator) : VmaVector(count, allocator) {} + VmaVector(const VmaVector& src); + VmaVector& operator=(const VmaVector& rhs); + ~VmaVector() { VmaFree(m_Allocator.m_pCallbacks, m_pArray); } + + bool empty() const { return m_Count == 0; } + size_t size() const { return m_Count; } + T* data() { return m_pArray; } + T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; } + T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; } + const T* data() const { return m_pArray; } + const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; } + const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; } + + iterator begin() { return m_pArray; } + iterator end() { return m_pArray + m_Count; } + const_iterator cbegin() const { return m_pArray; } + const_iterator cend() const { return m_pArray + m_Count; } + const_iterator begin() const { return cbegin(); } + const_iterator end() const { return cend(); } + + void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); } + void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); } + void push_front(const T& src) { insert(0, src); } + + void push_back(const T& src); + void reserve(size_t newCapacity, bool freeMemory = false); + void resize(size_t newCount); + void clear() { resize(0); } + void shrink_to_fit(); + void insert(size_t index, const T& src); + void remove(size_t index); + + T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; } + const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; } + +private: + AllocatorT m_Allocator; + T* m_pArray; + size_t m_Count; + size_t m_Capacity; +}; + +#ifndef _VMA_VECTOR_FUNCTIONS +template +VmaVector::VmaVector(const AllocatorT& allocator) + : m_Allocator(allocator), + m_pArray(VMA_NULL), + m_Count(0), + m_Capacity(0) {} + +template +VmaVector::VmaVector(size_t count, const AllocatorT& allocator) + : m_Allocator(allocator), + m_pArray(count ? (T*)VmaAllocateArray(allocator.m_pCallbacks, count) : VMA_NULL), + m_Count(count), + m_Capacity(count) {} + +template +VmaVector::VmaVector(const VmaVector& src) + : m_Allocator(src.m_Allocator), + m_pArray(src.m_Count ? (T*)VmaAllocateArray(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL), + m_Count(src.m_Count), + m_Capacity(src.m_Count) +{ + if (m_Count != 0) + { + memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T)); + } +} + +template +VmaVector& VmaVector::operator=(const VmaVector& rhs) +{ + if (&rhs != this) + { + resize(rhs.m_Count); + if (m_Count != 0) + { + memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T)); + } + } + return *this; +} + +template +void VmaVector::push_back(const T& src) +{ + const size_t newIndex = size(); + resize(newIndex + 1); + m_pArray[newIndex] = src; +} + +template +void VmaVector::reserve(size_t newCapacity, bool freeMemory) +{ + newCapacity = VMA_MAX(newCapacity, m_Count); + + if ((newCapacity < m_Capacity) && !freeMemory) + { + newCapacity = m_Capacity; + } + + if (newCapacity != m_Capacity) + { + T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator, newCapacity) : VMA_NULL; + if (m_Count != 0) + { + memcpy(newArray, m_pArray, m_Count * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = newCapacity; + m_pArray = newArray; + } +} + +template +void VmaVector::resize(size_t newCount) +{ + size_t newCapacity = m_Capacity; + if (newCount > m_Capacity) + { + newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8)); + } + + if (newCapacity != m_Capacity) + { + T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL; + const size_t elementsToCopy = VMA_MIN(m_Count, newCount); + if (elementsToCopy != 0) + { + memcpy(newArray, m_pArray, elementsToCopy * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = newCapacity; + m_pArray = newArray; + } + + m_Count = newCount; +} + +template +void VmaVector::shrink_to_fit() +{ + if (m_Capacity > m_Count) + { + T* newArray = VMA_NULL; + if (m_Count > 0) + { + newArray = VmaAllocateArray(m_Allocator.m_pCallbacks, m_Count); + memcpy(newArray, m_pArray, m_Count * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = m_Count; + m_pArray = newArray; + } +} + +template +void VmaVector::insert(size_t index, const T& src) +{ + VMA_HEAVY_ASSERT(index <= m_Count); + const size_t oldCount = size(); + resize(oldCount + 1); + if (index < oldCount) + { + memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T)); + } + m_pArray[index] = src; +} + +template +void VmaVector::remove(size_t index) +{ + VMA_HEAVY_ASSERT(index < m_Count); + const size_t oldCount = size(); + if (index < oldCount - 1) + { + memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T)); + } + resize(oldCount - 1); +} +#endif // _VMA_VECTOR_FUNCTIONS + +template +static void VmaVectorInsert(VmaVector& vec, size_t index, const T& item) +{ + vec.insert(index, item); +} + +template +static void VmaVectorRemove(VmaVector& vec, size_t index) +{ + vec.remove(index); +} +#endif // _VMA_VECTOR + +#ifndef _VMA_SMALL_VECTOR +/* +This is a vector (a variable-sized array), optimized for the case when the array is small. + +It contains some number of elements in-place, which allows it to avoid heap allocation +when the actual number of elements is below that threshold. This allows normal "small" +cases to be fast without losing generality for large inputs. +*/ +template +class VmaSmallVector +{ +public: + typedef T value_type; + typedef T* iterator; + + VmaSmallVector(const AllocatorT& allocator); + VmaSmallVector(size_t count, const AllocatorT& allocator); + template + VmaSmallVector(const VmaSmallVector&) = delete; + template + VmaSmallVector& operator=(const VmaSmallVector&) = delete; + ~VmaSmallVector() = default; + + bool empty() const { return m_Count == 0; } + size_t size() const { return m_Count; } + T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } + T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; } + T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; } + const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } + const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; } + const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; } + + iterator begin() { return data(); } + iterator end() { return data() + m_Count; } + + void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); } + void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); } + void push_front(const T& src) { insert(0, src); } + + void push_back(const T& src); + void resize(size_t newCount, bool freeMemory = false); + void clear(bool freeMemory = false); + void insert(size_t index, const T& src); + void remove(size_t index); + + T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; } + const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; } + +private: + size_t m_Count; + T m_StaticArray[N]; // Used when m_Size <= N + VmaVector m_DynamicArray; // Used when m_Size > N +}; + +#ifndef _VMA_SMALL_VECTOR_FUNCTIONS +template +VmaSmallVector::VmaSmallVector(const AllocatorT& allocator) + : m_Count(0), + m_DynamicArray(allocator) {} + +template +VmaSmallVector::VmaSmallVector(size_t count, const AllocatorT& allocator) + : m_Count(count), + m_DynamicArray(count > N ? count : 0, allocator) {} + +template +void VmaSmallVector::push_back(const T& src) +{ + const size_t newIndex = size(); + resize(newIndex + 1); + data()[newIndex] = src; +} + +template +void VmaSmallVector::resize(size_t newCount, bool freeMemory) +{ + if (newCount > N && m_Count > N) + { + // Any direction, staying in m_DynamicArray + m_DynamicArray.resize(newCount); + if (freeMemory) + { + m_DynamicArray.shrink_to_fit(); + } + } + else if (newCount > N && m_Count <= N) + { + // Growing, moving from m_StaticArray to m_DynamicArray + m_DynamicArray.resize(newCount); + if (m_Count > 0) + { + memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T)); + } + } + else if (newCount <= N && m_Count > N) + { + // Shrinking, moving from m_DynamicArray to m_StaticArray + if (newCount > 0) + { + memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T)); + } + m_DynamicArray.resize(0); + if (freeMemory) + { + m_DynamicArray.shrink_to_fit(); + } + } + else + { + // Any direction, staying in m_StaticArray - nothing to do here + } + m_Count = newCount; +} + +template +void VmaSmallVector::clear(bool freeMemory) +{ + m_DynamicArray.clear(); + if (freeMemory) + { + m_DynamicArray.shrink_to_fit(); + } + m_Count = 0; +} + +template +void VmaSmallVector::insert(size_t index, const T& src) +{ + VMA_HEAVY_ASSERT(index <= m_Count); + const size_t oldCount = size(); + resize(oldCount + 1); + T* const dataPtr = data(); + if (index < oldCount) + { + // I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray. + memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T)); + } + dataPtr[index] = src; +} + +template +void VmaSmallVector::remove(size_t index) +{ + VMA_HEAVY_ASSERT(index < m_Count); + const size_t oldCount = size(); + if (index < oldCount - 1) + { + // I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray. + T* const dataPtr = data(); + memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T)); + } + resize(oldCount - 1); +} +#endif // _VMA_SMALL_VECTOR_FUNCTIONS +#endif // _VMA_SMALL_VECTOR + +#ifndef _VMA_POOL_ALLOCATOR +/* +Allocator for objects of type T using a list of arrays (pools) to speed up +allocation. Number of elements that can be allocated is not bounded because +allocator can create multiple blocks. +*/ +template +class VmaPoolAllocator +{ + VMA_CLASS_NO_COPY(VmaPoolAllocator) +public: + VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity); + ~VmaPoolAllocator(); + template T* Alloc(Types&&... args); + void Free(T* ptr); + +private: + union Item + { + uint32_t NextFreeIndex; + alignas(T) char Value[sizeof(T)]; + }; + struct ItemBlock + { + Item* pItems; + uint32_t Capacity; + uint32_t FirstFreeIndex; + }; + + const VkAllocationCallbacks* m_pAllocationCallbacks; + const uint32_t m_FirstBlockCapacity; + VmaVector> m_ItemBlocks; + + ItemBlock& CreateNewBlock(); +}; + +#ifndef _VMA_POOL_ALLOCATOR_FUNCTIONS +template +VmaPoolAllocator::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) + : m_pAllocationCallbacks(pAllocationCallbacks), + m_FirstBlockCapacity(firstBlockCapacity), + m_ItemBlocks(VmaStlAllocator(pAllocationCallbacks)) +{ + VMA_ASSERT(m_FirstBlockCapacity > 1); +} + +template +VmaPoolAllocator::~VmaPoolAllocator() +{ + for (size_t i = m_ItemBlocks.size(); i--;) + vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity); + m_ItemBlocks.clear(); +} + +template +template T* VmaPoolAllocator::Alloc(Types&&... args) +{ + for (size_t i = m_ItemBlocks.size(); i--; ) + { + ItemBlock& block = m_ItemBlocks[i]; + // This block has some free items: Use first one. + if (block.FirstFreeIndex != UINT32_MAX) + { + Item* const pItem = &block.pItems[block.FirstFreeIndex]; + block.FirstFreeIndex = pItem->NextFreeIndex; + T* result = (T*)&pItem->Value; + new(result)T(std::forward(args)...); // Explicit constructor call. + return result; + } + } + + // No block has free item: Create new one and use it. + ItemBlock& newBlock = CreateNewBlock(); + Item* const pItem = &newBlock.pItems[0]; + newBlock.FirstFreeIndex = pItem->NextFreeIndex; + T* result = (T*)&pItem->Value; + new(result) T(std::forward(args)...); // Explicit constructor call. + return result; +} + +template +void VmaPoolAllocator::Free(T* ptr) +{ + // Search all memory blocks to find ptr. + for (size_t i = m_ItemBlocks.size(); i--; ) + { + ItemBlock& block = m_ItemBlocks[i]; + + // Casting to union. + Item* pItemPtr; + memcpy(&pItemPtr, &ptr, sizeof(pItemPtr)); + + // Check if pItemPtr is in address range of this block. + if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity)) + { + ptr->~T(); // Explicit destructor call. + const uint32_t index = static_cast(pItemPtr - block.pItems); + pItemPtr->NextFreeIndex = block.FirstFreeIndex; + block.FirstFreeIndex = index; + return; + } + } + VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool."); +} + +template +typename VmaPoolAllocator::ItemBlock& VmaPoolAllocator::CreateNewBlock() +{ + const uint32_t newBlockCapacity = m_ItemBlocks.empty() ? + m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2; + + const ItemBlock newBlock = + { + vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity), + newBlockCapacity, + 0 + }; + + m_ItemBlocks.push_back(newBlock); + + // Setup singly-linked list of all free items in this block. + for (uint32_t i = 0; i < newBlockCapacity - 1; ++i) + newBlock.pItems[i].NextFreeIndex = i + 1; + newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX; + return m_ItemBlocks.back(); +} +#endif // _VMA_POOL_ALLOCATOR_FUNCTIONS +#endif // _VMA_POOL_ALLOCATOR + +#ifndef _VMA_RAW_LIST +template +struct VmaListItem +{ + VmaListItem* pPrev; + VmaListItem* pNext; + T Value; +}; + +// Doubly linked list. +template +class VmaRawList +{ + VMA_CLASS_NO_COPY(VmaRawList) +public: + typedef VmaListItem ItemType; + + VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks); + // Intentionally not calling Clear, because that would be unnecessary + // computations to return all items to m_ItemAllocator as free. + ~VmaRawList() = default; + + size_t GetCount() const { return m_Count; } + bool IsEmpty() const { return m_Count == 0; } + + ItemType* Front() { return m_pFront; } + ItemType* Back() { return m_pBack; } + const ItemType* Front() const { return m_pFront; } + const ItemType* Back() const { return m_pBack; } + + ItemType* PushFront(); + ItemType* PushBack(); + ItemType* PushFront(const T& value); + ItemType* PushBack(const T& value); + void PopFront(); + void PopBack(); + + // Item can be null - it means PushBack. + ItemType* InsertBefore(ItemType* pItem); + // Item can be null - it means PushFront. + ItemType* InsertAfter(ItemType* pItem); + ItemType* InsertBefore(ItemType* pItem, const T& value); + ItemType* InsertAfter(ItemType* pItem, const T& value); + + void Clear(); + void Remove(ItemType* pItem); + +private: + const VkAllocationCallbacks* const m_pAllocationCallbacks; + VmaPoolAllocator m_ItemAllocator; + ItemType* m_pFront; + ItemType* m_pBack; + size_t m_Count; +}; + +#ifndef _VMA_RAW_LIST_FUNCTIONS +template +VmaRawList::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) + : m_pAllocationCallbacks(pAllocationCallbacks), + m_ItemAllocator(pAllocationCallbacks, 128), + m_pFront(VMA_NULL), + m_pBack(VMA_NULL), + m_Count(0) {} + +template +VmaListItem* VmaRawList::PushFront() +{ + ItemType* const pNewItem = m_ItemAllocator.Alloc(); + pNewItem->pPrev = VMA_NULL; + if (IsEmpty()) + { + pNewItem->pNext = VMA_NULL; + m_pFront = pNewItem; + m_pBack = pNewItem; + m_Count = 1; + } + else + { + pNewItem->pNext = m_pFront; + m_pFront->pPrev = pNewItem; + m_pFront = pNewItem; + ++m_Count; + } + return pNewItem; +} + +template +VmaListItem* VmaRawList::PushBack() +{ + ItemType* const pNewItem = m_ItemAllocator.Alloc(); + pNewItem->pNext = VMA_NULL; + if(IsEmpty()) + { + pNewItem->pPrev = VMA_NULL; + m_pFront = pNewItem; + m_pBack = pNewItem; + m_Count = 1; + } + else + { + pNewItem->pPrev = m_pBack; + m_pBack->pNext = pNewItem; + m_pBack = pNewItem; + ++m_Count; + } + return pNewItem; +} + +template +VmaListItem* VmaRawList::PushFront(const T& value) +{ + ItemType* const pNewItem = PushFront(); + pNewItem->Value = value; + return pNewItem; +} + +template +VmaListItem* VmaRawList::PushBack(const T& value) +{ + ItemType* const pNewItem = PushBack(); + pNewItem->Value = value; + return pNewItem; +} + +template +void VmaRawList::PopFront() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const pFrontItem = m_pFront; + ItemType* const pNextItem = pFrontItem->pNext; + if (pNextItem != VMA_NULL) + { + pNextItem->pPrev = VMA_NULL; + } + m_pFront = pNextItem; + m_ItemAllocator.Free(pFrontItem); + --m_Count; +} + +template +void VmaRawList::PopBack() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const pBackItem = m_pBack; + ItemType* const pPrevItem = pBackItem->pPrev; + if(pPrevItem != VMA_NULL) + { + pPrevItem->pNext = VMA_NULL; + } + m_pBack = pPrevItem; + m_ItemAllocator.Free(pBackItem); + --m_Count; +} + +template +void VmaRawList::Clear() +{ + if (IsEmpty() == false) + { + ItemType* pItem = m_pBack; + while (pItem != VMA_NULL) + { + ItemType* const pPrevItem = pItem->pPrev; + m_ItemAllocator.Free(pItem); + pItem = pPrevItem; + } + m_pFront = VMA_NULL; + m_pBack = VMA_NULL; + m_Count = 0; + } +} + +template +void VmaRawList::Remove(ItemType* pItem) +{ + VMA_HEAVY_ASSERT(pItem != VMA_NULL); + VMA_HEAVY_ASSERT(m_Count > 0); + + if(pItem->pPrev != VMA_NULL) + { + pItem->pPrev->pNext = pItem->pNext; + } + else + { + VMA_HEAVY_ASSERT(m_pFront == pItem); + m_pFront = pItem->pNext; + } + + if(pItem->pNext != VMA_NULL) + { + pItem->pNext->pPrev = pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(m_pBack == pItem); + m_pBack = pItem->pPrev; + } + + m_ItemAllocator.Free(pItem); + --m_Count; +} + +template +VmaListItem* VmaRawList::InsertBefore(ItemType* pItem) +{ + if(pItem != VMA_NULL) + { + ItemType* const prevItem = pItem->pPrev; + ItemType* const newItem = m_ItemAllocator.Alloc(); + newItem->pPrev = prevItem; + newItem->pNext = pItem; + pItem->pPrev = newItem; + if(prevItem != VMA_NULL) + { + prevItem->pNext = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_pFront == pItem); + m_pFront = newItem; + } + ++m_Count; + return newItem; + } + else + return PushBack(); +} + +template +VmaListItem* VmaRawList::InsertAfter(ItemType* pItem) +{ + if(pItem != VMA_NULL) + { + ItemType* const nextItem = pItem->pNext; + ItemType* const newItem = m_ItemAllocator.Alloc(); + newItem->pNext = nextItem; + newItem->pPrev = pItem; + pItem->pNext = newItem; + if(nextItem != VMA_NULL) + { + nextItem->pPrev = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_pBack == pItem); + m_pBack = newItem; + } + ++m_Count; + return newItem; + } + else + return PushFront(); +} + +template +VmaListItem* VmaRawList::InsertBefore(ItemType* pItem, const T& value) +{ + ItemType* const newItem = InsertBefore(pItem); + newItem->Value = value; + return newItem; +} + +template +VmaListItem* VmaRawList::InsertAfter(ItemType* pItem, const T& value) +{ + ItemType* const newItem = InsertAfter(pItem); + newItem->Value = value; + return newItem; +} +#endif // _VMA_RAW_LIST_FUNCTIONS +#endif // _VMA_RAW_LIST + +#ifndef _VMA_LIST +template +class VmaList +{ + VMA_CLASS_NO_COPY(VmaList) +public: + class reverse_iterator; + class const_iterator; + class const_reverse_iterator; + + class iterator + { + friend class const_iterator; + friend class VmaList; + public: + iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + + T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } + + bool operator==(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } + + iterator operator++(int) { iterator result = *this; ++*this; return result; } + iterator operator--(int) { iterator result = *this; --*this; return result; } + + iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; } + iterator& operator--(); + + private: + VmaRawList* m_pList; + VmaListItem* m_pItem; + + iterator(VmaRawList* pList, VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} + }; + class reverse_iterator + { + friend class const_reverse_iterator; + friend class VmaList; + public: + reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + + T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } + + bool operator==(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } + + reverse_iterator operator++(int) { reverse_iterator result = *this; ++* this; return result; } + reverse_iterator operator--(int) { reverse_iterator result = *this; --* this; return result; } + + reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; } + reverse_iterator& operator--(); + + private: + VmaRawList* m_pList; + VmaListItem* m_pItem; + + reverse_iterator(VmaRawList* pList, VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} + }; + class const_iterator + { + friend class VmaList; + public: + const_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + const_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + const_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + + iterator drop_const() { return { const_cast*>(m_pList), const_cast*>(m_pItem) }; } + + const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } + + bool operator==(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } + + const_iterator operator++(int) { const_iterator result = *this; ++* this; return result; } + const_iterator operator--(int) { const_iterator result = *this; --* this; return result; } + + const_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; } + const_iterator& operator--(); + + private: + const VmaRawList* m_pList; + const VmaListItem* m_pItem; + + const_iterator(const VmaRawList* pList, const VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} + }; + class const_reverse_iterator + { + friend class VmaList; + public: + const_reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + const_reverse_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + const_reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + + reverse_iterator drop_const() { return { const_cast*>(m_pList), const_cast*>(m_pItem) }; } + + const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } + + bool operator==(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } + + const_reverse_iterator operator++(int) { const_reverse_iterator result = *this; ++* this; return result; } + const_reverse_iterator operator--(int) { const_reverse_iterator result = *this; --* this; return result; } + + const_reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; } + const_reverse_iterator& operator--(); + + private: + const VmaRawList* m_pList; + const VmaListItem* m_pItem; + + const_reverse_iterator(const VmaRawList* pList, const VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} + }; + + VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) {} + + bool empty() const { return m_RawList.IsEmpty(); } + size_t size() const { return m_RawList.GetCount(); } + + iterator begin() { return iterator(&m_RawList, m_RawList.Front()); } + iterator end() { return iterator(&m_RawList, VMA_NULL); } + + const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); } + const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); } + + const_iterator begin() const { return cbegin(); } + const_iterator end() const { return cend(); } + + reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); } + reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); } + + const_reverse_iterator crbegin() const { return const_reverse_iterator(&m_RawList, m_RawList.Back()); } + const_reverse_iterator crend() const { return const_reverse_iterator(&m_RawList, VMA_NULL); } + + const_reverse_iterator rbegin() const { return crbegin(); } + const_reverse_iterator rend() const { return crend(); } + + void push_back(const T& value) { m_RawList.PushBack(value); } + iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); } + + void clear() { m_RawList.Clear(); } + void erase(iterator it) { m_RawList.Remove(it.m_pItem); } + +private: + VmaRawList m_RawList; +}; + +#ifndef _VMA_LIST_FUNCTIONS +template +typename VmaList::iterator& VmaList::iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; +} + +template +typename VmaList::reverse_iterator& VmaList::reverse_iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pNext; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Front(); + } + return *this; +} + +template +typename VmaList::const_iterator& VmaList::const_iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; +} + +template +typename VmaList::const_reverse_iterator& VmaList::const_reverse_iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pNext; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; +} +#endif // _VMA_LIST_FUNCTIONS +#endif // _VMA_LIST + +#ifndef _VMA_INTRUSIVE_LINKED_LIST +/* +Expected interface of ItemTypeTraits: +struct MyItemTypeTraits +{ + typedef MyItem ItemType; + static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; } + static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; } + static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; } + static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; } +}; +*/ +template +class VmaIntrusiveLinkedList +{ +public: + typedef typename ItemTypeTraits::ItemType ItemType; + static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); } + static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); } + + // Movable, not copyable. + VmaIntrusiveLinkedList() = default; + VmaIntrusiveLinkedList(VmaIntrusiveLinkedList && src); + VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList&) = delete; + VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src); + VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList&) = delete; + ~VmaIntrusiveLinkedList() { VMA_HEAVY_ASSERT(IsEmpty()); } + + size_t GetCount() const { return m_Count; } + bool IsEmpty() const { return m_Count == 0; } + ItemType* Front() { return m_Front; } + ItemType* Back() { return m_Back; } + const ItemType* Front() const { return m_Front; } + const ItemType* Back() const { return m_Back; } + + void PushBack(ItemType* item); + void PushFront(ItemType* item); + ItemType* PopBack(); + ItemType* PopFront(); + + // MyItem can be null - it means PushBack. + void InsertBefore(ItemType* existingItem, ItemType* newItem); + // MyItem can be null - it means PushFront. + void InsertAfter(ItemType* existingItem, ItemType* newItem); + void Remove(ItemType* item); + void RemoveAll(); + +private: + ItemType* m_Front = VMA_NULL; + ItemType* m_Back = VMA_NULL; + size_t m_Count = 0; +}; + +#ifndef _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS +template +VmaIntrusiveLinkedList::VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src) + : m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count) +{ + src.m_Front = src.m_Back = VMA_NULL; + src.m_Count = 0; +} + +template +VmaIntrusiveLinkedList& VmaIntrusiveLinkedList::operator=(VmaIntrusiveLinkedList&& src) +{ + if (&src != this) + { + VMA_HEAVY_ASSERT(IsEmpty()); + m_Front = src.m_Front; + m_Back = src.m_Back; + m_Count = src.m_Count; + src.m_Front = src.m_Back = VMA_NULL; + src.m_Count = 0; + } + return *this; +} + +template +void VmaIntrusiveLinkedList::PushBack(ItemType* item) +{ + VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); + if (IsEmpty()) + { + m_Front = item; + m_Back = item; + m_Count = 1; + } + else + { + ItemTypeTraits::AccessPrev(item) = m_Back; + ItemTypeTraits::AccessNext(m_Back) = item; + m_Back = item; + ++m_Count; + } +} + +template +void VmaIntrusiveLinkedList::PushFront(ItemType* item) +{ + VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); + if (IsEmpty()) + { + m_Front = item; + m_Back = item; + m_Count = 1; + } + else + { + ItemTypeTraits::AccessNext(item) = m_Front; + ItemTypeTraits::AccessPrev(m_Front) = item; + m_Front = item; + ++m_Count; + } +} + +template +typename VmaIntrusiveLinkedList::ItemType* VmaIntrusiveLinkedList::PopBack() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const backItem = m_Back; + ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem); + if (prevItem != VMA_NULL) + { + ItemTypeTraits::AccessNext(prevItem) = VMA_NULL; + } + m_Back = prevItem; + --m_Count; + ItemTypeTraits::AccessPrev(backItem) = VMA_NULL; + ItemTypeTraits::AccessNext(backItem) = VMA_NULL; + return backItem; +} + +template +typename VmaIntrusiveLinkedList::ItemType* VmaIntrusiveLinkedList::PopFront() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const frontItem = m_Front; + ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem); + if (nextItem != VMA_NULL) + { + ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL; + } + m_Front = nextItem; + --m_Count; + ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL; + ItemTypeTraits::AccessNext(frontItem) = VMA_NULL; + return frontItem; +} + +template +void VmaIntrusiveLinkedList::InsertBefore(ItemType* existingItem, ItemType* newItem) +{ + VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); + if (existingItem != VMA_NULL) + { + ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem); + ItemTypeTraits::AccessPrev(newItem) = prevItem; + ItemTypeTraits::AccessNext(newItem) = existingItem; + ItemTypeTraits::AccessPrev(existingItem) = newItem; + if (prevItem != VMA_NULL) + { + ItemTypeTraits::AccessNext(prevItem) = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_Front == existingItem); + m_Front = newItem; + } + ++m_Count; + } + else + PushBack(newItem); +} + +template +void VmaIntrusiveLinkedList::InsertAfter(ItemType* existingItem, ItemType* newItem) +{ + VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); + if (existingItem != VMA_NULL) + { + ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem); + ItemTypeTraits::AccessNext(newItem) = nextItem; + ItemTypeTraits::AccessPrev(newItem) = existingItem; + ItemTypeTraits::AccessNext(existingItem) = newItem; + if (nextItem != VMA_NULL) + { + ItemTypeTraits::AccessPrev(nextItem) = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_Back == existingItem); + m_Back = newItem; + } + ++m_Count; + } + else + return PushFront(newItem); +} + +template +void VmaIntrusiveLinkedList::Remove(ItemType* item) +{ + VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0); + if (ItemTypeTraits::GetPrev(item) != VMA_NULL) + { + ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item); + } + else + { + VMA_HEAVY_ASSERT(m_Front == item); + m_Front = ItemTypeTraits::GetNext(item); + } + + if (ItemTypeTraits::GetNext(item) != VMA_NULL) + { + ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item); + } + else + { + VMA_HEAVY_ASSERT(m_Back == item); + m_Back = ItemTypeTraits::GetPrev(item); + } + ItemTypeTraits::AccessPrev(item) = VMA_NULL; + ItemTypeTraits::AccessNext(item) = VMA_NULL; + --m_Count; +} + +template +void VmaIntrusiveLinkedList::RemoveAll() +{ + if (!IsEmpty()) + { + ItemType* item = m_Back; + while (item != VMA_NULL) + { + ItemType* const prevItem = ItemTypeTraits::AccessPrev(item); + ItemTypeTraits::AccessPrev(item) = VMA_NULL; + ItemTypeTraits::AccessNext(item) = VMA_NULL; + item = prevItem; + } + m_Front = VMA_NULL; + m_Back = VMA_NULL; + m_Count = 0; + } +} +#endif // _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS +#endif // _VMA_INTRUSIVE_LINKED_LIST + +// Unused in this version. +#if 0 + +#ifndef _VMA_PAIR +template +struct VmaPair +{ + T1 first; + T2 second; + + VmaPair() : first(), second() {} + VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) {} +}; + +template +struct VmaPairFirstLess +{ + bool operator()(const VmaPair& lhs, const VmaPair& rhs) const + { + return lhs.first < rhs.first; + } + bool operator()(const VmaPair& lhs, const FirstT& rhsFirst) const + { + return lhs.first < rhsFirst; + } +}; +#endif // _VMA_PAIR + +#ifndef _VMA_MAP +/* Class compatible with subset of interface of std::unordered_map. +KeyT, ValueT must be POD because they will be stored in VmaVector. +*/ +template +class VmaMap +{ +public: + typedef VmaPair PairType; + typedef PairType* iterator; + + VmaMap(const VmaStlAllocator& allocator) : m_Vector(allocator) {} + + iterator begin() { return m_Vector.begin(); } + iterator end() { return m_Vector.end(); } + size_t size() { return m_Vector.size(); } + + void insert(const PairType& pair); + iterator find(const KeyT& key); + void erase(iterator it); + +private: + VmaVector< PairType, VmaStlAllocator> m_Vector; +}; + +#ifndef _VMA_MAP_FUNCTIONS +template +void VmaMap::insert(const PairType& pair) +{ + const size_t indexToInsert = VmaBinaryFindFirstNotLess( + m_Vector.data(), + m_Vector.data() + m_Vector.size(), + pair, + VmaPairFirstLess()) - m_Vector.data(); + VmaVectorInsert(m_Vector, indexToInsert, pair); +} + +template +VmaPair* VmaMap::find(const KeyT& key) +{ + PairType* it = VmaBinaryFindFirstNotLess( + m_Vector.data(), + m_Vector.data() + m_Vector.size(), + key, + VmaPairFirstLess()); + if ((it != m_Vector.end()) && (it->first == key)) + { + return it; + } + else + { + return m_Vector.end(); + } +} + +template +void VmaMap::erase(iterator it) +{ + VmaVectorRemove(m_Vector, it - m_Vector.begin()); +} +#endif // _VMA_MAP_FUNCTIONS +#endif // _VMA_MAP + +#endif // #if 0 + +#if !defined(_VMA_STRING_BUILDER) && VMA_STATS_STRING_ENABLED +class VmaStringBuilder +{ +public: + VmaStringBuilder(const VkAllocationCallbacks* allocationCallbacks) : m_Data(VmaStlAllocator(allocationCallbacks)) {} + ~VmaStringBuilder() = default; + + size_t GetLength() const { return m_Data.size(); } + const char* GetData() const { return m_Data.data(); } + void AddNewLine() { Add('\n'); } + void Add(char ch) { m_Data.push_back(ch); } + + void Add(const char* pStr); + void AddNumber(uint32_t num); + void AddNumber(uint64_t num); + void AddPointer(const void* ptr); + +private: + VmaVector> m_Data; +}; + +#ifndef _VMA_STRING_BUILDER_FUNCTIONS +void VmaStringBuilder::Add(const char* pStr) +{ + const size_t strLen = strlen(pStr); + if (strLen > 0) + { + const size_t oldCount = m_Data.size(); + m_Data.resize(oldCount + strLen); + memcpy(m_Data.data() + oldCount, pStr, strLen); + } +} + +void VmaStringBuilder::AddNumber(uint32_t num) +{ + char buf[11]; + buf[10] = '\0'; + char* p = &buf[10]; + do + { + *--p = '0' + (num % 10); + num /= 10; + } while (num); + Add(p); +} + +void VmaStringBuilder::AddNumber(uint64_t num) +{ + char buf[21]; + buf[20] = '\0'; + char* p = &buf[20]; + do + { + *--p = '0' + (num % 10); + num /= 10; + } while (num); + Add(p); +} + +void VmaStringBuilder::AddPointer(const void* ptr) +{ + char buf[21]; + VmaPtrToStr(buf, sizeof(buf), ptr); + Add(buf); +} +#endif //_VMA_STRING_BUILDER_FUNCTIONS +#endif // _VMA_STRING_BUILDER + +#if !defined(_VMA_JSON_WRITER) && VMA_STATS_STRING_ENABLED +/* +Allows to conveniently build a correct JSON document to be written to the +VmaStringBuilder passed to the constructor. +*/ +class VmaJsonWriter +{ + VMA_CLASS_NO_COPY(VmaJsonWriter) +public: + // sb - string builder to write the document to. Must remain alive for the whole lifetime of this object. + VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb); + ~VmaJsonWriter(); + + // Begins object by writing "{". + // Inside an object, you must call pairs of WriteString and a value, e.g.: + // j.BeginObject(true); j.WriteString("A"); j.WriteNumber(1); j.WriteString("B"); j.WriteNumber(2); j.EndObject(); + // Will write: { "A": 1, "B": 2 } + void BeginObject(bool singleLine = false); + // Ends object by writing "}". + void EndObject(); + + // Begins array by writing "[". + // Inside an array, you can write a sequence of any values. + void BeginArray(bool singleLine = false); + // Ends array by writing "[". + void EndArray(); + + // Writes a string value inside "". + // pStr can contain any ANSI characters, including '"', new line etc. - they will be properly escaped. + void WriteString(const char* pStr); + + // Begins writing a string value. + // Call BeginString, ContinueString, ContinueString, ..., EndString instead of + // WriteString to conveniently build the string content incrementally, made of + // parts including numbers. + void BeginString(const char* pStr = VMA_NULL); + // Posts next part of an open string. + void ContinueString(const char* pStr); + // Posts next part of an open string. The number is converted to decimal characters. + void ContinueString(uint32_t n); + void ContinueString(uint64_t n); + void ContinueString_Size(size_t n); + // Posts next part of an open string. Pointer value is converted to characters + // using "%p" formatting - shown as hexadecimal number, e.g.: 000000081276Ad00 + void ContinueString_Pointer(const void* ptr); + // Ends writing a string value by writing '"'. + void EndString(const char* pStr = VMA_NULL); + + // Writes a number value. + void WriteNumber(uint32_t n); + void WriteNumber(uint64_t n); + void WriteSize(size_t n); + // Writes a boolean value - false or true. + void WriteBool(bool b); + // Writes a null value. + void WriteNull(); + +private: + enum COLLECTION_TYPE + { + COLLECTION_TYPE_OBJECT, + COLLECTION_TYPE_ARRAY, + }; + struct StackItem + { + COLLECTION_TYPE type; + uint32_t valueCount; + bool singleLineMode; + }; + + static const char* const INDENT; + + VmaStringBuilder& m_SB; + VmaVector< StackItem, VmaStlAllocator > m_Stack; + bool m_InsideString; + + // Write size_t for less than 64bits + void WriteSize(size_t n, std::integral_constant) { m_SB.AddNumber(static_cast(n)); } + // Write size_t for 64bits + void WriteSize(size_t n, std::integral_constant) { m_SB.AddNumber(static_cast(n)); } + + void BeginValue(bool isString); + void WriteIndent(bool oneLess = false); +}; +const char* const VmaJsonWriter::INDENT = " "; + +#ifndef _VMA_JSON_WRITER_FUNCTIONS +VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) + : m_SB(sb), + m_Stack(VmaStlAllocator(pAllocationCallbacks)), + m_InsideString(false) {} + +VmaJsonWriter::~VmaJsonWriter() +{ + VMA_ASSERT(!m_InsideString); + VMA_ASSERT(m_Stack.empty()); +} + +void VmaJsonWriter::BeginObject(bool singleLine) +{ + VMA_ASSERT(!m_InsideString); + + BeginValue(false); + m_SB.Add('{'); + + StackItem item; + item.type = COLLECTION_TYPE_OBJECT; + item.valueCount = 0; + item.singleLineMode = singleLine; + m_Stack.push_back(item); +} + +void VmaJsonWriter::EndObject() +{ + VMA_ASSERT(!m_InsideString); + + WriteIndent(true); + m_SB.Add('}'); + + VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT); + m_Stack.pop_back(); +} + +void VmaJsonWriter::BeginArray(bool singleLine) +{ + VMA_ASSERT(!m_InsideString); + + BeginValue(false); + m_SB.Add('['); + + StackItem item; + item.type = COLLECTION_TYPE_ARRAY; + item.valueCount = 0; + item.singleLineMode = singleLine; + m_Stack.push_back(item); +} + +void VmaJsonWriter::EndArray() +{ + VMA_ASSERT(!m_InsideString); + + WriteIndent(true); + m_SB.Add(']'); + + VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY); + m_Stack.pop_back(); +} + +void VmaJsonWriter::WriteString(const char* pStr) +{ + BeginString(pStr); + EndString(); +} + +void VmaJsonWriter::BeginString(const char* pStr) +{ + VMA_ASSERT(!m_InsideString); + + BeginValue(true); + m_SB.Add('"'); + m_InsideString = true; + if (pStr != VMA_NULL && pStr[0] != '\0') + { + ContinueString(pStr); + } +} + +void VmaJsonWriter::ContinueString(const char* pStr) +{ + VMA_ASSERT(m_InsideString); + + const size_t strLen = strlen(pStr); + for (size_t i = 0; i < strLen; ++i) + { + char ch = pStr[i]; + if (ch == '\\') + { + m_SB.Add("\\\\"); + } + else if (ch == '"') + { + m_SB.Add("\\\""); + } + else if (ch >= 32) + { + m_SB.Add(ch); + } + else switch (ch) + { + case '\b': + m_SB.Add("\\b"); + break; + case '\f': + m_SB.Add("\\f"); + break; + case '\n': + m_SB.Add("\\n"); + break; + case '\r': + m_SB.Add("\\r"); + break; + case '\t': + m_SB.Add("\\t"); + break; + default: + VMA_ASSERT(0 && "Character not currently supported."); + break; + } + } +} + +void VmaJsonWriter::ContinueString(uint32_t n) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::ContinueString(uint64_t n) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::ContinueString_Size(size_t n) +{ + VMA_ASSERT(m_InsideString); + // Fix for AppleClang incorrect type casting + // TODO: Change to if constexpr when C++17 used as minimal standard + WriteSize(n, std::is_same{}); +} + +void VmaJsonWriter::ContinueString_Pointer(const void* ptr) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddPointer(ptr); +} + +void VmaJsonWriter::EndString(const char* pStr) +{ + VMA_ASSERT(m_InsideString); + if (pStr != VMA_NULL && pStr[0] != '\0') + { + ContinueString(pStr); + } + m_SB.Add('"'); + m_InsideString = false; +} + +void VmaJsonWriter::WriteNumber(uint32_t n) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::WriteNumber(uint64_t n) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::WriteSize(size_t n) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + // Fix for AppleClang incorrect type casting + // TODO: Change to if constexpr when C++17 used as minimal standard + WriteSize(n, std::is_same{}); +} + +void VmaJsonWriter::WriteBool(bool b) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.Add(b ? "true" : "false"); +} + +void VmaJsonWriter::WriteNull() +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.Add("null"); +} + +void VmaJsonWriter::BeginValue(bool isString) +{ + if (!m_Stack.empty()) + { + StackItem& currItem = m_Stack.back(); + if (currItem.type == COLLECTION_TYPE_OBJECT && + currItem.valueCount % 2 == 0) + { + VMA_ASSERT(isString); + } + + if (currItem.type == COLLECTION_TYPE_OBJECT && + currItem.valueCount % 2 != 0) + { + m_SB.Add(": "); + } + else if (currItem.valueCount > 0) + { + m_SB.Add(", "); + WriteIndent(); + } + else + { + WriteIndent(); + } + ++currItem.valueCount; + } +} + +void VmaJsonWriter::WriteIndent(bool oneLess) +{ + if (!m_Stack.empty() && !m_Stack.back().singleLineMode) + { + m_SB.AddNewLine(); + + size_t count = m_Stack.size(); + if (count > 0 && oneLess) + { + --count; + } + for (size_t i = 0; i < count; ++i) + { + m_SB.Add(INDENT); + } + } +} +#endif // _VMA_JSON_WRITER_FUNCTIONS + +static void VmaPrintDetailedStatistics(VmaJsonWriter& json, const VmaDetailedStatistics& stat) +{ + json.BeginObject(); + + json.WriteString("BlockCount"); + json.WriteNumber(stat.statistics.blockCount); + json.WriteString("BlockBytes"); + json.WriteNumber(stat.statistics.blockBytes); + json.WriteString("AllocationCount"); + json.WriteNumber(stat.statistics.allocationCount); + json.WriteString("AllocationBytes"); + json.WriteNumber(stat.statistics.allocationBytes); + json.WriteString("UnusedRangeCount"); + json.WriteNumber(stat.unusedRangeCount); + + if (stat.statistics.allocationCount > 1) + { + json.WriteString("AllocationSizeMin"); + json.WriteNumber(stat.allocationSizeMin); + json.WriteString("AllocationSizeMax"); + json.WriteNumber(stat.allocationSizeMax); + } + if (stat.unusedRangeCount > 1) + { + json.WriteString("UnusedRangeSizeMin"); + json.WriteNumber(stat.unusedRangeSizeMin); + json.WriteString("UnusedRangeSizeMax"); + json.WriteNumber(stat.unusedRangeSizeMax); + } + json.EndObject(); +} +#endif // _VMA_JSON_WRITER + +#ifndef _VMA_MAPPING_HYSTERESIS + +class VmaMappingHysteresis +{ + VMA_CLASS_NO_COPY(VmaMappingHysteresis) +public: + VmaMappingHysteresis() = default; + + uint32_t GetExtraMapping() const { return m_ExtraMapping; } + + // Call when Map was called. + // Returns true if switched to extra +1 mapping reference count. + bool PostMap() + { +#if VMA_MAPPING_HYSTERESIS_ENABLED + if(m_ExtraMapping == 0) + { + ++m_MajorCounter; + if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING) + { + m_ExtraMapping = 1; + m_MajorCounter = 0; + m_MinorCounter = 0; + return true; + } + } + else // m_ExtraMapping == 1 + PostMinorCounter(); +#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED + return false; + } + + // Call when Unmap was called. + void PostUnmap() + { +#if VMA_MAPPING_HYSTERESIS_ENABLED + if(m_ExtraMapping == 0) + ++m_MajorCounter; + else // m_ExtraMapping == 1 + PostMinorCounter(); +#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED + } + + // Call when allocation was made from the memory block. + void PostAlloc() + { +#if VMA_MAPPING_HYSTERESIS_ENABLED + if(m_ExtraMapping == 1) + ++m_MajorCounter; + else // m_ExtraMapping == 0 + PostMinorCounter(); +#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED + } + + // Call when allocation was freed from the memory block. + // Returns true if switched to extra -1 mapping reference count. + bool PostFree() + { +#if VMA_MAPPING_HYSTERESIS_ENABLED + if(m_ExtraMapping == 1) + { + ++m_MajorCounter; + if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING && + m_MajorCounter > m_MinorCounter + 1) + { + m_ExtraMapping = 0; + m_MajorCounter = 0; + m_MinorCounter = 0; + return true; + } + } + else // m_ExtraMapping == 0 + PostMinorCounter(); +#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED + return false; + } + +private: + static const int32_t COUNTER_MIN_EXTRA_MAPPING = 7; + + uint32_t m_MinorCounter = 0; + uint32_t m_MajorCounter = 0; + uint32_t m_ExtraMapping = 0; // 0 or 1. + + void PostMinorCounter() + { + if(m_MinorCounter < m_MajorCounter) + { + ++m_MinorCounter; + } + else if(m_MajorCounter > 0) + { + --m_MajorCounter; + --m_MinorCounter; + } + } +}; + +#endif // _VMA_MAPPING_HYSTERESIS + +#ifndef _VMA_DEVICE_MEMORY_BLOCK +/* +Represents a single block of device memory (`VkDeviceMemory`) with all the +data about its regions (aka suballocations, #VmaAllocation), assigned and free. + +Thread-safety: +- Access to m_pMetadata must be externally synchronized. +- Map, Unmap, Bind* are synchronized internally. +*/ +class VmaDeviceMemoryBlock +{ + VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock) +public: + VmaBlockMetadata* m_pMetadata; + + VmaDeviceMemoryBlock(VmaAllocator hAllocator); + ~VmaDeviceMemoryBlock(); + + // Always call after construction. + void Init( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t newMemoryTypeIndex, + VkDeviceMemory newMemory, + VkDeviceSize newSize, + uint32_t id, + uint32_t algorithm, + VkDeviceSize bufferImageGranularity); + // Always call before destruction. + void Destroy(VmaAllocator allocator); + + VmaPool GetParentPool() const { return m_hParentPool; } + VkDeviceMemory GetDeviceMemory() const { return m_hMemory; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + uint32_t GetId() const { return m_Id; } + void* GetMappedData() const { return m_pMappedData; } + uint32_t GetMapRefCount() const { return m_MapCount; } + + // Call when allocation/free was made from m_pMetadata. + // Used for m_MappingHysteresis. + void PostAlloc(VmaAllocator hAllocator); + void PostFree(VmaAllocator hAllocator); + + // Validates all data structures inside this object. If not valid, returns false. + bool Validate() const; + VkResult CheckCorruption(VmaAllocator hAllocator); + + // ppData can be null. + VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData); + void Unmap(VmaAllocator hAllocator, uint32_t count); + + VkResult WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); + VkResult ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); + + VkResult BindBufferMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext); + VkResult BindImageMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext); + +private: + VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. + uint32_t m_MemoryTypeIndex; + uint32_t m_Id; + VkDeviceMemory m_hMemory; + + /* + Protects access to m_hMemory so it is not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory. + Also protects m_MapCount, m_pMappedData. + Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex. + */ + VMA_MUTEX m_MapAndBindMutex; + VmaMappingHysteresis m_MappingHysteresis; + uint32_t m_MapCount; + void* m_pMappedData; +}; +#endif // _VMA_DEVICE_MEMORY_BLOCK + +#ifndef _VMA_ALLOCATION_T +struct VmaAllocation_T +{ + friend struct VmaDedicatedAllocationListItemTraits; + + enum FLAGS + { + FLAG_PERSISTENT_MAP = 0x01, + FLAG_MAPPING_ALLOWED = 0x02, + }; + +public: + enum ALLOCATION_TYPE + { + ALLOCATION_TYPE_NONE, + ALLOCATION_TYPE_BLOCK, + ALLOCATION_TYPE_DEDICATED, + }; + + // This struct is allocated using VmaPoolAllocator. + VmaAllocation_T(bool mappingAllowed); + ~VmaAllocation_T(); + + void InitBlockAllocation( + VmaDeviceMemoryBlock* block, + VmaAllocHandle allocHandle, + VkDeviceSize alignment, + VkDeviceSize size, + uint32_t memoryTypeIndex, + VmaSuballocationType suballocationType, + bool mapped); + // pMappedData not null means allocation is created with MAPPED flag. + void InitDedicatedAllocation( + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceMemory hMemory, + VmaSuballocationType suballocationType, + void* pMappedData, + VkDeviceSize size); + + ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; } + VkDeviceSize GetAlignment() const { return m_Alignment; } + VkDeviceSize GetSize() const { return m_Size; } + void* GetUserData() const { return m_pUserData; } + const char* GetName() const { return m_pName; } + VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; } + + VmaDeviceMemoryBlock* GetBlock() const { VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); return m_BlockAllocation.m_Block; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + bool IsPersistentMap() const { return (m_Flags & FLAG_PERSISTENT_MAP) != 0; } + bool IsMappingAllowed() const { return (m_Flags & FLAG_MAPPING_ALLOWED) != 0; } + + void SetUserData(VmaAllocator hAllocator, void* pUserData) { m_pUserData = pUserData; } + void SetName(VmaAllocator hAllocator, const char* pName); + void FreeName(VmaAllocator hAllocator); + uint8_t SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation); + VmaAllocHandle GetAllocHandle() const; + VkDeviceSize GetOffset() const; + VmaPool GetParentPool() const; + VkDeviceMemory GetMemory() const; + void* GetMappedData() const; + + void BlockAllocMap(); + void BlockAllocUnmap(); + VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData); + void DedicatedAllocUnmap(VmaAllocator hAllocator); + +#if VMA_STATS_STRING_ENABLED + uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; } + + void InitBufferImageUsage(uint32_t bufferImageUsage); + void PrintParameters(class VmaJsonWriter& json) const; +#endif + +private: + // Allocation out of VmaDeviceMemoryBlock. + struct BlockAllocation + { + VmaDeviceMemoryBlock* m_Block; + VmaAllocHandle m_AllocHandle; + }; + // Allocation for an object that has its own private VkDeviceMemory. + struct DedicatedAllocation + { + VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. + VkDeviceMemory m_hMemory; + void* m_pMappedData; // Not null means memory is mapped. + VmaAllocation_T* m_Prev; + VmaAllocation_T* m_Next; + }; + union + { + // Allocation out of VmaDeviceMemoryBlock. + BlockAllocation m_BlockAllocation; + // Allocation for an object that has its own private VkDeviceMemory. + DedicatedAllocation m_DedicatedAllocation; + }; + + VkDeviceSize m_Alignment; + VkDeviceSize m_Size; + void* m_pUserData; + char* m_pName; + uint32_t m_MemoryTypeIndex; + uint8_t m_Type; // ALLOCATION_TYPE + uint8_t m_SuballocationType; // VmaSuballocationType + // Reference counter for vmaMapMemory()/vmaUnmapMemory(). + uint8_t m_MapCount; + uint8_t m_Flags; // enum FLAGS +#if VMA_STATS_STRING_ENABLED + uint32_t m_BufferImageUsage; // 0 if unknown. +#endif +}; +#endif // _VMA_ALLOCATION_T + +#ifndef _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS +struct VmaDedicatedAllocationListItemTraits +{ + typedef VmaAllocation_T ItemType; + + static ItemType* GetPrev(const ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Prev; + } + static ItemType* GetNext(const ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Next; + } + static ItemType*& AccessPrev(ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Prev; + } + static ItemType*& AccessNext(ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Next; + } +}; +#endif // _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS + +#ifndef _VMA_DEDICATED_ALLOCATION_LIST +/* +Stores linked list of VmaAllocation_T objects. +Thread-safe, synchronized internally. +*/ +class VmaDedicatedAllocationList +{ +public: + VmaDedicatedAllocationList() {} + ~VmaDedicatedAllocationList(); + + void Init(bool useMutex) { m_UseMutex = useMutex; } + bool Validate(); + + void AddDetailedStatistics(VmaDetailedStatistics& inoutStats); + void AddStatistics(VmaStatistics& inoutStats); +#if VMA_STATS_STRING_ENABLED + // Writes JSON array with the list of allocations. + void BuildStatsString(VmaJsonWriter& json); +#endif + + bool IsEmpty(); + void Register(VmaAllocation alloc); + void Unregister(VmaAllocation alloc); + +private: + typedef VmaIntrusiveLinkedList DedicatedAllocationLinkedList; + + bool m_UseMutex = true; + VMA_RW_MUTEX m_Mutex; + DedicatedAllocationLinkedList m_AllocationList; +}; + +#ifndef _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS + +VmaDedicatedAllocationList::~VmaDedicatedAllocationList() +{ + VMA_HEAVY_ASSERT(Validate()); + + if (!m_AllocationList.IsEmpty()) + { + VMA_ASSERT(false && "Unfreed dedicated allocations found!"); + } +} + +bool VmaDedicatedAllocationList::Validate() +{ + const size_t declaredCount = m_AllocationList.GetCount(); + size_t actualCount = 0; + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + for (VmaAllocation alloc = m_AllocationList.Front(); + alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) + { + ++actualCount; + } + VMA_VALIDATE(actualCount == declaredCount); + + return true; +} + +void VmaDedicatedAllocationList::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) +{ + for(auto* item = m_AllocationList.Front(); item != nullptr; item = DedicatedAllocationLinkedList::GetNext(item)) + { + const VkDeviceSize size = item->GetSize(); + inoutStats.statistics.blockCount++; + inoutStats.statistics.blockBytes += size; + VmaAddDetailedStatisticsAllocation(inoutStats, item->GetSize()); + } +} + +void VmaDedicatedAllocationList::AddStatistics(VmaStatistics& inoutStats) +{ + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + + const uint32_t allocCount = (uint32_t)m_AllocationList.GetCount(); + inoutStats.blockCount += allocCount; + inoutStats.allocationCount += allocCount; + + for(auto* item = m_AllocationList.Front(); item != nullptr; item = DedicatedAllocationLinkedList::GetNext(item)) + { + const VkDeviceSize size = item->GetSize(); + inoutStats.blockBytes += size; + inoutStats.allocationBytes += size; + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaDedicatedAllocationList::BuildStatsString(VmaJsonWriter& json) +{ + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + json.BeginArray(); + for (VmaAllocation alloc = m_AllocationList.Front(); + alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) + { + json.BeginObject(true); + alloc->PrintParameters(json); + json.EndObject(); + } + json.EndArray(); +} +#endif // VMA_STATS_STRING_ENABLED + +bool VmaDedicatedAllocationList::IsEmpty() +{ + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + return m_AllocationList.IsEmpty(); +} + +void VmaDedicatedAllocationList::Register(VmaAllocation alloc) +{ + VmaMutexLockWrite lock(m_Mutex, m_UseMutex); + m_AllocationList.PushBack(alloc); +} + +void VmaDedicatedAllocationList::Unregister(VmaAllocation alloc) +{ + VmaMutexLockWrite lock(m_Mutex, m_UseMutex); + m_AllocationList.Remove(alloc); +} +#endif // _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS +#endif // _VMA_DEDICATED_ALLOCATION_LIST + +#ifndef _VMA_SUBALLOCATION +/* +Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as +allocated memory block or free. +*/ +struct VmaSuballocation +{ + VkDeviceSize offset; + VkDeviceSize size; + void* userData; + VmaSuballocationType type; +}; + +// Comparator for offsets. +struct VmaSuballocationOffsetLess +{ + bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const + { + return lhs.offset < rhs.offset; + } +}; + +struct VmaSuballocationOffsetGreater +{ + bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const + { + return lhs.offset > rhs.offset; + } +}; + +struct VmaSuballocationItemSizeLess +{ + bool operator()(const VmaSuballocationList::iterator lhs, + const VmaSuballocationList::iterator rhs) const + { + return lhs->size < rhs->size; + } + + bool operator()(const VmaSuballocationList::iterator lhs, + VkDeviceSize rhsSize) const + { + return lhs->size < rhsSize; + } +}; +#endif // _VMA_SUBALLOCATION + +#ifndef _VMA_ALLOCATION_REQUEST +/* +Parameters of planned allocation inside a VmaDeviceMemoryBlock. +item points to a FREE suballocation. +*/ +struct VmaAllocationRequest +{ + VmaAllocHandle allocHandle; + VkDeviceSize size; + VmaSuballocationList::iterator item; + void* customData; + uint64_t algorithmData; + VmaAllocationRequestType type; +}; +#endif // _VMA_ALLOCATION_REQUEST + +#ifndef _VMA_BLOCK_METADATA +/* +Data structure used for bookkeeping of allocations and unused ranges of memory +in a single VkDeviceMemory block. +*/ +class VmaBlockMetadata +{ +public: + // pAllocationCallbacks, if not null, must be owned externally - alive and unchanged for the whole lifetime of this object. + VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata() = default; + + virtual void Init(VkDeviceSize size) { m_Size = size; } + bool IsVirtual() const { return m_IsVirtual; } + VkDeviceSize GetSize() const { return m_Size; } + + // Validates all data structures inside this object. If not valid, returns false. + virtual bool Validate() const = 0; + virtual size_t GetAllocationCount() const = 0; + virtual size_t GetFreeRegionsCount() const = 0; + virtual VkDeviceSize GetSumFreeSize() const = 0; + // Returns true if this block is empty - contains only single free suballocation. + virtual bool IsEmpty() const = 0; + virtual void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) = 0; + virtual VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const = 0; + virtual void* GetAllocationUserData(VmaAllocHandle allocHandle) const = 0; + + virtual VmaAllocHandle GetAllocationListBegin() const = 0; + virtual VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const = 0; + virtual VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const = 0; + + // Shouldn't modify blockCount. + virtual void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const = 0; + virtual void AddStatistics(VmaStatistics& inoutStats) const = 0; + +#if VMA_STATS_STRING_ENABLED + virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0; +#endif + + // Tries to find a place for suballocation with given parameters inside this block. + // If succeeded, fills pAllocationRequest and returns true. + // If failed, returns false. + virtual bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags. + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) = 0; + + virtual VkResult CheckCorruption(const void* pBlockData) = 0; + + // Makes actual allocation based on request. Request must already be checked and valid. + virtual void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) = 0; + + // Frees suballocation assigned to given memory region. + virtual void Free(VmaAllocHandle allocHandle) = 0; + + // Frees all allocations. + // Careful! Don't call it if there are VmaAllocation objects owned by userData of cleared allocations! + virtual void Clear() = 0; + + virtual void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) = 0; + virtual void DebugLogAllAllocations() const = 0; + +protected: + const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; } + VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } + VkDeviceSize GetDebugMargin() const { return IsVirtual() ? 0 : VMA_DEBUG_MARGIN; } + + void DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const; +#if VMA_STATS_STRING_ENABLED + // mapRefCount == UINT32_MAX means unspecified. + void PrintDetailedMap_Begin(class VmaJsonWriter& json, + VkDeviceSize unusedBytes, + size_t allocationCount, + size_t unusedRangeCount) const; + void PrintDetailedMap_Allocation(class VmaJsonWriter& json, + VkDeviceSize offset, VkDeviceSize size, void* userData) const; + void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, + VkDeviceSize offset, + VkDeviceSize size) const; + void PrintDetailedMap_End(class VmaJsonWriter& json) const; +#endif + +private: + VkDeviceSize m_Size; + const VkAllocationCallbacks* m_pAllocationCallbacks; + const VkDeviceSize m_BufferImageGranularity; + const bool m_IsVirtual; +}; + +#ifndef _VMA_BLOCK_METADATA_FUNCTIONS +VmaBlockMetadata::VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : m_Size(0), + m_pAllocationCallbacks(pAllocationCallbacks), + m_BufferImageGranularity(bufferImageGranularity), + m_IsVirtual(isVirtual) {} + +void VmaBlockMetadata::DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const +{ + if (IsVirtual()) + { + VMA_DEBUG_LOG("UNFREED VIRTUAL ALLOCATION; Offset: %llu; Size: %llu; UserData: %p", offset, size, userData); + } + else + { + VMA_ASSERT(userData != VMA_NULL); + VmaAllocation allocation = reinterpret_cast(userData); + + userData = allocation->GetUserData(); + const char* name = allocation->GetName(); + +#if VMA_STATS_STRING_ENABLED + VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %p; Name: %s; Type: %s; Usage: %u", + offset, size, userData, name ? name : "vma_empty", + VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()], + allocation->GetBufferImageUsage()); +#else + VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %p; Name: %s; Type: %u", + offset, size, userData, name ? name : "vma_empty", + (uint32_t)allocation->GetSuballocationType()); +#endif // VMA_STATS_STRING_ENABLED + } + +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json, + VkDeviceSize unusedBytes, size_t allocationCount, size_t unusedRangeCount) const +{ + json.WriteString("TotalBytes"); + json.WriteNumber(GetSize()); + + json.WriteString("UnusedBytes"); + json.WriteSize(unusedBytes); + + json.WriteString("Allocations"); + json.WriteSize(allocationCount); + + json.WriteString("UnusedRanges"); + json.WriteSize(unusedRangeCount); + + json.WriteString("Suballocations"); + json.BeginArray(); +} + +void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json, + VkDeviceSize offset, VkDeviceSize size, void* userData) const +{ + json.BeginObject(true); + + json.WriteString("Offset"); + json.WriteNumber(offset); + + if (IsVirtual()) + { + json.WriteString("Size"); + json.WriteNumber(size); + if (userData) + { + json.WriteString("CustomData"); + json.BeginString(); + json.ContinueString_Pointer(userData); + json.EndString(); + } + } + else + { + ((VmaAllocation)userData)->PrintParameters(json); + } + + json.EndObject(); +} + +void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, + VkDeviceSize offset, VkDeviceSize size) const +{ + json.BeginObject(true); + + json.WriteString("Offset"); + json.WriteNumber(offset); + + json.WriteString("Type"); + json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]); + + json.WriteString("Size"); + json.WriteNumber(size); + + json.EndObject(); +} + +void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const +{ + json.EndArray(); +} +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_BLOCK_METADATA_FUNCTIONS +#endif // _VMA_BLOCK_METADATA + +#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY +// Before deleting object of this class remember to call 'Destroy()' +class VmaBlockBufferImageGranularity final +{ +public: + struct ValidationContext + { + const VkAllocationCallbacks* allocCallbacks; + uint16_t* pageAllocs; + }; + + VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity); + ~VmaBlockBufferImageGranularity(); + + bool IsEnabled() const { return m_BufferImageGranularity > MAX_LOW_BUFFER_IMAGE_GRANULARITY; } + + void Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size); + // Before destroying object you must call free it's memory + void Destroy(const VkAllocationCallbacks* pAllocationCallbacks); + + void RoundupAllocRequest(VmaSuballocationType allocType, + VkDeviceSize& inOutAllocSize, + VkDeviceSize& inOutAllocAlignment) const; + + bool CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset, + VkDeviceSize allocSize, + VkDeviceSize blockOffset, + VkDeviceSize blockSize, + VmaSuballocationType allocType) const; + + void AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size); + void FreePages(VkDeviceSize offset, VkDeviceSize size); + void Clear(); + + ValidationContext StartValidation(const VkAllocationCallbacks* pAllocationCallbacks, + bool isVirutal) const; + bool Validate(ValidationContext& ctx, VkDeviceSize offset, VkDeviceSize size) const; + bool FinishValidation(ValidationContext& ctx) const; + +private: + static const uint16_t MAX_LOW_BUFFER_IMAGE_GRANULARITY = 256; + + struct RegionInfo + { + uint8_t allocType; + uint16_t allocCount; + }; + + VkDeviceSize m_BufferImageGranularity; + uint32_t m_RegionCount; + RegionInfo* m_RegionInfo; + + uint32_t GetStartPage(VkDeviceSize offset) const { return OffsetToPageIndex(offset & ~(m_BufferImageGranularity - 1)); } + uint32_t GetEndPage(VkDeviceSize offset, VkDeviceSize size) const { return OffsetToPageIndex((offset + size - 1) & ~(m_BufferImageGranularity - 1)); } + + uint32_t OffsetToPageIndex(VkDeviceSize offset) const; + void AllocPage(RegionInfo& page, uint8_t allocType); +}; + +#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS +VmaBlockBufferImageGranularity::VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity) + : m_BufferImageGranularity(bufferImageGranularity), + m_RegionCount(0), + m_RegionInfo(VMA_NULL) {} + +VmaBlockBufferImageGranularity::~VmaBlockBufferImageGranularity() +{ + VMA_ASSERT(m_RegionInfo == VMA_NULL && "Free not called before destroying object!"); +} + +void VmaBlockBufferImageGranularity::Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size) +{ + if (IsEnabled()) + { + m_RegionCount = static_cast(VmaDivideRoundingUp(size, m_BufferImageGranularity)); + m_RegionInfo = vma_new_array(pAllocationCallbacks, RegionInfo, m_RegionCount); + memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo)); + } +} + +void VmaBlockBufferImageGranularity::Destroy(const VkAllocationCallbacks* pAllocationCallbacks) +{ + if (m_RegionInfo) + { + vma_delete_array(pAllocationCallbacks, m_RegionInfo, m_RegionCount); + m_RegionInfo = VMA_NULL; + } +} + +void VmaBlockBufferImageGranularity::RoundupAllocRequest(VmaSuballocationType allocType, + VkDeviceSize& inOutAllocSize, + VkDeviceSize& inOutAllocAlignment) const +{ + if (m_BufferImageGranularity > 1 && + m_BufferImageGranularity <= MAX_LOW_BUFFER_IMAGE_GRANULARITY) + { + if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) + { + inOutAllocAlignment = VMA_MAX(inOutAllocAlignment, m_BufferImageGranularity); + inOutAllocSize = VmaAlignUp(inOutAllocSize, m_BufferImageGranularity); + } + } +} + +bool VmaBlockBufferImageGranularity::CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset, + VkDeviceSize allocSize, + VkDeviceSize blockOffset, + VkDeviceSize blockSize, + VmaSuballocationType allocType) const +{ + if (IsEnabled()) + { + uint32_t startPage = GetStartPage(inOutAllocOffset); + if (m_RegionInfo[startPage].allocCount > 0 && + VmaIsBufferImageGranularityConflict(static_cast(m_RegionInfo[startPage].allocType), allocType)) + { + inOutAllocOffset = VmaAlignUp(inOutAllocOffset, m_BufferImageGranularity); + if (blockSize < allocSize + inOutAllocOffset - blockOffset) + return true; + ++startPage; + } + uint32_t endPage = GetEndPage(inOutAllocOffset, allocSize); + if (endPage != startPage && + m_RegionInfo[endPage].allocCount > 0 && + VmaIsBufferImageGranularityConflict(static_cast(m_RegionInfo[endPage].allocType), allocType)) + { + return true; + } + } + return false; +} + +void VmaBlockBufferImageGranularity::AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size) +{ + if (IsEnabled()) + { + uint32_t startPage = GetStartPage(offset); + AllocPage(m_RegionInfo[startPage], allocType); + + uint32_t endPage = GetEndPage(offset, size); + if (startPage != endPage) + AllocPage(m_RegionInfo[endPage], allocType); + } +} + +void VmaBlockBufferImageGranularity::FreePages(VkDeviceSize offset, VkDeviceSize size) +{ + if (IsEnabled()) + { + uint32_t startPage = GetStartPage(offset); + --m_RegionInfo[startPage].allocCount; + if (m_RegionInfo[startPage].allocCount == 0) + m_RegionInfo[startPage].allocType = VMA_SUBALLOCATION_TYPE_FREE; + uint32_t endPage = GetEndPage(offset, size); + if (startPage != endPage) + { + --m_RegionInfo[endPage].allocCount; + if (m_RegionInfo[endPage].allocCount == 0) + m_RegionInfo[endPage].allocType = VMA_SUBALLOCATION_TYPE_FREE; + } + } +} + +void VmaBlockBufferImageGranularity::Clear() +{ + if (m_RegionInfo) + memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo)); +} + +VmaBlockBufferImageGranularity::ValidationContext VmaBlockBufferImageGranularity::StartValidation( + const VkAllocationCallbacks* pAllocationCallbacks, bool isVirutal) const +{ + ValidationContext ctx{ pAllocationCallbacks, VMA_NULL }; + if (!isVirutal && IsEnabled()) + { + ctx.pageAllocs = vma_new_array(pAllocationCallbacks, uint16_t, m_RegionCount); + memset(ctx.pageAllocs, 0, m_RegionCount * sizeof(uint16_t)); + } + return ctx; +} + +bool VmaBlockBufferImageGranularity::Validate(ValidationContext& ctx, + VkDeviceSize offset, VkDeviceSize size) const +{ + if (IsEnabled()) + { + uint32_t start = GetStartPage(offset); + ++ctx.pageAllocs[start]; + VMA_VALIDATE(m_RegionInfo[start].allocCount > 0); + + uint32_t end = GetEndPage(offset, size); + if (start != end) + { + ++ctx.pageAllocs[end]; + VMA_VALIDATE(m_RegionInfo[end].allocCount > 0); + } + } + return true; +} + +bool VmaBlockBufferImageGranularity::FinishValidation(ValidationContext& ctx) const +{ + // Check proper page structure + if (IsEnabled()) + { + VMA_ASSERT(ctx.pageAllocs != VMA_NULL && "Validation context not initialized!"); + + for (uint32_t page = 0; page < m_RegionCount; ++page) + { + VMA_VALIDATE(ctx.pageAllocs[page] == m_RegionInfo[page].allocCount); + } + vma_delete_array(ctx.allocCallbacks, ctx.pageAllocs, m_RegionCount); + ctx.pageAllocs = VMA_NULL; + } + return true; +} + +uint32_t VmaBlockBufferImageGranularity::OffsetToPageIndex(VkDeviceSize offset) const +{ + return static_cast(offset >> VMA_BITSCAN_MSB(m_BufferImageGranularity)); +} + +void VmaBlockBufferImageGranularity::AllocPage(RegionInfo& page, uint8_t allocType) +{ + // When current alloc type is free then it can be overriden by new type + if (page.allocCount == 0 || (page.allocCount > 0 && page.allocType == VMA_SUBALLOCATION_TYPE_FREE)) + page.allocType = allocType; + + ++page.allocCount; +} +#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS +#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY + +#if 0 +#ifndef _VMA_BLOCK_METADATA_GENERIC +class VmaBlockMetadata_Generic : public VmaBlockMetadata +{ + friend class VmaDefragmentationAlgorithm_Generic; + friend class VmaDefragmentationAlgorithm_Fast; + VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic) +public: + VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata_Generic() = default; + + size_t GetAllocationCount() const override { return m_Suballocations.size() - m_FreeCount; } + VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; } + bool IsEmpty() const override { return (m_Suballocations.size() == 1) && (m_FreeCount == 1); } + void Free(VmaAllocHandle allocHandle) override { FreeSuballocation(FindAtOffset((VkDeviceSize)allocHandle - 1)); } + VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }; + + void Init(VkDeviceSize size) override; + bool Validate() const override; + + void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override; + void AddStatistics(VmaStatistics& inoutStats) const override; + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const override; +#endif + + bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) override; + + VkResult CheckCorruption(const void* pBlockData) override; + + void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) override; + + void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; + void* GetAllocationUserData(VmaAllocHandle allocHandle) const override; + VmaAllocHandle GetAllocationListBegin() const override; + VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override; + void Clear() override; + void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; + void DebugLogAllAllocations() const override; + +private: + uint32_t m_FreeCount; + VkDeviceSize m_SumFreeSize; + VmaSuballocationList m_Suballocations; + // Suballocations that are free. Sorted by size, ascending. + VmaVector> m_FreeSuballocationsBySize; + + VkDeviceSize AlignAllocationSize(VkDeviceSize size) const { return IsVirtual() ? size : VmaAlignUp(size, (VkDeviceSize)16); } + + VmaSuballocationList::iterator FindAtOffset(VkDeviceSize offset) const; + bool ValidateFreeSuballocationList() const; + + // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem. + // If yes, fills pOffset and returns true. If no, returns false. + bool CheckAllocation( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaSuballocationList::const_iterator suballocItem, + VmaAllocHandle* pAllocHandle) const; + + // Given free suballocation, it merges it with following one, which must also be free. + void MergeFreeWithNext(VmaSuballocationList::iterator item); + // Releases given suballocation, making it free. + // Merges it with adjacent free suballocations if applicable. + // Returns iterator to new free suballocation at this place. + VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem); + // Given free suballocation, it inserts it into sorted list of + // m_FreeSuballocationsBySize if it is suitable. + void RegisterFreeSuballocation(VmaSuballocationList::iterator item); + // Given free suballocation, it removes it from sorted list of + // m_FreeSuballocationsBySize if it is suitable. + void UnregisterFreeSuballocation(VmaSuballocationList::iterator item); +}; + +#ifndef _VMA_BLOCK_METADATA_GENERIC_FUNCTIONS +VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), + m_FreeCount(0), + m_SumFreeSize(0), + m_Suballocations(VmaStlAllocator(pAllocationCallbacks)), + m_FreeSuballocationsBySize(VmaStlAllocator(pAllocationCallbacks)) {} + +void VmaBlockMetadata_Generic::Init(VkDeviceSize size) +{ + VmaBlockMetadata::Init(size); + + m_FreeCount = 1; + m_SumFreeSize = size; + + VmaSuballocation suballoc = {}; + suballoc.offset = 0; + suballoc.size = size; + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + + m_Suballocations.push_back(suballoc); + m_FreeSuballocationsBySize.push_back(m_Suballocations.begin()); +} + +bool VmaBlockMetadata_Generic::Validate() const +{ + VMA_VALIDATE(!m_Suballocations.empty()); + + // Expected offset of new suballocation as calculated from previous ones. + VkDeviceSize calculatedOffset = 0; + // Expected number of free suballocations as calculated from traversing their list. + uint32_t calculatedFreeCount = 0; + // Expected sum size of free suballocations as calculated from traversing their list. + VkDeviceSize calculatedSumFreeSize = 0; + // Expected number of free suballocations that should be registered in + // m_FreeSuballocationsBySize calculated from traversing their list. + size_t freeSuballocationsToRegister = 0; + // True if previous visited suballocation was free. + bool prevFree = false; + + const VkDeviceSize debugMargin = GetDebugMargin(); + + for (const auto& subAlloc : m_Suballocations) + { + // Actual offset of this suballocation doesn't match expected one. + VMA_VALIDATE(subAlloc.offset == calculatedOffset); + + const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE); + // Two adjacent free suballocations are invalid. They should be merged. + VMA_VALIDATE(!prevFree || !currFree); + + VmaAllocation alloc = (VmaAllocation)subAlloc.userData; + if (!IsVirtual()) + { + VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); + } + + if (currFree) + { + calculatedSumFreeSize += subAlloc.size; + ++calculatedFreeCount; + ++freeSuballocationsToRegister; + + // Margin required between allocations - every free space must be at least that large. + VMA_VALIDATE(subAlloc.size >= debugMargin); + } + else + { + if (!IsVirtual()) + { + VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == subAlloc.offset + 1); + VMA_VALIDATE(alloc->GetSize() == subAlloc.size); + } + + // Margin required between allocations - previous allocation must be free. + VMA_VALIDATE(debugMargin == 0 || prevFree); + } + + calculatedOffset += subAlloc.size; + prevFree = currFree; + } + + // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't + // match expected one. + VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister); + + VkDeviceSize lastSize = 0; + for (size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i) + { + VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i]; + + // Only free suballocations can be registered in m_FreeSuballocationsBySize. + VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE); + // They must be sorted by size ascending. + VMA_VALIDATE(suballocItem->size >= lastSize); + + lastSize = suballocItem->size; + } + + // Check if totals match calculated values. + VMA_VALIDATE(ValidateFreeSuballocationList()); + VMA_VALIDATE(calculatedOffset == GetSize()); + VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize); + VMA_VALIDATE(calculatedFreeCount == m_FreeCount); + + return true; +} + +void VmaBlockMetadata_Generic::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const +{ + const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); + inoutStats.statistics.blockCount++; + inoutStats.statistics.blockBytes += GetSize(); + + for (const auto& suballoc : m_Suballocations) + { + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size); + else + VmaAddDetailedStatisticsUnusedRange(inoutStats, suballoc.size); + } +} + +void VmaBlockMetadata_Generic::AddStatistics(VmaStatistics& inoutStats) const +{ + inoutStats.blockCount++; + inoutStats.allocationCount += (uint32_t)m_Suballocations.size() - m_FreeCount; + inoutStats.blockBytes += GetSize(); + inoutStats.allocationBytes += GetSize() - m_SumFreeSize; +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const +{ + PrintDetailedMap_Begin(json, + m_SumFreeSize, // unusedBytes + m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount + m_FreeCount, // unusedRangeCount + mapRefCount); + + for (const auto& suballoc : m_Suballocations) + { + if (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE) + { + PrintDetailedMap_UnusedRange(json, suballoc.offset, suballoc.size); + } + else + { + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); + } + } + + PrintDetailedMap_End(json); +} +#endif // VMA_STATS_STRING_ENABLED + +bool VmaBlockMetadata_Generic::CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(!upperAddress); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(pAllocationRequest != VMA_NULL); + VMA_HEAVY_ASSERT(Validate()); + + allocSize = AlignAllocationSize(allocSize); + + pAllocationRequest->type = VmaAllocationRequestType::Normal; + pAllocationRequest->size = allocSize; + + const VkDeviceSize debugMargin = GetDebugMargin(); + + // There is not enough total free space in this block to fulfill the request: Early return. + if (m_SumFreeSize < allocSize + debugMargin) + { + return false; + } + + // New algorithm, efficiently searching freeSuballocationsBySize. + const size_t freeSuballocCount = m_FreeSuballocationsBySize.size(); + if (freeSuballocCount > 0) + { + if (strategy == 0 || + strategy == VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT) + { + // Find first free suballocation with size not less than allocSize + debugMargin. + VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( + m_FreeSuballocationsBySize.data(), + m_FreeSuballocationsBySize.data() + freeSuballocCount, + allocSize + debugMargin, + VmaSuballocationItemSizeLess()); + size_t index = it - m_FreeSuballocationsBySize.data(); + for (; index < freeSuballocCount; ++index) + { + if (CheckAllocation( + allocSize, + allocAlignment, + allocType, + m_FreeSuballocationsBySize[index], + &pAllocationRequest->allocHandle)) + { + pAllocationRequest->item = m_FreeSuballocationsBySize[index]; + return true; + } + } + } + else if (strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET) + { + for (VmaSuballocationList::iterator it = m_Suballocations.begin(); + it != m_Suballocations.end(); + ++it) + { + if (it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation( + allocSize, + allocAlignment, + allocType, + it, + &pAllocationRequest->allocHandle)) + { + pAllocationRequest->item = it; + return true; + } + } + } + else + { + VMA_ASSERT(strategy & (VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT | VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT )); + // Search staring from biggest suballocations. + for (size_t index = freeSuballocCount; index--; ) + { + if (CheckAllocation( + allocSize, + allocAlignment, + allocType, + m_FreeSuballocationsBySize[index], + &pAllocationRequest->allocHandle)) + { + pAllocationRequest->item = m_FreeSuballocationsBySize[index]; + return true; + } + } + } + } + + return false; +} + +VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData) +{ + for (auto& suballoc : m_Suballocations) + { + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + { + if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_UNKNOWN_COPY; + } + } + } + + return VK_SUCCESS; +} + +void VmaBlockMetadata_Generic::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) +{ + VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); + VMA_ASSERT(request.item != m_Suballocations.end()); + VmaSuballocation& suballoc = *request.item; + // Given suballocation is a free block. + VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + // Given offset is inside this suballocation. + VMA_ASSERT((VkDeviceSize)request.allocHandle - 1 >= suballoc.offset); + const VkDeviceSize paddingBegin = (VkDeviceSize)request.allocHandle - suballoc.offset - 1; + VMA_ASSERT(suballoc.size >= paddingBegin + request.size); + const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - request.size; + + // Unregister this free suballocation from m_FreeSuballocationsBySize and update + // it to become used. + UnregisterFreeSuballocation(request.item); + + suballoc.offset = (VkDeviceSize)request.allocHandle - 1; + suballoc.size = request.size; + suballoc.type = type; + suballoc.userData = userData; + + // If there are any free bytes remaining at the end, insert new free suballocation after current one. + if (paddingEnd) + { + VmaSuballocation paddingSuballoc = {}; + paddingSuballoc.offset = suballoc.offset + suballoc.size; + paddingSuballoc.size = paddingEnd; + paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + VmaSuballocationList::iterator next = request.item; + ++next; + const VmaSuballocationList::iterator paddingEndItem = + m_Suballocations.insert(next, paddingSuballoc); + RegisterFreeSuballocation(paddingEndItem); + } + + // If there are any free bytes remaining at the beginning, insert new free suballocation before current one. + if (paddingBegin) + { + VmaSuballocation paddingSuballoc = {}; + paddingSuballoc.offset = suballoc.offset - paddingBegin; + paddingSuballoc.size = paddingBegin; + paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + const VmaSuballocationList::iterator paddingBeginItem = + m_Suballocations.insert(request.item, paddingSuballoc); + RegisterFreeSuballocation(paddingBeginItem); + } + + // Update totals. + m_FreeCount = m_FreeCount - 1; + if (paddingBegin > 0) + { + ++m_FreeCount; + } + if (paddingEnd > 0) + { + ++m_FreeCount; + } + m_SumFreeSize -= request.size; +} + +void VmaBlockMetadata_Generic::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) +{ + outInfo.offset = (VkDeviceSize)allocHandle - 1; + const VmaSuballocation& suballoc = *FindAtOffset(outInfo.offset); + outInfo.size = suballoc.size; + outInfo.pUserData = suballoc.userData; +} + +void* VmaBlockMetadata_Generic::GetAllocationUserData(VmaAllocHandle allocHandle) const +{ + return FindAtOffset((VkDeviceSize)allocHandle - 1)->userData; +} + +VmaAllocHandle VmaBlockMetadata_Generic::GetAllocationListBegin() const +{ + if (IsEmpty()) + return VK_NULL_HANDLE; + + for (const auto& suballoc : m_Suballocations) + { + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + return (VmaAllocHandle)(suballoc.offset + 1); + } + VMA_ASSERT(false && "Should contain at least 1 allocation!"); + return VK_NULL_HANDLE; +} + +VmaAllocHandle VmaBlockMetadata_Generic::GetNextAllocation(VmaAllocHandle prevAlloc) const +{ + VmaSuballocationList::const_iterator prev = FindAtOffset((VkDeviceSize)prevAlloc - 1); + + for (VmaSuballocationList::const_iterator it = ++prev; it != m_Suballocations.end(); ++it) + { + if (it->type != VMA_SUBALLOCATION_TYPE_FREE) + return (VmaAllocHandle)(it->offset + 1); + } + return VK_NULL_HANDLE; +} + +void VmaBlockMetadata_Generic::Clear() +{ + const VkDeviceSize size = GetSize(); + + VMA_ASSERT(IsVirtual()); + m_FreeCount = 1; + m_SumFreeSize = size; + m_Suballocations.clear(); + m_FreeSuballocationsBySize.clear(); + + VmaSuballocation suballoc = {}; + suballoc.offset = 0; + suballoc.size = size; + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + m_Suballocations.push_back(suballoc); + + m_FreeSuballocationsBySize.push_back(m_Suballocations.begin()); +} + +void VmaBlockMetadata_Generic::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) +{ + VmaSuballocation& suballoc = *FindAtOffset((VkDeviceSize)allocHandle - 1); + suballoc.userData = userData; +} + +void VmaBlockMetadata_Generic::DebugLogAllAllocations() const +{ + for (const auto& suballoc : m_Suballocations) + { + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + DebugLogAllocation(suballoc.offset, suballoc.size, suballoc.userData); + } +} + +VmaSuballocationList::iterator VmaBlockMetadata_Generic::FindAtOffset(VkDeviceSize offset) const +{ + VMA_HEAVY_ASSERT(!m_Suballocations.empty()); + const VkDeviceSize last = m_Suballocations.rbegin()->offset; + if (last == offset) + return m_Suballocations.rbegin().drop_const(); + const VkDeviceSize first = m_Suballocations.begin()->offset; + if (first == offset) + return m_Suballocations.begin().drop_const(); + + const size_t suballocCount = m_Suballocations.size(); + const VkDeviceSize step = (last - first + m_Suballocations.begin()->size) / suballocCount; + auto findSuballocation = [&](auto begin, auto end) -> VmaSuballocationList::iterator + { + for (auto suballocItem = begin; + suballocItem != end; + ++suballocItem) + { + if (suballocItem->offset == offset) + return suballocItem.drop_const(); + } + VMA_ASSERT(false && "Not found!"); + return m_Suballocations.end().drop_const(); + }; + // If requested offset is closer to the end of range, search from the end + if (offset - first > suballocCount * step / 2) + { + return findSuballocation(m_Suballocations.rbegin(), m_Suballocations.rend()); + } + return findSuballocation(m_Suballocations.begin(), m_Suballocations.end()); +} + +bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const +{ + VkDeviceSize lastSize = 0; + for (size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i) + { + const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i]; + + VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_VALIDATE(it->size >= lastSize); + lastSize = it->size; + } + return true; +} + +bool VmaBlockMetadata_Generic::CheckAllocation( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaSuballocationList::const_iterator suballocItem, + VmaAllocHandle* pAllocHandle) const +{ + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(suballocItem != m_Suballocations.cend()); + VMA_ASSERT(pAllocHandle != VMA_NULL); + + const VkDeviceSize debugMargin = GetDebugMargin(); + const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); + + const VmaSuballocation& suballoc = *suballocItem; + VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + // Size of this suballocation is too small for this request: Early return. + if (suballoc.size < allocSize) + { + return false; + } + + // Start from offset equal to beginning of this suballocation. + VkDeviceSize offset = suballoc.offset + (suballocItem == m_Suballocations.cbegin() ? 0 : GetDebugMargin()); + + // Apply debugMargin from the end of previous alloc. + if (debugMargin > 0) + { + offset += debugMargin; + } + + // Apply alignment. + offset = VmaAlignUp(offset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment) + { + bool bufferImageGranularityConflict = false; + VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; + while (prevSuballocItem != m_Suballocations.cbegin()) + { + --prevSuballocItem; + const VmaSuballocation& prevSuballoc = *prevSuballocItem; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) + { + offset = VmaAlignUp(offset, bufferImageGranularity); + } + } + + // Calculate padding at the beginning based on current offset. + const VkDeviceSize paddingBegin = offset - suballoc.offset; + + // Fail if requested size plus margin after is bigger than size of this suballocation. + if (paddingBegin + allocSize + debugMargin > suballoc.size) + { + return false; + } + + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (allocSize % bufferImageGranularity || offset % bufferImageGranularity) + { + VmaSuballocationList::const_iterator nextSuballocItem = suballocItem; + ++nextSuballocItem; + while (nextSuballocItem != m_Suballocations.cend()) + { + const VmaSuballocation& nextSuballoc = *nextSuballocItem; + if (VmaBlocksOnSamePage(offset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + return false; + } + } + else + { + // Already on next page. + break; + } + ++nextSuballocItem; + } + } + + *pAllocHandle = (VmaAllocHandle)(offset + 1); + // All tests passed: Success. pAllocHandle is already filled. + return true; +} + +void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item) +{ + VMA_ASSERT(item != m_Suballocations.end()); + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); + + VmaSuballocationList::iterator nextItem = item; + ++nextItem; + VMA_ASSERT(nextItem != m_Suballocations.end()); + VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE); + + item->size += nextItem->size; + --m_FreeCount; + m_Suballocations.erase(nextItem); +} + +VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem) +{ + // Change this suballocation to be marked as free. + VmaSuballocation& suballoc = *suballocItem; + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.userData = VMA_NULL; + + // Update totals. + ++m_FreeCount; + m_SumFreeSize += suballoc.size; + + // Merge with previous and/or next suballocation if it's also free. + bool mergeWithNext = false; + bool mergeWithPrev = false; + + VmaSuballocationList::iterator nextItem = suballocItem; + ++nextItem; + if ((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE)) + { + mergeWithNext = true; + } + + VmaSuballocationList::iterator prevItem = suballocItem; + if (suballocItem != m_Suballocations.begin()) + { + --prevItem; + if (prevItem->type == VMA_SUBALLOCATION_TYPE_FREE) + { + mergeWithPrev = true; + } + } + + if (mergeWithNext) + { + UnregisterFreeSuballocation(nextItem); + MergeFreeWithNext(suballocItem); + } + + if (mergeWithPrev) + { + UnregisterFreeSuballocation(prevItem); + MergeFreeWithNext(prevItem); + RegisterFreeSuballocation(prevItem); + return prevItem; + } + else + { + RegisterFreeSuballocation(suballocItem); + return suballocItem; + } +} + +void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item) +{ + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(item->size > 0); + + // You may want to enable this validation at the beginning or at the end of + // this function, depending on what do you want to check. + VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); + + if (m_FreeSuballocationsBySize.empty()) + { + m_FreeSuballocationsBySize.push_back(item); + } + else + { + VmaVectorInsertSorted(m_FreeSuballocationsBySize, item); + } + + //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); +} + +void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item) +{ + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(item->size > 0); + + // You may want to enable this validation at the beginning or at the end of + // this function, depending on what do you want to check. + VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); + + VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( + m_FreeSuballocationsBySize.data(), + m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(), + item, + VmaSuballocationItemSizeLess()); + for (size_t index = it - m_FreeSuballocationsBySize.data(); + index < m_FreeSuballocationsBySize.size(); + ++index) + { + if (m_FreeSuballocationsBySize[index] == item) + { + VmaVectorRemove(m_FreeSuballocationsBySize, index); + return; + } + VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found."); + } + VMA_ASSERT(0 && "Not found."); + + //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); +} +#endif // _VMA_BLOCK_METADATA_GENERIC_FUNCTIONS +#endif // _VMA_BLOCK_METADATA_GENERIC +#endif // #if 0 + +#ifndef _VMA_BLOCK_METADATA_LINEAR +/* +Allocations and their references in internal data structure look like this: + +if(m_2ndVectorMode == SECOND_VECTOR_EMPTY): + + 0 +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | + | | + | | +GetSize() +-------+ + +if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER): + + 0 +-------+ + | Alloc | 2nd[0] + +-------+ + | Alloc | 2nd[1] + +-------+ + | ... | + +-------+ + | Alloc | 2nd[2nd.size() - 1] + +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | +GetSize() +-------+ + +if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK): + + 0 +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | + | | + | | + +-------+ + | Alloc | 2nd[2nd.size() - 1] + +-------+ + | ... | + +-------+ + | Alloc | 2nd[1] + +-------+ + | Alloc | 2nd[0] +GetSize() +-------+ + +*/ +class VmaBlockMetadata_Linear : public VmaBlockMetadata +{ + VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear) +public: + VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata_Linear() = default; + + VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; } + bool IsEmpty() const override { return GetAllocationCount() == 0; } + VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }; + + void Init(VkDeviceSize size) override; + bool Validate() const override; + size_t GetAllocationCount() const override; + size_t GetFreeRegionsCount() const override; + + void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override; + void AddStatistics(VmaStatistics& inoutStats) const override; + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json) const override; +#endif + + bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) override; + + VkResult CheckCorruption(const void* pBlockData) override; + + void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) override; + + void Free(VmaAllocHandle allocHandle) override; + void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; + void* GetAllocationUserData(VmaAllocHandle allocHandle) const override; + VmaAllocHandle GetAllocationListBegin() const override; + VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override; + VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override; + void Clear() override; + void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; + void DebugLogAllAllocations() const override; + +private: + /* + There are two suballocation vectors, used in ping-pong way. + The one with index m_1stVectorIndex is called 1st. + The one with index (m_1stVectorIndex ^ 1) is called 2nd. + 2nd can be non-empty only when 1st is not empty. + When 2nd is not empty, m_2ndVectorMode indicates its mode of operation. + */ + typedef VmaVector> SuballocationVectorType; + + enum SECOND_VECTOR_MODE + { + SECOND_VECTOR_EMPTY, + /* + Suballocations in 2nd vector are created later than the ones in 1st, but they + all have smaller offset. + */ + SECOND_VECTOR_RING_BUFFER, + /* + Suballocations in 2nd vector are upper side of double stack. + They all have offsets higher than those in 1st vector. + Top of this stack means smaller offsets, but higher indices in this vector. + */ + SECOND_VECTOR_DOUBLE_STACK, + }; + + VkDeviceSize m_SumFreeSize; + SuballocationVectorType m_Suballocations0, m_Suballocations1; + uint32_t m_1stVectorIndex; + SECOND_VECTOR_MODE m_2ndVectorMode; + // Number of items in 1st vector with hAllocation = null at the beginning. + size_t m_1stNullItemsBeginCount; + // Number of other items in 1st vector with hAllocation = null somewhere in the middle. + size_t m_1stNullItemsMiddleCount; + // Number of items in 2nd vector with hAllocation = null. + size_t m_2ndNullItemsCount; + + SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } + SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } + const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } + const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } + + VmaSuballocation& FindSuballocation(VkDeviceSize offset) const; + bool ShouldCompact1st() const; + void CleanupAfterFree(); + + bool CreateAllocationRequest_LowerAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest); + bool CreateAllocationRequest_UpperAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest); +}; + +#ifndef _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS +VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), + m_SumFreeSize(0), + m_Suballocations0(VmaStlAllocator(pAllocationCallbacks)), + m_Suballocations1(VmaStlAllocator(pAllocationCallbacks)), + m_1stVectorIndex(0), + m_2ndVectorMode(SECOND_VECTOR_EMPTY), + m_1stNullItemsBeginCount(0), + m_1stNullItemsMiddleCount(0), + m_2ndNullItemsCount(0) {} + +void VmaBlockMetadata_Linear::Init(VkDeviceSize size) +{ + VmaBlockMetadata::Init(size); + m_SumFreeSize = size; +} + +bool VmaBlockMetadata_Linear::Validate() const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY)); + VMA_VALIDATE(!suballocations1st.empty() || + suballocations2nd.empty() || + m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER); + + if (!suballocations1st.empty()) + { + // Null item at the beginning should be accounted into m_1stNullItemsBeginCount. + VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].type != VMA_SUBALLOCATION_TYPE_FREE); + // Null item at the end should be just pop_back(). + VMA_VALIDATE(suballocations1st.back().type != VMA_SUBALLOCATION_TYPE_FREE); + } + if (!suballocations2nd.empty()) + { + // Null item at the end should be just pop_back(). + VMA_VALIDATE(suballocations2nd.back().type != VMA_SUBALLOCATION_TYPE_FREE); + } + + VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size()); + VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size()); + + VkDeviceSize sumUsedSize = 0; + const size_t suballoc1stCount = suballocations1st.size(); + const VkDeviceSize debugMargin = GetDebugMargin(); + VkDeviceSize offset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const size_t suballoc2ndCount = suballocations2nd.size(); + size_t nullItem2ndCount = 0; + for (size_t i = 0; i < suballoc2ndCount; ++i) + { + const VmaSuballocation& suballoc = suballocations2nd[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VmaAllocation const alloc = (VmaAllocation)suballoc.userData; + if (!IsVirtual()) + { + VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); + } + VMA_VALIDATE(suballoc.offset >= offset); + + if (!currFree) + { + if (!IsVirtual()) + { + VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); + VMA_VALIDATE(alloc->GetSize() == suballoc.size); + } + sumUsedSize += suballoc.size; + } + else + { + ++nullItem2ndCount; + } + + offset = suballoc.offset + suballoc.size + debugMargin; + } + + VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); + } + + for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i) + { + const VmaSuballocation& suballoc = suballocations1st[i]; + VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE && + suballoc.userData == VMA_NULL); + } + + size_t nullItem1stCount = m_1stNullItemsBeginCount; + + for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) + { + const VmaSuballocation& suballoc = suballocations1st[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VmaAllocation const alloc = (VmaAllocation)suballoc.userData; + if (!IsVirtual()) + { + VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); + } + VMA_VALIDATE(suballoc.offset >= offset); + VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree); + + if (!currFree) + { + if (!IsVirtual()) + { + VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); + VMA_VALIDATE(alloc->GetSize() == suballoc.size); + } + sumUsedSize += suballoc.size; + } + else + { + ++nullItem1stCount; + } + + offset = suballoc.offset + suballoc.size + debugMargin; + } + VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount); + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + const size_t suballoc2ndCount = suballocations2nd.size(); + size_t nullItem2ndCount = 0; + for (size_t i = suballoc2ndCount; i--; ) + { + const VmaSuballocation& suballoc = suballocations2nd[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VmaAllocation const alloc = (VmaAllocation)suballoc.userData; + if (!IsVirtual()) + { + VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); + } + VMA_VALIDATE(suballoc.offset >= offset); + + if (!currFree) + { + if (!IsVirtual()) + { + VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); + VMA_VALIDATE(alloc->GetSize() == suballoc.size); + } + sumUsedSize += suballoc.size; + } + else + { + ++nullItem2ndCount; + } + + offset = suballoc.offset + suballoc.size + debugMargin; + } + + VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); + } + + VMA_VALIDATE(offset <= GetSize()); + VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize); + + return true; +} + +size_t VmaBlockMetadata_Linear::GetAllocationCount() const +{ + return AccessSuballocations1st().size() - m_1stNullItemsBeginCount - m_1stNullItemsMiddleCount + + AccessSuballocations2nd().size() - m_2ndNullItemsCount; +} + +size_t VmaBlockMetadata_Linear::GetFreeRegionsCount() const +{ + // Function only used for defragmentation, which is disabled for this algorithm + VMA_ASSERT(0); + return SIZE_MAX; +} + +void VmaBlockMetadata_Linear::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const +{ + const VkDeviceSize size = GetSize(); + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + inoutStats.statistics.blockCount++; + inoutStats.statistics.blockBytes += size; + + VkDeviceSize lastOffset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + if (lastOffset < freeSpace2ndTo1stEnd) + { + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + if (lastOffset < freeSpace1stTo2ndEnd) + { + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + // There is free space from lastOffset to size. + if (lastOffset < size) + { + const VkDeviceSize unusedRangeSize = size - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // End of loop. + lastOffset = size; + } + } + } +} + +void VmaBlockMetadata_Linear::AddStatistics(VmaStatistics& inoutStats) const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const VkDeviceSize size = GetSize(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + inoutStats.blockCount++; + inoutStats.blockBytes += size; + inoutStats.allocationBytes += size - m_SumFreeSize; + + VkDeviceSize lastOffset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount; + while (lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace2ndTo1stEnd) + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace1stTo2ndEnd) + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < size) + { + // There is free space from lastOffset to size. + const VkDeviceSize unusedRangeSize = size - lastOffset; + } + + // End of loop. + lastOffset = size; + } + } + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const +{ + const VkDeviceSize size = GetSize(); + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + // FIRST PASS + + size_t unusedRangeCount = 0; + VkDeviceSize usedBytes = 0; + + VkDeviceSize lastOffset = 0; + + size_t alloc2ndCount = 0; + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc2ndCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace2ndTo1stEnd) + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + size_t alloc1stCount = 0; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc1stCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + if (lastOffset < size) + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc2ndCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < size) + { + // There is free space from lastOffset to size. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = size; + } + } + } + + const VkDeviceSize unusedBytes = size - usedBytes; + PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount); + + // SECOND PASS + lastOffset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace2ndTo1stEnd) + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + nextAlloc1stIndex = m_1stNullItemsBeginCount; + while (lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace1stTo2ndEnd) + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < size) + { + // There is free space from lastOffset to size. + const VkDeviceSize unusedRangeSize = size - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = size; + } + } + } + + PrintDetailedMap_End(json); +} +#endif // VMA_STATS_STRING_ENABLED + +bool VmaBlockMetadata_Linear::CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(pAllocationRequest != VMA_NULL); + VMA_HEAVY_ASSERT(Validate()); + pAllocationRequest->size = allocSize; + return upperAddress ? + CreateAllocationRequest_UpperAddress( + allocSize, allocAlignment, allocType, strategy, pAllocationRequest) : + CreateAllocationRequest_LowerAddress( + allocSize, allocAlignment, allocType, strategy, pAllocationRequest); +} + +VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData) +{ + VMA_ASSERT(!IsVirtual()); + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) + { + const VmaSuballocation& suballoc = suballocations1st[i]; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + { + if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_UNKNOWN_COPY; + } + } + } + + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i) + { + const VmaSuballocation& suballoc = suballocations2nd[i]; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + { + if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_UNKNOWN_COPY; + } + } + } + + return VK_SUCCESS; +} + +void VmaBlockMetadata_Linear::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) +{ + const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1; + const VmaSuballocation newSuballoc = { offset, request.size, userData, type }; + + switch (request.type) + { + case VmaAllocationRequestType::UpperAddress: + { + VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER && + "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer."); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + suballocations2nd.push_back(newSuballoc); + m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK; + } + break; + case VmaAllocationRequestType::EndOf1st: + { + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + + VMA_ASSERT(suballocations1st.empty() || + offset >= suballocations1st.back().offset + suballocations1st.back().size); + // Check if it fits before the end of the block. + VMA_ASSERT(offset + request.size <= GetSize()); + + suballocations1st.push_back(newSuballoc); + } + break; + case VmaAllocationRequestType::EndOf2nd: + { + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector. + VMA_ASSERT(!suballocations1st.empty() && + offset + request.size <= suballocations1st[m_1stNullItemsBeginCount].offset); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + switch (m_2ndVectorMode) + { + case SECOND_VECTOR_EMPTY: + // First allocation from second part ring buffer. + VMA_ASSERT(suballocations2nd.empty()); + m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER; + break; + case SECOND_VECTOR_RING_BUFFER: + // 2-part ring buffer is already started. + VMA_ASSERT(!suballocations2nd.empty()); + break; + case SECOND_VECTOR_DOUBLE_STACK: + VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack."); + break; + default: + VMA_ASSERT(0); + } + + suballocations2nd.push_back(newSuballoc); + } + break; + default: + VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR."); + } + + m_SumFreeSize -= newSuballoc.size; +} + +void VmaBlockMetadata_Linear::Free(VmaAllocHandle allocHandle) +{ + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + VkDeviceSize offset = (VkDeviceSize)allocHandle - 1; + + if (!suballocations1st.empty()) + { + // First allocation: Mark it as next empty at the beginning. + VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; + if (firstSuballoc.offset == offset) + { + firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + firstSuballoc.userData = VMA_NULL; + m_SumFreeSize += firstSuballoc.size; + ++m_1stNullItemsBeginCount; + CleanupAfterFree(); + return; + } + } + + // Last allocation in 2-part ring buffer or top of upper stack (same logic). + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER || + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + VmaSuballocation& lastSuballoc = suballocations2nd.back(); + if (lastSuballoc.offset == offset) + { + m_SumFreeSize += lastSuballoc.size; + suballocations2nd.pop_back(); + CleanupAfterFree(); + return; + } + } + // Last allocation in 1st vector. + else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY) + { + VmaSuballocation& lastSuballoc = suballocations1st.back(); + if (lastSuballoc.offset == offset) + { + m_SumFreeSize += lastSuballoc.size; + suballocations1st.pop_back(); + CleanupAfterFree(); + return; + } + } + + VmaSuballocation refSuballoc; + refSuballoc.offset = offset; + // Rest of members stays uninitialized intentionally for better performance. + + // Item from the middle of 1st vector. + { + const SuballocationVectorType::iterator it = VmaBinaryFindSorted( + suballocations1st.begin() + m_1stNullItemsBeginCount, + suballocations1st.end(), + refSuballoc, + VmaSuballocationOffsetLess()); + if (it != suballocations1st.end()) + { + it->type = VMA_SUBALLOCATION_TYPE_FREE; + it->userData = VMA_NULL; + ++m_1stNullItemsMiddleCount; + m_SumFreeSize += it->size; + CleanupAfterFree(); + return; + } + } + + if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) + { + // Item from the middle of 2nd vector. + const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); + if (it != suballocations2nd.end()) + { + it->type = VMA_SUBALLOCATION_TYPE_FREE; + it->userData = VMA_NULL; + ++m_2ndNullItemsCount; + m_SumFreeSize += it->size; + CleanupAfterFree(); + return; + } + } + + VMA_ASSERT(0 && "Allocation to free not found in linear allocator!"); +} + +void VmaBlockMetadata_Linear::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) +{ + outInfo.offset = (VkDeviceSize)allocHandle - 1; + VmaSuballocation& suballoc = FindSuballocation(outInfo.offset); + outInfo.size = suballoc.size; + outInfo.pUserData = suballoc.userData; +} + +void* VmaBlockMetadata_Linear::GetAllocationUserData(VmaAllocHandle allocHandle) const +{ + return FindSuballocation((VkDeviceSize)allocHandle - 1).userData; +} + +VmaAllocHandle VmaBlockMetadata_Linear::GetAllocationListBegin() const +{ + // Function only used for defragmentation, which is disabled for this algorithm + VMA_ASSERT(0); + return VK_NULL_HANDLE; +} + +VmaAllocHandle VmaBlockMetadata_Linear::GetNextAllocation(VmaAllocHandle prevAlloc) const +{ + // Function only used for defragmentation, which is disabled for this algorithm + VMA_ASSERT(0); + return VK_NULL_HANDLE; +} + +VkDeviceSize VmaBlockMetadata_Linear::GetNextFreeRegionSize(VmaAllocHandle alloc) const +{ + // Function only used for defragmentation, which is disabled for this algorithm + VMA_ASSERT(0); + return 0; +} + +void VmaBlockMetadata_Linear::Clear() +{ + m_SumFreeSize = GetSize(); + m_Suballocations0.clear(); + m_Suballocations1.clear(); + // Leaving m_1stVectorIndex unchanged - it doesn't matter. + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + m_2ndNullItemsCount = 0; +} + +void VmaBlockMetadata_Linear::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) +{ + VmaSuballocation& suballoc = FindSuballocation((VkDeviceSize)allocHandle - 1); + suballoc.userData = userData; +} + +void VmaBlockMetadata_Linear::DebugLogAllAllocations() const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + for (auto it = suballocations1st.begin() + m_1stNullItemsBeginCount; it != suballocations1st.end(); ++it) + if (it->type != VMA_SUBALLOCATION_TYPE_FREE) + DebugLogAllocation(it->offset, it->size, it->userData); + + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + for (auto it = suballocations2nd.begin(); it != suballocations2nd.end(); ++it) + if (it->type != VMA_SUBALLOCATION_TYPE_FREE) + DebugLogAllocation(it->offset, it->size, it->userData); +} + +VmaSuballocation& VmaBlockMetadata_Linear::FindSuballocation(VkDeviceSize offset) const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + VmaSuballocation refSuballoc; + refSuballoc.offset = offset; + // Rest of members stays uninitialized intentionally for better performance. + + // Item from the 1st vector. + { + SuballocationVectorType::const_iterator it = VmaBinaryFindSorted( + suballocations1st.begin() + m_1stNullItemsBeginCount, + suballocations1st.end(), + refSuballoc, + VmaSuballocationOffsetLess()); + if (it != suballocations1st.end()) + { + return const_cast(*it); + } + } + + if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) + { + // Rest of members stays uninitialized intentionally for better performance. + SuballocationVectorType::const_iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); + if (it != suballocations2nd.end()) + { + return const_cast(*it); + } + } + + VMA_ASSERT(0 && "Allocation not found in linear allocator!"); + return const_cast(suballocations1st.back()); // Should never occur. +} + +bool VmaBlockMetadata_Linear::ShouldCompact1st() const +{ + const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; + const size_t suballocCount = AccessSuballocations1st().size(); + return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3; +} + +void VmaBlockMetadata_Linear::CleanupAfterFree() +{ + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + if (IsEmpty()) + { + suballocations1st.clear(); + suballocations2nd.clear(); + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + m_2ndNullItemsCount = 0; + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + } + else + { + const size_t suballoc1stCount = suballocations1st.size(); + const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; + VMA_ASSERT(nullItem1stCount <= suballoc1stCount); + + // Find more null items at the beginning of 1st vector. + while (m_1stNullItemsBeginCount < suballoc1stCount && + suballocations1st[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE) + { + ++m_1stNullItemsBeginCount; + --m_1stNullItemsMiddleCount; + } + + // Find more null items at the end of 1st vector. + while (m_1stNullItemsMiddleCount > 0 && + suballocations1st.back().type == VMA_SUBALLOCATION_TYPE_FREE) + { + --m_1stNullItemsMiddleCount; + suballocations1st.pop_back(); + } + + // Find more null items at the end of 2nd vector. + while (m_2ndNullItemsCount > 0 && + suballocations2nd.back().type == VMA_SUBALLOCATION_TYPE_FREE) + { + --m_2ndNullItemsCount; + suballocations2nd.pop_back(); + } + + // Find more null items at the beginning of 2nd vector. + while (m_2ndNullItemsCount > 0 && + suballocations2nd[0].type == VMA_SUBALLOCATION_TYPE_FREE) + { + --m_2ndNullItemsCount; + VmaVectorRemove(suballocations2nd, 0); + } + + if (ShouldCompact1st()) + { + const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount; + size_t srcIndex = m_1stNullItemsBeginCount; + for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) + { + while (suballocations1st[srcIndex].type == VMA_SUBALLOCATION_TYPE_FREE) + { + ++srcIndex; + } + if (dstIndex != srcIndex) + { + suballocations1st[dstIndex] = suballocations1st[srcIndex]; + } + ++srcIndex; + } + suballocations1st.resize(nonNullItemCount); + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + } + + // 2nd vector became empty. + if (suballocations2nd.empty()) + { + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + } + + // 1st vector became empty. + if (suballocations1st.size() - m_1stNullItemsBeginCount == 0) + { + suballocations1st.clear(); + m_1stNullItemsBeginCount = 0; + + if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + // Swap 1st with 2nd. Now 2nd is empty. + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + m_1stNullItemsMiddleCount = m_2ndNullItemsCount; + while (m_1stNullItemsBeginCount < suballocations2nd.size() && + suballocations2nd[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE) + { + ++m_1stNullItemsBeginCount; + --m_1stNullItemsMiddleCount; + } + m_2ndNullItemsCount = 0; + m_1stVectorIndex ^= 1; + } + } + } + + VMA_HEAVY_ASSERT(Validate()); +} + +bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + const VkDeviceSize blockSize = GetSize(); + const VkDeviceSize debugMargin = GetDebugMargin(); + const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + // Try to allocate at the end of 1st vector. + + VkDeviceSize resultBaseOffset = 0; + if (!suballocations1st.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations1st.back(); + resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin; + } + + // Start from offset equal to beginning of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + // Apply alignment. + resultOffset = VmaAlignUp(resultOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty()) + { + bool bufferImageGranularityConflict = false; + for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) + { + resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); + } + } + + const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? + suballocations2nd.back().offset : blockSize; + + // There is enough free space at the end after alignment. + if (resultOffset + allocSize + debugMargin <= freeSpaceEnd) + { + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if ((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) + { + const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + return false; + } + } + else + { + // Already on previous page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); + // pAllocationRequest->item, customData unused. + pAllocationRequest->type = VmaAllocationRequestType::EndOf1st; + return true; + } + } + + // Wrap-around to end of 2nd vector. Try to allocate there, watching for the + // beginning of 1st vector as the end of free space. + if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + VMA_ASSERT(!suballocations1st.empty()); + + VkDeviceSize resultBaseOffset = 0; + if (!suballocations2nd.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations2nd.back(); + resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin; + } + + // Start from offset equal to beginning of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + // Apply alignment. + resultOffset = VmaAlignUp(resultOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) + { + bool bufferImageGranularityConflict = false; + for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) + { + resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); + } + } + + size_t index1st = m_1stNullItemsBeginCount; + + // There is enough free space at the end after alignment. + if ((index1st == suballocations1st.size() && resultOffset + allocSize + debugMargin <= blockSize) || + (index1st < suballocations1st.size() && resultOffset + allocSize + debugMargin <= suballocations1st[index1st].offset)) + { + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) + { + for (size_t nextSuballocIndex = index1st; + nextSuballocIndex < suballocations1st.size(); + nextSuballocIndex++) + { + const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + return false; + } + } + else + { + // Already on next page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); + pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd; + // pAllocationRequest->item, customData unused. + return true; + } + } + + return false; +} + +bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + const VkDeviceSize blockSize = GetSize(); + const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer."); + return false; + } + + // Try to allocate before 2nd.back(), or end of block if 2nd.empty(). + if (allocSize > blockSize) + { + return false; + } + VkDeviceSize resultBaseOffset = blockSize - allocSize; + if (!suballocations2nd.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations2nd.back(); + resultBaseOffset = lastSuballoc.offset - allocSize; + if (allocSize > lastSuballoc.offset) + { + return false; + } + } + + // Start from offset equal to end of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + const VkDeviceSize debugMargin = GetDebugMargin(); + + // Apply debugMargin at the end. + if (debugMargin > 0) + { + if (resultOffset < debugMargin) + { + return false; + } + resultOffset -= debugMargin; + } + + // Apply alignment. + resultOffset = VmaAlignDown(resultOffset, allocAlignment); + + // Check next suballocations from 2nd for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) + { + bool bufferImageGranularityConflict = false; + for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) + { + const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) + { + resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity); + } + } + + // There is enough free space. + const VkDeviceSize endOf1st = !suballocations1st.empty() ? + suballocations1st.back().offset + suballocations1st.back().size : + 0; + if (endOf1st + debugMargin <= resultOffset) + { + // Check previous suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (bufferImageGranularity > 1) + { + for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) + { + return false; + } + } + else + { + // Already on next page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); + // pAllocationRequest->item unused. + pAllocationRequest->type = VmaAllocationRequestType::UpperAddress; + return true; + } + + return false; +} +#endif // _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS +#endif // _VMA_BLOCK_METADATA_LINEAR + +#if 0 +#ifndef _VMA_BLOCK_METADATA_BUDDY +/* +- GetSize() is the original size of allocated memory block. +- m_UsableSize is this size aligned down to a power of two. + All allocations and calculations happen relative to m_UsableSize. +- GetUnusableSize() is the difference between them. + It is reported as separate, unused range, not available for allocations. + +Node at level 0 has size = m_UsableSize. +Each next level contains nodes with size 2 times smaller than current level. +m_LevelCount is the maximum number of levels to use in the current object. +*/ +class VmaBlockMetadata_Buddy : public VmaBlockMetadata +{ + VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy) +public: + VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata_Buddy(); + + size_t GetAllocationCount() const override { return m_AllocationCount; } + VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize + GetUnusableSize(); } + bool IsEmpty() const override { return m_Root->type == Node::TYPE_FREE; } + VkResult CheckCorruption(const void* pBlockData) override { return VK_ERROR_FEATURE_NOT_PRESENT; } + VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }; + void DebugLogAllAllocations() const override { DebugLogAllAllocationNode(m_Root, 0); } + + void Init(VkDeviceSize size) override; + bool Validate() const override; + + void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override; + void AddStatistics(VmaStatistics& inoutStats) const override; + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const override; +#endif + + bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) override; + + void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) override; + + void Free(VmaAllocHandle allocHandle) override; + void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; + void* GetAllocationUserData(VmaAllocHandle allocHandle) const override; + VmaAllocHandle GetAllocationListBegin() const override; + VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override; + void Clear() override; + void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; + +private: + static const size_t MAX_LEVELS = 48; + + struct ValidationContext + { + size_t calculatedAllocationCount = 0; + size_t calculatedFreeCount = 0; + VkDeviceSize calculatedSumFreeSize = 0; + }; + struct Node + { + VkDeviceSize offset; + enum TYPE + { + TYPE_FREE, + TYPE_ALLOCATION, + TYPE_SPLIT, + TYPE_COUNT + } type; + Node* parent; + Node* buddy; + + union + { + struct + { + Node* prev; + Node* next; + } free; + struct + { + void* userData; + } allocation; + struct + { + Node* leftChild; + } split; + }; + }; + + // Size of the memory block aligned down to a power of two. + VkDeviceSize m_UsableSize; + uint32_t m_LevelCount; + VmaPoolAllocator m_NodeAllocator; + Node* m_Root; + struct + { + Node* front; + Node* back; + } m_FreeList[MAX_LEVELS]; + + // Number of nodes in the tree with type == TYPE_ALLOCATION. + size_t m_AllocationCount; + // Number of nodes in the tree with type == TYPE_FREE. + size_t m_FreeCount; + // Doesn't include space wasted due to internal fragmentation - allocation sizes are just aligned up to node sizes. + // Doesn't include unusable size. + VkDeviceSize m_SumFreeSize; + + VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; } + VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; } + + VkDeviceSize AlignAllocationSize(VkDeviceSize size) const + { + if (!IsVirtual()) + { + size = VmaAlignUp(size, (VkDeviceSize)16); + } + return VmaNextPow2(size); + } + Node* FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel) const; + void DeleteNodeChildren(Node* node); + bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const; + uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const; + void AddNodeToDetailedStatistics(VmaDetailedStatistics& inoutStats, const Node* node, VkDeviceSize levelNodeSize) const; + // Adds node to the front of FreeList at given level. + // node->type must be FREE. + // node->free.prev, next can be undefined. + void AddToFreeListFront(uint32_t level, Node* node); + // Removes node from FreeList at given level. + // node->type must be FREE. + // node->free.prev, next stay untouched. + void RemoveFromFreeList(uint32_t level, Node* node); + void DebugLogAllAllocationNode(Node* node, uint32_t level) const; + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const; +#endif +}; + +#ifndef _VMA_BLOCK_METADATA_BUDDY_FUNCTIONS +VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), + m_NodeAllocator(pAllocationCallbacks, 32), // firstBlockCapacity + m_Root(VMA_NULL), + m_AllocationCount(0), + m_FreeCount(1), + m_SumFreeSize(0) +{ + memset(m_FreeList, 0, sizeof(m_FreeList)); +} + +VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy() +{ + DeleteNodeChildren(m_Root); + m_NodeAllocator.Free(m_Root); +} + +void VmaBlockMetadata_Buddy::Init(VkDeviceSize size) +{ + VmaBlockMetadata::Init(size); + + m_UsableSize = VmaPrevPow2(size); + m_SumFreeSize = m_UsableSize; + + // Calculate m_LevelCount. + const VkDeviceSize minNodeSize = IsVirtual() ? 1 : 16; + m_LevelCount = 1; + while (m_LevelCount < MAX_LEVELS && + LevelToNodeSize(m_LevelCount) >= minNodeSize) + { + ++m_LevelCount; + } + + Node* rootNode = m_NodeAllocator.Alloc(); + rootNode->offset = 0; + rootNode->type = Node::TYPE_FREE; + rootNode->parent = VMA_NULL; + rootNode->buddy = VMA_NULL; + + m_Root = rootNode; + AddToFreeListFront(0, rootNode); +} + +bool VmaBlockMetadata_Buddy::Validate() const +{ + // Validate tree. + ValidationContext ctx; + if (!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0))) + { + VMA_VALIDATE(false && "ValidateNode failed."); + } + VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount); + VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize); + + // Validate free node lists. + for (uint32_t level = 0; level < m_LevelCount; ++level) + { + VMA_VALIDATE(m_FreeList[level].front == VMA_NULL || + m_FreeList[level].front->free.prev == VMA_NULL); + + for (Node* node = m_FreeList[level].front; + node != VMA_NULL; + node = node->free.next) + { + VMA_VALIDATE(node->type == Node::TYPE_FREE); + + if (node->free.next == VMA_NULL) + { + VMA_VALIDATE(m_FreeList[level].back == node); + } + else + { + VMA_VALIDATE(node->free.next->free.prev == node); + } + } + } + + // Validate that free lists ar higher levels are empty. + for (uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level) + { + VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL); + } + + return true; +} + +void VmaBlockMetadata_Buddy::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const +{ + inoutStats.statistics.blockCount++; + inoutStats.statistics.blockBytes += GetSize(); + + AddNodeToDetailedStatistics(inoutStats, m_Root, LevelToNodeSize(0)); + + const VkDeviceSize unusableSize = GetUnusableSize(); + if (unusableSize > 0) + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusableSize); +} + +void VmaBlockMetadata_Buddy::AddStatistics(VmaStatistics& inoutStats) const +{ + inoutStats.blockCount++; + inoutStats.allocationCount += (uint32_t)m_AllocationCount; + inoutStats.blockBytes += GetSize(); + inoutStats.allocationBytes += GetSize() - m_SumFreeSize; +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const +{ + VmaDetailedStatistics stats; + VmaClearDetailedStatistics(stats); + AddDetailedStatistics(stats); + + PrintDetailedMap_Begin( + json, + stats.statistics.blockBytes - stats.statistics.allocationBytes, + stats.statistics.allocationCount, + stats.unusedRangeCount, + mapRefCount); + + PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0)); + + const VkDeviceSize unusableSize = GetUnusableSize(); + if (unusableSize > 0) + { + PrintDetailedMap_UnusedRange(json, + m_UsableSize, // offset + unusableSize); // size + } + + PrintDetailedMap_End(json); +} +#endif // VMA_STATS_STRING_ENABLED + +bool VmaBlockMetadata_Buddy::CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); + + allocSize = AlignAllocationSize(allocSize); + + // Simple way to respect bufferImageGranularity. May be optimized some day. + // Whenever it might be an OPTIMAL image... + if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) + { + allocAlignment = VMA_MAX(allocAlignment, GetBufferImageGranularity()); + allocSize = VmaAlignUp(allocSize, GetBufferImageGranularity()); + } + + if (allocSize > m_UsableSize) + { + return false; + } + + const uint32_t targetLevel = AllocSizeToLevel(allocSize); + for (uint32_t level = targetLevel; level--; ) + { + for (Node* freeNode = m_FreeList[level].front; + freeNode != VMA_NULL; + freeNode = freeNode->free.next) + { + if (freeNode->offset % allocAlignment == 0) + { + pAllocationRequest->type = VmaAllocationRequestType::Normal; + pAllocationRequest->allocHandle = (VmaAllocHandle)(freeNode->offset + 1); + pAllocationRequest->size = allocSize; + pAllocationRequest->customData = (void*)(uintptr_t)level; + return true; + } + } + } + + return false; +} + +void VmaBlockMetadata_Buddy::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) +{ + VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); + + const uint32_t targetLevel = AllocSizeToLevel(request.size); + uint32_t currLevel = (uint32_t)(uintptr_t)request.customData; + + Node* currNode = m_FreeList[currLevel].front; + VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); + const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1; + while (currNode->offset != offset) + { + currNode = currNode->free.next; + VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); + } + + // Go down, splitting free nodes. + while (currLevel < targetLevel) + { + // currNode is already first free node at currLevel. + // Remove it from list of free nodes at this currLevel. + RemoveFromFreeList(currLevel, currNode); + + const uint32_t childrenLevel = currLevel + 1; + + // Create two free sub-nodes. + Node* leftChild = m_NodeAllocator.Alloc(); + Node* rightChild = m_NodeAllocator.Alloc(); + + leftChild->offset = currNode->offset; + leftChild->type = Node::TYPE_FREE; + leftChild->parent = currNode; + leftChild->buddy = rightChild; + + rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel); + rightChild->type = Node::TYPE_FREE; + rightChild->parent = currNode; + rightChild->buddy = leftChild; + + // Convert current currNode to split type. + currNode->type = Node::TYPE_SPLIT; + currNode->split.leftChild = leftChild; + + // Add child nodes to free list. Order is important! + AddToFreeListFront(childrenLevel, rightChild); + AddToFreeListFront(childrenLevel, leftChild); + + ++m_FreeCount; + ++currLevel; + currNode = m_FreeList[currLevel].front; + + /* + We can be sure that currNode, as left child of node previously split, + also fulfills the alignment requirement. + */ + } + + // Remove from free list. + VMA_ASSERT(currLevel == targetLevel && + currNode != VMA_NULL && + currNode->type == Node::TYPE_FREE); + RemoveFromFreeList(currLevel, currNode); + + // Convert to allocation node. + currNode->type = Node::TYPE_ALLOCATION; + currNode->allocation.userData = userData; + + ++m_AllocationCount; + --m_FreeCount; + m_SumFreeSize -= request.size; +} + +void VmaBlockMetadata_Buddy::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) +{ + uint32_t level = 0; + outInfo.offset = (VkDeviceSize)allocHandle - 1; + const Node* const node = FindAllocationNode(outInfo.offset, level); + outInfo.size = LevelToNodeSize(level); + outInfo.pUserData = node->allocation.userData; +} + +void* VmaBlockMetadata_Buddy::GetAllocationUserData(VmaAllocHandle allocHandle) const +{ + uint32_t level = 0; + const Node* const node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level); + return node->allocation.userData; +} + +VmaAllocHandle VmaBlockMetadata_Buddy::GetAllocationListBegin() const +{ + // Function only used for defragmentation, which is disabled for this algorithm + return VK_NULL_HANDLE; +} + +VmaAllocHandle VmaBlockMetadata_Buddy::GetNextAllocation(VmaAllocHandle prevAlloc) const +{ + // Function only used for defragmentation, which is disabled for this algorithm + return VK_NULL_HANDLE; +} + +void VmaBlockMetadata_Buddy::DeleteNodeChildren(Node* node) +{ + if (node->type == Node::TYPE_SPLIT) + { + DeleteNodeChildren(node->split.leftChild->buddy); + DeleteNodeChildren(node->split.leftChild); + const VkAllocationCallbacks* allocationCallbacks = GetAllocationCallbacks(); + m_NodeAllocator.Free(node->split.leftChild->buddy); + m_NodeAllocator.Free(node->split.leftChild); + } +} + +void VmaBlockMetadata_Buddy::Clear() +{ + DeleteNodeChildren(m_Root); + m_Root->type = Node::TYPE_FREE; + m_AllocationCount = 0; + m_FreeCount = 1; + m_SumFreeSize = m_UsableSize; +} + +void VmaBlockMetadata_Buddy::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) +{ + uint32_t level = 0; + Node* const node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level); + node->allocation.userData = userData; +} + +VmaBlockMetadata_Buddy::Node* VmaBlockMetadata_Buddy::FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel) const +{ + Node* node = m_Root; + VkDeviceSize nodeOffset = 0; + outLevel = 0; + VkDeviceSize levelNodeSize = LevelToNodeSize(0); + while (node->type == Node::TYPE_SPLIT) + { + const VkDeviceSize nextLevelNodeSize = levelNodeSize >> 1; + if (offset < nodeOffset + nextLevelNodeSize) + { + node = node->split.leftChild; + } + else + { + node = node->split.leftChild->buddy; + nodeOffset += nextLevelNodeSize; + } + ++outLevel; + levelNodeSize = nextLevelNodeSize; + } + + VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION); + return node; +} + +bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const +{ + VMA_VALIDATE(level < m_LevelCount); + VMA_VALIDATE(curr->parent == parent); + VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL)); + VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr); + switch (curr->type) + { + case Node::TYPE_FREE: + // curr->free.prev, next are validated separately. + ctx.calculatedSumFreeSize += levelNodeSize; + ++ctx.calculatedFreeCount; + break; + case Node::TYPE_ALLOCATION: + ++ctx.calculatedAllocationCount; + if (!IsVirtual()) + { + VMA_VALIDATE(curr->allocation.userData != VMA_NULL); + } + break; + case Node::TYPE_SPLIT: + { + const uint32_t childrenLevel = level + 1; + const VkDeviceSize childrenLevelNodeSize = levelNodeSize >> 1; + const Node* const leftChild = curr->split.leftChild; + VMA_VALIDATE(leftChild != VMA_NULL); + VMA_VALIDATE(leftChild->offset == curr->offset); + if (!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize)) + { + VMA_VALIDATE(false && "ValidateNode for left child failed."); + } + const Node* const rightChild = leftChild->buddy; + VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize); + if (!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize)) + { + VMA_VALIDATE(false && "ValidateNode for right child failed."); + } + } + break; + default: + return false; + } + + return true; +} + +uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const +{ + // I know this could be optimized somehow e.g. by using std::log2p1 from C++20. + uint32_t level = 0; + VkDeviceSize currLevelNodeSize = m_UsableSize; + VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1; + while (allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount) + { + ++level; + currLevelNodeSize >>= 1; + nextLevelNodeSize >>= 1; + } + return level; +} + +void VmaBlockMetadata_Buddy::Free(VmaAllocHandle allocHandle) +{ + uint32_t level = 0; + Node* node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level); + + ++m_FreeCount; + --m_AllocationCount; + m_SumFreeSize += LevelToNodeSize(level); + + node->type = Node::TYPE_FREE; + + // Join free nodes if possible. + while (level > 0 && node->buddy->type == Node::TYPE_FREE) + { + RemoveFromFreeList(level, node->buddy); + Node* const parent = node->parent; + + m_NodeAllocator.Free(node->buddy); + m_NodeAllocator.Free(node); + parent->type = Node::TYPE_FREE; + + node = parent; + --level; + --m_FreeCount; + } + + AddToFreeListFront(level, node); +} + +void VmaBlockMetadata_Buddy::AddNodeToDetailedStatistics(VmaDetailedStatistics& inoutStats, const Node* node, VkDeviceSize levelNodeSize) const +{ + switch (node->type) + { + case Node::TYPE_FREE: + VmaAddDetailedStatisticsUnusedRange(inoutStats, levelNodeSize); + break; + case Node::TYPE_ALLOCATION: + VmaAddDetailedStatisticsAllocation(inoutStats, levelNodeSize); + break; + case Node::TYPE_SPLIT: + { + const VkDeviceSize childrenNodeSize = levelNodeSize / 2; + const Node* const leftChild = node->split.leftChild; + AddNodeToDetailedStatistics(inoutStats, leftChild, childrenNodeSize); + const Node* const rightChild = leftChild->buddy; + AddNodeToDetailedStatistics(inoutStats, rightChild, childrenNodeSize); + } + break; + default: + VMA_ASSERT(0); + } +} + +void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node) +{ + VMA_ASSERT(node->type == Node::TYPE_FREE); + + // List is empty. + Node* const frontNode = m_FreeList[level].front; + if (frontNode == VMA_NULL) + { + VMA_ASSERT(m_FreeList[level].back == VMA_NULL); + node->free.prev = node->free.next = VMA_NULL; + m_FreeList[level].front = m_FreeList[level].back = node; + } + else + { + VMA_ASSERT(frontNode->free.prev == VMA_NULL); + node->free.prev = VMA_NULL; + node->free.next = frontNode; + frontNode->free.prev = node; + m_FreeList[level].front = node; + } +} + +void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node) +{ + VMA_ASSERT(m_FreeList[level].front != VMA_NULL); + + // It is at the front. + if (node->free.prev == VMA_NULL) + { + VMA_ASSERT(m_FreeList[level].front == node); + m_FreeList[level].front = node->free.next; + } + else + { + Node* const prevFreeNode = node->free.prev; + VMA_ASSERT(prevFreeNode->free.next == node); + prevFreeNode->free.next = node->free.next; + } + + // It is at the back. + if (node->free.next == VMA_NULL) + { + VMA_ASSERT(m_FreeList[level].back == node); + m_FreeList[level].back = node->free.prev; + } + else + { + Node* const nextFreeNode = node->free.next; + VMA_ASSERT(nextFreeNode->free.prev == node); + nextFreeNode->free.prev = node->free.prev; + } +} + +void VmaBlockMetadata_Buddy::DebugLogAllAllocationNode(Node* node, uint32_t level) const +{ + switch (node->type) + { + case Node::TYPE_FREE: + break; + case Node::TYPE_ALLOCATION: + DebugLogAllocation(node->offset, LevelToNodeSize(level), node->allocation.userData); + break; + case Node::TYPE_SPLIT: + { + ++level; + DebugLogAllAllocationNode(node->split.leftChild, level); + DebugLogAllAllocationNode(node->split.leftChild->buddy, level); + } + break; + default: + VMA_ASSERT(0); + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const +{ + switch (node->type) + { + case Node::TYPE_FREE: + PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize); + break; + case Node::TYPE_ALLOCATION: + PrintDetailedMap_Allocation(json, node->offset, levelNodeSize, node->allocation.userData); + break; + case Node::TYPE_SPLIT: + { + const VkDeviceSize childrenNodeSize = levelNodeSize / 2; + const Node* const leftChild = node->split.leftChild; + PrintDetailedMapNode(json, leftChild, childrenNodeSize); + const Node* const rightChild = leftChild->buddy; + PrintDetailedMapNode(json, rightChild, childrenNodeSize); + } + break; + default: + VMA_ASSERT(0); + } +} +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_BLOCK_METADATA_BUDDY_FUNCTIONS +#endif // _VMA_BLOCK_METADATA_BUDDY +#endif // #if 0 + +#ifndef _VMA_BLOCK_METADATA_TLSF +// To not search current larger region if first allocation won't succeed and skip to smaller range +// use with VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT as strategy in CreateAllocationRequest(). +// When fragmentation and reusal of previous blocks doesn't matter then use with +// VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT for fastest alloc time possible. +class VmaBlockMetadata_TLSF : public VmaBlockMetadata +{ + VMA_CLASS_NO_COPY(VmaBlockMetadata_TLSF) +public: + VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata_TLSF(); + + size_t GetAllocationCount() const override { return m_AllocCount; } + size_t GetFreeRegionsCount() const override { return m_BlocksFreeCount + 1; } + VkDeviceSize GetSumFreeSize() const override { return m_BlocksFreeSize + m_NullBlock->size; } + bool IsEmpty() const override { return m_NullBlock->offset == 0; } + VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return ((Block*)allocHandle)->offset; }; + + void Init(VkDeviceSize size) override; + bool Validate() const override; + + void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override; + void AddStatistics(VmaStatistics& inoutStats) const override; + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json) const override; +#endif + + bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) override; + + VkResult CheckCorruption(const void* pBlockData) override; + void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) override; + + void Free(VmaAllocHandle allocHandle) override; + void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; + void* GetAllocationUserData(VmaAllocHandle allocHandle) const override; + VmaAllocHandle GetAllocationListBegin() const override; + VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override; + VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override; + void Clear() override; + void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; + void DebugLogAllAllocations() const override; + +private: + // According to original paper it should be preferable 4 or 5: + // M. Masmano, I. Ripoll, A. Crespo, and J. Real "TLSF: a New Dynamic Memory Allocator for Real-Time Systems" + // http://www.gii.upv.es/tlsf/files/ecrts04_tlsf.pdf + static const uint8_t SECOND_LEVEL_INDEX = 5; + static const uint16_t SMALL_BUFFER_SIZE = 256; + static const uint32_t INITIAL_BLOCK_ALLOC_COUNT = 16; + static const uint8_t MEMORY_CLASS_SHIFT = 7; + static const uint8_t MAX_MEMORY_CLASSES = 65 - MEMORY_CLASS_SHIFT; + + class Block + { + public: + VkDeviceSize offset; + VkDeviceSize size; + Block* prevPhysical; + Block* nextPhysical; + + void MarkFree() { prevFree = VMA_NULL; } + void MarkTaken() { prevFree = this; } + bool IsFree() const { return prevFree != this; } + void*& UserData() { VMA_HEAVY_ASSERT(!IsFree()); return userData; } + Block*& PrevFree() { return prevFree; } + Block*& NextFree() { VMA_HEAVY_ASSERT(IsFree()); return nextFree; } + + private: + Block* prevFree; // Address of the same block here indicates that block is taken + union + { + Block* nextFree; + void* userData; + }; + }; + + size_t m_AllocCount; + // Total number of free blocks besides null block + size_t m_BlocksFreeCount; + // Total size of free blocks excluding null block + VkDeviceSize m_BlocksFreeSize; + uint32_t m_IsFreeBitmap; + uint8_t m_MemoryClasses; + uint32_t m_InnerIsFreeBitmap[MAX_MEMORY_CLASSES]; + uint32_t m_ListsCount; + /* + * 0: 0-3 lists for small buffers + * 1+: 0-(2^SLI-1) lists for normal buffers + */ + Block** m_FreeList; + VmaPoolAllocator m_BlockAllocator; + Block* m_NullBlock; + VmaBlockBufferImageGranularity m_GranularityHandler; + + uint8_t SizeToMemoryClass(VkDeviceSize size) const; + uint16_t SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const; + uint32_t GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const; + uint32_t GetListIndex(VkDeviceSize size) const; + + void RemoveFreeBlock(Block* block); + void InsertFreeBlock(Block* block); + void MergeBlock(Block* block, Block* prev); + + Block* FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const; + bool CheckBlock( + Block& block, + uint32_t listIndex, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaAllocationRequest* pAllocationRequest); +}; + +#ifndef _VMA_BLOCK_METADATA_TLSF_FUNCTIONS +VmaBlockMetadata_TLSF::VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), + m_AllocCount(0), + m_BlocksFreeCount(0), + m_BlocksFreeSize(0), + m_IsFreeBitmap(0), + m_MemoryClasses(0), + m_ListsCount(0), + m_FreeList(VMA_NULL), + m_BlockAllocator(pAllocationCallbacks, INITIAL_BLOCK_ALLOC_COUNT), + m_NullBlock(VMA_NULL), + m_GranularityHandler(bufferImageGranularity) {} + +VmaBlockMetadata_TLSF::~VmaBlockMetadata_TLSF() +{ + if (m_FreeList) + vma_delete_array(GetAllocationCallbacks(), m_FreeList, m_ListsCount); + m_GranularityHandler.Destroy(GetAllocationCallbacks()); +} + +void VmaBlockMetadata_TLSF::Init(VkDeviceSize size) +{ + VmaBlockMetadata::Init(size); + + if (!IsVirtual()) + m_GranularityHandler.Init(GetAllocationCallbacks(), size); + + m_NullBlock = m_BlockAllocator.Alloc(); + m_NullBlock->size = size; + m_NullBlock->offset = 0; + m_NullBlock->prevPhysical = VMA_NULL; + m_NullBlock->nextPhysical = VMA_NULL; + m_NullBlock->MarkFree(); + m_NullBlock->NextFree() = VMA_NULL; + m_NullBlock->PrevFree() = VMA_NULL; + uint8_t memoryClass = SizeToMemoryClass(size); + uint16_t sli = SizeToSecondIndex(size, memoryClass); + m_ListsCount = (memoryClass == 0 ? 0 : (memoryClass - 1) * (1UL << SECOND_LEVEL_INDEX) + sli) + 1; + if (IsVirtual()) + m_ListsCount += 1UL << SECOND_LEVEL_INDEX; + else + m_ListsCount += 4; + + m_MemoryClasses = memoryClass + 2; + memset(m_InnerIsFreeBitmap, 0, MAX_MEMORY_CLASSES * sizeof(uint32_t)); + + m_FreeList = vma_new_array(GetAllocationCallbacks(), Block*, m_ListsCount); + memset(m_FreeList, 0, m_ListsCount * sizeof(Block*)); +} + +bool VmaBlockMetadata_TLSF::Validate() const +{ + VMA_VALIDATE(GetSumFreeSize() <= GetSize()); + + VkDeviceSize calculatedSize = m_NullBlock->size; + VkDeviceSize calculatedFreeSize = m_NullBlock->size; + size_t allocCount = 0; + size_t freeCount = 0; + + // Check integrity of free lists + for (uint32_t list = 0; list < m_ListsCount; ++list) + { + Block* block = m_FreeList[list]; + if (block != VMA_NULL) + { + VMA_VALIDATE(block->IsFree()); + VMA_VALIDATE(block->PrevFree() == VMA_NULL); + while (block->NextFree()) + { + VMA_VALIDATE(block->NextFree()->IsFree()); + VMA_VALIDATE(block->NextFree()->PrevFree() == block); + block = block->NextFree(); + } + } + } + + VkDeviceSize nextOffset = m_NullBlock->offset; + auto validateCtx = m_GranularityHandler.StartValidation(GetAllocationCallbacks(), IsVirtual()); + + VMA_VALIDATE(m_NullBlock->nextPhysical == VMA_NULL); + if (m_NullBlock->prevPhysical) + { + VMA_VALIDATE(m_NullBlock->prevPhysical->nextPhysical == m_NullBlock); + } + // Check all blocks + for (Block* prev = m_NullBlock->prevPhysical; prev != VMA_NULL; prev = prev->prevPhysical) + { + VMA_VALIDATE(prev->offset + prev->size == nextOffset); + nextOffset = prev->offset; + calculatedSize += prev->size; + + uint32_t listIndex = GetListIndex(prev->size); + if (prev->IsFree()) + { + ++freeCount; + // Check if free block belongs to free list + Block* freeBlock = m_FreeList[listIndex]; + VMA_VALIDATE(freeBlock != VMA_NULL); + + bool found = false; + do + { + if (freeBlock == prev) + found = true; + + freeBlock = freeBlock->NextFree(); + } while (!found && freeBlock != VMA_NULL); + + VMA_VALIDATE(found); + calculatedFreeSize += prev->size; + } + else + { + ++allocCount; + // Check if taken block is not on a free list + Block* freeBlock = m_FreeList[listIndex]; + while (freeBlock) + { + VMA_VALIDATE(freeBlock != prev); + freeBlock = freeBlock->NextFree(); + } + + if (!IsVirtual()) + { + VMA_VALIDATE(m_GranularityHandler.Validate(validateCtx, prev->offset, prev->size)); + } + } + + if (prev->prevPhysical) + { + VMA_VALIDATE(prev->prevPhysical->nextPhysical == prev); + } + } + + if (!IsVirtual()) + { + VMA_VALIDATE(m_GranularityHandler.FinishValidation(validateCtx)); + } + + VMA_VALIDATE(nextOffset == 0); + VMA_VALIDATE(calculatedSize == GetSize()); + VMA_VALIDATE(calculatedFreeSize == GetSumFreeSize()); + VMA_VALIDATE(allocCount == m_AllocCount); + VMA_VALIDATE(freeCount == m_BlocksFreeCount); + + return true; +} + +void VmaBlockMetadata_TLSF::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const +{ + inoutStats.statistics.blockCount++; + inoutStats.statistics.blockBytes += GetSize(); + if (m_NullBlock->size > 0) + VmaAddDetailedStatisticsUnusedRange(inoutStats, m_NullBlock->size); + + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + { + if (block->IsFree()) + VmaAddDetailedStatisticsUnusedRange(inoutStats, block->size); + else + VmaAddDetailedStatisticsAllocation(inoutStats, block->size); + } +} + +void VmaBlockMetadata_TLSF::AddStatistics(VmaStatistics& inoutStats) const +{ + inoutStats.blockCount++; + inoutStats.allocationCount += (uint32_t)m_AllocCount; + inoutStats.blockBytes += GetSize(); + inoutStats.allocationBytes += GetSize() - GetSumFreeSize(); +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_TLSF::PrintDetailedMap(class VmaJsonWriter& json) const +{ + size_t blockCount = m_AllocCount + m_BlocksFreeCount; + VmaStlAllocator allocator(GetAllocationCallbacks()); + VmaVector> blockList(blockCount, allocator); + + size_t i = blockCount; + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + { + blockList[--i] = block; + } + VMA_ASSERT(i == 0); + + VmaDetailedStatistics stats; + VmaClearDetailedStatistics(stats); + AddDetailedStatistics(stats); + + PrintDetailedMap_Begin(json, + stats.statistics.blockBytes - stats.statistics.allocationBytes, + stats.statistics.allocationCount, + stats.unusedRangeCount); + + for (; i < blockCount; ++i) + { + Block* block = blockList[i]; + if (block->IsFree()) + PrintDetailedMap_UnusedRange(json, block->offset, block->size); + else + PrintDetailedMap_Allocation(json, block->offset, block->size, block->UserData()); + } + if (m_NullBlock->size > 0) + PrintDetailedMap_UnusedRange(json, m_NullBlock->offset, m_NullBlock->size); + + PrintDetailedMap_End(json); +} +#endif + +bool VmaBlockMetadata_TLSF::CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(allocSize > 0 && "Cannot allocate empty block!"); + VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); + + // For small granularity round up + if (!IsVirtual()) + m_GranularityHandler.RoundupAllocRequest(allocType, allocSize, allocAlignment); + + allocSize += GetDebugMargin(); + // Quick check for too small pool + if (allocSize > GetSumFreeSize()) + return false; + + // If no free blocks in pool then check only null block + if (m_BlocksFreeCount == 0) + return CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest); + + // Round up to the next block + VkDeviceSize sizeForNextList = allocSize; + VkDeviceSize smallSizeStep = SMALL_BUFFER_SIZE / (IsVirtual() ? 1 << SECOND_LEVEL_INDEX : 4); + if (allocSize > SMALL_BUFFER_SIZE) + { + sizeForNextList += (1ULL << (VMA_BITSCAN_MSB(allocSize) - SECOND_LEVEL_INDEX)); + } + else if (allocSize > SMALL_BUFFER_SIZE - smallSizeStep) + sizeForNextList = SMALL_BUFFER_SIZE + 1; + else + sizeForNextList += smallSizeStep; + + uint32_t nextListIndex = 0; + uint32_t prevListIndex = 0; + Block* nextListBlock = VMA_NULL; + Block* prevListBlock = VMA_NULL; + + // Check blocks according to strategies + if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) + { + // Quick check for larger block first + nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); + if (nextListBlock != VMA_NULL && CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + + // If not fitted then null block + if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + + // Null block failed, search larger bucket + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } + + // Failed again, check best fit bucket + prevListBlock = FindFreeBlock(allocSize, prevListIndex); + while (prevListBlock) + { + if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + prevListBlock = prevListBlock->NextFree(); + } + } + else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT) + { + // Check best fit bucket + prevListBlock = FindFreeBlock(allocSize, prevListIndex); + while (prevListBlock) + { + if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + prevListBlock = prevListBlock->NextFree(); + } + + // If failed check null block + if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + + // Check larger bucket + nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } + } + else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT ) + { + // Perform search from the start + VmaStlAllocator allocator(GetAllocationCallbacks()); + VmaVector> blockList(m_BlocksFreeCount, allocator); + + size_t i = m_BlocksFreeCount; + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + { + if (block->IsFree() && block->size >= allocSize) + blockList[--i] = block; + } + + for (; i < m_BlocksFreeCount; ++i) + { + Block& block = *blockList[i]; + if (CheckBlock(block, GetListIndex(block.size), allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + } + + // If failed check null block + if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + + // Whole range searched, no more memory + return false; + } + else + { + // Check larger bucket + nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } + + // If failed check null block + if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + + // Check best fit bucket + prevListBlock = FindFreeBlock(allocSize, prevListIndex); + while (prevListBlock) + { + if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + prevListBlock = prevListBlock->NextFree(); + } + } + + // Worst case, full search has to be done + while (++nextListIndex < m_ListsCount) + { + nextListBlock = m_FreeList[nextListIndex]; + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } + } + + // No more memory sadly + return false; +} + +VkResult VmaBlockMetadata_TLSF::CheckCorruption(const void* pBlockData) +{ + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + { + if (!block->IsFree()) + { + if (!VmaValidateMagicValue(pBlockData, block->offset + block->size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_UNKNOWN_COPY; + } + } + } + + return VK_SUCCESS; +} + +void VmaBlockMetadata_TLSF::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) +{ + VMA_ASSERT(request.type == VmaAllocationRequestType::TLSF); + + // Get block and pop it from the free list + Block* currentBlock = (Block*)request.allocHandle; + VkDeviceSize offset = request.algorithmData; + VMA_ASSERT(currentBlock != VMA_NULL); + VMA_ASSERT(currentBlock->offset <= offset); + + if (currentBlock != m_NullBlock) + RemoveFreeBlock(currentBlock); + + VkDeviceSize debugMargin = GetDebugMargin(); + VkDeviceSize misssingAlignment = offset - currentBlock->offset; + + // Append missing alignment to prev block or create new one + if (misssingAlignment) + { + Block* prevBlock = currentBlock->prevPhysical; + VMA_ASSERT(prevBlock != VMA_NULL && "There should be no missing alignment at offset 0!"); + + if (prevBlock->IsFree() && prevBlock->size != debugMargin) + { + uint32_t oldList = GetListIndex(prevBlock->size); + prevBlock->size += misssingAlignment; + // Check if new size crosses list bucket + if (oldList != GetListIndex(prevBlock->size)) + { + prevBlock->size -= misssingAlignment; + RemoveFreeBlock(prevBlock); + prevBlock->size += misssingAlignment; + InsertFreeBlock(prevBlock); + } + else + m_BlocksFreeSize += misssingAlignment; + } + else + { + Block* newBlock = m_BlockAllocator.Alloc(); + currentBlock->prevPhysical = newBlock; + prevBlock->nextPhysical = newBlock; + newBlock->prevPhysical = prevBlock; + newBlock->nextPhysical = currentBlock; + newBlock->size = misssingAlignment; + newBlock->offset = currentBlock->offset; + newBlock->MarkTaken(); + + InsertFreeBlock(newBlock); + } + + currentBlock->size -= misssingAlignment; + currentBlock->offset += misssingAlignment; + } + + VkDeviceSize size = request.size + debugMargin; + if (currentBlock->size == size) + { + if (currentBlock == m_NullBlock) + { + // Setup new null block + m_NullBlock = m_BlockAllocator.Alloc(); + m_NullBlock->size = 0; + m_NullBlock->offset = currentBlock->offset + size; + m_NullBlock->prevPhysical = currentBlock; + m_NullBlock->nextPhysical = VMA_NULL; + m_NullBlock->MarkFree(); + m_NullBlock->PrevFree() = VMA_NULL; + m_NullBlock->NextFree() = VMA_NULL; + currentBlock->nextPhysical = m_NullBlock; + currentBlock->MarkTaken(); + } + } + else + { + VMA_ASSERT(currentBlock->size > size && "Proper block already found, shouldn't find smaller one!"); + + // Create new free block + Block* newBlock = m_BlockAllocator.Alloc(); + newBlock->size = currentBlock->size - size; + newBlock->offset = currentBlock->offset + size; + newBlock->prevPhysical = currentBlock; + newBlock->nextPhysical = currentBlock->nextPhysical; + currentBlock->nextPhysical = newBlock; + currentBlock->size = size; + + if (currentBlock == m_NullBlock) + { + m_NullBlock = newBlock; + m_NullBlock->MarkFree(); + m_NullBlock->NextFree() = VMA_NULL; + m_NullBlock->PrevFree() = VMA_NULL; + currentBlock->MarkTaken(); + } + else + { + newBlock->nextPhysical->prevPhysical = newBlock; + newBlock->MarkTaken(); + InsertFreeBlock(newBlock); + } + } + currentBlock->UserData() = userData; + + if (debugMargin > 0) + { + currentBlock->size -= debugMargin; + Block* newBlock = m_BlockAllocator.Alloc(); + newBlock->size = debugMargin; + newBlock->offset = currentBlock->offset + currentBlock->size; + newBlock->prevPhysical = currentBlock; + newBlock->nextPhysical = currentBlock->nextPhysical; + newBlock->MarkTaken(); + currentBlock->nextPhysical->prevPhysical = newBlock; + currentBlock->nextPhysical = newBlock; + InsertFreeBlock(newBlock); + } + + if (!IsVirtual()) + m_GranularityHandler.AllocPages((uint8_t)(uintptr_t)request.customData, + currentBlock->offset, currentBlock->size); + ++m_AllocCount; +} + +void VmaBlockMetadata_TLSF::Free(VmaAllocHandle allocHandle) +{ + Block* block = (Block*)allocHandle; + Block* next = block->nextPhysical; + VMA_ASSERT(!block->IsFree() && "Block is already free!"); + + if (!IsVirtual()) + m_GranularityHandler.FreePages(block->offset, block->size); + --m_AllocCount; + + VkDeviceSize debugMargin = GetDebugMargin(); + if (debugMargin > 0) + { + RemoveFreeBlock(next); + MergeBlock(next, block); + block = next; + next = next->nextPhysical; + } + + // Try merging + Block* prev = block->prevPhysical; + if (prev != VMA_NULL && prev->IsFree() && prev->size != debugMargin) + { + RemoveFreeBlock(prev); + MergeBlock(block, prev); + } + + if (!next->IsFree()) + InsertFreeBlock(block); + else if (next == m_NullBlock) + MergeBlock(m_NullBlock, block); + else + { + RemoveFreeBlock(next); + MergeBlock(next, block); + InsertFreeBlock(next); + } +} + +void VmaBlockMetadata_TLSF::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) +{ + Block* block = (Block*)allocHandle; + VMA_ASSERT(!block->IsFree() && "Cannot get allocation info for free block!"); + outInfo.offset = block->offset; + outInfo.size = block->size; + outInfo.pUserData = block->UserData(); +} + +void* VmaBlockMetadata_TLSF::GetAllocationUserData(VmaAllocHandle allocHandle) const +{ + Block* block = (Block*)allocHandle; + VMA_ASSERT(!block->IsFree() && "Cannot get user data for free block!"); + return block->UserData(); +} + +VmaAllocHandle VmaBlockMetadata_TLSF::GetAllocationListBegin() const +{ + if (m_AllocCount == 0) + return VK_NULL_HANDLE; + + for (Block* block = m_NullBlock->prevPhysical; block; block = block->prevPhysical) + { + if (!block->IsFree()) + return (VmaAllocHandle)block; + } + VMA_ASSERT(false && "If m_AllocCount > 0 then should find any allocation!"); + return VK_NULL_HANDLE; +} + +VmaAllocHandle VmaBlockMetadata_TLSF::GetNextAllocation(VmaAllocHandle prevAlloc) const +{ + Block* startBlock = (Block*)prevAlloc; + VMA_ASSERT(!startBlock->IsFree() && "Incorrect block!"); + + for (Block* block = startBlock->prevPhysical; block; block = block->prevPhysical) + { + if (!block->IsFree()) + return (VmaAllocHandle)block; + } + return VK_NULL_HANDLE; +} + +VkDeviceSize VmaBlockMetadata_TLSF::GetNextFreeRegionSize(VmaAllocHandle alloc) const +{ + Block* block = (Block*)alloc; + VMA_ASSERT(!block->IsFree() && "Incorrect block!"); + + if (block->prevPhysical) + return block->prevPhysical->IsFree() ? block->prevPhysical->size : 0; + return 0; +} + +void VmaBlockMetadata_TLSF::Clear() +{ + m_AllocCount = 0; + m_BlocksFreeCount = 0; + m_BlocksFreeSize = 0; + m_IsFreeBitmap = 0; + m_NullBlock->offset = 0; + m_NullBlock->size = GetSize(); + Block* block = m_NullBlock->prevPhysical; + m_NullBlock->prevPhysical = VMA_NULL; + while (block) + { + Block* prev = block->prevPhysical; + m_BlockAllocator.Free(block); + block = prev; + } + memset(m_FreeList, 0, m_ListsCount * sizeof(Block*)); + memset(m_InnerIsFreeBitmap, 0, m_MemoryClasses * sizeof(uint32_t)); + m_GranularityHandler.Clear(); +} + +void VmaBlockMetadata_TLSF::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) +{ + Block* block = (Block*)allocHandle; + VMA_ASSERT(!block->IsFree() && "Trying to set user data for not allocated block!"); + block->UserData() = userData; +} + +void VmaBlockMetadata_TLSF::DebugLogAllAllocations() const +{ + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + if (!block->IsFree()) + DebugLogAllocation(block->offset, block->size, block->UserData()); +} + +uint8_t VmaBlockMetadata_TLSF::SizeToMemoryClass(VkDeviceSize size) const +{ + if (size > SMALL_BUFFER_SIZE) + return VMA_BITSCAN_MSB(size) - MEMORY_CLASS_SHIFT; + return 0; +} + +uint16_t VmaBlockMetadata_TLSF::SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const +{ + if (memoryClass == 0) + { + if (IsVirtual()) + return static_cast((size - 1) / 8); + else + return static_cast((size - 1) / 64); + } + return static_cast((size >> (memoryClass + MEMORY_CLASS_SHIFT - SECOND_LEVEL_INDEX)) ^ (1U << SECOND_LEVEL_INDEX)); +} + +uint32_t VmaBlockMetadata_TLSF::GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const +{ + if (memoryClass == 0) + return secondIndex; + + const uint32_t index = static_cast(memoryClass - 1) * (1 << SECOND_LEVEL_INDEX) + secondIndex; + if (IsVirtual()) + return index + (1 << SECOND_LEVEL_INDEX); + else + return index + 4; +} + +uint32_t VmaBlockMetadata_TLSF::GetListIndex(VkDeviceSize size) const +{ + uint8_t memoryClass = SizeToMemoryClass(size); + return GetListIndex(memoryClass, SizeToSecondIndex(size, memoryClass)); +} + +void VmaBlockMetadata_TLSF::RemoveFreeBlock(Block* block) +{ + VMA_ASSERT(block != m_NullBlock); + VMA_ASSERT(block->IsFree()); + + if (block->NextFree() != VMA_NULL) + block->NextFree()->PrevFree() = block->PrevFree(); + if (block->PrevFree() != VMA_NULL) + block->PrevFree()->NextFree() = block->NextFree(); + else + { + uint8_t memClass = SizeToMemoryClass(block->size); + uint16_t secondIndex = SizeToSecondIndex(block->size, memClass); + uint32_t index = GetListIndex(memClass, secondIndex); + VMA_ASSERT(m_FreeList[index] == block); + m_FreeList[index] = block->NextFree(); + if (block->NextFree() == VMA_NULL) + { + m_InnerIsFreeBitmap[memClass] &= ~(1U << secondIndex); + if (m_InnerIsFreeBitmap[memClass] == 0) + m_IsFreeBitmap &= ~(1UL << memClass); + } + } + block->MarkTaken(); + block->UserData() = VMA_NULL; + --m_BlocksFreeCount; + m_BlocksFreeSize -= block->size; +} + +void VmaBlockMetadata_TLSF::InsertFreeBlock(Block* block) +{ + VMA_ASSERT(block != m_NullBlock); + VMA_ASSERT(!block->IsFree() && "Cannot insert block twice!"); + + uint8_t memClass = SizeToMemoryClass(block->size); + uint16_t secondIndex = SizeToSecondIndex(block->size, memClass); + uint32_t index = GetListIndex(memClass, secondIndex); + VMA_ASSERT(index < m_ListsCount); + block->PrevFree() = VMA_NULL; + block->NextFree() = m_FreeList[index]; + m_FreeList[index] = block; + if (block->NextFree() != VMA_NULL) + block->NextFree()->PrevFree() = block; + else + { + m_InnerIsFreeBitmap[memClass] |= 1U << secondIndex; + m_IsFreeBitmap |= 1UL << memClass; + } + ++m_BlocksFreeCount; + m_BlocksFreeSize += block->size; +} + +void VmaBlockMetadata_TLSF::MergeBlock(Block* block, Block* prev) +{ + VMA_ASSERT(block->prevPhysical == prev && "Cannot merge seperate physical regions!"); + VMA_ASSERT(!prev->IsFree() && "Cannot merge block that belongs to free list!"); + + block->offset = prev->offset; + block->size += prev->size; + block->prevPhysical = prev->prevPhysical; + if (block->prevPhysical) + block->prevPhysical->nextPhysical = block; + m_BlockAllocator.Free(prev); +} + +VmaBlockMetadata_TLSF::Block* VmaBlockMetadata_TLSF::FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const +{ + uint8_t memoryClass = SizeToMemoryClass(size); + uint32_t innerFreeMap = m_InnerIsFreeBitmap[memoryClass] & (~0U << SizeToSecondIndex(size, memoryClass)); + if (!innerFreeMap) + { + // Check higher levels for avaiable blocks + uint32_t freeMap = m_IsFreeBitmap & (~0UL << (memoryClass + 1)); + if (!freeMap) + return VMA_NULL; // No more memory avaible + + // Find lowest free region + memoryClass = VMA_BITSCAN_LSB(freeMap); + innerFreeMap = m_InnerIsFreeBitmap[memoryClass]; + VMA_ASSERT(innerFreeMap != 0); + } + // Find lowest free subregion + listIndex = GetListIndex(memoryClass, VMA_BITSCAN_LSB(innerFreeMap)); + VMA_ASSERT(m_FreeList[listIndex]); + return m_FreeList[listIndex]; +} + +bool VmaBlockMetadata_TLSF::CheckBlock( + Block& block, + uint32_t listIndex, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(block.IsFree() && "Block is already taken!"); + + VkDeviceSize alignedOffset = VmaAlignUp(block.offset, allocAlignment); + if (block.size < allocSize + alignedOffset - block.offset) + return false; + + // Check for granularity conflicts + if (!IsVirtual() && + m_GranularityHandler.CheckConflictAndAlignUp(alignedOffset, allocSize, block.offset, block.size, allocType)) + return false; + + // Alloc successful + pAllocationRequest->type = VmaAllocationRequestType::TLSF; + pAllocationRequest->allocHandle = (VmaAllocHandle)█ + pAllocationRequest->size = allocSize - GetDebugMargin(); + pAllocationRequest->customData = (void*)allocType; + pAllocationRequest->algorithmData = alignedOffset; + + // Place block at the start of list if it's normal block + if (listIndex != m_ListsCount && block.PrevFree()) + { + block.PrevFree()->NextFree() = block.NextFree(); + if (block.NextFree()) + block.NextFree()->PrevFree() = block.PrevFree(); + block.PrevFree() = VMA_NULL; + block.NextFree() = m_FreeList[listIndex]; + m_FreeList[listIndex] = █ + if (block.NextFree()) + block.NextFree()->PrevFree() = █ + } + + return true; +} +#endif // _VMA_BLOCK_METADATA_TLSF_FUNCTIONS +#endif // _VMA_BLOCK_METADATA_TLSF + +#ifndef _VMA_BLOCK_VECTOR +/* +Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific +Vulkan memory type. + +Synchronized internally with a mutex. +*/ +class VmaBlockVector +{ + friend struct VmaDefragmentationContext_T; + VMA_CLASS_NO_COPY(VmaBlockVector) +public: + VmaBlockVector( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceSize preferredBlockSize, + size_t minBlockCount, + size_t maxBlockCount, + VkDeviceSize bufferImageGranularity, + bool explicitBlockSize, + uint32_t algorithm, + float priority, + VkDeviceSize minAllocationAlignment, + void* pMemoryAllocateNext); + ~VmaBlockVector(); + + VmaAllocator GetAllocator() const { return m_hAllocator; } + VmaPool GetParentPool() const { return m_hParentPool; } + bool IsCustomPool() const { return m_hParentPool != VMA_NULL; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; } + VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } + uint32_t GetAlgorithm() const { return m_Algorithm; } + bool HasExplicitBlockSize() const { return m_ExplicitBlockSize; } + float GetPriority() const { return m_Priority; } + const void* GetAllocationNextPtr() const { return m_pMemoryAllocateNext; } + // To be used only while the m_Mutex is locked. Used during defragmentation. + size_t GetBlockCount() const { return m_Blocks.size(); } + // To be used only while the m_Mutex is locked. Used during defragmentation. + VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; } + VMA_RW_MUTEX &GetMutex() { return m_Mutex; } + + VkResult CreateMinBlocks(); + void AddStatistics(VmaStatistics& inoutStats); + void AddDetailedStatistics(VmaDetailedStatistics& inoutStats); + bool IsEmpty(); + bool IsCorruptionDetectionEnabled() const; + + VkResult Allocate( + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations); + + void Free(const VmaAllocation hAllocation); + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json); +#endif + + VkResult CheckCorruption(); + +private: + const VmaAllocator m_hAllocator; + const VmaPool m_hParentPool; + const uint32_t m_MemoryTypeIndex; + const VkDeviceSize m_PreferredBlockSize; + const size_t m_MinBlockCount; + const size_t m_MaxBlockCount; + const VkDeviceSize m_BufferImageGranularity; + const bool m_ExplicitBlockSize; + const uint32_t m_Algorithm; + const float m_Priority; + const VkDeviceSize m_MinAllocationAlignment; + + void* const m_pMemoryAllocateNext; + VMA_RW_MUTEX m_Mutex; + // Incrementally sorted by sumFreeSize, ascending. + VmaVector> m_Blocks; + uint32_t m_NextBlockId; + bool m_IncrementalSort = true; + + void SetIncrementalSort(bool val) { m_IncrementalSort = val; } + + VkDeviceSize CalcMaxBlockSize() const; + // Finds and removes given block from vector. + void Remove(VmaDeviceMemoryBlock* pBlock); + // Performs single step in sorting m_Blocks. They may not be fully sorted + // after this call. + void IncrementallySortBlocks(); + void SortByFreeSize(); + + VkResult AllocatePage( + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation); + + VkResult AllocateFromBlock( + VmaDeviceMemoryBlock* pBlock, + VkDeviceSize size, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + uint32_t strategy, + VmaAllocation* pAllocation); + + VkResult CommitAllocationRequest( + VmaAllocationRequest& allocRequest, + VmaDeviceMemoryBlock* pBlock, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation); + + VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex); + bool HasEmptyBlock(); +}; +#endif // _VMA_BLOCK_VECTOR + +#ifndef _VMA_DEFRAGMENTATION_CONTEXT +struct VmaDefragmentationContext_T +{ + VMA_CLASS_NO_COPY(VmaDefragmentationContext_T) +public: + VmaDefragmentationContext_T( + VmaAllocator hAllocator, + const VmaDefragmentationInfo& info); + ~VmaDefragmentationContext_T(); + + void GetStats(VmaDefragmentationStats& outStats) { outStats = m_GlobalStats; } + + VkResult DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo); + VkResult DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo); + +private: + // Max number of allocations to ignore due to size constraints before ending single pass + static const uint8_t MAX_ALLOCS_TO_IGNORE = 16; + enum class CounterStatus { Pass, Ignore, End }; + + struct FragmentedBlock + { + uint32_t data; + VmaDeviceMemoryBlock* block; + }; + struct StateBalanced + { + VkDeviceSize avgFreeSize = 0; + VkDeviceSize avgAllocSize = UINT64_MAX; + }; + struct StateExtensive + { + enum class Operation : uint8_t + { + FindFreeBlockBuffer, FindFreeBlockTexture, FindFreeBlockAll, + MoveBuffers, MoveTextures, MoveAll, + Cleanup, Done + }; + + Operation operation = Operation::FindFreeBlockTexture; + size_t firstFreeBlock = SIZE_MAX; + }; + struct MoveAllocationData + { + VkDeviceSize size; + VkDeviceSize alignment; + VmaSuballocationType type; + VmaAllocationCreateFlags flags; + VmaDefragmentationMove move = {}; + }; + + const VkDeviceSize m_MaxPassBytes; + const uint32_t m_MaxPassAllocations; + + VmaStlAllocator m_MoveAllocator; + VmaVector> m_Moves; + + uint8_t m_IgnoredAllocs = 0; + uint32_t m_Algorithm; + uint32_t m_BlockVectorCount; + VmaBlockVector* m_PoolBlockVector; + VmaBlockVector** m_pBlockVectors; + size_t m_ImmovableBlockCount = 0; + VmaDefragmentationStats m_GlobalStats = { 0 }; + VmaDefragmentationStats m_PassStats = { 0 }; + void* m_AlgorithmState = VMA_NULL; + + static MoveAllocationData GetMoveData(VmaAllocHandle handle, VmaBlockMetadata* metadata); + CounterStatus CheckCounters(VkDeviceSize bytes); + bool IncrementCounters(VkDeviceSize bytes); + bool ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block); + bool AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector); + + bool ComputeDefragmentation(VmaBlockVector& vector, size_t index); + bool ComputeDefragmentation_Fast(VmaBlockVector& vector); + bool ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update); + bool ComputeDefragmentation_Full(VmaBlockVector& vector); + bool ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index); + + void UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state); + bool MoveDataToFreeBlocks(VmaSuballocationType currentType, + VmaBlockVector& vector, size_t firstFreeBlock, + bool& texturePresent, bool& bufferPresent, bool& otherPresent); +}; +#endif // _VMA_DEFRAGMENTATION_CONTEXT + +#ifndef _VMA_POOL_T +struct VmaPool_T +{ + friend struct VmaPoolListItemTraits; + VMA_CLASS_NO_COPY(VmaPool_T) +public: + VmaBlockVector m_BlockVector; + VmaDedicatedAllocationList m_DedicatedAllocations; + + VmaPool_T( + VmaAllocator hAllocator, + const VmaPoolCreateInfo& createInfo, + VkDeviceSize preferredBlockSize); + ~VmaPool_T(); + + uint32_t GetId() const { return m_Id; } + void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; } + + const char* GetName() const { return m_Name; } + void SetName(const char* pName); + +#if VMA_STATS_STRING_ENABLED + //void PrintDetailedMap(class VmaStringBuilder& sb); +#endif + +private: + uint32_t m_Id; + char* m_Name; + VmaPool_T* m_PrevPool = VMA_NULL; + VmaPool_T* m_NextPool = VMA_NULL; +}; + +struct VmaPoolListItemTraits +{ + typedef VmaPool_T ItemType; + + static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; } + static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; } + static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; } + static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; } +}; +#endif // _VMA_POOL_T + +#ifndef _VMA_CURRENT_BUDGET_DATA +struct VmaCurrentBudgetData +{ + VMA_ATOMIC_UINT32 m_BlockCount[VK_MAX_MEMORY_HEAPS]; + VMA_ATOMIC_UINT32 m_AllocationCount[VK_MAX_MEMORY_HEAPS]; + VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS]; + VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS]; + +#if VMA_MEMORY_BUDGET + VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch; + VMA_RW_MUTEX m_BudgetMutex; + uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS]; + uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS]; + uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS]; +#endif // VMA_MEMORY_BUDGET + + VmaCurrentBudgetData(); + + void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize); + void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize); +}; + +#ifndef _VMA_CURRENT_BUDGET_DATA_FUNCTIONS +VmaCurrentBudgetData::VmaCurrentBudgetData() +{ + for (uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex) + { + m_BlockCount[heapIndex] = 0; + m_AllocationCount[heapIndex] = 0; + m_BlockBytes[heapIndex] = 0; + m_AllocationBytes[heapIndex] = 0; +#if VMA_MEMORY_BUDGET + m_VulkanUsage[heapIndex] = 0; + m_VulkanBudget[heapIndex] = 0; + m_BlockBytesAtBudgetFetch[heapIndex] = 0; +#endif + } + +#if VMA_MEMORY_BUDGET + m_OperationsSinceBudgetFetch = 0; +#endif +} + +void VmaCurrentBudgetData::AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) +{ + m_AllocationBytes[heapIndex] += allocationSize; + ++m_AllocationCount[heapIndex]; +#if VMA_MEMORY_BUDGET + ++m_OperationsSinceBudgetFetch; +#endif +} + +void VmaCurrentBudgetData::RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) +{ + VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); + m_AllocationBytes[heapIndex] -= allocationSize; + VMA_ASSERT(m_AllocationCount[heapIndex] > 0); + --m_AllocationCount[heapIndex]; +#if VMA_MEMORY_BUDGET + ++m_OperationsSinceBudgetFetch; +#endif +} +#endif // _VMA_CURRENT_BUDGET_DATA_FUNCTIONS +#endif // _VMA_CURRENT_BUDGET_DATA + +#ifndef _VMA_ALLOCATION_OBJECT_ALLOCATOR +/* +Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects. +*/ +class VmaAllocationObjectAllocator +{ + VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator) +public: + VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) + : m_Allocator(pAllocationCallbacks, 1024) {} + + template VmaAllocation Allocate(Types&&... args); + void Free(VmaAllocation hAlloc); + +private: + VMA_MUTEX m_Mutex; + VmaPoolAllocator m_Allocator; +}; + +template +VmaAllocation VmaAllocationObjectAllocator::Allocate(Types&&... args) +{ + VmaMutexLock mutexLock(m_Mutex); + return m_Allocator.Alloc(std::forward(args)...); +} + +void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc) +{ + VmaMutexLock mutexLock(m_Mutex); + m_Allocator.Free(hAlloc); +} +#endif // _VMA_ALLOCATION_OBJECT_ALLOCATOR + +#ifndef _VMA_VIRTUAL_BLOCK_T +struct VmaVirtualBlock_T +{ + VMA_CLASS_NO_COPY(VmaVirtualBlock_T) +public: + const bool m_AllocationCallbacksSpecified; + const VkAllocationCallbacks m_AllocationCallbacks; + + VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo); + ~VmaVirtualBlock_T(); + + VkResult Init() { return VK_SUCCESS; } + bool IsEmpty() const { return m_Metadata->IsEmpty(); } + void Free(VmaVirtualAllocation allocation) { m_Metadata->Free((VmaAllocHandle)allocation); } + void SetAllocationUserData(VmaVirtualAllocation allocation, void* userData) { m_Metadata->SetAllocationUserData((VmaAllocHandle)allocation, userData); } + void Clear() { m_Metadata->Clear(); } + + const VkAllocationCallbacks* GetAllocationCallbacks() const; + void GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo); + VkResult Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation, + VkDeviceSize* outOffset); + void GetStatistics(VmaStatistics& outStats) const; + void CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const; +#if VMA_STATS_STRING_ENABLED + void BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const; +#endif + +private: + VmaBlockMetadata* m_Metadata; +}; + +#ifndef _VMA_VIRTUAL_BLOCK_T_FUNCTIONS +VmaVirtualBlock_T::VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo) + : m_AllocationCallbacksSpecified(createInfo.pAllocationCallbacks != VMA_NULL), + m_AllocationCallbacks(createInfo.pAllocationCallbacks != VMA_NULL ? *createInfo.pAllocationCallbacks : VmaEmptyAllocationCallbacks) +{ + const uint32_t algorithm = createInfo.flags & VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK; + switch (algorithm) + { + default: + VMA_ASSERT(0); + case 0: + m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true); + break; + case VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT: + m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Linear)(VK_NULL_HANDLE, 1, true); + break; + } + + m_Metadata->Init(createInfo.size); +} + +VmaVirtualBlock_T::~VmaVirtualBlock_T() +{ + // Define macro VMA_DEBUG_LOG to receive the list of the unfreed allocations + if (!m_Metadata->IsEmpty()) + m_Metadata->DebugLogAllAllocations(); + // This is the most important assert in the entire library. + // Hitting it means you have some memory leak - unreleased virtual allocations. + VMA_ASSERT(m_Metadata->IsEmpty() && "Some virtual allocations were not freed before destruction of this virtual block!"); + + vma_delete(GetAllocationCallbacks(), m_Metadata); +} + +const VkAllocationCallbacks* VmaVirtualBlock_T::GetAllocationCallbacks() const +{ + return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL; +} + +void VmaVirtualBlock_T::GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo) +{ + m_Metadata->GetAllocationInfo((VmaAllocHandle)allocation, outInfo); +} + +VkResult VmaVirtualBlock_T::Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation, + VkDeviceSize* outOffset) +{ + VmaAllocationRequest request = {}; + if (m_Metadata->CreateAllocationRequest( + createInfo.size, // allocSize + VMA_MAX(createInfo.alignment, (VkDeviceSize)1), // allocAlignment + (createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, // upperAddress + VMA_SUBALLOCATION_TYPE_UNKNOWN, // allocType - unimportant + createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK, // strategy + &request)) + { + m_Metadata->Alloc(request, + VMA_SUBALLOCATION_TYPE_UNKNOWN, // type - unimportant + createInfo.pUserData); + outAllocation = (VmaVirtualAllocation)request.allocHandle; + if(outOffset) + *outOffset = m_Metadata->GetAllocationOffset(request.allocHandle); + return VK_SUCCESS; + } + outAllocation = (VmaVirtualAllocation)VK_NULL_HANDLE; + if (outOffset) + *outOffset = UINT64_MAX; + return VK_ERROR_OUT_OF_DEVICE_MEMORY; +} + +void VmaVirtualBlock_T::GetStatistics(VmaStatistics& outStats) const +{ + VmaClearStatistics(outStats); + m_Metadata->AddStatistics(outStats); +} + +void VmaVirtualBlock_T::CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const +{ + VmaClearDetailedStatistics(outStats); + m_Metadata->AddDetailedStatistics(outStats); +} + +#if VMA_STATS_STRING_ENABLED +void VmaVirtualBlock_T::BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const +{ + VmaJsonWriter json(GetAllocationCallbacks(), sb); + json.BeginObject(); + + VmaDetailedStatistics stats; + CalculateDetailedStatistics(stats); + + json.WriteString("Stats"); + VmaPrintDetailedStatistics(json, stats); + + if (detailedMap) + { + json.WriteString("Details"); + json.BeginObject(); + m_Metadata->PrintDetailedMap(json); + json.EndObject(); + } + + json.EndObject(); +} +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_VIRTUAL_BLOCK_T_FUNCTIONS +#endif // _VMA_VIRTUAL_BLOCK_T + + +// Main allocator object. +struct VmaAllocator_T +{ + VMA_CLASS_NO_COPY(VmaAllocator_T) +public: + bool m_UseMutex; + uint32_t m_VulkanApiVersion; + bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). + bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). + bool m_UseExtMemoryBudget; + bool m_UseAmdDeviceCoherentMemory; + bool m_UseKhrBufferDeviceAddress; + bool m_UseExtMemoryPriority; + VkDevice m_hDevice; + VkInstance m_hInstance; + bool m_AllocationCallbacksSpecified; + VkAllocationCallbacks m_AllocationCallbacks; + VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks; + VmaAllocationObjectAllocator m_AllocationObjectAllocator; + + // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size. + uint32_t m_HeapSizeLimitMask; + + VkPhysicalDeviceProperties m_PhysicalDeviceProperties; + VkPhysicalDeviceMemoryProperties m_MemProps; + + // Default pools. + VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; + VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES]; + + VmaCurrentBudgetData m_Budget; + VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects. + + VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo); + VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo); + ~VmaAllocator_T(); + + const VkAllocationCallbacks* GetAllocationCallbacks() const + { + return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL; + } + const VmaVulkanFunctions& GetVulkanFunctions() const + { + return m_VulkanFunctions; + } + + VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; } + + VkDeviceSize GetBufferImageGranularity() const + { + return VMA_MAX( + static_cast(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY), + m_PhysicalDeviceProperties.limits.bufferImageGranularity); + } + + uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; } + uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; } + + uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const + { + VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount); + return m_MemProps.memoryTypes[memTypeIndex].heapIndex; + } + // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT. + bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const + { + return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) == + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + } + // Minimum alignment for all allocations in specific memory type. + VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const + { + return IsMemoryTypeNonCoherent(memTypeIndex) ? + VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) : + (VkDeviceSize)VMA_MIN_ALIGNMENT; + } + + bool IsIntegratedGpu() const + { + return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; + } + + uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; } + + void GetBufferMemoryRequirements( + VkBuffer hBuffer, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const; + void GetImageMemoryRequirements( + VkImage hImage, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const; + VkResult FindMemoryTypeIndex( + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkFlags bufImgUsage, // VkBufferCreateInfo::usage or VkImageCreateInfo::usage. UINT32_MAX if unknown. + uint32_t* pMemoryTypeIndex) const; + + // Main allocation function. + VkResult AllocateMemory( + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VkFlags dedicatedBufferImageUsage, // UINT32_MAX if unknown. + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations); + + // Main deallocation function. + void FreeMemory( + size_t allocationCount, + const VmaAllocation* pAllocations); + + void CalculateStatistics(VmaTotalStatistics* pStats); + + void GetHeapBudgets( + VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount); + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json); +#endif + + void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo); + + VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool); + void DestroyPool(VmaPool pool); + void GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats); + void CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats); + + void SetCurrentFrameIndex(uint32_t frameIndex); + uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); } + + VkResult CheckPoolCorruption(VmaPool hPool); + VkResult CheckCorruption(uint32_t memoryTypeBits); + + // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping. + VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory); + // Call to Vulkan function vkFreeMemory with accompanying bookkeeping. + void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory); + // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR. + VkResult BindVulkanBuffer( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkBuffer buffer, + const void* pNext); + // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR. + VkResult BindVulkanImage( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkImage image, + const void* pNext); + + VkResult Map(VmaAllocation hAllocation, void** ppData); + void Unmap(VmaAllocation hAllocation); + + VkResult BindBufferMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext); + VkResult BindImageMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext); + + VkResult FlushOrInvalidateAllocation( + VmaAllocation hAllocation, + VkDeviceSize offset, VkDeviceSize size, + VMA_CACHE_OPERATION op); + VkResult FlushOrInvalidateAllocations( + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, const VkDeviceSize* sizes, + VMA_CACHE_OPERATION op); + + void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern); + + /* + Returns bit mask of memory types that can support defragmentation on GPU as + they support creation of required buffer for copy operations. + */ + uint32_t GetGpuDefragmentationMemoryTypeBits(); + +#if VMA_EXTERNAL_MEMORY + VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const + { + return m_TypeExternalMemoryHandleTypes[memTypeIndex]; + } +#endif // #if VMA_EXTERNAL_MEMORY + +private: + VkDeviceSize m_PreferredLargeHeapBlockSize; + + VkPhysicalDevice m_PhysicalDevice; + VMA_ATOMIC_UINT32 m_CurrentFrameIndex; + VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized. +#if VMA_EXTERNAL_MEMORY + VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES]; +#endif // #if VMA_EXTERNAL_MEMORY + + VMA_RW_MUTEX m_PoolsMutex; + typedef VmaIntrusiveLinkedList PoolList; + // Protected by m_PoolsMutex. + PoolList m_Pools; + uint32_t m_NextPoolId; + + VmaVulkanFunctions m_VulkanFunctions; + + // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types. + uint32_t m_GlobalMemoryTypeBits; + + void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions); + +#if VMA_STATIC_VULKAN_FUNCTIONS == 1 + void ImportVulkanFunctions_Static(); +#endif + + void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions); + +#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + void ImportVulkanFunctions_Dynamic(); +#endif + + void ValidateVulkanFunctions(); + + VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); + + VkResult AllocateMemoryOfType( + VmaPool pool, + VkDeviceSize size, + VkDeviceSize alignment, + bool dedicatedPreferred, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VkFlags dedicatedBufferImageUsage, + const VmaAllocationCreateInfo& createInfo, + uint32_t memTypeIndex, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + VmaBlockVector& blockVector, + size_t allocationCount, + VmaAllocation* pAllocations); + + // Helper function only to be used inside AllocateDedicatedMemory. + VkResult AllocateDedicatedMemoryPage( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + const VkMemoryAllocateInfo& allocInfo, + bool map, + bool isUserDataString, + bool isMappingAllowed, + void* pUserData, + VmaAllocation* pAllocation); + + // Allocates and registers new VkDeviceMemory specifically for dedicated allocations. + VkResult AllocateDedicatedMemory( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + uint32_t memTypeIndex, + bool map, + bool isUserDataString, + bool isMappingAllowed, + bool canAliasMemory, + void* pUserData, + float priority, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VkFlags dedicatedBufferImageUsage, + size_t allocationCount, + VmaAllocation* pAllocations, + const void* pNextChain = nullptr); + + void FreeDedicatedMemory(const VmaAllocation allocation); + + VkResult CalcMemTypeParams( + VmaAllocationCreateInfo& outCreateInfo, + uint32_t memTypeIndex, + VkDeviceSize size, + size_t allocationCount); + VkResult CalcAllocationParams( + VmaAllocationCreateInfo& outCreateInfo, + bool dedicatedRequired, + bool dedicatedPreferred); + + /* + Calculates and returns bit mask of memory types that can support defragmentation + on GPU as they support creation of required buffer for copy operations. + */ + uint32_t CalculateGpuDefragmentationMemoryTypeBits() const; + uint32_t CalculateGlobalMemoryTypeBits() const; + + bool GetFlushOrInvalidateRange( + VmaAllocation allocation, + VkDeviceSize offset, VkDeviceSize size, + VkMappedMemoryRange& outRange) const; + +#if VMA_MEMORY_BUDGET + void UpdateVulkanBudget(); +#endif // #if VMA_MEMORY_BUDGET +}; + + +#ifndef _VMA_MEMORY_FUNCTIONS +static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) +{ + return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment); +} + +static void VmaFree(VmaAllocator hAllocator, void* ptr) +{ + VmaFree(&hAllocator->m_AllocationCallbacks, ptr); +} + +template +static T* VmaAllocate(VmaAllocator hAllocator) +{ + return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T)); +} + +template +static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count) +{ + return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T)); +} + +template +static void vma_delete(VmaAllocator hAllocator, T* ptr) +{ + if(ptr != VMA_NULL) + { + ptr->~T(); + VmaFree(hAllocator, ptr); + } +} + +template +static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count) +{ + if(ptr != VMA_NULL) + { + for(size_t i = count; i--; ) + ptr[i].~T(); + VmaFree(hAllocator, ptr); + } +} +#endif // _VMA_MEMORY_FUNCTIONS + +#ifndef _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS +VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) + : m_pMetadata(VMA_NULL), + m_MemoryTypeIndex(UINT32_MAX), + m_Id(0), + m_hMemory(VK_NULL_HANDLE), + m_MapCount(0), + m_pMappedData(VMA_NULL) {} + +VmaDeviceMemoryBlock::~VmaDeviceMemoryBlock() +{ + VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped."); + VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); +} + +void VmaDeviceMemoryBlock::Init( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t newMemoryTypeIndex, + VkDeviceMemory newMemory, + VkDeviceSize newSize, + uint32_t id, + uint32_t algorithm, + VkDeviceSize bufferImageGranularity) +{ + VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); + + m_hParentPool = hParentPool; + m_MemoryTypeIndex = newMemoryTypeIndex; + m_Id = id; + m_hMemory = newMemory; + + switch (algorithm) + { + case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator->GetAllocationCallbacks(), + bufferImageGranularity, false); // isVirtual + break; + default: + VMA_ASSERT(0); + // Fall-through. + case 0: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(), + bufferImageGranularity, false); // isVirtual + } + m_pMetadata->Init(newSize); +} + +void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) +{ + // Define macro VMA_DEBUG_LOG to receive the list of the unfreed allocations + if (!m_pMetadata->IsEmpty()) + m_pMetadata->DebugLogAllAllocations(); + // This is the most important assert in the entire library. + // Hitting it means you have some memory leak - unreleased VmaAllocation objects. + VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!"); + + VMA_ASSERT(m_hMemory != VK_NULL_HANDLE); + allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory); + m_hMemory = VK_NULL_HANDLE; + + vma_delete(allocator, m_pMetadata); + m_pMetadata = VMA_NULL; +} + +void VmaDeviceMemoryBlock::PostAlloc(VmaAllocator hAllocator) +{ + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + m_MappingHysteresis.PostAlloc(); +} + +void VmaDeviceMemoryBlock::PostFree(VmaAllocator hAllocator) +{ + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + if(m_MappingHysteresis.PostFree()) + { + VMA_ASSERT(m_MappingHysteresis.GetExtraMapping() == 0); + if (m_MapCount == 0) + { + m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); + } + } +} + +bool VmaDeviceMemoryBlock::Validate() const +{ + VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) && + (m_pMetadata->GetSize() != 0)); + + return m_pMetadata->Validate(); +} + +VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) +{ + void* pData = nullptr; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) + { + return res; + } + + res = m_pMetadata->CheckCorruption(pData); + + Unmap(hAllocator, 1); + + return res; +} + +VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData) +{ + if (count == 0) + { + return VK_SUCCESS; + } + + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + const uint32_t oldTotalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping(); + m_MappingHysteresis.PostMap(); + if (oldTotalMapCount != 0) + { + m_MapCount += count; + VMA_ASSERT(m_pMappedData != VMA_NULL); + if (ppData != VMA_NULL) + { + *ppData = m_pMappedData; + } + return VK_SUCCESS; + } + else + { + VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( + hAllocator->m_hDevice, + m_hMemory, + 0, // offset + VK_WHOLE_SIZE, + 0, // flags + &m_pMappedData); + if (result == VK_SUCCESS) + { + if (ppData != VMA_NULL) + { + *ppData = m_pMappedData; + } + m_MapCount = count; + } + return result; + } +} + +void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) +{ + if (count == 0) + { + return; + } + + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + if (m_MapCount >= count) + { + m_MapCount -= count; + const uint32_t totalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping(); + if (totalMapCount == 0) + { + m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); + } + m_MappingHysteresis.PostUnmap(); + } + else + { + VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped."); + } +} + +VkResult VmaDeviceMemoryBlock::WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) +{ + VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); + + void* pData; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) + { + return res; + } + + VmaWriteMagicValue(pData, allocOffset + allocSize); + + Unmap(hAllocator, 1); + return VK_SUCCESS; +} + +VkResult VmaDeviceMemoryBlock::ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) +{ + VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); + + void* pData; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) + { + return res; + } + + if (!VmaValidateMagicValue(pData, allocOffset + allocSize)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!"); + } + + Unmap(hAllocator, 1); + return VK_SUCCESS; +} + +VkResult VmaDeviceMemoryBlock::BindBufferMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext) +{ + VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && + hAllocation->GetBlock() == this); + VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && + "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); + const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; + // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext); +} + +VkResult VmaDeviceMemoryBlock::BindImageMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext) +{ + VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && + hAllocation->GetBlock() == this); + VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && + "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); + const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; + // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext); +} +#endif // _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS + +#ifndef _VMA_ALLOCATION_T_FUNCTIONS +VmaAllocation_T::VmaAllocation_T(bool mappingAllowed) + : m_Alignment{ 1 }, + m_Size{ 0 }, + m_pUserData{ VMA_NULL }, + m_pName{ VMA_NULL }, + m_MemoryTypeIndex{ 0 }, + m_Type{ (uint8_t)ALLOCATION_TYPE_NONE }, + m_SuballocationType{ (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN }, + m_MapCount{ 0 }, + m_Flags{ 0 } +{ + if(mappingAllowed) + m_Flags |= (uint8_t)FLAG_MAPPING_ALLOWED; + +#if VMA_STATS_STRING_ENABLED + m_BufferImageUsage = 0; +#endif +} + +VmaAllocation_T::~VmaAllocation_T() +{ + VMA_ASSERT(m_MapCount == 0 && "Allocation was not unmapped before destruction."); + + // Check if owned string was freed. + VMA_ASSERT(m_pName == VMA_NULL); +} + +void VmaAllocation_T::InitBlockAllocation( + VmaDeviceMemoryBlock* block, + VmaAllocHandle allocHandle, + VkDeviceSize alignment, + VkDeviceSize size, + uint32_t memoryTypeIndex, + VmaSuballocationType suballocationType, + bool mapped) +{ + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(block != VMA_NULL); + m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; + m_Alignment = alignment; + m_Size = size; + m_MemoryTypeIndex = memoryTypeIndex; + if(mapped) + { + VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); + m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP; + } + m_SuballocationType = (uint8_t)suballocationType; + m_BlockAllocation.m_Block = block; + m_BlockAllocation.m_AllocHandle = allocHandle; +} + +void VmaAllocation_T::InitDedicatedAllocation( + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceMemory hMemory, + VmaSuballocationType suballocationType, + void* pMappedData, + VkDeviceSize size) +{ + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(hMemory != VK_NULL_HANDLE); + m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED; + m_Alignment = 0; + m_Size = size; + m_MemoryTypeIndex = memoryTypeIndex; + m_SuballocationType = (uint8_t)suballocationType; + if(pMappedData != VMA_NULL) + { + VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); + m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP; + } + m_DedicatedAllocation.m_hParentPool = hParentPool; + m_DedicatedAllocation.m_hMemory = hMemory; + m_DedicatedAllocation.m_pMappedData = pMappedData; + m_DedicatedAllocation.m_Prev = VMA_NULL; + m_DedicatedAllocation.m_Next = VMA_NULL; +} + +void VmaAllocation_T::SetName(VmaAllocator hAllocator, const char* pName) +{ + VMA_ASSERT(pName == VMA_NULL || pName != m_pName); + + FreeName(hAllocator); + + if (pName != VMA_NULL) + m_pName = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), pName); +} + +uint8_t VmaAllocation_T::SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation) +{ + VMA_ASSERT(allocation != VMA_NULL); + VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); + VMA_ASSERT(allocation->m_Type == ALLOCATION_TYPE_BLOCK); + + if (m_MapCount != 0) + m_BlockAllocation.m_Block->Unmap(hAllocator, m_MapCount); + + m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, allocation); + VMA_SWAP(m_BlockAllocation, allocation->m_BlockAllocation); + m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, this); + +#if VMA_STATS_STRING_ENABLED + VMA_SWAP(m_BufferImageUsage, allocation->m_BufferImageUsage); +#endif + return m_MapCount; +} + +VmaAllocHandle VmaAllocation_T::GetAllocHandle() const +{ + switch (m_Type) + { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_AllocHandle; + case ALLOCATION_TYPE_DEDICATED: + return VK_NULL_HANDLE; + default: + VMA_ASSERT(0); + return VK_NULL_HANDLE; + } +} + +VkDeviceSize VmaAllocation_T::GetOffset() const +{ + switch (m_Type) + { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->m_pMetadata->GetAllocationOffset(m_BlockAllocation.m_AllocHandle); + case ALLOCATION_TYPE_DEDICATED: + return 0; + default: + VMA_ASSERT(0); + return 0; + } +} + +VmaPool VmaAllocation_T::GetParentPool() const +{ + switch (m_Type) + { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->GetParentPool(); + case ALLOCATION_TYPE_DEDICATED: + return m_DedicatedAllocation.m_hParentPool; + default: + VMA_ASSERT(0); + return VK_NULL_HANDLE; + } +} + +VkDeviceMemory VmaAllocation_T::GetMemory() const +{ + switch (m_Type) + { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->GetDeviceMemory(); + case ALLOCATION_TYPE_DEDICATED: + return m_DedicatedAllocation.m_hMemory; + default: + VMA_ASSERT(0); + return VK_NULL_HANDLE; + } +} + +void* VmaAllocation_T::GetMappedData() const +{ + switch (m_Type) + { + case ALLOCATION_TYPE_BLOCK: + if (m_MapCount != 0 || IsPersistentMap()) + { + void* pBlockData = m_BlockAllocation.m_Block->GetMappedData(); + VMA_ASSERT(pBlockData != VMA_NULL); + return (char*)pBlockData + GetOffset(); + } + else + { + return VMA_NULL; + } + break; + case ALLOCATION_TYPE_DEDICATED: + VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0 || IsPersistentMap())); + return m_DedicatedAllocation.m_pMappedData; + default: + VMA_ASSERT(0); + return VMA_NULL; + } +} + +void VmaAllocation_T::BlockAllocMap() +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); + VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); + + if (m_MapCount < 0xFF) + { + ++m_MapCount; + } + else + { + VMA_ASSERT(0 && "Allocation mapped too many times simultaneously."); + } +} + +void VmaAllocation_T::BlockAllocUnmap() +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); + + if (m_MapCount > 0) + { + --m_MapCount; + } + else + { + VMA_ASSERT(0 && "Unmapping allocation not previously mapped."); + } +} + +VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData) +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); + VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); + + if (m_MapCount != 0 || IsPersistentMap()) + { + if (m_MapCount < 0xFF) + { + VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL); + *ppData = m_DedicatedAllocation.m_pMappedData; + ++m_MapCount; + return VK_SUCCESS; + } + else + { + VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously."); + return VK_ERROR_MEMORY_MAP_FAILED; + } + } + else + { + VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( + hAllocator->m_hDevice, + m_DedicatedAllocation.m_hMemory, + 0, // offset + VK_WHOLE_SIZE, + 0, // flags + ppData); + if (result == VK_SUCCESS) + { + m_DedicatedAllocation.m_pMappedData = *ppData; + m_MapCount = 1; + } + return result; + } +} + +void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); + + if (m_MapCount > 0) + { + --m_MapCount; + if (m_MapCount == 0 && !IsPersistentMap()) + { + m_DedicatedAllocation.m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)( + hAllocator->m_hDevice, + m_DedicatedAllocation.m_hMemory); + } + } + else + { + VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped."); + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaAllocation_T::InitBufferImageUsage(uint32_t bufferImageUsage) +{ + VMA_ASSERT(m_BufferImageUsage == 0); + m_BufferImageUsage = bufferImageUsage; +} + +void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const +{ + json.WriteString("Type"); + json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]); + + json.WriteString("Size"); + json.WriteNumber(m_Size); + json.WriteString("Usage"); + json.WriteNumber(m_BufferImageUsage); + + if (m_pUserData != VMA_NULL) + { + json.WriteString("CustomData"); + json.BeginString(); + json.ContinueString_Pointer(m_pUserData); + json.EndString(); + } + if (m_pName != VMA_NULL) + { + json.WriteString("Name"); + json.WriteString(m_pName); + } +} +#endif // VMA_STATS_STRING_ENABLED + +void VmaAllocation_T::FreeName(VmaAllocator hAllocator) +{ + if(m_pName) + { + VmaFreeString(hAllocator->GetAllocationCallbacks(), m_pName); + m_pName = VMA_NULL; + } +} +#endif // _VMA_ALLOCATION_T_FUNCTIONS + +#ifndef _VMA_BLOCK_VECTOR_FUNCTIONS +VmaBlockVector::VmaBlockVector( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceSize preferredBlockSize, + size_t minBlockCount, + size_t maxBlockCount, + VkDeviceSize bufferImageGranularity, + bool explicitBlockSize, + uint32_t algorithm, + float priority, + VkDeviceSize minAllocationAlignment, + void* pMemoryAllocateNext) + : m_hAllocator(hAllocator), + m_hParentPool(hParentPool), + m_MemoryTypeIndex(memoryTypeIndex), + m_PreferredBlockSize(preferredBlockSize), + m_MinBlockCount(minBlockCount), + m_MaxBlockCount(maxBlockCount), + m_BufferImageGranularity(bufferImageGranularity), + m_ExplicitBlockSize(explicitBlockSize), + m_Algorithm(algorithm), + m_Priority(priority), + m_MinAllocationAlignment(minAllocationAlignment), + m_pMemoryAllocateNext(pMemoryAllocateNext), + m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + m_NextBlockId(0) {} + +VmaBlockVector::~VmaBlockVector() +{ + for (size_t i = m_Blocks.size(); i--; ) + { + m_Blocks[i]->Destroy(m_hAllocator); + vma_delete(m_hAllocator, m_Blocks[i]); + } +} + +VkResult VmaBlockVector::CreateMinBlocks() +{ + for (size_t i = 0; i < m_MinBlockCount; ++i) + { + VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL); + if (res != VK_SUCCESS) + { + return res; + } + } + return VK_SUCCESS; +} + +void VmaBlockVector::AddStatistics(VmaStatistics& inoutStats) +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + const size_t blockCount = m_Blocks.size(); + for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + { + const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VMA_HEAVY_ASSERT(pBlock->Validate()); + pBlock->m_pMetadata->AddStatistics(inoutStats); + } +} + +void VmaBlockVector::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + const size_t blockCount = m_Blocks.size(); + for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + { + const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VMA_HEAVY_ASSERT(pBlock->Validate()); + pBlock->m_pMetadata->AddDetailedStatistics(inoutStats); + } +} + +bool VmaBlockVector::IsEmpty() +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + return m_Blocks.empty(); +} + +bool VmaBlockVector::IsCorruptionDetectionEnabled() const +{ + const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + return (VMA_DEBUG_DETECT_CORRUPTION != 0) && + (VMA_DEBUG_MARGIN > 0) && + (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) && + (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags; +} + +VkResult VmaBlockVector::Allocate( + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + size_t allocIndex; + VkResult res = VK_SUCCESS; + + alignment = VMA_MAX(alignment, m_MinAllocationAlignment); + + if (IsCorruptionDetectionEnabled()) + { + size = VmaAlignUp(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); + alignment = VmaAlignUp(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); + } + + { + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + res = AllocatePage( + size, + alignment, + createInfo, + suballocType, + pAllocations + allocIndex); + if (res != VK_SUCCESS) + { + break; + } + } + } + + if (res != VK_SUCCESS) + { + // Free all already created allocations. + while (allocIndex--) + Free(pAllocations[allocIndex]); + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + } + + return res; +} + +VkResult VmaBlockVector::AllocatePage( + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation) +{ + const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; + + VkDeviceSize freeMemory; + { + const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); + VmaBudget heapBudget = {}; + m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1); + freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0; + } + + const bool canFallbackToDedicated = !HasExplicitBlockSize() && + (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0; + const bool canCreateNewBlock = + ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) && + (m_Blocks.size() < m_MaxBlockCount) && + (freeMemory >= size || !canFallbackToDedicated); + uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK; + + // Upper address can only be used with linear allocator and within single memory block. + if (isUpperAddress && + (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) + { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + // Early reject: requested allocation size is larger that maximum block size for this block vector. + if (size + VMA_DEBUG_MARGIN > m_PreferredBlockSize) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + + // 1. Search existing allocations. Try to allocate. + if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) + { + // Use only last block. + if (!m_Blocks.empty()) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back(); + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG(" Returned from last block #%u", pCurrBlock->GetId()); + IncrementallySortBlocks(); + return VK_SUCCESS; + } + } + } + else + { + if (strategy != VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) // MIN_MEMORY or default + { + const bool isHostVisible = + (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; + if(isHostVisible) + { + const bool isMappingAllowed = (createInfo.flags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0; + /* + For non-mappable allocations, check blocks that are not mapped first. + For mappable allocations, check blocks that are already mapped first. + This way, having many blocks, we will separate mappable and non-mappable allocations, + hopefully limiting the number of blocks that are mapped, which will help tools like RenderDoc. + */ + for(size_t mappingI = 0; mappingI < 2; ++mappingI) + { + // Forward order in m_Blocks - prefer blocks with smallest amount of free space. + for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + const bool isBlockMapped = pCurrBlock->GetMappedData() != VMA_NULL; + if((mappingI == 0) == (isMappingAllowed == isBlockMapped)) + { + VkResult res = AllocateFromBlock( + pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); + IncrementallySortBlocks(); + return VK_SUCCESS; + } + } + } + } + } + else + { + // Forward order in m_Blocks - prefer blocks with smallest amount of free space. + for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); + IncrementallySortBlocks(); + return VK_SUCCESS; + } + } + } + } + else // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT + { + // Backward order in m_Blocks - prefer blocks with largest amount of free space. + for (size_t blockIndex = m_Blocks.size(); blockIndex--; ) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock(pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); + IncrementallySortBlocks(); + return VK_SUCCESS; + } + } + } + } + + // 2. Try to create new block. + if (canCreateNewBlock) + { + // Calculate optimal size for new block. + VkDeviceSize newBlockSize = m_PreferredBlockSize; + uint32_t newBlockSizeShift = 0; + const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3; + + if (!m_ExplicitBlockSize) + { + // Allocate 1/8, 1/4, 1/2 as first blocks. + const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize(); + for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) + { + const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; + if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) + { + newBlockSize = smallerNewBlockSize; + ++newBlockSizeShift; + } + else + { + break; + } + } + } + + size_t newBlockIndex = 0; + VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? + CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; + // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize. + if (!m_ExplicitBlockSize) + { + while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) + { + const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; + if (smallerNewBlockSize >= size) + { + newBlockSize = smallerNewBlockSize; + ++newBlockSizeShift; + res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? + CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + else + { + break; + } + } + } + + if (res == VK_SUCCESS) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex]; + VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size); + + res = AllocateFromBlock( + pBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG(" Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize); + IncrementallySortBlocks(); + return VK_SUCCESS; + } + else + { + // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment. + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + } + + return VK_ERROR_OUT_OF_DEVICE_MEMORY; +} + +void VmaBlockVector::Free(const VmaAllocation hAllocation) +{ + VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL; + + bool budgetExceeded = false; + { + const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); + VmaBudget heapBudget = {}; + m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1); + budgetExceeded = heapBudget.usage >= heapBudget.budget; + } + + // Scope for lock. + { + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + + VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); + + if (IsCorruptionDetectionEnabled()) + { + VkResult res = pBlock->ValidateMagicValueAfterAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize()); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value."); + } + + if (hAllocation->IsPersistentMap()) + { + pBlock->Unmap(m_hAllocator, 1); + } + + const bool hadEmptyBlockBeforeFree = HasEmptyBlock(); + pBlock->m_pMetadata->Free(hAllocation->GetAllocHandle()); + pBlock->PostFree(m_hAllocator); + VMA_HEAVY_ASSERT(pBlock->Validate()); + + VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex); + + const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount; + // pBlock became empty after this deallocation. + if (pBlock->m_pMetadata->IsEmpty()) + { + // Already had empty block. We don't want to have two, so delete this one. + if ((hadEmptyBlockBeforeFree || budgetExceeded) && canDeleteBlock) + { + pBlockToDelete = pBlock; + Remove(pBlock); + } + // else: We now have one empty block - leave it. A hysteresis to avoid allocating whole block back and forth. + } + // pBlock didn't become empty, but we have another empty block - find and free that one. + // (This is optional, heuristics.) + else if (hadEmptyBlockBeforeFree && canDeleteBlock) + { + VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back(); + if (pLastBlock->m_pMetadata->IsEmpty()) + { + pBlockToDelete = pLastBlock; + m_Blocks.pop_back(); + } + } + + IncrementallySortBlocks(); + } + + // Destruction of a free block. Deferred until this point, outside of mutex + // lock, for performance reason. + if (pBlockToDelete != VMA_NULL) + { + VMA_DEBUG_LOG(" Deleted empty block #%u", pBlockToDelete->GetId()); + pBlockToDelete->Destroy(m_hAllocator); + vma_delete(m_hAllocator, pBlockToDelete); + } + + m_hAllocator->m_Budget.RemoveAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), hAllocation->GetSize()); + m_hAllocator->m_AllocationObjectAllocator.Free(hAllocation); +} + +VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const +{ + VkDeviceSize result = 0; + for (size_t i = m_Blocks.size(); i--; ) + { + result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize()); + if (result >= m_PreferredBlockSize) + { + break; + } + } + return result; +} + +void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock) +{ + for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + if (m_Blocks[blockIndex] == pBlock) + { + VmaVectorRemove(m_Blocks, blockIndex); + return; + } + } + VMA_ASSERT(0); +} + +void VmaBlockVector::IncrementallySortBlocks() +{ + if (!m_IncrementalSort) + return; + if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) + { + // Bubble sort only until first swap. + for (size_t i = 1; i < m_Blocks.size(); ++i) + { + if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) + { + VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]); + return; + } + } + } +} + +void VmaBlockVector::SortByFreeSize() +{ + VMA_SORT(m_Blocks.begin(), m_Blocks.end(), + [](VmaDeviceMemoryBlock* b1, VmaDeviceMemoryBlock* b2) -> bool + { + return b1->m_pMetadata->GetSumFreeSize() < b2->m_pMetadata->GetSumFreeSize(); + }); +} + +VkResult VmaBlockVector::AllocateFromBlock( + VmaDeviceMemoryBlock* pBlock, + VkDeviceSize size, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + uint32_t strategy, + VmaAllocation* pAllocation) +{ + const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; + + VmaAllocationRequest currRequest = {}; + if (pBlock->m_pMetadata->CreateAllocationRequest( + size, + alignment, + isUpperAddress, + suballocType, + strategy, + &currRequest)) + { + return CommitAllocationRequest(currRequest, pBlock, alignment, allocFlags, pUserData, suballocType, pAllocation); + } + return VK_ERROR_OUT_OF_DEVICE_MEMORY; +} + +VkResult VmaBlockVector::CommitAllocationRequest( + VmaAllocationRequest& allocRequest, + VmaDeviceMemoryBlock* pBlock, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation) +{ + const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; + const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; + const bool isMappingAllowed = (allocFlags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0; + + pBlock->PostAlloc(m_hAllocator); + // Allocate from pCurrBlock. + if (mapped) + { + VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL); + if (res != VK_SUCCESS) + { + return res; + } + } + + *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(isMappingAllowed); + pBlock->m_pMetadata->Alloc(allocRequest, suballocType, *pAllocation); + (*pAllocation)->InitBlockAllocation( + pBlock, + allocRequest.allocHandle, + alignment, + allocRequest.size, // Not size, as actual allocation size may be larger than requested! + m_MemoryTypeIndex, + suballocType, + mapped); + VMA_HEAVY_ASSERT(pBlock->Validate()); + if (isUserDataString) + (*pAllocation)->SetName(m_hAllocator, (const char*)pUserData); + else + (*pAllocation)->SetUserData(m_hAllocator, pUserData); + m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), allocRequest.size); + if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } + if (IsCorruptionDetectionEnabled()) + { + VkResult res = pBlock->WriteMagicValueAfterAllocation(m_hAllocator, (*pAllocation)->GetOffset(), allocRequest.size); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); + } + return VK_SUCCESS; +} + +VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex) +{ + VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; + allocInfo.pNext = m_pMemoryAllocateNext; + allocInfo.memoryTypeIndex = m_MemoryTypeIndex; + allocInfo.allocationSize = blockSize; + +#if VMA_BUFFER_DEVICE_ADDRESS + // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature. + VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; + if (m_hAllocator->m_UseKhrBufferDeviceAddress) + { + allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; + VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); + } +#endif // VMA_BUFFER_DEVICE_ADDRESS + +#if VMA_MEMORY_PRIORITY + VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; + if (m_hAllocator->m_UseExtMemoryPriority) + { + VMA_ASSERT(m_Priority >= 0.f && m_Priority <= 1.f); + priorityInfo.priority = m_Priority; + VmaPnextChainPushFront(&allocInfo, &priorityInfo); + } +#endif // VMA_MEMORY_PRIORITY + +#if VMA_EXTERNAL_MEMORY + // Attach VkExportMemoryAllocateInfoKHR if necessary. + VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; + exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex); + if (exportMemoryAllocInfo.handleTypes != 0) + { + VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); + } +#endif // VMA_EXTERNAL_MEMORY + + VkDeviceMemory mem = VK_NULL_HANDLE; + VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem); + if (res < 0) + { + return res; + } + + // New VkDeviceMemory successfully created. + + // Create new Allocation for it. + VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator); + pBlock->Init( + m_hAllocator, + m_hParentPool, + m_MemoryTypeIndex, + mem, + allocInfo.allocationSize, + m_NextBlockId++, + m_Algorithm, + m_BufferImageGranularity); + + m_Blocks.push_back(pBlock); + if (pNewBlockIndex != VMA_NULL) + { + *pNewBlockIndex = m_Blocks.size() - 1; + } + + return VK_SUCCESS; +} + +bool VmaBlockVector::HasEmptyBlock() +{ + for (size_t index = 0, count = m_Blocks.size(); index < count; ++index) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[index]; + if (pBlock->m_pMetadata->IsEmpty()) + { + return true; + } + } + return false; +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json) +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + + json.BeginObject(); + for (size_t i = 0; i < m_Blocks.size(); ++i) + { + json.BeginString(); + json.ContinueString(m_Blocks[i]->GetId()); + json.EndString(); + + json.BeginObject(); + json.WriteString("MapRefCount"); + json.WriteNumber(m_Blocks[i]->GetMapRefCount()); + + m_Blocks[i]->m_pMetadata->PrintDetailedMap(json); + json.EndObject(); + } + json.EndObject(); +} +#endif // VMA_STATS_STRING_ENABLED + +VkResult VmaBlockVector::CheckCorruption() +{ + if (!IsCorruptionDetectionEnabled()) + { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VkResult res = pBlock->CheckCorruption(m_hAllocator); + if (res != VK_SUCCESS) + { + return res; + } + } + return VK_SUCCESS; +} + +#endif // _VMA_BLOCK_VECTOR_FUNCTIONS + +#ifndef _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS +VmaDefragmentationContext_T::VmaDefragmentationContext_T( + VmaAllocator hAllocator, + const VmaDefragmentationInfo& info) + : m_MaxPassBytes(info.maxBytesPerPass == 0 ? VK_WHOLE_SIZE : info.maxBytesPerPass), + m_MaxPassAllocations(info.maxAllocationsPerPass == 0 ? UINT32_MAX : info.maxAllocationsPerPass), + m_MoveAllocator(hAllocator->GetAllocationCallbacks()), + m_Moves(m_MoveAllocator) +{ + m_Algorithm = info.flags & VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK; + + if (info.pool != VMA_NULL) + { + m_BlockVectorCount = 1; + m_PoolBlockVector = &info.pool->m_BlockVector; + m_pBlockVectors = &m_PoolBlockVector; + m_PoolBlockVector->SetIncrementalSort(false); + m_PoolBlockVector->SortByFreeSize(); + } + else + { + m_BlockVectorCount = hAllocator->GetMemoryTypeCount(); + m_PoolBlockVector = VMA_NULL; + m_pBlockVectors = hAllocator->m_pBlockVectors; + for (uint32_t i = 0; i < m_BlockVectorCount; ++i) + { + VmaBlockVector* vector = m_pBlockVectors[i]; + if (vector != VMA_NULL) + { + vector->SetIncrementalSort(false); + vector->SortByFreeSize(); + } + } + } + + switch (m_Algorithm) + { + case 0: // Default algorithm + m_Algorithm = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT; + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT: + { + m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount); + break; + } + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT: + { + if (hAllocator->GetBufferImageGranularity() > 1) + { + m_AlgorithmState = vma_new_array(hAllocator, StateExtensive, m_BlockVectorCount); + } + break; + } + } +} + +VmaDefragmentationContext_T::~VmaDefragmentationContext_T() +{ + if (m_PoolBlockVector != VMA_NULL) + { + m_PoolBlockVector->SetIncrementalSort(true); + } + else + { + for (uint32_t i = 0; i < m_BlockVectorCount; ++i) + { + VmaBlockVector* vector = m_pBlockVectors[i]; + if (vector != VMA_NULL) + vector->SetIncrementalSort(true); + } + } + + if (m_AlgorithmState) + { + switch (m_Algorithm) + { + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT: + vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast(m_AlgorithmState), m_BlockVectorCount); + break; + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT: + vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast(m_AlgorithmState), m_BlockVectorCount); + break; + default: + VMA_ASSERT(0); + } + } +} + +VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo) +{ + if (m_PoolBlockVector != VMA_NULL) + { + VmaMutexLockWrite lock(m_PoolBlockVector->GetMutex(), m_PoolBlockVector->GetAllocator()->m_UseMutex); + + if (m_PoolBlockVector->GetBlockCount() > 1) + ComputeDefragmentation(*m_PoolBlockVector, 0); + else if (m_PoolBlockVector->GetBlockCount() == 1) + ReallocWithinBlock(*m_PoolBlockVector, m_PoolBlockVector->GetBlock(0)); + } + else + { + for (uint32_t i = 0; i < m_BlockVectorCount; ++i) + { + if (m_pBlockVectors[i] != VMA_NULL) + { + VmaMutexLockWrite lock(m_pBlockVectors[i]->GetMutex(), m_pBlockVectors[i]->GetAllocator()->m_UseMutex); + + if (m_pBlockVectors[i]->GetBlockCount() > 1) + { + if (ComputeDefragmentation(*m_pBlockVectors[i], i)) + break; + } + else if (m_pBlockVectors[i]->GetBlockCount() == 1) + { + if (ReallocWithinBlock(*m_pBlockVectors[i], m_pBlockVectors[i]->GetBlock(0))) + break; + } + } + } + } + + moveInfo.moveCount = static_cast(m_Moves.size()); + if (moveInfo.moveCount > 0) + { + moveInfo.pMoves = m_Moves.data(); + return VK_INCOMPLETE; + } + + moveInfo.pMoves = VMA_NULL; + return VK_SUCCESS; +} + +VkResult VmaDefragmentationContext_T::DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo) +{ + VMA_ASSERT(moveInfo.moveCount > 0 ? moveInfo.pMoves != VMA_NULL : true); + + VkResult result = VK_SUCCESS; + VmaStlAllocator blockAllocator(m_MoveAllocator.m_pCallbacks); + VmaVector> immovableBlocks(blockAllocator); + VmaVector> mappedBlocks(blockAllocator); + + VmaAllocator allocator = VMA_NULL; + for (uint32_t i = 0; i < moveInfo.moveCount; ++i) + { + VmaDefragmentationMove& move = moveInfo.pMoves[i]; + size_t prevCount = 0, currentCount = 0; + VkDeviceSize freedBlockSize = 0; + + uint32_t vectorIndex; + VmaBlockVector* vector; + if (m_PoolBlockVector != VMA_NULL) + { + vectorIndex = 0; + vector = m_PoolBlockVector; + } + else + { + vectorIndex = move.srcAllocation->GetMemoryTypeIndex(); + vector = m_pBlockVectors[vectorIndex]; + VMA_ASSERT(vector != VMA_NULL); + } + + switch (move.operation) + { + case VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY: + { + uint8_t mapCount = move.srcAllocation->SwapBlockAllocation(vector->m_hAllocator, move.dstTmpAllocation); + if (mapCount > 0) + { + allocator = vector->m_hAllocator; + VmaDeviceMemoryBlock* newMapBlock = move.srcAllocation->GetBlock(); + bool notPresent = true; + for (FragmentedBlock& block : mappedBlocks) + { + if (block.block == newMapBlock) + { + notPresent = false; + block.data += mapCount; + break; + } + } + if (notPresent) + mappedBlocks.push_back({ mapCount, newMapBlock }); + } + + // Scope for locks, Free have it's own lock + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + prevCount = vector->GetBlockCount(); + freedBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize(); + } + vector->Free(move.dstTmpAllocation); + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + currentCount = vector->GetBlockCount(); + } + + result = VK_INCOMPLETE; + break; + } + case VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE: + { + m_PassStats.bytesMoved -= move.srcAllocation->GetSize(); + --m_PassStats.allocationsMoved; + vector->Free(move.dstTmpAllocation); + + VmaDeviceMemoryBlock* newBlock = move.srcAllocation->GetBlock(); + bool notPresent = true; + for (const FragmentedBlock& block : immovableBlocks) + { + if (block.block == newBlock) + { + notPresent = false; + break; + } + } + if (notPresent) + immovableBlocks.push_back({ vectorIndex, newBlock }); + break; + } + case VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY: + { + m_PassStats.bytesMoved -= move.srcAllocation->GetSize(); + --m_PassStats.allocationsMoved; + // Scope for locks, Free have it's own lock + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + prevCount = vector->GetBlockCount(); + freedBlockSize = move.srcAllocation->GetBlock()->m_pMetadata->GetSize(); + } + vector->Free(move.srcAllocation); + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + currentCount = vector->GetBlockCount(); + } + freedBlockSize *= prevCount - currentCount; + + VkDeviceSize dstBlockSize; + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + dstBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize(); + } + vector->Free(move.dstTmpAllocation); + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + freedBlockSize += dstBlockSize * (currentCount - vector->GetBlockCount()); + currentCount = vector->GetBlockCount(); + } + + result = VK_INCOMPLETE; + break; + } + default: + VMA_ASSERT(0); + } + + if (prevCount > currentCount) + { + size_t freedBlocks = prevCount - currentCount; + m_PassStats.deviceMemoryBlocksFreed += static_cast(freedBlocks); + m_PassStats.bytesFreed += freedBlockSize; + } + + switch (m_Algorithm) + { + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT: + { + if (m_AlgorithmState != VMA_NULL) + { + // Avoid unnecessary tries to allocate when new free block is avaiable + StateExtensive& state = reinterpret_cast(m_AlgorithmState)[vectorIndex]; + if (state.firstFreeBlock != SIZE_MAX) + { + const size_t diff = prevCount - currentCount; + if (state.firstFreeBlock >= diff) + { + state.firstFreeBlock -= diff; + if (state.firstFreeBlock != 0) + state.firstFreeBlock -= vector->GetBlock(state.firstFreeBlock - 1)->m_pMetadata->IsEmpty(); + } + else + state.firstFreeBlock = 0; + } + } + } + } + } + moveInfo.moveCount = 0; + moveInfo.pMoves = VMA_NULL; + m_Moves.clear(); + + // Update stats + m_GlobalStats.allocationsMoved += m_PassStats.allocationsMoved; + m_GlobalStats.bytesFreed += m_PassStats.bytesFreed; + m_GlobalStats.bytesMoved += m_PassStats.bytesMoved; + m_GlobalStats.deviceMemoryBlocksFreed += m_PassStats.deviceMemoryBlocksFreed; + m_PassStats = { 0 }; + + // Move blocks with immovable allocations according to algorithm + if (immovableBlocks.size() > 0) + { + switch (m_Algorithm) + { + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT: + { + if (m_AlgorithmState != VMA_NULL) + { + bool swapped = false; + // Move to the start of free blocks range + for (const FragmentedBlock& block : immovableBlocks) + { + StateExtensive& state = reinterpret_cast(m_AlgorithmState)[block.data]; + if (state.operation != StateExtensive::Operation::Cleanup) + { + VmaBlockVector* vector = m_pBlockVectors[block.data]; + VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + + for (size_t i = 0, count = vector->GetBlockCount() - m_ImmovableBlockCount; i < count; ++i) + { + if (vector->GetBlock(i) == block.block) + { + VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[vector->GetBlockCount() - ++m_ImmovableBlockCount]); + if (state.firstFreeBlock != SIZE_MAX) + { + if (i + 1 < state.firstFreeBlock) + { + if (state.firstFreeBlock > 1) + VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[--state.firstFreeBlock]); + else + --state.firstFreeBlock; + } + } + swapped = true; + break; + } + } + } + } + if (swapped) + result = VK_INCOMPLETE; + break; + } + } + default: + { + // Move to the begining + for (const FragmentedBlock& block : immovableBlocks) + { + VmaBlockVector* vector = m_pBlockVectors[block.data]; + VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + + for (size_t i = m_ImmovableBlockCount; i < vector->GetBlockCount(); ++i) + { + if (vector->GetBlock(i) == block.block) + { + VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[m_ImmovableBlockCount++]); + break; + } + } + } + break; + } + } + } + + // Bulk-map destination blocks + for (const FragmentedBlock& block : mappedBlocks) + { + VkResult res = block.block->Map(allocator, block.data, VMA_NULL); + VMA_ASSERT(res == VK_SUCCESS); + } + return result; +} + +bool VmaDefragmentationContext_T::ComputeDefragmentation(VmaBlockVector& vector, size_t index) +{ + switch (m_Algorithm) + { + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT: + return ComputeDefragmentation_Fast(vector); + default: + VMA_ASSERT(0); + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT: + return ComputeDefragmentation_Balanced(vector, index, true); + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT: + return ComputeDefragmentation_Full(vector); + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT: + return ComputeDefragmentation_Extensive(vector, index); + } +} + +VmaDefragmentationContext_T::MoveAllocationData VmaDefragmentationContext_T::GetMoveData( + VmaAllocHandle handle, VmaBlockMetadata* metadata) +{ + MoveAllocationData moveData; + moveData.move.srcAllocation = (VmaAllocation)metadata->GetAllocationUserData(handle); + moveData.size = moveData.move.srcAllocation->GetSize(); + moveData.alignment = moveData.move.srcAllocation->GetAlignment(); + moveData.type = moveData.move.srcAllocation->GetSuballocationType(); + moveData.flags = 0; + + if (moveData.move.srcAllocation->IsPersistentMap()) + moveData.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT; + if (moveData.move.srcAllocation->IsMappingAllowed()) + moveData.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT; + + return moveData; +} + +VmaDefragmentationContext_T::CounterStatus VmaDefragmentationContext_T::CheckCounters(VkDeviceSize bytes) +{ + // Ignore allocation if will exceed max size for copy + if (m_PassStats.bytesMoved + bytes > m_MaxPassBytes) + { + if (++m_IgnoredAllocs < MAX_ALLOCS_TO_IGNORE) + return CounterStatus::Ignore; + else + return CounterStatus::End; + } + return CounterStatus::Pass; +} + +bool VmaDefragmentationContext_T::IncrementCounters(VkDeviceSize bytes) +{ + m_PassStats.bytesMoved += bytes; + // Early return when max found + if (++m_PassStats.allocationsMoved >= m_MaxPassAllocations || m_PassStats.bytesMoved >= m_MaxPassBytes) + { + VMA_ASSERT(m_PassStats.allocationsMoved == m_MaxPassAllocations || + m_PassStats.bytesMoved == m_MaxPassBytes && "Exceeded maximal pass threshold!"); + return true; + } + return false; +} + +bool VmaDefragmentationContext_T::ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block) +{ + VmaBlockMetadata* metadata = block->m_pMetadata; + + for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = metadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, metadata); + // Ignore newly created allocations by defragmentation algorithm + if (moveData.move.srcAllocation->GetUserData() == this) + continue; + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + default: + VMA_ASSERT(0); + case CounterStatus::Pass: + break; + } + + VkDeviceSize offset = moveData.move.srcAllocation->GetOffset(); + if (offset != 0 && metadata->GetSumFreeSize() >= moveData.size) + { + VmaAllocationRequest request = {}; + if (metadata->CreateAllocationRequest( + moveData.size, + moveData.alignment, + false, + moveData.type, + VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, + &request)) + { + if (metadata->GetAllocationOffset(request.allocHandle) < offset) + { + if (vector.CommitAllocationRequest( + request, + block, + moveData.alignment, + moveData.flags, + this, + moveData.type, + &moveData.move.dstTmpAllocation) == VK_SUCCESS) + { + m_Moves.push_back(moveData.move); + if (IncrementCounters(moveData.size)) + return true; + } + } + } + } + } + return false; +} + +bool VmaDefragmentationContext_T::AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector) +{ + for (; start < end; ++start) + { + VmaDeviceMemoryBlock* dstBlock = vector.GetBlock(start); + if (dstBlock->m_pMetadata->GetSumFreeSize() >= data.size) + { + if (vector.AllocateFromBlock(dstBlock, + data.size, + data.alignment, + data.flags, + this, + data.type, + 0, + &data.move.dstTmpAllocation) == VK_SUCCESS) + { + m_Moves.push_back(data.move); + if (IncrementCounters(data.size)) + return true; + break; + } + } + } + return false; +} + +bool VmaDefragmentationContext_T::ComputeDefragmentation_Fast(VmaBlockVector& vector) +{ + // Move only between blocks + + // Go through allocations in last blocks and try to fit them inside first ones + for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i) + { + VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata; + + for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = metadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, metadata); + // Ignore newly created allocations by defragmentation algorithm + if (moveData.move.srcAllocation->GetUserData() == this) + continue; + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + default: + VMA_ASSERT(0); + case CounterStatus::Pass: + break; + } + + // Check all previous blocks for free space + if (AllocInOtherBlock(0, i, moveData, vector)) + return true; + } + } + return false; +} + +bool VmaDefragmentationContext_T::ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update) +{ + // Go over every allocation and try to fit it in previous blocks at lowest offsets, + // if not possible: realloc within single block to minimize offset (exclude offset == 0), + // but only if there are noticable gaps between them (some heuristic, ex. average size of allocation in block) + VMA_ASSERT(m_AlgorithmState != VMA_NULL); + + StateBalanced& vectorState = reinterpret_cast(m_AlgorithmState)[index]; + if (update && vectorState.avgAllocSize == UINT64_MAX) + UpdateVectorStatistics(vector, vectorState); + + const size_t startMoveCount = m_Moves.size(); + VkDeviceSize minimalFreeRegion = vectorState.avgFreeSize / 2; + for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i) + { + VmaDeviceMemoryBlock* block = vector.GetBlock(i); + VmaBlockMetadata* metadata = block->m_pMetadata; + VkDeviceSize prevFreeRegionSize = 0; + + for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = metadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, metadata); + // Ignore newly created allocations by defragmentation algorithm + if (moveData.move.srcAllocation->GetUserData() == this) + continue; + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + default: + VMA_ASSERT(0); + case CounterStatus::Pass: + break; + } + + // Check all previous blocks for free space + const size_t prevMoveCount = m_Moves.size(); + if (AllocInOtherBlock(0, i, moveData, vector)) + return true; + + VkDeviceSize nextFreeRegionSize = metadata->GetNextFreeRegionSize(handle); + // If no room found then realloc within block for lower offset + VkDeviceSize offset = moveData.move.srcAllocation->GetOffset(); + if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size) + { + // Check if realloc will make sense + if (prevFreeRegionSize >= minimalFreeRegion || + nextFreeRegionSize >= minimalFreeRegion || + moveData.size <= vectorState.avgFreeSize || + moveData.size <= vectorState.avgAllocSize) + { + VmaAllocationRequest request = {}; + if (metadata->CreateAllocationRequest( + moveData.size, + moveData.alignment, + false, + moveData.type, + VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, + &request)) + { + if (metadata->GetAllocationOffset(request.allocHandle) < offset) + { + if (vector.CommitAllocationRequest( + request, + block, + moveData.alignment, + moveData.flags, + this, + moveData.type, + &moveData.move.dstTmpAllocation) == VK_SUCCESS) + { + m_Moves.push_back(moveData.move); + if (IncrementCounters(moveData.size)) + return true; + } + } + } + } + } + prevFreeRegionSize = nextFreeRegionSize; + } + } + + // No moves perfomed, update statistics to current vector state + if (startMoveCount == m_Moves.size() && !update) + { + vectorState.avgAllocSize = UINT64_MAX; + return ComputeDefragmentation_Balanced(vector, index, false); + } + return false; +} + +bool VmaDefragmentationContext_T::ComputeDefragmentation_Full(VmaBlockVector& vector) +{ + // Go over every allocation and try to fit it in previous blocks at lowest offsets, + // if not possible: realloc within single block to minimize offset (exclude offset == 0) + + for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i) + { + VmaDeviceMemoryBlock* block = vector.GetBlock(i); + VmaBlockMetadata* metadata = block->m_pMetadata; + + for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = metadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, metadata); + // Ignore newly created allocations by defragmentation algorithm + if (moveData.move.srcAllocation->GetUserData() == this) + continue; + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + default: + VMA_ASSERT(0); + case CounterStatus::Pass: + break; + } + + // Check all previous blocks for free space + const size_t prevMoveCount = m_Moves.size(); + if (AllocInOtherBlock(0, i, moveData, vector)) + return true; + + // If no room found then realloc within block for lower offset + VkDeviceSize offset = moveData.move.srcAllocation->GetOffset(); + if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size) + { + VmaAllocationRequest request = {}; + if (metadata->CreateAllocationRequest( + moveData.size, + moveData.alignment, + false, + moveData.type, + VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, + &request)) + { + if (metadata->GetAllocationOffset(request.allocHandle) < offset) + { + if (vector.CommitAllocationRequest( + request, + block, + moveData.alignment, + moveData.flags, + this, + moveData.type, + &moveData.move.dstTmpAllocation) == VK_SUCCESS) + { + m_Moves.push_back(moveData.move); + if (IncrementCounters(moveData.size)) + return true; + } + } + } + } + } + } + return false; +} + +bool VmaDefragmentationContext_T::ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index) +{ + // First free single block, then populate it to the brim, then free another block, and so on + + // Fallback to previous algorithm since without granularity conflicts it can achieve max packing + if (vector.m_BufferImageGranularity == 1) + return ComputeDefragmentation_Full(vector); + + VMA_ASSERT(m_AlgorithmState != VMA_NULL); + + StateExtensive& vectorState = reinterpret_cast(m_AlgorithmState)[index]; + + bool texturePresent = false, bufferPresent = false, otherPresent = false; + switch (vectorState.operation) + { + case StateExtensive::Operation::Done: // Vector defragmented + return false; + case StateExtensive::Operation::FindFreeBlockBuffer: + case StateExtensive::Operation::FindFreeBlockTexture: + case StateExtensive::Operation::FindFreeBlockAll: + { + // No more blocks to free, just perform fast realloc and move to cleanup + if (vectorState.firstFreeBlock == 0) + { + vectorState.operation = StateExtensive::Operation::Cleanup; + return ComputeDefragmentation_Fast(vector); + } + + // No free blocks, have to clear last one + size_t last = (vectorState.firstFreeBlock == SIZE_MAX ? vector.GetBlockCount() : vectorState.firstFreeBlock) - 1; + VmaBlockMetadata* freeMetadata = vector.GetBlock(last)->m_pMetadata; + + const size_t prevMoveCount = m_Moves.size(); + for (VmaAllocHandle handle = freeMetadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = freeMetadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, freeMetadata); + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + default: + VMA_ASSERT(0); + case CounterStatus::Pass: + break; + } + + // Check all previous blocks for free space + if (AllocInOtherBlock(0, last, moveData, vector)) + { + // Full clear performed already + if (prevMoveCount != m_Moves.size() && freeMetadata->GetNextAllocation(handle) == VK_NULL_HANDLE) + reinterpret_cast(m_AlgorithmState)[index] = last; + return true; + } + } + + if (prevMoveCount == m_Moves.size()) + { + // Cannot perform full clear, have to move data in other blocks around + if (last != 0) + { + for (size_t i = last - 1; i; --i) + { + if (ReallocWithinBlock(vector, vector.GetBlock(i))) + return true; + } + } + + if (prevMoveCount == m_Moves.size()) + { + // No possible reallocs within blocks, try to move them around fast + return ComputeDefragmentation_Fast(vector); + } + } + else + { + switch (vectorState.operation) + { + case StateExtensive::Operation::FindFreeBlockBuffer: + vectorState.operation = StateExtensive::Operation::MoveBuffers; + break; + default: + VMA_ASSERT(0); + case StateExtensive::Operation::FindFreeBlockTexture: + vectorState.operation = StateExtensive::Operation::MoveTextures; + break; + case StateExtensive::Operation::FindFreeBlockAll: + vectorState.operation = StateExtensive::Operation::MoveAll; + break; + } + vectorState.firstFreeBlock = last; + // Nothing done, block found without reallocations, can perform another reallocs in same pass + return ComputeDefragmentation_Extensive(vector, index); + } + break; + } + case StateExtensive::Operation::MoveTextures: + { + if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL, vector, + vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent)) + { + if (texturePresent) + { + vectorState.operation = StateExtensive::Operation::FindFreeBlockTexture; + return ComputeDefragmentation_Extensive(vector, index); + } + + if (!bufferPresent && !otherPresent) + { + vectorState.operation = StateExtensive::Operation::Cleanup; + break; + } + + // No more textures to move, check buffers + vectorState.operation = StateExtensive::Operation::MoveBuffers; + bufferPresent = false; + otherPresent = false; + } + else + break; + } + case StateExtensive::Operation::MoveBuffers: + { + if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_BUFFER, vector, + vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent)) + { + if (bufferPresent) + { + vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer; + return ComputeDefragmentation_Extensive(vector, index); + } + + if (!otherPresent) + { + vectorState.operation = StateExtensive::Operation::Cleanup; + break; + } + + // No more buffers to move, check all others + vectorState.operation = StateExtensive::Operation::MoveAll; + otherPresent = false; + } + else + break; + } + case StateExtensive::Operation::MoveAll: + { + if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_FREE, vector, + vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent)) + { + if (otherPresent) + { + vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer; + return ComputeDefragmentation_Extensive(vector, index); + } + // Everything moved + vectorState.operation = StateExtensive::Operation::Cleanup; + } + break; + } + case StateExtensive::Operation::Cleanup: + // Cleanup is handled below so that other operations may reuse the cleanup code. This case is here to prevent the unhandled enum value warning (C4062). + break; + } + + if (vectorState.operation == StateExtensive::Operation::Cleanup) + { + // All other work done, pack data in blocks even tighter if possible + const size_t prevMoveCount = m_Moves.size(); + for (size_t i = 0; i < vector.GetBlockCount(); ++i) + { + if (ReallocWithinBlock(vector, vector.GetBlock(i))) + return true; + } + + if (prevMoveCount == m_Moves.size()) + vectorState.operation = StateExtensive::Operation::Done; + } + return false; +} + +void VmaDefragmentationContext_T::UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state) +{ + size_t allocCount = 0; + size_t freeCount = 0; + state.avgFreeSize = 0; + state.avgAllocSize = 0; + + for (size_t i = 0; i < vector.GetBlockCount(); ++i) + { + VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata; + + allocCount += metadata->GetAllocationCount(); + freeCount += metadata->GetFreeRegionsCount(); + state.avgFreeSize += metadata->GetSumFreeSize(); + state.avgAllocSize += metadata->GetSize(); + } + + state.avgAllocSize = (state.avgAllocSize - state.avgFreeSize) / allocCount; + state.avgFreeSize /= freeCount; +} + +bool VmaDefragmentationContext_T::MoveDataToFreeBlocks(VmaSuballocationType currentType, + VmaBlockVector& vector, size_t firstFreeBlock, + bool& texturePresent, bool& bufferPresent, bool& otherPresent) +{ + const size_t prevMoveCount = m_Moves.size(); + for (size_t i = firstFreeBlock ; i;) + { + VmaDeviceMemoryBlock* block = vector.GetBlock(--i); + VmaBlockMetadata* metadata = block->m_pMetadata; + + for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = metadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, metadata); + // Ignore newly created allocations by defragmentation algorithm + if (moveData.move.srcAllocation->GetUserData() == this) + continue; + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + default: + VMA_ASSERT(0); + case CounterStatus::Pass: + break; + } + + // Move only single type of resources at once + if (!VmaIsBufferImageGranularityConflict(moveData.type, currentType)) + { + // Try to fit allocation into free blocks + if (AllocInOtherBlock(firstFreeBlock, vector.GetBlockCount(), moveData, vector)) + return false; + } + + if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)) + texturePresent = true; + else if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_BUFFER)) + bufferPresent = true; + else + otherPresent = true; + } + } + return prevMoveCount == m_Moves.size(); +} +#endif // _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS + +#ifndef _VMA_POOL_T_FUNCTIONS +VmaPool_T::VmaPool_T( + VmaAllocator hAllocator, + const VmaPoolCreateInfo& createInfo, + VkDeviceSize preferredBlockSize) + : m_BlockVector( + hAllocator, + this, // hParentPool + createInfo.memoryTypeIndex, + createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, + createInfo.minBlockCount, + createInfo.maxBlockCount, + (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), + createInfo.blockSize != 0, // explicitBlockSize + createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm + createInfo.priority, + VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment), + createInfo.pMemoryAllocateNext), + m_Id(0), + m_Name(VMA_NULL) {} + +VmaPool_T::~VmaPool_T() +{ + VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL); +} + +void VmaPool_T::SetName(const char* pName) +{ + const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); + VmaFreeString(allocs, m_Name); + + if (pName != VMA_NULL) + { + m_Name = VmaCreateStringCopy(allocs, pName); + } + else + { + m_Name = VMA_NULL; + } +} +#endif // _VMA_POOL_T_FUNCTIONS + +#ifndef _VMA_ALLOCATOR_T_FUNCTIONS +VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) : + m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0), + m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0), + m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0), + m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0), + m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0), + m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0), + m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0), + m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0), + m_hDevice(pCreateInfo->device), + m_hInstance(pCreateInfo->instance), + m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL), + m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ? + *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks), + m_AllocationObjectAllocator(&m_AllocationCallbacks), + m_HeapSizeLimitMask(0), + m_DeviceMemoryCount(0), + m_PreferredLargeHeapBlockSize(0), + m_PhysicalDevice(pCreateInfo->physicalDevice), + m_GpuDefragmentationMemoryTypeBits(UINT32_MAX), + m_NextPoolId(0), + m_GlobalMemoryTypeBits(UINT32_MAX) +{ + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + m_UseKhrDedicatedAllocation = false; + m_UseKhrBindMemory2 = false; + } + + if(VMA_DEBUG_DETECT_CORRUPTION) + { + // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it. + VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0); + } + + VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance); + + if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0)) + { +#if !(VMA_DEDICATED_ALLOCATION) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros."); + } +#endif +#if !(VMA_BIND_MEMORY2) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros."); + } +#endif + } +#if !(VMA_MEMORY_BUDGET) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros."); + } +#endif +#if !(VMA_BUFFER_DEVICE_ADDRESS) + if(m_UseKhrBufferDeviceAddress) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); + } +#endif +#if VMA_VULKAN_VERSION < 1003000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0)) + { + VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_3 but required Vulkan version is disabled by preprocessor macros."); + } +#endif +#if VMA_VULKAN_VERSION < 1002000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0)) + { + VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros."); + } +#endif +#if VMA_VULKAN_VERSION < 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros."); + } +#endif +#if !(VMA_MEMORY_PRIORITY) + if(m_UseExtMemoryPriority) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); + } +#endif + + memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks)); + memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties)); + memset(&m_MemProps, 0, sizeof(m_MemProps)); + + memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors)); + memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions)); + +#if VMA_EXTERNAL_MEMORY + memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes)); +#endif // #if VMA_EXTERNAL_MEMORY + + if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) + { + m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData; + m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate; + m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree; + } + + ImportVulkanFunctions(pCreateInfo->pVulkanFunctions); + + (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties); + (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps); + + VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT)); + VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY)); + VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity)); + VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize)); + + m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ? + pCreateInfo->preferredLargeHeapBlockSize : static_cast(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); + + m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits(); + +#if VMA_EXTERNAL_MEMORY + if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL) + { + memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes, + sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount()); + } +#endif // #if VMA_EXTERNAL_MEMORY + + if(pCreateInfo->pHeapSizeLimit != VMA_NULL) + { + for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) + { + const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex]; + if(limit != VK_WHOLE_SIZE) + { + m_HeapSizeLimitMask |= 1u << heapIndex; + if(limit < m_MemProps.memoryHeaps[heapIndex].size) + { + m_MemProps.memoryHeaps[heapIndex].size = limit; + } + } + } + } + + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + // Create only supported types + if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0) + { + const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex); + m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( + this, + VK_NULL_HANDLE, // hParentPool + memTypeIndex, + preferredBlockSize, + 0, + SIZE_MAX, + GetBufferImageGranularity(), + false, // explicitBlockSize + 0, // algorithm + 0.5f, // priority (0.5 is the default per Vulkan spec) + GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment + VMA_NULL); // // pMemoryAllocateNext + // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here, + // becase minBlockCount is 0. + } + } +} + +VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo) +{ + VkResult res = VK_SUCCESS; + +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) + { + UpdateVulkanBudget(); + } +#endif // #if VMA_MEMORY_BUDGET + + return res; +} + +VmaAllocator_T::~VmaAllocator_T() +{ + VMA_ASSERT(m_Pools.IsEmpty()); + + for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; ) + { + vma_delete(this, m_pBlockVectors[memTypeIndex]); + } +} + +void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions) +{ +#if VMA_STATIC_VULKAN_FUNCTIONS == 1 + ImportVulkanFunctions_Static(); +#endif + + if(pVulkanFunctions != VMA_NULL) + { + ImportVulkanFunctions_Custom(pVulkanFunctions); + } + +#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + ImportVulkanFunctions_Dynamic(); +#endif + + ValidateVulkanFunctions(); +} + +#if VMA_STATIC_VULKAN_FUNCTIONS == 1 + +void VmaAllocator_T::ImportVulkanFunctions_Static() +{ + // Vulkan 1.0 + m_VulkanFunctions.vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr; + m_VulkanFunctions.vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetDeviceProcAddr; + m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties; + m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties; + m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; + m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory; + m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory; + m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory; + m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges; + m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges; + m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory; + m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory; + m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements; + m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements; + m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer; + m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer; + m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage; + m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage; + m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer; + + // Vulkan 1.1 +#if VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2; + m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2; + m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2; + m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2; + m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2; + } +#endif + +#if VMA_VULKAN_VERSION >= 1003000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0)) + { + m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements = (PFN_vkGetDeviceBufferMemoryRequirements)vkGetDeviceBufferMemoryRequirements; + m_VulkanFunctions.vkGetDeviceImageMemoryRequirements = (PFN_vkGetDeviceImageMemoryRequirements)vkGetDeviceImageMemoryRequirements; + } +#endif +} + +#endif // VMA_STATIC_VULKAN_FUNCTIONS == 1 + +void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions) +{ + VMA_ASSERT(pVulkanFunctions != VMA_NULL); + +#define VMA_COPY_IF_NOT_NULL(funcName) \ + if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName; + + VMA_COPY_IF_NOT_NULL(vkGetInstanceProcAddr); + VMA_COPY_IF_NOT_NULL(vkGetDeviceProcAddr); + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties); + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties); + VMA_COPY_IF_NOT_NULL(vkAllocateMemory); + VMA_COPY_IF_NOT_NULL(vkFreeMemory); + VMA_COPY_IF_NOT_NULL(vkMapMemory); + VMA_COPY_IF_NOT_NULL(vkUnmapMemory); + VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges); + VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges); + VMA_COPY_IF_NOT_NULL(vkBindBufferMemory); + VMA_COPY_IF_NOT_NULL(vkBindImageMemory); + VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkCreateBuffer); + VMA_COPY_IF_NOT_NULL(vkDestroyBuffer); + VMA_COPY_IF_NOT_NULL(vkCreateImage); + VMA_COPY_IF_NOT_NULL(vkDestroyImage); + VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer); + +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR); + VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR); +#endif + +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR); + VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR); +#endif + +#if VMA_MEMORY_BUDGET + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR); +#endif + +#if VMA_VULKAN_VERSION >= 1003000 + VMA_COPY_IF_NOT_NULL(vkGetDeviceBufferMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkGetDeviceImageMemoryRequirements); +#endif + +#undef VMA_COPY_IF_NOT_NULL +} + +#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + +void VmaAllocator_T::ImportVulkanFunctions_Dynamic() +{ + VMA_ASSERT(m_VulkanFunctions.vkGetInstanceProcAddr && m_VulkanFunctions.vkGetDeviceProcAddr && + "To use VMA_DYNAMIC_VULKAN_FUNCTIONS in new versions of VMA you now have to pass " + "VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. " + "Other members can be null."); + +#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \ + if(m_VulkanFunctions.memberName == VMA_NULL) \ + m_VulkanFunctions.memberName = \ + (functionPointerType)m_VulkanFunctions.vkGetInstanceProcAddr(m_hInstance, functionNameString); +#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \ + if(m_VulkanFunctions.memberName == VMA_NULL) \ + m_VulkanFunctions.memberName = \ + (functionPointerType)m_VulkanFunctions.vkGetDeviceProcAddr(m_hDevice, functionNameString); + + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties"); + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties"); + VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory"); + VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory"); + VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory"); + VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory"); + VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges"); + VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges"); + VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory"); + VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory"); + VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements"); + VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements"); + VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer"); + VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer"); + VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage"); + VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage"); + VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer"); + +#if VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2"); + VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2"); + VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2"); + VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2"); + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2, "vkGetPhysicalDeviceMemoryProperties2"); + } +#endif + +#if VMA_DEDICATED_ALLOCATION + if(m_UseKhrDedicatedAllocation) + { + VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR"); + VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR"); + } +#endif + +#if VMA_BIND_MEMORY2 + if(m_UseKhrBindMemory2) + { + VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR"); + VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR"); + } +#endif // #if VMA_BIND_MEMORY2 + +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) + { + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR"); + } +#endif // #if VMA_MEMORY_BUDGET + +#if VMA_VULKAN_VERSION >= 1003000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0)) + { + VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirements, "vkGetDeviceBufferMemoryRequirements"); + VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirements, "vkGetDeviceImageMemoryRequirements"); + } +#endif + +#undef VMA_FETCH_DEVICE_FUNC +#undef VMA_FETCH_INSTANCE_FUNC +} + +#endif // VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + +void VmaAllocator_T::ValidateVulkanFunctions() +{ + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL); + +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation) + { + VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL); + } +#endif + +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2) + { + VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL); + } +#endif + +#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 + if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL); + } +#endif + +#if VMA_VULKAN_VERSION >= 1003000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0)) + { + VMA_ASSERT(m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetDeviceImageMemoryRequirements != VMA_NULL); + } +#endif +} + +VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) +{ + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; + const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE; + return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32); +} + +VkResult VmaAllocator_T::AllocateMemoryOfType( + VmaPool pool, + VkDeviceSize size, + VkDeviceSize alignment, + bool dedicatedPreferred, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VkFlags dedicatedBufferImageUsage, + const VmaAllocationCreateInfo& createInfo, + uint32_t memTypeIndex, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + VmaBlockVector& blockVector, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + VMA_ASSERT(pAllocations != VMA_NULL); + VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size); + + VmaAllocationCreateInfo finalCreateInfo = createInfo; + VkResult res = CalcMemTypeParams( + finalCreateInfo, + memTypeIndex, + size, + allocationCount); + if(res != VK_SUCCESS) + return res; + + if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) + { + return AllocateDedicatedMemory( + pool, + size, + suballocType, + dedicatedAllocations, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + (finalCreateInfo.flags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, + finalCreateInfo.pUserData, + finalCreateInfo.priority, + dedicatedBuffer, + dedicatedImage, + dedicatedBufferImageUsage, + allocationCount, + pAllocations, + blockVector.GetAllocationNextPtr()); + } + else + { + const bool canAllocateDedicated = + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 && + (pool == VK_NULL_HANDLE || !blockVector.HasExplicitBlockSize()); + + if(canAllocateDedicated) + { + // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size. + if(size > blockVector.GetPreferredBlockSize() / 2) + { + dedicatedPreferred = true; + } + // Protection against creating each allocation as dedicated when we reach or exceed heap size/budget, + // which can quickly deplete maxMemoryAllocationCount: Don't prefer dedicated allocations when above + // 3/4 of the maximum allocation count. + if(m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4) + { + dedicatedPreferred = false; + } + + if(dedicatedPreferred) + { + res = AllocateDedicatedMemory( + pool, + size, + suballocType, + dedicatedAllocations, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + (finalCreateInfo.flags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, + finalCreateInfo.pUserData, + finalCreateInfo.priority, + dedicatedBuffer, + dedicatedImage, + dedicatedBufferImageUsage, + allocationCount, + pAllocations, + blockVector.GetAllocationNextPtr()); + if(res == VK_SUCCESS) + { + // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. + VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); + return VK_SUCCESS; + } + } + } + + res = blockVector.Allocate( + size, + alignment, + finalCreateInfo, + suballocType, + allocationCount, + pAllocations); + if(res == VK_SUCCESS) + return VK_SUCCESS; + + // Try dedicated memory. + if(canAllocateDedicated && !dedicatedPreferred) + { + res = AllocateDedicatedMemory( + pool, + size, + suballocType, + dedicatedAllocations, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + (finalCreateInfo.flags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, + finalCreateInfo.pUserData, + finalCreateInfo.priority, + dedicatedBuffer, + dedicatedImage, + dedicatedBufferImageUsage, + allocationCount, + pAllocations, + blockVector.GetAllocationNextPtr()); + if(res == VK_SUCCESS) + { + // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. + VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); + return VK_SUCCESS; + } + } + // Everything failed: Return error code. + VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); + return res; + } +} + +VkResult VmaAllocator_T::AllocateDedicatedMemory( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + uint32_t memTypeIndex, + bool map, + bool isUserDataString, + bool isMappingAllowed, + bool canAliasMemory, + void* pUserData, + float priority, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VkFlags dedicatedBufferImageUsage, + size_t allocationCount, + VmaAllocation* pAllocations, + const void* pNextChain) +{ + VMA_ASSERT(allocationCount > 0 && pAllocations); + + VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; + allocInfo.memoryTypeIndex = memTypeIndex; + allocInfo.allocationSize = size; + allocInfo.pNext = pNextChain; + +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR }; + if(!canAliasMemory) + { + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + if(dedicatedBuffer != VK_NULL_HANDLE) + { + VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE); + dedicatedAllocInfo.buffer = dedicatedBuffer; + VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); + } + else if(dedicatedImage != VK_NULL_HANDLE) + { + dedicatedAllocInfo.image = dedicatedImage; + VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); + } + } + } +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + +#if VMA_BUFFER_DEVICE_ADDRESS + VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; + if(m_UseKhrBufferDeviceAddress) + { + bool canContainBufferWithDeviceAddress = true; + if(dedicatedBuffer != VK_NULL_HANDLE) + { + canContainBufferWithDeviceAddress = dedicatedBufferImageUsage == UINT32_MAX || // Usage flags unknown + (dedicatedBufferImageUsage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) != 0; + } + else if(dedicatedImage != VK_NULL_HANDLE) + { + canContainBufferWithDeviceAddress = false; + } + if(canContainBufferWithDeviceAddress) + { + allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; + VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); + } + } +#endif // #if VMA_BUFFER_DEVICE_ADDRESS + +#if VMA_MEMORY_PRIORITY + VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; + if(m_UseExtMemoryPriority) + { + VMA_ASSERT(priority >= 0.f && priority <= 1.f); + priorityInfo.priority = priority; + VmaPnextChainPushFront(&allocInfo, &priorityInfo); + } +#endif // #if VMA_MEMORY_PRIORITY + +#if VMA_EXTERNAL_MEMORY + // Attach VkExportMemoryAllocateInfoKHR if necessary. + VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; + exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex); + if(exportMemoryAllocInfo.handleTypes != 0) + { + VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); + } +#endif // #if VMA_EXTERNAL_MEMORY + + size_t allocIndex; + VkResult res = VK_SUCCESS; + for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + res = AllocateDedicatedMemoryPage( + pool, + size, + suballocType, + memTypeIndex, + allocInfo, + map, + isUserDataString, + isMappingAllowed, + pUserData, + pAllocations + allocIndex); + if(res != VK_SUCCESS) + { + break; + } + } + + if(res == VK_SUCCESS) + { + for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + dedicatedAllocations.Register(pAllocations[allocIndex]); + } + VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex); + } + else + { + // Free all already created allocations. + while(allocIndex--) + { + VmaAllocation currAlloc = pAllocations[allocIndex]; + VkDeviceMemory hMemory = currAlloc->GetMemory(); + + /* + There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory + before vkFreeMemory. + + if(currAlloc->GetMappedData() != VMA_NULL) + { + (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); + } + */ + + FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory); + m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize()); + m_AllocationObjectAllocator.Free(currAlloc); + } + + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + } + + return res; +} + +VkResult VmaAllocator_T::AllocateDedicatedMemoryPage( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + const VkMemoryAllocateInfo& allocInfo, + bool map, + bool isUserDataString, + bool isMappingAllowed, + void* pUserData, + VmaAllocation* pAllocation) +{ + VkDeviceMemory hMemory = VK_NULL_HANDLE; + VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory); + if(res < 0) + { + VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); + return res; + } + + void* pMappedData = VMA_NULL; + if(map) + { + res = (*m_VulkanFunctions.vkMapMemory)( + m_hDevice, + hMemory, + 0, + VK_WHOLE_SIZE, + 0, + &pMappedData); + if(res < 0) + { + VMA_DEBUG_LOG(" vkMapMemory FAILED"); + FreeVulkanMemory(memTypeIndex, size, hMemory); + return res; + } + } + + *pAllocation = m_AllocationObjectAllocator.Allocate(isMappingAllowed); + (*pAllocation)->InitDedicatedAllocation(pool, memTypeIndex, hMemory, suballocType, pMappedData, size); + if (isUserDataString) + (*pAllocation)->SetName(this, (const char*)pUserData); + else + (*pAllocation)->SetUserData(this, pUserData); + m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size); + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } + + return VK_SUCCESS; +} + +void VmaAllocator_T::GetBufferMemoryRequirements( + VkBuffer hBuffer, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const +{ +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR }; + memReqInfo.buffer = hBuffer; + + VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; + + VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; + VmaPnextChainPushFront(&memReq2, &memDedicatedReq); + + (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); + + memReq = memReq2.memoryRequirements; + requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); + prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); + } + else +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + { + (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq); + requiresDedicatedAllocation = false; + prefersDedicatedAllocation = false; + } +} + +void VmaAllocator_T::GetImageMemoryRequirements( + VkImage hImage, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const +{ +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR }; + memReqInfo.image = hImage; + + VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; + + VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; + VmaPnextChainPushFront(&memReq2, &memDedicatedReq); + + (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); + + memReq = memReq2.memoryRequirements; + requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); + prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); + } + else +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + { + (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq); + requiresDedicatedAllocation = false; + prefersDedicatedAllocation = false; + } +} + +VkResult VmaAllocator_T::FindMemoryTypeIndex( + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkFlags bufImgUsage, + uint32_t* pMemoryTypeIndex) const +{ + memoryTypeBits &= GetGlobalMemoryTypeBits(); + + if(pAllocationCreateInfo->memoryTypeBits != 0) + { + memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits; + } + + VkMemoryPropertyFlags requiredFlags = 0, preferredFlags = 0, notPreferredFlags = 0; + if(!FindMemoryPreferences( + IsIntegratedGpu(), + *pAllocationCreateInfo, + bufImgUsage, + requiredFlags, preferredFlags, notPreferredFlags)) + { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + *pMemoryTypeIndex = UINT32_MAX; + uint32_t minCost = UINT32_MAX; + for(uint32_t memTypeIndex = 0, memTypeBit = 1; + memTypeIndex < GetMemoryTypeCount(); + ++memTypeIndex, memTypeBit <<= 1) + { + // This memory type is acceptable according to memoryTypeBits bitmask. + if((memTypeBit & memoryTypeBits) != 0) + { + const VkMemoryPropertyFlags currFlags = + m_MemProps.memoryTypes[memTypeIndex].propertyFlags; + // This memory type contains requiredFlags. + if((requiredFlags & ~currFlags) == 0) + { + // Calculate cost as number of bits from preferredFlags not present in this memory type. + uint32_t currCost = VMA_COUNT_BITS_SET(preferredFlags & ~currFlags) + + VMA_COUNT_BITS_SET(currFlags & notPreferredFlags); + // Remember memory type with lowest cost. + if(currCost < minCost) + { + *pMemoryTypeIndex = memTypeIndex; + if(currCost == 0) + { + return VK_SUCCESS; + } + minCost = currCost; + } + } + } + } + return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT; +} + +VkResult VmaAllocator_T::CalcMemTypeParams( + VmaAllocationCreateInfo& inoutCreateInfo, + uint32_t memTypeIndex, + VkDeviceSize size, + size_t allocationCount) +{ + // If memory type is not HOST_VISIBLE, disable MAPPED. + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && + (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + inoutCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; + } + + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0) + { + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + VmaBudget heapBudget = {}; + GetHeapBudgets(&heapBudget, heapIndex, 1); + if(heapBudget.usage + size * allocationCount > heapBudget.budget) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + return VK_SUCCESS; +} + +VkResult VmaAllocator_T::CalcAllocationParams( + VmaAllocationCreateInfo& inoutCreateInfo, + bool dedicatedRequired, + bool dedicatedPreferred) +{ + VMA_ASSERT((inoutCreateInfo.flags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) && + "Specifying both flags VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT and VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT is incorrect."); + VMA_ASSERT((((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) == 0 || + (inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0)) && + "Specifying VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT requires also VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT."); + if(inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST) + { + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0) + { + VMA_ASSERT((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0 && + "When using VMA_ALLOCATION_CREATE_MAPPED_BIT and usage = VMA_MEMORY_USAGE_AUTO*, you must also specify VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT."); + } + } + + // If memory is lazily allocated, it should be always dedicated. + if(dedicatedRequired || + inoutCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED) + { + inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; + } + + if(inoutCreateInfo.pool != VK_NULL_HANDLE) + { + if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) + { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations."); + return VK_ERROR_FEATURE_NOT_PRESENT; + } + inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority(); + } + + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) + { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense."); + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + if(VMA_DEBUG_ALWAYS_DEDICATED_MEMORY && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) + { + inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; + } + + // Non-auto USAGE values imply HOST_ACCESS flags. + // And so does VMA_MEMORY_USAGE_UNKNOWN because it is used with custom pools. + // Which specific flag is used doesn't matter. They change things only when used with VMA_MEMORY_USAGE_AUTO*. + // Otherwise they just protect from assert on mapping. + if(inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO && + inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE && + inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_HOST) + { + if((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) == 0) + { + inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT; + } + } + + return VK_SUCCESS; +} + +VkResult VmaAllocator_T::AllocateMemory( + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VkFlags dedicatedBufferImageUsage, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + + VMA_ASSERT(VmaIsPow2(vkMemReq.alignment)); + + if(vkMemReq.size == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + + VmaAllocationCreateInfo createInfoFinal = createInfo; + VkResult res = CalcAllocationParams(createInfoFinal, requiresDedicatedAllocation, prefersDedicatedAllocation); + if(res != VK_SUCCESS) + return res; + + if(createInfoFinal.pool != VK_NULL_HANDLE) + { + VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector; + return AllocateMemoryOfType( + createInfoFinal.pool, + vkMemReq.size, + vkMemReq.alignment, + prefersDedicatedAllocation, + dedicatedBuffer, + dedicatedImage, + dedicatedBufferImageUsage, + createInfoFinal, + blockVector.GetMemoryTypeIndex(), + suballocType, + createInfoFinal.pool->m_DedicatedAllocations, + blockVector, + allocationCount, + pAllocations); + } + else + { + // Bit mask of memory Vulkan types acceptable for this allocation. + uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; + uint32_t memTypeIndex = UINT32_MAX; + res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex); + // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. + if(res != VK_SUCCESS) + return res; + do + { + VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(blockVector && "Trying to use unsupported memory type!"); + res = AllocateMemoryOfType( + VK_NULL_HANDLE, + vkMemReq.size, + vkMemReq.alignment, + requiresDedicatedAllocation || prefersDedicatedAllocation, + dedicatedBuffer, + dedicatedImage, + dedicatedBufferImageUsage, + createInfoFinal, + memTypeIndex, + suballocType, + m_DedicatedAllocations[memTypeIndex], + *blockVector, + allocationCount, + pAllocations); + // Allocation succeeded + if(res == VK_SUCCESS) + return VK_SUCCESS; + + // Remove old memTypeIndex from list of possibilities. + memoryTypeBits &= ~(1u << memTypeIndex); + // Find alternative memTypeIndex. + res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex); + } while(res == VK_SUCCESS); + + // No other matching memory type index could be found. + // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } +} + +void VmaAllocator_T::FreeMemory( + size_t allocationCount, + const VmaAllocation* pAllocations) +{ + VMA_ASSERT(pAllocations); + + for(size_t allocIndex = allocationCount; allocIndex--; ) + { + VmaAllocation allocation = pAllocations[allocIndex]; + + if(allocation != VK_NULL_HANDLE) + { + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED); + } + + allocation->FreeName(this); + + switch(allocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaBlockVector* pBlockVector = VMA_NULL; + VmaPool hPool = allocation->GetParentPool(); + if(hPool != VK_NULL_HANDLE) + { + pBlockVector = &hPool->m_BlockVector; + } + else + { + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + pBlockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!"); + } + pBlockVector->Free(allocation); + } + break; + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + FreeDedicatedMemory(allocation); + break; + default: + VMA_ASSERT(0); + } + } + } +} + +void VmaAllocator_T::CalculateStatistics(VmaTotalStatistics* pStats) +{ + // Initialize. + VmaClearDetailedStatistics(pStats->total); + for(uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) + VmaClearDetailedStatistics(pStats->memoryType[i]); + for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) + VmaClearDetailedStatistics(pStats->memoryHeap[i]); + + // Process default pools. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; + if (pBlockVector != VMA_NULL) + pBlockVector->AddDetailedStatistics(pStats->memoryType[memTypeIndex]); + } + + // Process custom pools. + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) + { + VmaBlockVector& blockVector = pool->m_BlockVector; + const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex(); + blockVector.AddDetailedStatistics(pStats->memoryType[memTypeIndex]); + pool->m_DedicatedAllocations.AddDetailedStatistics(pStats->memoryType[memTypeIndex]); + } + } + + // Process dedicated allocations. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + m_DedicatedAllocations[memTypeIndex].AddDetailedStatistics(pStats->memoryType[memTypeIndex]); + } + + // Sum from memory types to memory heaps. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + const uint32_t memHeapIndex = m_MemProps.memoryTypes[memTypeIndex].heapIndex; + VmaAddDetailedStatistics(pStats->memoryHeap[memHeapIndex], pStats->memoryType[memTypeIndex]); + } + + // Sum from memory heaps to total. + for(uint32_t memHeapIndex = 0; memHeapIndex < GetMemoryHeapCount(); ++memHeapIndex) + VmaAddDetailedStatistics(pStats->total, pStats->memoryHeap[memHeapIndex]); + + VMA_ASSERT(pStats->total.statistics.allocationCount == 0 || + pStats->total.allocationSizeMax >= pStats->total.allocationSizeMin); + VMA_ASSERT(pStats->total.unusedRangeCount == 0 || + pStats->total.unusedRangeSizeMax >= pStats->total.unusedRangeSizeMin); +} + +void VmaAllocator_T::GetHeapBudgets(VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount) +{ +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) + { + if(m_Budget.m_OperationsSinceBudgetFetch < 30) + { + VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex); + for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets) + { + const uint32_t heapIndex = firstHeap + i; + + outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex]; + outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex]; + outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex]; + outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; + + if(m_Budget.m_VulkanUsage[heapIndex] + outBudgets->statistics.blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]) + { + outBudgets->usage = m_Budget.m_VulkanUsage[heapIndex] + + outBudgets->statistics.blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; + } + else + { + outBudgets->usage = 0; + } + + // Have to take MIN with heap size because explicit HeapSizeLimit is included in it. + outBudgets->budget = VMA_MIN( + m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size); + } + } + else + { + UpdateVulkanBudget(); // Outside of mutex lock + GetHeapBudgets(outBudgets, firstHeap, heapCount); // Recursion + } + } + else +#endif + { + for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets) + { + const uint32_t heapIndex = firstHeap + i; + + outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex]; + outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex]; + outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex]; + outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; + + outBudgets->usage = outBudgets->statistics.blockBytes; + outBudgets->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. + } + } +} + +void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo) +{ + pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); + pAllocationInfo->deviceMemory = hAllocation->GetMemory(); + pAllocationInfo->offset = hAllocation->GetOffset(); + pAllocationInfo->size = hAllocation->GetSize(); + pAllocationInfo->pMappedData = hAllocation->GetMappedData(); + pAllocationInfo->pUserData = hAllocation->GetUserData(); + pAllocationInfo->pName = hAllocation->GetName(); +} + +VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool) +{ + VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags); + + VmaPoolCreateInfo newCreateInfo = *pCreateInfo; + + // Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash. + if(pCreateInfo->pMemoryAllocateNext) + { + VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0); + } + + if(newCreateInfo.maxBlockCount == 0) + { + newCreateInfo.maxBlockCount = SIZE_MAX; + } + if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + // Memory type index out of range or forbidden. + if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() || + ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0) + { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + if(newCreateInfo.minAllocationAlignment > 0) + { + VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment)); + } + + const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); + + *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); + + VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); + if(res != VK_SUCCESS) + { + vma_delete(this, *pPool); + *pPool = VMA_NULL; + return res; + } + + // Add to m_Pools. + { + VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); + (*pPool)->SetId(m_NextPoolId++); + m_Pools.PushBack(*pPool); + } + + return VK_SUCCESS; +} + +void VmaAllocator_T::DestroyPool(VmaPool pool) +{ + // Remove from m_Pools. + { + VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); + m_Pools.Remove(pool); + } + + vma_delete(this, pool); +} + +void VmaAllocator_T::GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats) +{ + VmaClearStatistics(*pPoolStats); + pool->m_BlockVector.AddStatistics(*pPoolStats); + pool->m_DedicatedAllocations.AddStatistics(*pPoolStats); +} + +void VmaAllocator_T::CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats) +{ + VmaClearDetailedStatistics(*pPoolStats); + pool->m_BlockVector.AddDetailedStatistics(*pPoolStats); + pool->m_DedicatedAllocations.AddDetailedStatistics(*pPoolStats); +} + +void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) +{ + m_CurrentFrameIndex.store(frameIndex); + +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) + { + UpdateVulkanBudget(); + } +#endif // #if VMA_MEMORY_BUDGET +} + +VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) +{ + return hPool->m_BlockVector.CheckCorruption(); +} + +VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) +{ + VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT; + + // Process default pools. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; + if(pBlockVector != VMA_NULL) + { + VkResult localRes = pBlockVector->CheckCorruption(); + switch(localRes) + { + case VK_ERROR_FEATURE_NOT_PRESENT: + break; + case VK_SUCCESS: + finalRes = VK_SUCCESS; + break; + default: + return localRes; + } + } + } + + // Process custom pools. + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) + { + if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) + { + VkResult localRes = pool->m_BlockVector.CheckCorruption(); + switch(localRes) + { + case VK_ERROR_FEATURE_NOT_PRESENT: + break; + case VK_SUCCESS: + finalRes = VK_SUCCESS; + break; + default: + return localRes; + } + } + } + } + + return finalRes; +} + +VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory) +{ + AtomicTransactionalIncrement deviceMemoryCountIncrement; + const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount); +#if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT + if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount) + { + return VK_ERROR_TOO_MANY_OBJECTS; + } +#endif + + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex); + + // HeapSizeLimit is in effect for this heap. + if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0) + { + const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; + VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex]; + for(;;) + { + const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize; + if(blockBytesAfterAllocation > heapSize) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation)) + { + break; + } + } + } + else + { + m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize; + } + ++m_Budget.m_BlockCount[heapIndex]; + + // VULKAN CALL vkAllocateMemory. + VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); + + if(res == VK_SUCCESS) + { +#if VMA_MEMORY_BUDGET + ++m_Budget.m_OperationsSinceBudgetFetch; +#endif + + // Informative callback. + if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) + { + (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData); + } + + deviceMemoryCountIncrement.Commit(); + } + else + { + --m_Budget.m_BlockCount[heapIndex]; + m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize; + } + + return res; +} + +void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) +{ + // Informative callback. + if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) + { + (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData); + } + + // VULKAN CALL vkFreeMemory. + (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks()); + + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType); + --m_Budget.m_BlockCount[heapIndex]; + m_Budget.m_BlockBytes[heapIndex] -= size; + + --m_DeviceMemoryCount; +} + +VkResult VmaAllocator_T::BindVulkanBuffer( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkBuffer buffer, + const void* pNext) +{ + if(pNext != VMA_NULL) + { +#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 + if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && + m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL) + { + VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR }; + bindBufferMemoryInfo.pNext = pNext; + bindBufferMemoryInfo.buffer = buffer; + bindBufferMemoryInfo.memory = memory; + bindBufferMemoryInfo.memoryOffset = memoryOffset; + return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); + } + else +#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 + { + return VK_ERROR_EXTENSION_NOT_PRESENT; + } + } + else + { + return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset); + } +} + +VkResult VmaAllocator_T::BindVulkanImage( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkImage image, + const void* pNext) +{ + if(pNext != VMA_NULL) + { +#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 + if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && + m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL) + { + VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR }; + bindBufferMemoryInfo.pNext = pNext; + bindBufferMemoryInfo.image = image; + bindBufferMemoryInfo.memory = memory; + bindBufferMemoryInfo.memoryOffset = memoryOffset; + return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); + } + else +#endif // #if VMA_BIND_MEMORY2 + { + return VK_ERROR_EXTENSION_NOT_PRESENT; + } + } + else + { + return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset); + } +} + +VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData) +{ + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + char *pBytes = VMA_NULL; + VkResult res = pBlock->Map(this, 1, (void**)&pBytes); + if(res == VK_SUCCESS) + { + *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset(); + hAllocation->BlockAllocMap(); + } + return res; + } + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + return hAllocation->DedicatedAllocMap(this, ppData); + default: + VMA_ASSERT(0); + return VK_ERROR_MEMORY_MAP_FAILED; + } +} + +void VmaAllocator_T::Unmap(VmaAllocation hAllocation) +{ + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + hAllocation->BlockAllocUnmap(); + pBlock->Unmap(this, 1); + } + break; + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + hAllocation->DedicatedAllocUnmap(this); + break; + default: + VMA_ASSERT(0); + } +} + +VkResult VmaAllocator_T::BindBufferMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext) +{ + VkResult res = VK_SUCCESS; + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext); + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block."); + res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext); + break; + } + default: + VMA_ASSERT(0); + } + return res; +} + +VkResult VmaAllocator_T::BindImageMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext) +{ + VkResult res = VK_SUCCESS; + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext); + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); + VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block."); + res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext); + break; + } + default: + VMA_ASSERT(0); + } + return res; +} + +VkResult VmaAllocator_T::FlushOrInvalidateAllocation( + VmaAllocation hAllocation, + VkDeviceSize offset, VkDeviceSize size, + VMA_CACHE_OPERATION op) +{ + VkResult res = VK_SUCCESS; + + VkMappedMemoryRange memRange = {}; + if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange)) + { + switch(op) + { + case VMA_CACHE_FLUSH: + res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange); + break; + case VMA_CACHE_INVALIDATE: + res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange); + break; + default: + VMA_ASSERT(0); + } + } + // else: Just ignore this call. + return res; +} + +VkResult VmaAllocator_T::FlushOrInvalidateAllocations( + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, const VkDeviceSize* sizes, + VMA_CACHE_OPERATION op) +{ + typedef VmaStlAllocator RangeAllocator; + typedef VmaSmallVector RangeVector; + RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks())); + + for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + const VmaAllocation alloc = allocations[allocIndex]; + const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0; + const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE; + VkMappedMemoryRange newRange; + if(GetFlushOrInvalidateRange(alloc, offset, size, newRange)) + { + ranges.push_back(newRange); + } + } + + VkResult res = VK_SUCCESS; + if(!ranges.empty()) + { + switch(op) + { + case VMA_CACHE_FLUSH: + res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); + break; + case VMA_CACHE_INVALIDATE: + res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); + break; + default: + VMA_ASSERT(0); + } + } + // else: Just ignore this call. + return res; +} + +void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation) +{ + VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + VmaPool parentPool = allocation->GetParentPool(); + if(parentPool == VK_NULL_HANDLE) + { + // Default pool + m_DedicatedAllocations[memTypeIndex].Unregister(allocation); + } + else + { + // Custom pool + parentPool->m_DedicatedAllocations.Unregister(allocation); + } + + VkDeviceMemory hMemory = allocation->GetMemory(); + + /* + There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory + before vkFreeMemory. + + if(allocation->GetMappedData() != VMA_NULL) + { + (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); + } + */ + + FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory); + + m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize()); + m_AllocationObjectAllocator.Free(allocation); + + VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex); +} + +uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const +{ + VkBufferCreateInfo dummyBufCreateInfo; + VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo); + + uint32_t memoryTypeBits = 0; + + // Create buffer. + VkBuffer buf = VK_NULL_HANDLE; + VkResult res = (*GetVulkanFunctions().vkCreateBuffer)( + m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf); + if(res == VK_SUCCESS) + { + // Query for supported memory types. + VkMemoryRequirements memReq; + (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq); + memoryTypeBits = memReq.memoryTypeBits; + + // Destroy buffer. + (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks()); + } + + return memoryTypeBits; +} + +uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const +{ + // Make sure memory information is already fetched. + VMA_ASSERT(GetMemoryTypeCount() > 0); + + uint32_t memoryTypeBits = UINT32_MAX; + + if(!m_UseAmdDeviceCoherentMemory) + { + // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0) + { + memoryTypeBits &= ~(1u << memTypeIndex); + } + } + } + + return memoryTypeBits; +} + +bool VmaAllocator_T::GetFlushOrInvalidateRange( + VmaAllocation allocation, + VkDeviceSize offset, VkDeviceSize size, + VkMappedMemoryRange& outRange) const +{ + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) + { + const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; + const VkDeviceSize allocationSize = allocation->GetSize(); + VMA_ASSERT(offset <= allocationSize); + + outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; + outRange.pNext = VMA_NULL; + outRange.memory = allocation->GetMemory(); + + switch(allocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); + if(size == VK_WHOLE_SIZE) + { + outRange.size = allocationSize - outRange.offset; + } + else + { + VMA_ASSERT(offset + size <= allocationSize); + outRange.size = VMA_MIN( + VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize), + allocationSize - outRange.offset); + } + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + // 1. Still within this allocation. + outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); + if(size == VK_WHOLE_SIZE) + { + size = allocationSize - offset; + } + else + { + VMA_ASSERT(offset + size <= allocationSize); + } + outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize); + + // 2. Adjust to whole block. + const VkDeviceSize allocationOffset = allocation->GetOffset(); + VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0); + const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize(); + outRange.offset += allocationOffset; + outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset); + + break; + } + default: + VMA_ASSERT(0); + } + return true; + } + return false; +} + +#if VMA_MEMORY_BUDGET +void VmaAllocator_T::UpdateVulkanBudget() +{ + VMA_ASSERT(m_UseExtMemoryBudget); + + VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR }; + + VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT }; + VmaPnextChainPushFront(&memProps, &budgetProps); + + GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps); + + { + VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex); + + for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) + { + m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex]; + m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex]; + m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load(); + + // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size. + if(m_Budget.m_VulkanBudget[heapIndex] == 0) + { + m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. + } + else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size) + { + m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size; + } + if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0) + { + m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; + } + } + m_Budget.m_OperationsSinceBudgetFetch = 0; + } +} +#endif // VMA_MEMORY_BUDGET + +void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) +{ + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS && + hAllocation->IsMappingAllowed() && + (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) + { + void* pData = VMA_NULL; + VkResult res = Map(hAllocation, &pData); + if(res == VK_SUCCESS) + { + memset(pData, (int)pattern, (size_t)hAllocation->GetSize()); + FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH); + Unmap(hAllocation); + } + else + { + VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation."); + } + } +} + +uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits() +{ + uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load(); + if(memoryTypeBits == UINT32_MAX) + { + memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits(); + m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits); + } + return memoryTypeBits; +} + +#if VMA_STATS_STRING_ENABLED +void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) +{ + json.WriteString("DefaultPools"); + json.BeginObject(); + { + for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex]; + VmaDedicatedAllocationList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex]; + if (pBlockVector != VMA_NULL) + { + json.BeginString("Type "); + json.ContinueString(memTypeIndex); + json.EndString(); + json.BeginObject(); + { + json.WriteString("PreferredBlockSize"); + json.WriteNumber(pBlockVector->GetPreferredBlockSize()); + + json.WriteString("Blocks"); + pBlockVector->PrintDetailedMap(json); + + json.WriteString("DedicatedAllocations"); + dedicatedAllocList.BuildStatsString(json); + } + json.EndObject(); + } + } + } + json.EndObject(); + + json.WriteString("CustomPools"); + json.BeginObject(); + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + if (!m_Pools.IsEmpty()) + { + for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + bool displayType = true; + size_t index = 0; + for (VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) + { + VmaBlockVector& blockVector = pool->m_BlockVector; + if (blockVector.GetMemoryTypeIndex() == memTypeIndex) + { + if (displayType) + { + json.BeginString("Type "); + json.ContinueString(memTypeIndex); + json.EndString(); + json.BeginArray(); + displayType = false; + } + + json.BeginObject(); + { + json.WriteString("Name"); + json.BeginString(); + json.ContinueString_Size(index++); + if (pool->GetName()) + { + json.ContinueString(" - "); + json.ContinueString(pool->GetName()); + } + json.EndString(); + + json.WriteString("PreferredBlockSize"); + json.WriteNumber(blockVector.GetPreferredBlockSize()); + + json.WriteString("Blocks"); + blockVector.PrintDetailedMap(json); + + json.WriteString("DedicatedAllocations"); + pool->m_DedicatedAllocations.BuildStatsString(json); + } + json.EndObject(); + } + } + + if (!displayType) + json.EndArray(); + } + } + } + json.EndObject(); +} +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_ALLOCATOR_T_FUNCTIONS + + +#ifndef _VMA_PUBLIC_INTERFACE +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( + const VmaAllocatorCreateInfo* pCreateInfo, + VmaAllocator* pAllocator) +{ + VMA_ASSERT(pCreateInfo && pAllocator); + VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 || + (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 3)); + VMA_DEBUG_LOG("vmaCreateAllocator"); + *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo); + VkResult result = (*pAllocator)->Init(pCreateInfo); + if(result < 0) + { + vma_delete(pCreateInfo->pAllocationCallbacks, *pAllocator); + *pAllocator = VK_NULL_HANDLE; + } + return result; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( + VmaAllocator allocator) +{ + if(allocator != VK_NULL_HANDLE) + { + VMA_DEBUG_LOG("vmaDestroyAllocator"); + VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; // Have to copy the callbacks when destroying. + vma_delete(&allocationCallbacks, allocator); + } +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo) +{ + VMA_ASSERT(allocator && pAllocatorInfo); + pAllocatorInfo->instance = allocator->m_hInstance; + pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice(); + pAllocatorInfo->device = allocator->m_hDevice; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( + VmaAllocator allocator, + const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties) +{ + VMA_ASSERT(allocator && ppPhysicalDeviceProperties); + *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( + VmaAllocator allocator, + const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties) +{ + VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties); + *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( + VmaAllocator allocator, + uint32_t memoryTypeIndex, + VkMemoryPropertyFlags* pFlags) +{ + VMA_ASSERT(allocator && pFlags); + VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount()); + *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( + VmaAllocator allocator, + uint32_t frameIndex) +{ + VMA_ASSERT(allocator); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->SetCurrentFrameIndex(frameIndex); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics( + VmaAllocator allocator, + VmaTotalStatistics* pStats) +{ + VMA_ASSERT(allocator && pStats); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + allocator->CalculateStatistics(pStats); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets( + VmaAllocator allocator, + VmaBudget* pBudgets) +{ + VMA_ASSERT(allocator && pBudgets); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + allocator->GetHeapBudgets(pBudgets, 0, allocator->GetMemoryHeapCount()); +} + +#if VMA_STATS_STRING_ENABLED + +VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( + VmaAllocator allocator, + char** ppStatsString, + VkBool32 detailedMap) +{ + VMA_ASSERT(allocator && ppStatsString); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VmaStringBuilder sb(allocator->GetAllocationCallbacks()); + { + VmaBudget budgets[VK_MAX_MEMORY_HEAPS]; + allocator->GetHeapBudgets(budgets, 0, allocator->GetMemoryHeapCount()); + + VmaTotalStatistics stats; + allocator->CalculateStatistics(&stats); + + VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb); + json.BeginObject(); + { + json.WriteString("General"); + json.BeginObject(); + { + const VkPhysicalDeviceProperties& deviceProperties = allocator->m_PhysicalDeviceProperties; + const VkPhysicalDeviceMemoryProperties& memoryProperties = allocator->m_MemProps; + + json.WriteString("API"); + json.WriteString("Vulkan"); + + json.WriteString("apiVersion"); + json.BeginString(); + json.ContinueString(VK_API_VERSION_MAJOR(deviceProperties.apiVersion)); + json.ContinueString("."); + json.ContinueString(VK_API_VERSION_MINOR(deviceProperties.apiVersion)); + json.ContinueString("."); + json.ContinueString(VK_API_VERSION_PATCH(deviceProperties.apiVersion)); + json.EndString(); + + json.WriteString("GPU"); + json.WriteString(deviceProperties.deviceName); + json.WriteString("deviceType"); + json.WriteNumber(static_cast(deviceProperties.deviceType)); + + json.WriteString("maxMemoryAllocationCount"); + json.WriteNumber(deviceProperties.limits.maxMemoryAllocationCount); + json.WriteString("bufferImageGranularity"); + json.WriteNumber(deviceProperties.limits.bufferImageGranularity); + json.WriteString("nonCoherentAtomSize"); + json.WriteNumber(deviceProperties.limits.nonCoherentAtomSize); + + json.WriteString("memoryHeapCount"); + json.WriteNumber(memoryProperties.memoryHeapCount); + json.WriteString("memoryTypeCount"); + json.WriteNumber(memoryProperties.memoryTypeCount); + } + json.EndObject(); + } + { + json.WriteString("Total"); + VmaPrintDetailedStatistics(json, stats.total); + } + { + json.WriteString("MemoryInfo"); + json.BeginObject(); + { + for (uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) + { + json.BeginString("Heap "); + json.ContinueString(heapIndex); + json.EndString(); + json.BeginObject(); + { + const VkMemoryHeap& heapInfo = allocator->m_MemProps.memoryHeaps[heapIndex]; + json.WriteString("Flags"); + json.BeginArray(true); + { + if (heapInfo.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) + json.WriteString("DEVICE_LOCAL"); + #if VMA_VULKAN_VERSION >= 1001000 + if (heapInfo.flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT) + json.WriteString("MULTI_INSTANCE"); + #endif + + VkMemoryHeapFlags flags = heapInfo.flags & + ~(VK_MEMORY_HEAP_DEVICE_LOCAL_BIT + #if VMA_VULKAN_VERSION >= 1001000 + | VK_MEMORY_HEAP_MULTI_INSTANCE_BIT + #endif + ); + if (flags != 0) + json.WriteNumber(flags); + } + json.EndArray(); + + json.WriteString("Size"); + json.WriteNumber(heapInfo.size); + + json.WriteString("Budget"); + json.BeginObject(); + { + json.WriteString("BudgetBytes"); + json.WriteNumber(budgets[heapIndex].budget); + json.WriteString("UsageBytes"); + json.WriteNumber(budgets[heapIndex].usage); + } + json.EndObject(); + + json.WriteString("Stats"); + VmaPrintDetailedStatistics(json, stats.memoryHeap[heapIndex]); + + json.WriteString("MemoryPools"); + json.BeginObject(); + { + for (uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) + { + if (allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) + { + json.BeginString("Type "); + json.ContinueString(typeIndex); + json.EndString(); + json.BeginObject(); + { + json.WriteString("Flags"); + json.BeginArray(true); + { + VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags; + if (flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) + json.WriteString("DEVICE_LOCAL"); + if (flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) + json.WriteString("HOST_VISIBLE"); + if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) + json.WriteString("HOST_COHERENT"); + if (flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) + json.WriteString("HOST_CACHED"); + if (flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) + json.WriteString("LAZILY_ALLOCATED"); + #if VMA_VULKAN_VERSION >= 1001000 + if (flags & VK_MEMORY_PROPERTY_PROTECTED_BIT) + json.WriteString("PROTECTED"); + #endif + #if VK_AMD_device_coherent_memory + if (flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) + json.WriteString("DEVICE_COHERENT_AMD"); + if (flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY) + json.WriteString("DEVICE_UNCACHED_AMD"); + #endif + + flags &= ~(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT + #if VMA_VULKAN_VERSION >= 1001000 + | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT + #endif + #if VK_AMD_device_coherent_memory + | VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY + | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY + #endif + | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT + | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT + | VK_MEMORY_PROPERTY_HOST_CACHED_BIT); + if (flags != 0) + json.WriteNumber(flags); + } + json.EndArray(); + + json.WriteString("Stats"); + VmaPrintDetailedStatistics(json, stats.memoryType[typeIndex]); + } + json.EndObject(); + } + } + + } + json.EndObject(); + } + json.EndObject(); + } + } + json.EndObject(); + } + + if (detailedMap == VK_TRUE) + allocator->PrintDetailedMap(json); + + json.EndObject(); + } + + *ppStatsString = VmaCreateStringCopy(allocator->GetAllocationCallbacks(), sb.GetData(), sb.GetLength()); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( + VmaAllocator allocator, + char* pStatsString) +{ + if(pStatsString != VMA_NULL) + { + VMA_ASSERT(allocator); + VmaFreeString(allocator->GetAllocationCallbacks(), pStatsString); + } +} + +#endif // VMA_STATS_STRING_ENABLED + +/* +This function is not protected by any mutex because it just reads immutable data. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( + VmaAllocator allocator, + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) +{ + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + return allocator->FindMemoryTypeIndex(memoryTypeBits, pAllocationCreateInfo, UINT32_MAX, pMemoryTypeIndex); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) +{ + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pBufferCreateInfo != VMA_NULL); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + const VkDevice hDev = allocator->m_hDevice; + const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions(); + VkResult res; + +#if VMA_VULKAN_VERSION >= 1003000 + if(funcs->vkGetDeviceBufferMemoryRequirements) + { + // Can query straight from VkBufferCreateInfo :) + VkDeviceBufferMemoryRequirements devBufMemReq = {VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS}; + devBufMemReq.pCreateInfo = pBufferCreateInfo; + + VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2}; + (*funcs->vkGetDeviceBufferMemoryRequirements)(hDev, &devBufMemReq, &memReq); + + res = allocator->FindMemoryTypeIndex( + memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, pBufferCreateInfo->usage, pMemoryTypeIndex); + } + else +#endif // #if VMA_VULKAN_VERSION >= 1003000 + { + // Must create a dummy buffer to query :( + VkBuffer hBuffer = VK_NULL_HANDLE; + res = funcs->vkCreateBuffer( + hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer); + if(res == VK_SUCCESS) + { + VkMemoryRequirements memReq = {}; + funcs->vkGetBufferMemoryRequirements(hDev, hBuffer, &memReq); + + res = allocator->FindMemoryTypeIndex( + memReq.memoryTypeBits, pAllocationCreateInfo, pBufferCreateInfo->usage, pMemoryTypeIndex); + + funcs->vkDestroyBuffer( + hDev, hBuffer, allocator->GetAllocationCallbacks()); + } + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( + VmaAllocator allocator, + const VkImageCreateInfo* pImageCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) +{ + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pImageCreateInfo != VMA_NULL); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + const VkDevice hDev = allocator->m_hDevice; + const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions(); + VkResult res; + +#if VMA_VULKAN_VERSION >= 1003000 + if(funcs->vkGetDeviceImageMemoryRequirements) + { + // Can query straight from VkImageCreateInfo :) + VkDeviceImageMemoryRequirements devImgMemReq = {VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS}; + devImgMemReq.pCreateInfo = pImageCreateInfo; + VMA_ASSERT(pImageCreateInfo->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY && (pImageCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_COPY) == 0 && + "Cannot use this VkImageCreateInfo with vmaFindMemoryTypeIndexForImageInfo as I don't know what to pass as VkDeviceImageMemoryRequirements::planeAspect."); + + VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2}; + (*funcs->vkGetDeviceImageMemoryRequirements)(hDev, &devImgMemReq, &memReq); + + res = allocator->FindMemoryTypeIndex( + memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, pImageCreateInfo->usage, pMemoryTypeIndex); + } + else +#endif // #if VMA_VULKAN_VERSION >= 1003000 + { + // Must create a dummy image to query :( + VkImage hImage = VK_NULL_HANDLE; + res = funcs->vkCreateImage( + hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage); + if(res == VK_SUCCESS) + { + VkMemoryRequirements memReq = {}; + funcs->vkGetImageMemoryRequirements(hDev, hImage, &memReq); + + res = allocator->FindMemoryTypeIndex( + memReq.memoryTypeBits, pAllocationCreateInfo, pImageCreateInfo->usage, pMemoryTypeIndex); + + funcs->vkDestroyImage( + hDev, hImage, allocator->GetAllocationCallbacks()); + } + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( + VmaAllocator allocator, + const VmaPoolCreateInfo* pCreateInfo, + VmaPool* pPool) +{ + VMA_ASSERT(allocator && pCreateInfo && pPool); + + VMA_DEBUG_LOG("vmaCreatePool"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->CreatePool(pCreateInfo, pPool); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( + VmaAllocator allocator, + VmaPool pool) +{ + VMA_ASSERT(allocator); + + if(pool == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaDestroyPool"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->DestroyPool(pool); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics( + VmaAllocator allocator, + VmaPool pool, + VmaStatistics* pPoolStats) +{ + VMA_ASSERT(allocator && pool && pPoolStats); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->GetPoolStatistics(pool, pPoolStats); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics( + VmaAllocator allocator, + VmaPool pool, + VmaDetailedStatistics* pPoolStats) +{ + VMA_ASSERT(allocator && pool && pPoolStats); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->CalculatePoolStatistics(pool, pPoolStats); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) +{ + VMA_ASSERT(allocator && pool); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VMA_DEBUG_LOG("vmaCheckPoolCorruption"); + + return allocator->CheckPoolCorruption(pool); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( + VmaAllocator allocator, + VmaPool pool, + const char** ppName) +{ + VMA_ASSERT(allocator && pool && ppName); + + VMA_DEBUG_LOG("vmaGetPoolName"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *ppName = pool->GetName(); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( + VmaAllocator allocator, + VmaPool pool, + const char* pName) +{ + VMA_ASSERT(allocator && pool); + + VMA_DEBUG_LOG("vmaSetPoolName"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + pool->SetName(pName); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( + VmaAllocator allocator, + const VkMemoryRequirements* pVkMemoryRequirements, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult result = allocator->AllocateMemory( + *pVkMemoryRequirements, + false, // requiresDedicatedAllocation + false, // prefersDedicatedAllocation + VK_NULL_HANDLE, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + UINT32_MAX, // dedicatedBufferImageUsage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_UNKNOWN, + 1, // allocationCount + pAllocation); + + if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( + VmaAllocator allocator, + const VkMemoryRequirements* pVkMemoryRequirements, + const VmaAllocationCreateInfo* pCreateInfo, + size_t allocationCount, + VmaAllocation* pAllocations, + VmaAllocationInfo* pAllocationInfo) +{ + if(allocationCount == 0) + { + return VK_SUCCESS; + } + + VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations); + + VMA_DEBUG_LOG("vmaAllocateMemoryPages"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult result = allocator->AllocateMemory( + *pVkMemoryRequirements, + false, // requiresDedicatedAllocation + false, // prefersDedicatedAllocation + VK_NULL_HANDLE, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + UINT32_MAX, // dedicatedBufferImageUsage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_UNKNOWN, + allocationCount, + pAllocations); + + if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) + { + for(size_t i = 0; i < allocationCount; ++i) + { + allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i); + } + } + + return result; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( + VmaAllocator allocator, + VkBuffer buffer, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(buffer, vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation); + + VkResult result = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + buffer, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + UINT32_MAX, // dedicatedBufferImageUsage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + + if(pAllocationInfo && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( + VmaAllocator allocator, + VkImage image, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemoryForImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetImageMemoryRequirements(image, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + VkResult result = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + VK_NULL_HANDLE, // dedicatedBuffer + image, // dedicatedImage + UINT32_MAX, // dedicatedBufferImageUsage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN, + 1, // allocationCount + pAllocation); + + if(pAllocationInfo && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( + VmaAllocator allocator, + VmaAllocation allocation) +{ + VMA_ASSERT(allocator); + + if(allocation == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaFreeMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->FreeMemory( + 1, // allocationCount + &allocation); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( + VmaAllocator allocator, + size_t allocationCount, + const VmaAllocation* pAllocations) +{ + if(allocationCount == 0) + { + return; + } + + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaFreeMemoryPages"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->FreeMemory(allocationCount, pAllocations); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( + VmaAllocator allocator, + VmaAllocation allocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && allocation && pAllocationInfo); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->GetAllocationInfo(allocation, pAllocationInfo); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( + VmaAllocator allocator, + VmaAllocation allocation, + void* pUserData) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocation->SetUserData(allocator, pUserData); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const char* VMA_NULLABLE pName) +{ + allocation->SetName(allocator, pName); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkMemoryPropertyFlags* VMA_NOT_NULL pFlags) +{ + VMA_ASSERT(allocator && allocation && pFlags); + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + *pFlags = allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( + VmaAllocator allocator, + VmaAllocation allocation, + void** ppData) +{ + VMA_ASSERT(allocator && allocation && ppData); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->Map(allocation, ppData); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( + VmaAllocator allocator, + VmaAllocation allocation) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->Unmap(allocation); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize offset, + VkDeviceSize size) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_LOG("vmaFlushAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH); + + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize offset, + VkDeviceSize size) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_LOG("vmaInvalidateAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE); + + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( + VmaAllocator allocator, + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, + const VkDeviceSize* sizes) +{ + VMA_ASSERT(allocator); + + if(allocationCount == 0) + { + return VK_SUCCESS; + } + + VMA_ASSERT(allocations); + + VMA_DEBUG_LOG("vmaFlushAllocations"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH); + + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( + VmaAllocator allocator, + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, + const VkDeviceSize* sizes) +{ + VMA_ASSERT(allocator); + + if(allocationCount == 0) + { + return VK_SUCCESS; + } + + VMA_ASSERT(allocations); + + VMA_DEBUG_LOG("vmaInvalidateAllocations"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE); + + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption( + VmaAllocator allocator, + uint32_t memoryTypeBits) +{ + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaCheckCorruption"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->CheckCorruption(memoryTypeBits); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation( + VmaAllocator allocator, + const VmaDefragmentationInfo* pInfo, + VmaDefragmentationContext* pContext) +{ + VMA_ASSERT(allocator && pInfo && pContext); + + VMA_DEBUG_LOG("vmaBeginDefragmentation"); + + if (pInfo->pool != VMA_NULL) + { + // Check if run on supported algorithms + if (pInfo->pool->m_BlockVector.GetAlgorithm() & VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pContext = vma_new(allocator, VmaDefragmentationContext_T)(allocator, *pInfo); + return VK_SUCCESS; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation( + VmaAllocator allocator, + VmaDefragmentationContext context, + VmaDefragmentationStats* pStats) +{ + VMA_ASSERT(allocator && context); + + VMA_DEBUG_LOG("vmaEndDefragmentation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + if (pStats) + context->GetStats(*pStats); + vma_delete(allocator, context); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NOT_NULL context, + VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo) +{ + VMA_ASSERT(context && pPassInfo); + + VMA_DEBUG_LOG("vmaBeginDefragmentationPass"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return context->DefragmentPassBegin(*pPassInfo); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NOT_NULL context, + VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo) +{ + VMA_ASSERT(context && pPassInfo); + + VMA_DEBUG_LOG("vmaEndDefragmentationPass"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return context->DefragmentPassEnd(*pPassInfo); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkBuffer buffer) +{ + VMA_ASSERT(allocator && allocation && buffer); + + VMA_DEBUG_LOG("vmaBindBufferMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize allocationLocalOffset, + VkBuffer buffer, + const void* pNext) +{ + VMA_ASSERT(allocator && allocation && buffer); + + VMA_DEBUG_LOG("vmaBindBufferMemory2"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkImage image) +{ + VMA_ASSERT(allocator && allocation && image); + + VMA_DEBUG_LOG("vmaBindImageMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindImageMemory(allocation, 0, image, VMA_NULL); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize allocationLocalOffset, + VkImage image, + const void* pNext) +{ + VMA_ASSERT(allocator && allocation && image); + + VMA_DEBUG_LOG("vmaBindImageMemory2"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkBuffer* pBuffer, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation); + + if(pBufferCreateInfo->size == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && + !allocator->m_UseKhrBufferDeviceAddress) + { + VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); + return VK_ERROR_INITIALIZATION_FAILED; + } + + VMA_DEBUG_LOG("vmaCreateBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pBuffer = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkBuffer. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( + allocator->m_hDevice, + pBufferCreateInfo, + allocator->GetAllocationCallbacks(), + pBuffer); + if(res >= 0) + { + // 2. vkGetBufferMemoryRequirements. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + // 3. Allocate memory using allocator. + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pBuffer, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + pBufferCreateInfo->usage, // dedicatedBufferImageUsage + *pAllocationCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + + if(res >= 0) + { + // 3. Bind buffer with memory. + if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) + { + res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); + } + if(res >= 0) + { + // All steps succeeded. + #if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); + #endif + if(pAllocationInfo != VMA_NULL) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkDeviceSize minAlignment, + VkBuffer* pBuffer, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && VmaIsPow2(minAlignment) && pBuffer && pAllocation); + + if(pBufferCreateInfo->size == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && + !allocator->m_UseKhrBufferDeviceAddress) + { + VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); + return VK_ERROR_INITIALIZATION_FAILED; + } + + VMA_DEBUG_LOG("vmaCreateBufferWithAlignment"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pBuffer = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkBuffer. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( + allocator->m_hDevice, + pBufferCreateInfo, + allocator->GetAllocationCallbacks(), + pBuffer); + if(res >= 0) + { + // 2. vkGetBufferMemoryRequirements. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + // 2a. Include minAlignment + vkMemReq.alignment = VMA_MAX(vkMemReq.alignment, minAlignment); + + // 3. Allocate memory using allocator. + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pBuffer, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + pBufferCreateInfo->usage, // dedicatedBufferImageUsage + *pAllocationCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + + if(res >= 0) + { + // 3. Bind buffer with memory. + if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) + { + res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); + } + if(res >= 0) + { + // All steps succeeded. + #if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); + #endif + if(pAllocationInfo != VMA_NULL) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer) +{ + VMA_ASSERT(allocator && pBufferCreateInfo && pBuffer && allocation); + + VMA_DEBUG_LOG("vmaCreateAliasingBuffer"); + + *pBuffer = VK_NULL_HANDLE; + + if (pBufferCreateInfo->size == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && + !allocator->m_UseKhrBufferDeviceAddress) + { + VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); + return VK_ERROR_INITIALIZATION_FAILED; + } + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + // 1. Create VkBuffer. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( + allocator->m_hDevice, + pBufferCreateInfo, + allocator->GetAllocationCallbacks(), + pBuffer); + if (res >= 0) + { + // 2. Bind buffer with memory. + res = allocator->BindBufferMemory(allocation, 0, *pBuffer, VMA_NULL); + if (res >= 0) + { + return VK_SUCCESS; + } + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + } + return res; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( + VmaAllocator allocator, + VkBuffer buffer, + VmaAllocation allocation) +{ + VMA_ASSERT(allocator); + + if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaDestroyBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + if(buffer != VK_NULL_HANDLE) + { + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks()); + } + + if(allocation != VK_NULL_HANDLE) + { + allocator->FreeMemory( + 1, // allocationCount + &allocation); + } +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( + VmaAllocator allocator, + const VkImageCreateInfo* pImageCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkImage* pImage, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation); + + if(pImageCreateInfo->extent.width == 0 || + pImageCreateInfo->extent.height == 0 || + pImageCreateInfo->extent.depth == 0 || + pImageCreateInfo->mipLevels == 0 || + pImageCreateInfo->arrayLayers == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + + VMA_DEBUG_LOG("vmaCreateImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pImage = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkImage. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( + allocator->m_hDevice, + pImageCreateInfo, + allocator->GetAllocationCallbacks(), + pImage); + if(res >= 0) + { + VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ? + VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL : + VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR; + + // 2. Allocate memory using allocator. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetImageMemoryRequirements(*pImage, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + VK_NULL_HANDLE, // dedicatedBuffer + *pImage, // dedicatedImage + pImageCreateInfo->usage, // dedicatedBufferImageUsage + *pAllocationCreateInfo, + suballocType, + 1, // allocationCount + pAllocation); + + if(res >= 0) + { + // 3. Bind image with memory. + if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) + { + res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL); + } + if(res >= 0) + { + // All steps succeeded. + #if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage); + #endif + if(pAllocationInfo != VMA_NULL) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + *pImage = VK_NULL_HANDLE; + return res; + } + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + *pImage = VK_NULL_HANDLE; + return res; + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage) +{ + VMA_ASSERT(allocator && pImageCreateInfo && pImage && allocation); + + *pImage = VK_NULL_HANDLE; + + VMA_DEBUG_LOG("vmaCreateImage"); + + if (pImageCreateInfo->extent.width == 0 || + pImageCreateInfo->extent.height == 0 || + pImageCreateInfo->extent.depth == 0 || + pImageCreateInfo->mipLevels == 0 || + pImageCreateInfo->arrayLayers == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + // 1. Create VkImage. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( + allocator->m_hDevice, + pImageCreateInfo, + allocator->GetAllocationCallbacks(), + pImage); + if (res >= 0) + { + // 2. Bind image with memory. + res = allocator->BindImageMemory(allocation, 0, *pImage, VMA_NULL); + if (res >= 0) + { + return VK_SUCCESS; + } + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + } + return res; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( + VmaAllocator VMA_NOT_NULL allocator, + VkImage VMA_NULLABLE_NON_DISPATCHABLE image, + VmaAllocation VMA_NULLABLE allocation) +{ + VMA_ASSERT(allocator); + + if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaDestroyImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + if(image != VK_NULL_HANDLE) + { + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks()); + } + if(allocation != VK_NULL_HANDLE) + { + allocator->FreeMemory( + 1, // allocationCount + &allocation); + } +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock( + const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock) +{ + VMA_ASSERT(pCreateInfo && pVirtualBlock); + VMA_ASSERT(pCreateInfo->size > 0); + VMA_DEBUG_LOG("vmaCreateVirtualBlock"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + *pVirtualBlock = vma_new(pCreateInfo->pAllocationCallbacks, VmaVirtualBlock_T)(*pCreateInfo); + VkResult res = (*pVirtualBlock)->Init(); + if(res < 0) + { + vma_delete(pCreateInfo->pAllocationCallbacks, *pVirtualBlock); + *pVirtualBlock = VK_NULL_HANDLE; + } + return res; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock) +{ + if(virtualBlock != VK_NULL_HANDLE) + { + VMA_DEBUG_LOG("vmaDestroyVirtualBlock"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + VkAllocationCallbacks allocationCallbacks = virtualBlock->m_AllocationCallbacks; // Have to copy the callbacks when destroying. + vma_delete(&allocationCallbacks, virtualBlock); + } +} + +VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaIsVirtualBlockEmpty"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + return virtualBlock->IsEmpty() ? VK_TRUE : VK_FALSE; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL); + VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->GetAllocationInfo(allocation, *pVirtualAllocInfo); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, + VkDeviceSize* VMA_NULLABLE pOffset) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pAllocation != VMA_NULL); + VMA_DEBUG_LOG("vmaVirtualAllocate"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + return virtualBlock->Allocate(*pCreateInfo, *pAllocation, pOffset); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation) +{ + if(allocation != VK_NULL_HANDLE) + { + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaVirtualFree"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->Free(allocation); + } +} + +VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaClearVirtualBlock"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->Clear(); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->SetAllocationUserData(allocation, pUserData); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaStatistics* VMA_NOT_NULL pStats) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL); + VMA_DEBUG_LOG("vmaGetVirtualBlockStatistics"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->GetStatistics(*pStats); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaDetailedStatistics* VMA_NOT_NULL pStats) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL); + VMA_DEBUG_LOG("vmaCalculateVirtualBlockStatistics"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->CalculateDetailedStatistics(*pStats); +} + +#if VMA_STATS_STRING_ENABLED + +VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && ppStatsString != VMA_NULL); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + const VkAllocationCallbacks* allocationCallbacks = virtualBlock->GetAllocationCallbacks(); + VmaStringBuilder sb(allocationCallbacks); + virtualBlock->BuildStatsString(detailedMap != VK_FALSE, sb); + *ppStatsString = VmaCreateStringCopy(allocationCallbacks, sb.GetData(), sb.GetLength()); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE pStatsString) +{ + if(pStatsString != VMA_NULL) + { + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + VmaFreeString(virtualBlock->GetAllocationCallbacks(), pStatsString); + } +} +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_PUBLIC_INTERFACE +#endif // VMA_IMPLEMENTATION + +/** +\page quick_start Quick start + +\section quick_start_project_setup Project setup + +Vulkan Memory Allocator comes in form of a "stb-style" single header file. +You don't need to build it as a separate library project. +You can add this file directly to your project and submit it to code repository next to your other source files. + +"Single header" doesn't mean that everything is contained in C/C++ declarations, +like it tends to be in case of inline functions or C++ templates. +It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro. +If you don't do it properly, you will get linker errors. + +To do it properly: + +-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library. + This includes declarations of all members of the library. +-# In exactly one CPP file define following macro before this include. + It enables also internal definitions. + +\code +#define VMA_IMPLEMENTATION +#include "vk_mem_alloc.h" +\endcode + +It may be a good idea to create dedicated CPP file just for this purpose. + +This library includes header ``, which in turn +includes `` on Windows. If you need some specific macros defined +before including these headers (like `WIN32_LEAN_AND_MEAN` or +`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define +them before every `#include` of this library. + +This library is written in C++, but has C-compatible interface. +Thus you can include and use vk_mem_alloc.h in C or C++ code, but full +implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C. +Some features of C++14 are used. STL containers, RTTI, or C++ exceptions are not used. + + +\section quick_start_initialization Initialization + +At program startup: + +-# Initialize Vulkan to have `VkPhysicalDevice`, `VkDevice` and `VkInstance` object. +-# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by + calling vmaCreateAllocator(). + +Only members `physicalDevice`, `device`, `instance` are required. +However, you should inform the library which Vulkan version do you use by setting +VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable +by setting VmaAllocatorCreateInfo::flags (like #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT for VK_KHR_buffer_device_address). +Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions. + +\subsection quick_start_initialization_selecting_vulkan_version Selecting Vulkan version + +VMA supports Vulkan version down to 1.0, for backward compatibility. +If you want to use higher version, you need to inform the library about it. +This is a two-step proces. + +Step 1: Compile time. By default, VMA compiles with code supporting the highest +Vulkan version found in the included `` that is also supported by the library. +If this is OK, you don't need to do anything. +However, if you want to compile VMA as if only some lower Vulkan version was available, +define macro `VMA_VULKAN_VERSION` before every `#include "vk_mem_alloc.h"`. +It should have decimal numeric value in form of ABBBCCC, where A = major, BBB = minor, CCC = patch Vulkan version. +For example, to compile against Vulkan 1.2: + +\code +#define VMA_VULKAN_VERSION 1002000 // Vulkan 1.2 +#include "vk_mem_alloc.h" +\endcode + +Step 2: Runtime. Even when compiled with higher Vulkan version available, +VMA can use only features of a lower version, which is configurable during creation of the #VmaAllocator object. +By default, only Vulkan 1.0 is used. +To initialize the allocator with support for higher Vulkan version, you need to set member +VmaAllocatorCreateInfo::vulkanApiVersion to an appropriate value, e.g. using constants like `VK_API_VERSION_1_2`. +See code sample below. + +\subsection quick_start_initialization_importing_vulkan_functions Importing Vulkan functions + +You may need to configure importing Vulkan functions. There are 3 ways to do this: + +-# **If you link with Vulkan static library** (e.g. "vulkan-1.lib" on Windows): + - You don't need to do anything. + - VMA will use these, as macro `VMA_STATIC_VULKAN_FUNCTIONS` is defined to 1 by default. +-# **If you want VMA to fetch pointers to Vulkan functions dynamically** using `vkGetInstanceProcAddr`, + `vkGetDeviceProcAddr` (this is the option presented in the example below): + - Define `VMA_STATIC_VULKAN_FUNCTIONS` to 0, `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 1. + - Provide pointers to these two functions via VmaVulkanFunctions::vkGetInstanceProcAddr, + VmaVulkanFunctions::vkGetDeviceProcAddr. + - The library will fetch pointers to all other functions it needs internally. +-# **If you fetch pointers to all Vulkan functions in a custom way**, e.g. using some loader like + [Volk](https://github.com/zeux/volk): + - Define `VMA_STATIC_VULKAN_FUNCTIONS` and `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 0. + - Pass these pointers via structure #VmaVulkanFunctions. + +Example for case 2: + +\code +#define VMA_STATIC_VULKAN_FUNCTIONS 0 +#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1 +#include "vk_mem_alloc.h" + +... + +VmaVulkanFunctions vulkanFunctions = {}; +vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr; +vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr; + +VmaAllocatorCreateInfo allocatorCreateInfo = {}; +allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2; +allocatorCreateInfo.physicalDevice = physicalDevice; +allocatorCreateInfo.device = device; +allocatorCreateInfo.instance = instance; +allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions; + +VmaAllocator allocator; +vmaCreateAllocator(&allocatorCreateInfo, &allocator); +\endcode + + +\section quick_start_resource_allocation Resource allocation + +When you want to create a buffer or image: + +-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure. +-# Fill VmaAllocationCreateInfo structure. +-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory + already allocated and bound to it, plus #VmaAllocation objects that represents its underlying memory. + +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufferInfo.size = 65536; +bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_AUTO; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +Don't forget to destroy your objects when no longer needed: + +\code +vmaDestroyBuffer(allocator, buffer, allocation); +vmaDestroyAllocator(allocator); +\endcode + + +\page choosing_memory_type Choosing memory type + +Physical devices in Vulkan support various combinations of memory heaps and +types. Help with choosing correct and optimal memory type for your specific +resource is one of the key features of this library. You can use it by filling +appropriate members of VmaAllocationCreateInfo structure, as described below. +You can also combine multiple methods. + +-# If you just want to find memory type index that meets your requirements, you + can use function: vmaFindMemoryTypeIndexForBufferInfo(), + vmaFindMemoryTypeIndexForImageInfo(), vmaFindMemoryTypeIndex(). +-# If you want to allocate a region of device memory without association with any + specific image or buffer, you can use function vmaAllocateMemory(). Usage of + this function is not recommended and usually not needed. + vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once, + which may be useful for sparse binding. +-# If you already have a buffer or an image created, you want to allocate memory + for it and then you will bind it yourself, you can use function + vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(). + For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory() + or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2(). +-# **This is the easiest and recommended way to use this library:** + If you want to create a buffer or an image, allocate memory for it and bind + them together, all in one call, you can use function vmaCreateBuffer(), + vmaCreateImage(). + +When using 3. or 4., the library internally queries Vulkan for memory types +supported for that buffer or image (function `vkGetBufferMemoryRequirements()`) +and uses only one of these types. + +If no memory type can be found that meets all the requirements, these functions +return `VK_ERROR_FEATURE_NOT_PRESENT`. + +You can leave VmaAllocationCreateInfo structure completely filled with zeros. +It means no requirements are specified for memory type. +It is valid, although not very useful. + +\section choosing_memory_type_usage Usage + +The easiest way to specify memory requirements is to fill member +VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage. +It defines high level, common usage types. +Since version 3 of the library, it is recommended to use #VMA_MEMORY_USAGE_AUTO to let it select best memory type for your resource automatically. + +For example, if you want to create a uniform buffer that will be filled using +transfer only once or infrequently and then used for rendering every frame as a uniform buffer, you can +do it using following code. The buffer will most likely end up in a memory type with +`VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT` to be fast to access by the GPU device. + +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufferInfo.size = 65536; +bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_AUTO; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +If you have a preference for putting the resource in GPU (device) memory or CPU (host) memory +on systems with discrete graphics card that have the memories separate, you can use +#VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST. + +When using `VMA_MEMORY_USAGE_AUTO*` while you want to map the allocated memory, +you also need to specify one of the host access flags: +#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. +This will help the library decide about preferred memory type to ensure it has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` +so you can map it. + +For example, a staging buffer that will be filled via mapped pointer and then +used as a source of transfer to the buffer decribed previously can be created like this. +It will likely and up in a memory type that is `HOST_VISIBLE` and `HOST_COHERENT` +but not `HOST_CACHED` (meaning uncached, write-combined) and not `DEVICE_LOCAL` (meaning system RAM). + +\code +VkBufferCreateInfo stagingBufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +stagingBufferInfo.size = 65536; +stagingBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + +VmaAllocationCreateInfo stagingAllocInfo = {}; +stagingAllocInfo.usage = VMA_MEMORY_USAGE_AUTO; +stagingAllocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT; + +VkBuffer stagingBuffer; +VmaAllocation stagingAllocation; +vmaCreateBuffer(allocator, &stagingBufferInfo, &stagingAllocInfo, &stagingBuffer, &stagingAllocation, nullptr); +\endcode + +For more examples of creating different kinds of resources, see chapter \ref usage_patterns. + +Usage values `VMA_MEMORY_USAGE_AUTO*` are legal to use only when the library knows +about the resource being created by having `VkBufferCreateInfo` / `VkImageCreateInfo` passed, +so they work with functions like: vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo() etc. +If you allocate raw memory using function vmaAllocateMemory(), you have to use other means of selecting +memory type, as decribed below. + +\note +Old usage values (`VMA_MEMORY_USAGE_GPU_ONLY`, `VMA_MEMORY_USAGE_CPU_ONLY`, +`VMA_MEMORY_USAGE_CPU_TO_GPU`, `VMA_MEMORY_USAGE_GPU_TO_CPU`, `VMA_MEMORY_USAGE_CPU_COPY`) +are still available and work same way as in previous versions of the library +for backward compatibility, but they are not recommended. + +\section choosing_memory_type_required_preferred_flags Required and preferred flags + +You can specify more detailed requirements by filling members +VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags +with a combination of bits from enum `VkMemoryPropertyFlags`. For example, +if you want to create a buffer that will be persistently mapped on host (so it +must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`, +use following code: + +\code +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; +allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; +allocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +A memory type is chosen that has all the required flags and as many preferred +flags set as possible. + +Value passed in VmaAllocationCreateInfo::usage is internally converted to a set of required and preferred flags, +plus some extra "magic" (heuristics). + +\section choosing_memory_type_explicit_memory_types Explicit memory types + +If you inspected memory types available on the physical device and you have +a preference for memory types that you want to use, you can fill member +VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set +means that a memory type with that index is allowed to be used for the +allocation. Special value 0, just like `UINT32_MAX`, means there are no +restrictions to memory type index. + +Please note that this member is NOT just a memory type index. +Still you can use it to choose just one, specific memory type. +For example, if you already determined that your buffer should be created in +memory type 2, use following code: + +\code +uint32_t memoryTypeIndex = 2; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.memoryTypeBits = 1u << memoryTypeIndex; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + + +\section choosing_memory_type_custom_memory_pools Custom memory pools + +If you allocate from custom memory pool, all the ways of specifying memory +requirements described above are not applicable and the aforementioned members +of VmaAllocationCreateInfo structure are ignored. Memory type is selected +explicitly when creating the pool and then used to make all the allocations from +that pool. For further details, see \ref custom_memory_pools. + +\section choosing_memory_type_dedicated_allocations Dedicated allocations + +Memory for allocations is reserved out of larger block of `VkDeviceMemory` +allocated from Vulkan internally. That is the main feature of this whole library. +You can still request a separate memory block to be created for an allocation, +just like you would do in a trivial solution without using any allocator. +In that case, a buffer or image is always bound to that memory at offset 0. +This is called a "dedicated allocation". +You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +The library can also internally decide to use dedicated allocation in some cases, e.g.: + +- When the size of the allocation is large. +- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled + and it reports that dedicated allocation is required or recommended for the resource. +- When allocation of next big memory block fails due to not enough device memory, + but allocation with the exact requested size succeeds. + + +\page memory_mapping Memory mapping + +To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`, +to be able to read from it or write to it in CPU code. +Mapping is possible only of memory allocated from a memory type that has +`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. +Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose. +You can use them directly with memory allocated by this library, +but it is not recommended because of following issue: +Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed. +This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan. +Because of this, Vulkan Memory Allocator provides following facilities: + +\note If you want to be able to map an allocation, you need to specify one of the flags +#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT +in VmaAllocationCreateInfo::flags. These flags are required for an allocation to be mappable +when using #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` enum values. +For other usage values they are ignored and every such allocation made in `HOST_VISIBLE` memory type is mappable, +but they can still be used for consistency. + +\section memory_mapping_mapping_functions Mapping functions + +The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory(). +They are safer and more convenient to use than standard Vulkan functions. +You can map an allocation multiple times simultaneously - mapping is reference-counted internally. +You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block. +The way it is implemented is that the library always maps entire memory block, not just region of the allocation. +For further details, see description of vmaMapMemory() function. +Example: + +\code +// Having these objects initialized: +struct ConstantBuffer +{ + ... +}; +ConstantBuffer constantBufferData = ... + +VmaAllocator allocator = ... +VkBuffer constantBuffer = ... +VmaAllocation constantBufferAllocation = ... + +// You can map and fill your buffer using following code: + +void* mappedData; +vmaMapMemory(allocator, constantBufferAllocation, &mappedData); +memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); +vmaUnmapMemory(allocator, constantBufferAllocation); +\endcode + +When mapping, you may see a warning from Vulkan validation layer similar to this one: + +Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used. + +It happens because the library maps entire `VkDeviceMemory` block, where different +types of images and buffers may end up together, especially on GPUs with unified memory like Intel. +You can safely ignore it if you are sure you access only memory of the intended +object that you wanted to map. + + +\section memory_mapping_persistently_mapped_memory Persistently mapped memory + +Kepping your memory persistently mapped is generally OK in Vulkan. +You don't need to unmap it before using its data on the GPU. +The library provides a special feature designed for that: +Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in +VmaAllocationCreateInfo::flags stay mapped all the time, +so you can just access CPU pointer to it any time +without a need to call any "map" or "unmap" function. +Example: + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | + VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +// Buffer is already mapped. You can access its memory. +memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); +\endcode + +\note #VMA_ALLOCATION_CREATE_MAPPED_BIT by itself doesn't guarantee that the allocation will end up +in a mappable memory type. +For this, you need to also specify #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or +#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. +#VMA_ALLOCATION_CREATE_MAPPED_BIT only guarantees that if the memory is `HOST_VISIBLE`, the allocation will be mapped on creation. +For an example of how to make use of this fact, see section \ref usage_patterns_advanced_data_uploading. + +\section memory_mapping_cache_control Cache flush and invalidate + +Memory in Vulkan doesn't need to be unmapped before using it on GPU, +but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set, +you need to manually **invalidate** cache before reading of mapped pointer +and **flush** cache after writing to mapped pointer. +Map/unmap operations don't do that automatically. +Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`, +`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient +functions that refer to given allocation object: vmaFlushAllocation(), +vmaInvalidateAllocation(), +or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations(). + +Regions of memory specified for flush/invalidate must be aligned to +`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library. +In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations +within blocks are aligned to this value, so their offsets are always multiply of +`nonCoherentAtomSize` and two different allocations never share same "line" of this size. + +Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA) +currently provide `HOST_COHERENT` flag on all memory types that are +`HOST_VISIBLE`, so on PC you may not need to bother. + + +\page staying_within_budget Staying within budget + +When developing a graphics-intensive game or program, it is important to avoid allocating +more GPU memory than it is physically available. When the memory is over-committed, +various bad things can happen, depending on the specific GPU, graphics driver, and +operating system: + +- It may just work without any problems. +- The application may slow down because some memory blocks are moved to system RAM + and the GPU has to access them through PCI Express bus. +- A new allocation may take very long time to complete, even few seconds, and possibly + freeze entire system. +- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST` + returned somewhere later. + +\section staying_within_budget_querying_for_budget Querying for budget + +To query for current memory usage and available budget, use function vmaGetHeapBudgets(). +Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap. + +Please note that this function returns different information and works faster than +vmaCalculateStatistics(). vmaGetHeapBudgets() can be called every frame or even before every +allocation, while vmaCalculateStatistics() is intended to be used rarely, +only to obtain statistical information, e.g. for debugging purposes. + +It is recommended to use VK_EXT_memory_budget device extension to obtain information +about the budget from Vulkan device. VMA is able to use this extension automatically. +When not enabled, the allocator behaves same way, but then it estimates current usage +and available budget based on its internal information and Vulkan memory heap sizes, +which may be less precise. In order to use this extension: + +1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2 + required by it are available and enable them. Please note that the first is a device + extension and the second is instance extension! +2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object. +3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from + Vulkan inside of it to avoid overhead of querying it with every allocation. + +\section staying_within_budget_controlling_memory_usage Controlling memory usage + +There are many ways in which you can try to stay within the budget. + +First, when making new allocation requires allocating a new memory block, the library +tries not to exceed the budget automatically. If a block with default recommended size +(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even +dedicated memory for just this resource. + +If the size of the requested resource plus current memory usage is more than the +budget, by default the library still tries to create it, leaving it to the Vulkan +implementation whether the allocation succeeds or fails. You can change this behavior +by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is +not made if it would exceed the budget or if the budget is already exceeded. +VMA then tries to make the allocation from the next eligible Vulkan memory type. +The all of them fail, the call then fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag +when creating resources that are not essential for the application (e.g. the texture +of a specific object) and not to pass it when creating critically important resources +(e.g. render targets). + +On AMD graphics cards there is a custom vendor extension available: VK_AMD_memory_overallocation_behavior +that allows to control the behavior of the Vulkan implementation in out-of-memory cases - +whether it should fail with an error code or still allow the allocation. +Usage of this extension involves only passing extra structure on Vulkan device creation, +so it is out of scope of this library. + +Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure +a new allocation is created only when it fits inside one of the existing memory blocks. +If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +This also ensures that the function call is very fast because it never goes to Vulkan +to obtain a new block. + +\note Creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount +set to more than 0 will currently try to allocate memory blocks without checking whether they +fit within budget. + + +\page resource_aliasing Resource aliasing (overlap) + +New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory +management, give an opportunity to alias (overlap) multiple resources in the +same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL). +It can be useful to save video memory, but it must be used with caution. + +For example, if you know the flow of your whole render frame in advance, you +are going to use some intermediate textures or buffers only during a small range of render passes, +and you know these ranges don't overlap in time, you can bind these resources to +the same place in memory, even if they have completely different parameters (width, height, format etc.). + +![Resource aliasing (overlap)](../gfx/Aliasing.png) + +Such scenario is possible using VMA, but you need to create your images manually. +Then you need to calculate parameters of an allocation to be made using formula: + +- allocation size = max(size of each image) +- allocation alignment = max(alignment of each image) +- allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image) + +Following example shows two different images bound to the same place in memory, +allocated to fit largest of them. + +\code +// A 512x512 texture to be sampled. +VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +img1CreateInfo.imageType = VK_IMAGE_TYPE_2D; +img1CreateInfo.extent.width = 512; +img1CreateInfo.extent.height = 512; +img1CreateInfo.extent.depth = 1; +img1CreateInfo.mipLevels = 10; +img1CreateInfo.arrayLayers = 1; +img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB; +img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; +img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; +img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; +img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + +// A full screen texture to be used as color attachment. +VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +img2CreateInfo.imageType = VK_IMAGE_TYPE_2D; +img2CreateInfo.extent.width = 1920; +img2CreateInfo.extent.height = 1080; +img2CreateInfo.extent.depth = 1; +img2CreateInfo.mipLevels = 1; +img2CreateInfo.arrayLayers = 1; +img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; +img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; +img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; +img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; +img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + +VkImage img1; +res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1); +VkImage img2; +res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2); + +VkMemoryRequirements img1MemReq; +vkGetImageMemoryRequirements(device, img1, &img1MemReq); +VkMemoryRequirements img2MemReq; +vkGetImageMemoryRequirements(device, img2, &img2MemReq); + +VkMemoryRequirements finalMemReq = {}; +finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size); +finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment); +finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits; +// Validate if(finalMemReq.memoryTypeBits != 0) + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + +VmaAllocation alloc; +res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr); + +res = vmaBindImageMemory(allocator, alloc, img1); +res = vmaBindImageMemory(allocator, alloc, img2); + +// You can use img1, img2 here, but not at the same time! + +vmaFreeMemory(allocator, alloc); +vkDestroyImage(allocator, img2, nullptr); +vkDestroyImage(allocator, img1, nullptr); +\endcode + +Remember that using resources that alias in memory requires proper synchronization. +You need to issue a memory barrier to make sure commands that use `img1` and `img2` +don't overlap on GPU timeline. +You also need to treat a resource after aliasing as uninitialized - containing garbage data. +For example, if you use `img1` and then want to use `img2`, you need to issue +an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`. + +Additional considerations: + +- Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases. +See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag. +- You can create more complex layout where different images and buffers are bound +at different offsets inside one large allocation. For example, one can imagine +a big texture used in some render passes, aliasing with a set of many small buffers +used between in some further passes. To bind a resource at non-zero offset in an allocation, +use vmaBindBufferMemory2() / vmaBindImageMemory2(). +- Before allocating memory for the resources you want to alias, check `memoryTypeBits` +returned in memory requirements of each resource to make sure the bits overlap. +Some GPUs may expose multiple memory types suitable e.g. only for buffers or +images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your +resources may be disjoint. Aliasing them is not possible in that case. + + +\page custom_memory_pools Custom memory pools + +A memory pool contains a number of `VkDeviceMemory` blocks. +The library automatically creates and manages default pool for each memory type available on the device. +Default memory pool automatically grows in size. +Size of allocated blocks is also variable and managed automatically. + +You can create custom pool and allocate memory out of it. +It can be useful if you want to: + +- Keep certain kind of allocations separate from others. +- Enforce particular, fixed size of Vulkan memory blocks. +- Limit maximum amount of Vulkan memory allocated for that pool. +- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool. +- Use extra parameters for a set of your allocations that are available in #VmaPoolCreateInfo but not in + #VmaAllocationCreateInfo - e.g., custom minimum alignment, custom `pNext` chain. +- Perform defragmentation on a specific subset of your allocations. + +To use custom memory pools: + +-# Fill VmaPoolCreateInfo structure. +-# Call vmaCreatePool() to obtain #VmaPool handle. +-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle. + You don't need to specify any other parameters of this structure, like `usage`. + +Example: + +\code +// Find memoryTypeIndex for the pool. +VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +sampleBufCreateInfo.size = 0x10000; // Doesn't matter. +sampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo sampleAllocCreateInfo = {}; +sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; + +uint32_t memTypeIndex; +VkResult res = vmaFindMemoryTypeIndexForBufferInfo(allocator, + &sampleBufCreateInfo, &sampleAllocCreateInfo, &memTypeIndex); +// Check res... + +// Create a pool that can have at most 2 blocks, 128 MiB each. +VmaPoolCreateInfo poolCreateInfo = {}; +poolCreateInfo.memoryTypeIndex = memTypeIndex; +poolCreateInfo.blockSize = 128ull * 1024 * 1024; +poolCreateInfo.maxBlockCount = 2; + +VmaPool pool; +res = vmaCreatePool(allocator, &poolCreateInfo, &pool); +// Check res... + +// Allocate a buffer out of it. +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = 1024; +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.pool = pool; + +VkBuffer buf; +VmaAllocation alloc; +res = vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr); +// Check res... +\endcode + +You have to free all allocations made from this pool before destroying it. + +\code +vmaDestroyBuffer(allocator, buf, alloc); +vmaDestroyPool(allocator, pool); +\endcode + +New versions of this library support creating dedicated allocations in custom pools. +It is supported only when VmaPoolCreateInfo::blockSize = 0. +To use this feature, set VmaAllocationCreateInfo::pool to the pointer to your custom pool and +VmaAllocationCreateInfo::flags to #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + +\note Excessive use of custom pools is a common mistake when using this library. +Custom pools may be useful for special purposes - when you want to +keep certain type of resources separate e.g. to reserve minimum amount of memory +for them or limit maximum amount of memory they can occupy. For most +resources this is not needed and so it is not recommended to create #VmaPool +objects and allocations out of them. Allocating from the default pool is sufficient. + + +\section custom_memory_pools_MemTypeIndex Choosing memory type index + +When creating a pool, you must explicitly specify memory type index. +To find the one suitable for your buffers or images, you can use helper functions +vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(). +You need to provide structures with example parameters of buffers or images +that you are going to create in that pool. + +\code +VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +exampleBufCreateInfo.size = 1024; // Doesn't matter +exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; + +uint32_t memTypeIndex; +vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex); + +VmaPoolCreateInfo poolCreateInfo = {}; +poolCreateInfo.memoryTypeIndex = memTypeIndex; +// ... +\endcode + +When creating buffers/images allocated in that pool, provide following parameters: + +- `VkBufferCreateInfo`: Prefer to pass same parameters as above. + Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior. + Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers + or the other way around. +- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member. + Other members are ignored anyway. + +\section linear_algorithm Linear allocation algorithm + +Each Vulkan memory block managed by this library has accompanying metadata that +keeps track of used and unused regions. By default, the metadata structure and +algorithm tries to find best place for new allocations among free regions to +optimize memory usage. This way you can allocate and free objects in any order. + +![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png) + +Sometimes there is a need to use simpler, linear allocation algorithm. You can +create custom pool that uses such algorithm by adding flag +#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating +#VmaPool object. Then an alternative metadata management is used. It always +creates new allocations after last one and doesn't reuse free regions after +allocations freed in the middle. It results in better allocation performance and +less memory consumed by metadata. + +![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png) + +With this one flag, you can create a custom pool that can be used in many ways: +free-at-once, stack, double stack, and ring buffer. See below for details. +You don't need to specify explicitly which of these options you are going to use - it is detected automatically. + +\subsection linear_algorithm_free_at_once Free-at-once + +In a pool that uses linear algorithm, you still need to free all the allocations +individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free +them in any order. New allocations are always made after last one - free space +in the middle is not reused. However, when you release all the allocation and +the pool becomes empty, allocation starts from the beginning again. This way you +can use linear algorithm to speed up creation of allocations that you are going +to release all at once. + +![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png) + +This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount +value that allows multiple memory blocks. + +\subsection linear_algorithm_stack Stack + +When you free an allocation that was created last, its space can be reused. +Thanks to this, if you always release allocations in the order opposite to their +creation (LIFO - Last In First Out), you can achieve behavior of a stack. + +![Stack](../gfx/Linear_allocator_4_stack.png) + +This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount +value that allows multiple memory blocks. + +\subsection linear_algorithm_double_stack Double stack + +The space reserved by a custom pool with linear algorithm may be used by two +stacks: + +- First, default one, growing up from offset 0. +- Second, "upper" one, growing down from the end towards lower offsets. + +To make allocation from the upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT +to VmaAllocationCreateInfo::flags. + +![Double stack](../gfx/Linear_allocator_7_double_stack.png) + +Double stack is available only in pools with one memory block - +VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. + +When the two stacks' ends meet so there is not enough space between them for a +new allocation, such allocation fails with usual +`VK_ERROR_OUT_OF_DEVICE_MEMORY` error. + +\subsection linear_algorithm_ring_buffer Ring buffer + +When you free some allocations from the beginning and there is not enough free space +for a new one at the end of a pool, allocator's "cursor" wraps around to the +beginning and starts allocation there. Thanks to this, if you always release +allocations in the same order as you created them (FIFO - First In First Out), +you can achieve behavior of a ring buffer / queue. + +![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png) + +Ring buffer is available only in pools with one memory block - +VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. + +\note \ref defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT. + + +\page defragmentation Defragmentation + +Interleaved allocations and deallocations of many objects of varying size can +cause fragmentation over time, which can lead to a situation where the library is unable +to find a continuous range of free memory for a new allocation despite there is +enough free space, just scattered across many small free ranges between existing +allocations. + +To mitigate this problem, you can use defragmentation feature. +It doesn't happen automatically though and needs your cooperation, +because VMA is a low level library that only allocates memory. +It cannot recreate buffers and images in a new place as it doesn't remember the contents of `VkBufferCreateInfo` / `VkImageCreateInfo` structures. +It cannot copy their contents as it doesn't record any commands to a command buffer. + +Example: + +\code +VmaDefragmentationInfo defragInfo = {}; +defragInfo.pool = myPool; +defragInfo.flags = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT; + +VmaDefragmentationContext defragCtx; +VkResult res = vmaBeginDefragmentation(allocator, &defragInfo, &defragCtx); +// Check res... + +for(;;) +{ + VmaDefragmentationPassMoveInfo pass; + res = vmaBeginDefragmentationPass(allocator, defragCtx, &pass); + if(res == VK_SUCCESS) + break; + else if(res != VK_INCOMPLETE) + // Handle error... + + for(uint32_t i = 0; i < pass.moveCount; ++i) + { + // Inspect pass.pMoves[i].srcAllocation, identify what buffer/image it represents. + VmaAllocationInfo allocInfo; + vmaGetAllocationInfo(allocator, pMoves[i].srcAllocation, &allocInfo); + MyEngineResourceData* resData = (MyEngineResourceData*)allocInfo.pUserData; + + // Recreate and bind this buffer/image at: pass.pMoves[i].dstMemory, pass.pMoves[i].dstOffset. + VkImageCreateInfo imgCreateInfo = ... + VkImage newImg; + res = vkCreateImage(device, &imgCreateInfo, nullptr, &newImg); + // Check res... + res = vmaBindImageMemory(allocator, pMoves[i].dstTmpAllocation, newImg); + // Check res... + + // Issue a vkCmdCopyBuffer/vkCmdCopyImage to copy its content to the new place. + vkCmdCopyImage(cmdBuf, resData->img, ..., newImg, ...); + } + + // Make sure the copy commands finished executing. + vkWaitForFences(...); + + // Destroy old buffers/images bound with pass.pMoves[i].srcAllocation. + for(uint32_t i = 0; i < pass.moveCount; ++i) + { + // ... + vkDestroyImage(device, resData->img, nullptr); + } + + // Update appropriate descriptors to point to the new places... + + res = vmaEndDefragmentationPass(allocator, defragCtx, &pass); + if(res == VK_SUCCESS) + break; + else if(res != VK_INCOMPLETE) + // Handle error... +} + +vmaEndDefragmentation(allocator, defragCtx, nullptr); +\endcode + +Although functions like vmaCreateBuffer(), vmaCreateImage(), vmaDestroyBuffer(), vmaDestroyImage() +create/destroy an allocation and a buffer/image at once, these are just a shortcut for +creating the resource, allocating memory, and binding them together. +Defragmentation works on memory allocations only. You must handle the rest manually. +Defragmentation is an iterative process that should repreat "passes" as long as related functions +return `VK_INCOMPLETE` not `VK_SUCCESS`. +In each pass: + +1. vmaBeginDefragmentationPass() function call: + - Calculates and returns the list of allocations to be moved in this pass. + Note this can be a time-consuming process. + - Reserves destination memory for them by creating temporary destination allocations + that you can query for their `VkDeviceMemory` + offset using vmaGetAllocationInfo(). +2. Inside the pass, **you should**: + - Inspect the returned list of allocations to be moved. + - Create new buffers/images and bind them at the returned destination temporary allocations. + - Copy data from source to destination resources if necessary. + - Destroy the source buffers/images, but NOT their allocations. +3. vmaEndDefragmentationPass() function call: + - Frees the source memory reserved for the allocations that are moved. + - Modifies source #VmaAllocation objects that are moved to point to the destination reserved memory. + - Frees `VkDeviceMemory` blocks that became empty. + +Unlike in previous iterations of the defragmentation API, there is no list of "movable" allocations passed as a parameter. +Defragmentation algorithm tries to move all suitable allocations. +You can, however, refuse to move some of them inside a defragmentation pass, by setting +`pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE. +This is not recommended and may result in suboptimal packing of the allocations after defragmentation. +If you cannot ensure any allocation can be moved, it is better to keep movable allocations separate in a custom pool. + +Inside a pass, for each allocation that should be moved: + +- You should copy its data from the source to the destination place by calling e.g. `vkCmdCopyBuffer()`, `vkCmdCopyImage()`. + - You need to make sure these commands finished executing before destroying the source buffers/images and before calling vmaEndDefragmentationPass(). +- If a resource doesn't contain any meaningful data, e.g. it is a transient color attachment image to be cleared, + filled, and used temporarily in each rendering frame, you can just recreate this image + without copying its data. +- If the resource is in `HOST_VISIBLE` and `HOST_CACHED` memory, you can copy its data on the CPU + using `memcpy()`. +- If you cannot move the allocation, you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE. + This will cancel the move. + - vmaEndDefragmentationPass() will then free the destination memory + not the source memory of the allocation, leaving it unchanged. +- If you decide the allocation is unimportant and can be destroyed instead of moved (e.g. it wasn't used for long time), + you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY. + - vmaEndDefragmentationPass() will then free both source and destination memory, and will destroy the source #VmaAllocation object. + +You can defragment a specific custom pool by setting VmaDefragmentationInfo::pool +(like in the example above) or all the default pools by setting this member to null. + +Defragmentation is always performed in each pool separately. +Allocations are never moved between different Vulkan memory types. +The size of the destination memory reserved for a moved allocation is the same as the original one. +Alignment of an allocation as it was determined using `vkGetBufferMemoryRequirements()` etc. is also respected after defragmentation. +Buffers/images should be recreated with the same `VkBufferCreateInfo` / `VkImageCreateInfo` parameters as the original ones. + +You can perform the defragmentation incrementally to limit the number of allocations and bytes to be moved +in each pass, e.g. to call it in sync with render frames and not to experience too big hitches. +See members: VmaDefragmentationInfo::maxBytesPerPass, VmaDefragmentationInfo::maxAllocationsPerPass. + +It is also safe to perform the defragmentation asynchronously to render frames and other Vulkan and VMA +usage, possibly from multiple threads, with the exception that allocations +returned in VmaDefragmentationPassMoveInfo::pMoves shouldn't be destroyed until the defragmentation pass is ended. + +Mapping is preserved on allocations that are moved during defragmentation. +Whether through #VMA_ALLOCATION_CREATE_MAPPED_BIT or vmaMapMemory(), the allocations +are mapped at their new place. Of course, pointer to the mapped data changes, so it needs to be queried +using VmaAllocationInfo::pMappedData. + +\note Defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT. + + +\page statistics Statistics + +This library contains several functions that return information about its internal state, +especially the amount of memory allocated from Vulkan. + +\section statistics_numeric_statistics Numeric statistics + +If you need to obtain basic statistics about memory usage per heap, together with current budget, +you can call function vmaGetHeapBudgets() and inspect structure #VmaBudget. +This is useful to keep track of memory usage and stay withing budget +(see also \ref staying_within_budget). +Example: + +\code +uint32_t heapIndex = ... + +VmaBudget budgets[VK_MAX_MEMORY_HEAPS]; +vmaGetHeapBudgets(allocator, budgets); + +printf("My heap currently has %u allocations taking %llu B,\n", + budgets[heapIndex].statistics.allocationCount, + budgets[heapIndex].statistics.allocationBytes); +printf("allocated out of %u Vulkan device memory blocks taking %llu B,\n", + budgets[heapIndex].statistics.blockCount, + budgets[heapIndex].statistics.blockBytes); +printf("Vulkan reports total usage %llu B with budget %llu B.\n", + budgets[heapIndex].usage, + budgets[heapIndex].budget); +\endcode + +You can query for more detailed statistics per memory heap, type, and totals, +including minimum and maximum allocation size and unused range size, +by calling function vmaCalculateStatistics() and inspecting structure #VmaTotalStatistics. +This function is slower though, as it has to traverse all the internal data structures, +so it should be used only for debugging purposes. + +You can query for statistics of a custom pool using function vmaGetPoolStatistics() +or vmaCalculatePoolStatistics(). + +You can query for information about a specific allocation using function vmaGetAllocationInfo(). +It fill structure #VmaAllocationInfo. + +\section statistics_json_dump JSON dump + +You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString(). +The result is guaranteed to be correct JSON. +It uses ANSI encoding. +Any strings provided by user (see [Allocation names](@ref allocation_names)) +are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding, +this JSON string can be treated as using this encoding. +It must be freed using function vmaFreeStatsString(). + +The format of this JSON string is not part of official documentation of the library, +but it will not change in backward-incompatible way without increasing library major version number +and appropriate mention in changelog. + +The JSON string contains all the data that can be obtained using vmaCalculateStatistics(). +It can also contain detailed map of allocated memory blocks and their regions - +free and occupied by allocations. +This allows e.g. to visualize the memory or assess fragmentation. + + +\page allocation_annotation Allocation names and user data + +\section allocation_user_data Allocation user data + +You can annotate allocations with your own information, e.g. for debugging purposes. +To do that, fill VmaAllocationCreateInfo::pUserData field when creating +an allocation. It is an opaque `void*` pointer. You can use it e.g. as a pointer, +some handle, index, key, ordinal number or any other value that would associate +the allocation with your custom metadata. +It is useful to identify appropriate data structures in your engine given #VmaAllocation, +e.g. when doing \ref defragmentation. + +\code +VkBufferCreateInfo bufCreateInfo = ... + +MyBufferMetadata* pMetadata = CreateBufferMetadata(); + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.pUserData = pMetadata; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buffer, &allocation, nullptr); +\endcode + +The pointer may be later retrieved as VmaAllocationInfo::pUserData: + +\code +VmaAllocationInfo allocInfo; +vmaGetAllocationInfo(allocator, allocation, &allocInfo); +MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData; +\endcode + +It can also be changed using function vmaSetAllocationUserData(). + +Values of (non-zero) allocations' `pUserData` are printed in JSON report created by +vmaBuildStatsString() in hexadecimal form. + +\section allocation_names Allocation names + +An allocation can also carry a null-terminated string, giving a name to the allocation. +To set it, call vmaSetAllocationName(). +The library creates internal copy of the string, so the pointer you pass doesn't need +to be valid for whole lifetime of the allocation. You can free it after the call. + +\code +std::string imageName = "Texture: "; +imageName += fileName; +vmaSetAllocationName(allocator, allocation, imageName.c_str()); +\endcode + +The string can be later retrieved by inspecting VmaAllocationInfo::pName. +It is also printed in JSON report created by vmaBuildStatsString(). + +\note Setting string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it. +You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library. + + +\page virtual_allocator Virtual allocator + +As an extra feature, the core allocation algorithm of the library is exposed through a simple and convenient API of "virtual allocator". +It doesn't allocate any real GPU memory. It just keeps track of used and free regions of a "virtual block". +You can use it to allocate your own memory or other objects, even completely unrelated to Vulkan. +A common use case is sub-allocation of pieces of one large GPU buffer. + +\section virtual_allocator_creating_virtual_block Creating virtual block + +To use this functionality, there is no main "allocator" object. +You don't need to have #VmaAllocator object created. +All you need to do is to create a separate #VmaVirtualBlock object for each block of memory you want to be managed by the allocator: + +-# Fill in #VmaVirtualBlockCreateInfo structure. +-# Call vmaCreateVirtualBlock(). Get new #VmaVirtualBlock object. + +Example: + +\code +VmaVirtualBlockCreateInfo blockCreateInfo = {}; +blockCreateInfo.size = 1048576; // 1 MB + +VmaVirtualBlock block; +VkResult res = vmaCreateVirtualBlock(&blockCreateInfo, &block); +\endcode + +\section virtual_allocator_making_virtual_allocations Making virtual allocations + +#VmaVirtualBlock object contains internal data structure that keeps track of free and occupied regions +using the same code as the main Vulkan memory allocator. +Similarly to #VmaAllocation for standard GPU allocations, there is #VmaVirtualAllocation type +that represents an opaque handle to an allocation withing the virtual block. + +In order to make such allocation: + +-# Fill in #VmaVirtualAllocationCreateInfo structure. +-# Call vmaVirtualAllocate(). Get new #VmaVirtualAllocation object that represents the allocation. + You can also receive `VkDeviceSize offset` that was assigned to the allocation. + +Example: + +\code +VmaVirtualAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.size = 4096; // 4 KB + +VmaVirtualAllocation alloc; +VkDeviceSize offset; +res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, &offset); +if(res == VK_SUCCESS) +{ + // Use the 4 KB of your memory starting at offset. +} +else +{ + // Allocation failed - no space for it could be found. Handle this error! +} +\endcode + +\section virtual_allocator_deallocation Deallocation + +When no longer needed, an allocation can be freed by calling vmaVirtualFree(). +You can only pass to this function an allocation that was previously returned by vmaVirtualAllocate() +called for the same #VmaVirtualBlock. + +When whole block is no longer needed, the block object can be released by calling vmaDestroyVirtualBlock(). +All allocations must be freed before the block is destroyed, which is checked internally by an assert. +However, if you don't want to call vmaVirtualFree() for each allocation, you can use vmaClearVirtualBlock() to free them all at once - +a feature not available in normal Vulkan memory allocator. Example: + +\code +vmaVirtualFree(block, alloc); +vmaDestroyVirtualBlock(block); +\endcode + +\section virtual_allocator_allocation_parameters Allocation parameters + +You can attach a custom pointer to each allocation by using vmaSetVirtualAllocationUserData(). +Its default value is null. +It can be used to store any data that needs to be associated with that allocation - e.g. an index, a handle, or a pointer to some +larger data structure containing more information. Example: + +\code +struct CustomAllocData +{ + std::string m_AllocName; +}; +CustomAllocData* allocData = new CustomAllocData(); +allocData->m_AllocName = "My allocation 1"; +vmaSetVirtualAllocationUserData(block, alloc, allocData); +\endcode + +The pointer can later be fetched, along with allocation offset and size, by passing the allocation handle to function +vmaGetVirtualAllocationInfo() and inspecting returned structure #VmaVirtualAllocationInfo. +If you allocated a new object to be used as the custom pointer, don't forget to delete that object before freeing the allocation! +Example: + +\code +VmaVirtualAllocationInfo allocInfo; +vmaGetVirtualAllocationInfo(block, alloc, &allocInfo); +delete (CustomAllocData*)allocInfo.pUserData; + +vmaVirtualFree(block, alloc); +\endcode + +\section virtual_allocator_alignment_and_units Alignment and units + +It feels natural to express sizes and offsets in bytes. +If an offset of an allocation needs to be aligned to a multiply of some number (e.g. 4 bytes), you can fill optional member +VmaVirtualAllocationCreateInfo::alignment to request it. Example: + +\code +VmaVirtualAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.size = 4096; // 4 KB +allocCreateInfo.alignment = 4; // Returned offset must be a multiply of 4 B + +VmaVirtualAllocation alloc; +res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, nullptr); +\endcode + +Alignments of different allocations made from one block may vary. +However, if all alignments and sizes are always multiply of some size e.g. 4 B or `sizeof(MyDataStruct)`, +you can express all sizes, alignments, and offsets in multiples of that size instead of individual bytes. +It might be more convenient, but you need to make sure to use this new unit consistently in all the places: + +- VmaVirtualBlockCreateInfo::size +- VmaVirtualAllocationCreateInfo::size and VmaVirtualAllocationCreateInfo::alignment +- Using offset returned by vmaVirtualAllocate() or in VmaVirtualAllocationInfo::offset + +\section virtual_allocator_statistics Statistics + +You can obtain statistics of a virtual block using vmaGetVirtualBlockStatistics() +(to get brief statistics that are fast to calculate) +or vmaCalculateVirtualBlockStatistics() (to get more detailed statistics, slower to calculate). +The functions fill structures #VmaStatistics, #VmaDetailedStatistics respectively - same as used by the normal Vulkan memory allocator. +Example: + +\code +VmaStatistics stats; +vmaGetVirtualBlockStatistics(block, &stats); +printf("My virtual block has %llu bytes used by %u virtual allocations\n", + stats.allocationBytes, stats.allocationCount); +\endcode + +You can also request a full list of allocations and free regions as a string in JSON format by calling +vmaBuildVirtualBlockStatsString(). +Returned string must be later freed using vmaFreeVirtualBlockStatsString(). +The format of this string differs from the one returned by the main Vulkan allocator, but it is similar. + +\section virtual_allocator_additional_considerations Additional considerations + +The "virtual allocator" functionality is implemented on a level of individual memory blocks. +Keeping track of a whole collection of blocks, allocating new ones when out of free space, +deleting empty ones, and deciding which one to try first for a new allocation must be implemented by the user. + +Alternative allocation algorithms are supported, just like in custom pools of the real GPU memory. +See enum #VmaVirtualBlockCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT). +You can find their description in chapter \ref custom_memory_pools. +Allocation strategies are also supported. +See enum #VmaVirtualAllocationCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT). + +Following features are supported only by the allocator of the real GPU memory and not by virtual allocations: +buffer-image granularity, `VMA_DEBUG_MARGIN`, `VMA_MIN_ALIGNMENT`. + + +\page debugging_memory_usage Debugging incorrect memory usage + +If you suspect a bug with memory usage, like usage of uninitialized memory or +memory being overwritten out of bounds of an allocation, +you can use debug features of this library to verify this. + +\section debugging_memory_usage_initialization Memory initialization + +If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used, +you can enable automatic memory initialization to verify this. +To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1. + +\code +#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1 +#include "vk_mem_alloc.h" +\endcode + +It makes memory of new allocations initialized to bit pattern `0xDCDCDCDC`. +Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`. +Memory is automatically mapped and unmapped if necessary. + +If you find these values while debugging your program, good chances are that you incorrectly +read Vulkan memory that is allocated but not initialized, or already freed, respectively. + +Memory initialization works only with memory types that are `HOST_VISIBLE` and with allocations that can be mapped. +It works also with dedicated allocations. + +\section debugging_memory_usage_margins Margins + +By default, allocations are laid out in memory blocks next to each other if possible +(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`). + +![Allocations without margin](../gfx/Margins_1.png) + +Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified +number of bytes as a margin after every allocation. + +\code +#define VMA_DEBUG_MARGIN 16 +#include "vk_mem_alloc.h" +\endcode + +![Allocations with margin](../gfx/Margins_2.png) + +If your bug goes away after enabling margins, it means it may be caused by memory +being overwritten outside of allocation boundaries. It is not 100% certain though. +Change in application behavior may also be caused by different order and distribution +of allocations across memory blocks after margins are applied. + +Margins work with all types of memory. + +Margin is applied only to allocations made out of memory blocks and not to dedicated +allocations, which have their own memory block of specific size. +It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag +or those automatically decided to put into dedicated allocations, e.g. due to its +large size or recommended by VK_KHR_dedicated_allocation extension. + +Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space. + +Note that enabling margins increases memory usage and fragmentation. + +Margins do not apply to \ref virtual_allocator. + +\section debugging_memory_usage_corruption_detection Corruption detection + +You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation +of contents of the margins. + +\code +#define VMA_DEBUG_MARGIN 16 +#define VMA_DEBUG_DETECT_CORRUPTION 1 +#include "vk_mem_alloc.h" +\endcode + +When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN` +(it must be multiply of 4) after every allocation is filled with a magic number. +This idea is also know as "canary". +Memory is automatically mapped and unmapped if necessary. + +This number is validated automatically when the allocation is destroyed. +If it is not equal to the expected value, `VMA_ASSERT()` is executed. +It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation, +which indicates a serious bug. + +You can also explicitly request checking margins of all allocations in all memory blocks +that belong to specified memory types by using function vmaCheckCorruption(), +or in memory blocks that belong to specified custom pool, by using function +vmaCheckPoolCorruption(). + +Margin validation (corruption detection) works only for memory types that are +`HOST_VISIBLE` and `HOST_COHERENT`. + + +\page opengl_interop OpenGL Interop + +VMA provides some features that help with interoperability with OpenGL. + +\section opengl_interop_exporting_memory Exporting memory + +If you want to attach `VkExportMemoryAllocateInfoKHR` structure to `pNext` chain of memory allocations made by the library: + +It is recommended to create \ref custom_memory_pools for such allocations. +Define and fill in your `VkExportMemoryAllocateInfoKHR` structure and attach it to VmaPoolCreateInfo::pMemoryAllocateNext +while creating the custom pool. +Please note that the structure must remain alive and unchanged for the whole lifetime of the #VmaPool, +not only while creating it, as no copy of the structure is made, +but its original pointer is used for each allocation instead. + +If you want to export all memory allocated by the library from certain memory types, +also dedicated allocations or other allocations made from default pools, +an alternative solution is to fill in VmaAllocatorCreateInfo::pTypeExternalMemoryHandleTypes. +It should point to an array with `VkExternalMemoryHandleTypeFlagsKHR` to be automatically passed by the library +through `VkExportMemoryAllocateInfoKHR` on each allocation made from a specific memory type. +Please note that new versions of the library also support dedicated allocations created in custom pools. + +You should not mix these two methods in a way that allows to apply both to the same memory type. +Otherwise, `VkExportMemoryAllocateInfoKHR` structure would be attached twice to the `pNext` chain of `VkMemoryAllocateInfo`. + + +\section opengl_interop_custom_alignment Custom alignment + +Buffers or images exported to a different API like OpenGL may require a different alignment, +higher than the one used by the library automatically, queried from functions like `vkGetBufferMemoryRequirements`. +To impose such alignment: + +It is recommended to create \ref custom_memory_pools for such allocations. +Set VmaPoolCreateInfo::minAllocationAlignment member to the minimum alignment required for each allocation +to be made out of this pool. +The alignment actually used will be the maximum of this member and the alignment returned for the specific buffer or image +from a function like `vkGetBufferMemoryRequirements`, which is called by VMA automatically. + +If you want to create a buffer with a specific minimum alignment out of default pools, +use special function vmaCreateBufferWithAlignment(), which takes additional parameter `minAlignment`. + +Note the problem of alignment affects only resources placed inside bigger `VkDeviceMemory` blocks and not dedicated +allocations, as these, by definition, always have alignment = 0 because the resource is bound to the beginning of its dedicated block. +Contrary to Direct3D 12, Vulkan doesn't have a concept of alignment of the entire memory block passed on its allocation. + + +\page usage_patterns Recommended usage patterns + +Vulkan gives great flexibility in memory allocation. +This chapter shows the most common patterns. + +See also slides from talk: +[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New) + + +\section usage_patterns_gpu_only GPU-only resource + +When: +Any resources that you frequently write and read on GPU, +e.g. images used as color attachments (aka "render targets"), depth-stencil attachments, +images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)"). + +What to do: +Let the library select the optimal memory type, which will likely have `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. + +\code +VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +imgCreateInfo.imageType = VK_IMAGE_TYPE_2D; +imgCreateInfo.extent.width = 3840; +imgCreateInfo.extent.height = 2160; +imgCreateInfo.extent.depth = 1; +imgCreateInfo.mipLevels = 1; +imgCreateInfo.arrayLayers = 1; +imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; +imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; +imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; +imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; +imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; +allocCreateInfo.priority = 1.0f; + +VkImage img; +VmaAllocation alloc; +vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr); +\endcode + +Also consider: +Consider creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, +especially if they are large or if you plan to destroy and recreate them with different sizes +e.g. when display resolution changes. +Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later. +When VK_EXT_memory_priority extension is enabled, it is also worth setting high priority to such allocation +to decrease chances to be evicted to system memory by the operating system. + +\section usage_patterns_staging_copy_upload Staging copy for upload + +When: +A "staging" buffer than you want to map and fill from CPU code, then use as a source od transfer +to some GPU resource. + +What to do: +Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT. +Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`. + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = 65536; +bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | + VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +... + +memcpy(allocInfo.pMappedData, myData, myDataSize); +\endcode + +Also consider: +You can map the allocation using vmaMapMemory() or you can create it as persistenly mapped +using #VMA_ALLOCATION_CREATE_MAPPED_BIT, as in the example above. + + +\section usage_patterns_readback Readback + +When: +Buffers for data written by or transferred from the GPU that you want to read back on the CPU, +e.g. results of some computations. + +What to do: +Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. +Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` +and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`. + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = 65536; +bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | + VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +... + +const float* downloadedData = (const float*)allocInfo.pMappedData; +\endcode + + +\section usage_patterns_advanced_data_uploading Advanced data uploading + +For resources that you frequently write on CPU via mapped pointer and +freqnently read on GPU e.g. as a uniform buffer (also called "dynamic"), multiple options are possible: + +-# Easiest solution is to have one copy of the resource in `HOST_VISIBLE` memory, + even if it means system RAM (not `DEVICE_LOCAL`) on systems with a discrete graphics card, + and make the device reach out to that resource directly. + - Reads performed by the device will then go through PCI Express bus. + The performace of this access may be limited, but it may be fine depending on the size + of this resource (whether it is small enough to quickly end up in GPU cache) and the sparsity + of access. +-# On systems with unified memory (e.g. AMD APU or Intel integrated graphics, mobile chips), + a memory type may be available that is both `HOST_VISIBLE` (available for mapping) and `DEVICE_LOCAL` + (fast to access from the GPU). Then, it is likely the best choice for such type of resource. +-# Systems with a discrete graphics card and separate video memory may or may not expose + a memory type that is both `HOST_VISIBLE` and `DEVICE_LOCAL`, also known as Base Address Register (BAR). + If they do, it represents a piece of VRAM (or entire VRAM, if ReBAR is enabled in the motherboard BIOS) + that is available to CPU for mapping. + - Writes performed by the host to that memory go through PCI Express bus. + The performance of these writes may be limited, but it may be fine, especially on PCIe 4.0, + as long as rules of using uncached and write-combined memory are followed - only sequential writes and no reads. +-# Finally, you may need or prefer to create a separate copy of the resource in `DEVICE_LOCAL` memory, + a separate "staging" copy in `HOST_VISIBLE` memory and perform an explicit transfer command between them. + +Thankfully, VMA offers an aid to create and use such resources in the the way optimal +for the current Vulkan device. To help the library make the best choice, +use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT together with +#VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT. +It will then prefer a memory type that is both `DEVICE_LOCAL` and `HOST_VISIBLE` (integrated memory or BAR), +but if no such memory type is available or allocation from it fails +(PC graphics cards have only 256 MB of BAR by default, unless ReBAR is supported and enabled in BIOS), +it will fall back to `DEVICE_LOCAL` memory for fast GPU access. +It is then up to you to detect that the allocation ended up in a memory type that is not `HOST_VISIBLE`, +so you need to create another "staging" allocation and perform explicit transfers. + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = 65536; +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | + VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT | + VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +VkMemoryPropertyFlags memPropFlags; +vmaGetAllocationMemoryProperties(allocator, alloc, &memPropFlags); + +if(memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) +{ + // Allocation ended up in a mappable memory and is already mapped - write to it directly. + + // [Executed in runtime]: + memcpy(allocInfo.pMappedData, myData, myDataSize); +} +else +{ + // Allocation ended up in a non-mappable memory - need to transfer. + VkBufferCreateInfo stagingBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; + stagingBufCreateInfo.size = 65536; + stagingBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + + VmaAllocationCreateInfo stagingAllocCreateInfo = {}; + stagingAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; + stagingAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | + VMA_ALLOCATION_CREATE_MAPPED_BIT; + + VkBuffer stagingBuf; + VmaAllocation stagingAlloc; + VmaAllocationInfo stagingAllocInfo; + vmaCreateBuffer(allocator, &stagingBufCreateInfo, &stagingAllocCreateInfo, + &stagingBuf, &stagingAlloc, stagingAllocInfo); + + // [Executed in runtime]: + memcpy(stagingAllocInfo.pMappedData, myData, myDataSize); + //vkCmdPipelineBarrier: VK_ACCESS_HOST_WRITE_BIT --> VK_ACCESS_TRANSFER_READ_BIT + VkBufferCopy bufCopy = { + 0, // srcOffset + 0, // dstOffset, + myDataSize); // size + vkCmdCopyBuffer(cmdBuf, stagingBuf, buf, 1, &bufCopy); +} +\endcode + +\section usage_patterns_other_use_cases Other use cases + +Here are some other, less obvious use cases and their recommended settings: + +- An image that is used only as transfer source and destination, but it should stay on the device, + as it is used to temporarily store a copy of some texture, e.g. from the current to the next frame, + for temporal antialiasing or other temporal effects. + - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT` + - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO +- An image that is used only as transfer source and destination, but it should be placed + in the system RAM despite it doesn't need to be mapped, because it serves as a "swap" copy to evict + least recently used textures from VRAM. + - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT` + - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_HOST, + as VMA needs a hint here to differentiate from the previous case. +- A buffer that you want to map and write from the CPU, directly read from the GPU + (e.g. as a uniform or vertex buffer), but you have a clear preference to place it in device or + host memory due to its large size. + - Use `VkBufferCreateInfo::usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT` + - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST + - Use VmaAllocationCreateInfo::flags = #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT + + +\page configuration Configuration + +Please check "CONFIGURATION SECTION" in the code to find macros that you can define +before each include of this file or change directly in this file to provide +your own implementation of basic facilities like assert, `min()` and `max()` functions, +mutex, atomic etc. +The library uses its own implementation of containers by default, but you can switch to using +STL containers instead. + +For example, define `VMA_ASSERT(expr)` before including the library to provide +custom implementation of the assertion, compatible with your project. +By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration +and empty otherwise. + +\section config_Vulkan_functions Pointers to Vulkan functions + +There are multiple ways to import pointers to Vulkan functions in the library. +In the simplest case you don't need to do anything. +If the compilation or linking of your program or the initialization of the #VmaAllocator +doesn't work for you, you can try to reconfigure it. + +First, the allocator tries to fetch pointers to Vulkan functions linked statically, +like this: + +\code +m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; +\endcode + +If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`. + +Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions. +You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or +by using a helper library like [volk](https://github.com/zeux/volk). + +Third, VMA tries to fetch remaining pointers that are still null by calling +`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own. +You need to only fill in VmaVulkanFunctions::vkGetInstanceProcAddr and VmaVulkanFunctions::vkGetDeviceProcAddr. +Other pointers will be fetched automatically. +If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`. + +Finally, all the function pointers required by the library (considering selected +Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null. + + +\section custom_memory_allocator Custom host memory allocator + +If you use custom allocator for CPU memory rather than default operator `new` +and `delete` from C++, you can make this library using your allocator as well +by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These +functions will be passed to Vulkan, as well as used by the library itself to +make any CPU-side allocations. + +\section allocation_callbacks Device memory allocation callbacks + +The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally. +You can setup callbacks to be informed about these calls, e.g. for the purpose +of gathering some statistics. To do it, fill optional member +VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. + +\section heap_memory_limit Device heap memory limit + +When device memory of certain heap runs out of free space, new allocations may +fail (returning error code) or they may succeed, silently pushing some existing_ +memory blocks from GPU VRAM to system RAM (which degrades performance). This +behavior is implementation-dependent - it depends on GPU vendor and graphics +driver. + +On AMD cards it can be controlled while creating Vulkan device object by using +VK_AMD_memory_overallocation_behavior extension, if available. + +Alternatively, if you want to test how your program behaves with limited amount of Vulkan device +memory available without switching your graphics card to one that really has +smaller VRAM, you can use a feature of this library intended for this purpose. +To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit. + + + +\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation + +VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve +performance on some GPUs. It augments Vulkan API with possibility to query +driver whether it prefers particular buffer or image to have its own, dedicated +allocation (separate `VkDeviceMemory` block) for better efficiency - to be able +to do some internal optimizations. The extension is supported by this library. +It will be used automatically when enabled. + +It has been promoted to core Vulkan 1.1, so if you use eligible Vulkan version +and inform VMA about it by setting VmaAllocatorCreateInfo::vulkanApiVersion, +you are all set. + +Otherwise, if you want to use it as an extension: + +1 . When creating Vulkan device, check if following 2 device extensions are +supported (call `vkEnumerateDeviceExtensionProperties()`). +If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`). + +- VK_KHR_get_memory_requirements2 +- VK_KHR_dedicated_allocation + +If you enabled these extensions: + +2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating +your #VmaAllocator to inform the library that you enabled required extensions +and you want the library to use them. + +\code +allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; + +vmaCreateAllocator(&allocatorInfo, &allocator); +\endcode + +That is all. The extension will be automatically used whenever you create a +buffer using vmaCreateBuffer() or image using vmaCreateImage(). + +When using the extension together with Vulkan Validation Layer, you will receive +warnings like this: + +_vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer._ + +It is OK, you should just ignore it. It happens because you use function +`vkGetBufferMemoryRequirements2KHR()` instead of standard +`vkGetBufferMemoryRequirements()`, while the validation layer seems to be +unaware of it. + +To learn more about this extension, see: + +- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation) +- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5) + + + +\page vk_ext_memory_priority VK_EXT_memory_priority + +VK_EXT_memory_priority is a device extension that allows to pass additional "priority" +value to Vulkan memory allocations that the implementation may use prefer certain +buffers and images that are critical for performance to stay in device-local memory +in cases when the memory is over-subscribed, while some others may be moved to the system memory. + +VMA offers convenient usage of this extension. +If you enable it, you can pass "priority" parameter when creating allocations or custom pools +and the library automatically passes the value to Vulkan using this extension. + +If you want to use this extension in connection with VMA, follow these steps: + +\section vk_ext_memory_priority_initialization Initialization + +1) Call `vkEnumerateDeviceExtensionProperties` for the physical device. +Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_EXT_memory_priority". + +2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. +Attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to `VkPhysicalDeviceFeatures2::pNext` to be returned. +Check if the device feature is really supported - check if `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority` is true. + +3) While creating device with `vkCreateDevice`, enable this extension - add "VK_EXT_memory_priority" +to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. + +4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. +Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. +Enable this device feature - attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to +`VkPhysicalDeviceFeatures2::pNext` chain and set its member `memoryPriority` to `VK_TRUE`. + +5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you +have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT +to VmaAllocatorCreateInfo::flags. + +\section vk_ext_memory_priority_usage Usage + +When using this extension, you should initialize following member: + +- VmaAllocationCreateInfo::priority when creating a dedicated allocation with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +- VmaPoolCreateInfo::priority when creating a custom pool. + +It should be a floating-point value between `0.0f` and `1.0f`, where recommended default is `0.5f`. +Memory allocated with higher value can be treated by the Vulkan implementation as higher priority +and so it can have lower chances of being pushed out to system memory, experiencing degraded performance. + +It might be a good idea to create performance-critical resources like color-attachment or depth-stencil images +as dedicated and set high priority to them. For example: + +\code +VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +imgCreateInfo.imageType = VK_IMAGE_TYPE_2D; +imgCreateInfo.extent.width = 3840; +imgCreateInfo.extent.height = 2160; +imgCreateInfo.extent.depth = 1; +imgCreateInfo.mipLevels = 1; +imgCreateInfo.arrayLayers = 1; +imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; +imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; +imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; +imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; +imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; +allocCreateInfo.priority = 1.0f; + +VkImage img; +VmaAllocation alloc; +vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr); +\endcode + +`priority` member is ignored in the following situations: + +- Allocations created in custom pools: They inherit the priority, along with all other allocation parameters + from the parametrs passed in #VmaPoolCreateInfo when the pool was created. +- Allocations created in default pools: They inherit the priority from the parameters + VMA used when creating default pools, which means `priority == 0.5f`. + + +\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory + +VK_AMD_device_coherent_memory is a device extension that enables access to +additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and +`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for +allocation of buffers intended for writing "breadcrumb markers" in between passes +or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases. + +When the extension is available but has not been enabled, Vulkan physical device +still exposes those memory types, but their usage is forbidden. VMA automatically +takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt +to allocate memory of such type is made. + +If you want to use this extension in connection with VMA, follow these steps: + +\section vk_amd_device_coherent_memory_initialization Initialization + +1) Call `vkEnumerateDeviceExtensionProperties` for the physical device. +Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory". + +2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. +Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned. +Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true. + +3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory" +to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. + +4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. +Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. +Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to +`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`. + +5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you +have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT +to VmaAllocatorCreateInfo::flags. + +\section vk_amd_device_coherent_memory_usage Usage + +After following steps described above, you can create VMA allocations and custom pools +out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible +devices. There are multiple ways to do it, for example: + +- You can request or prefer to allocate out of such memory types by adding + `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags + or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with + other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage. +- If you manually found memory type index to use for this purpose, force allocation + from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`. + +\section vk_amd_device_coherent_memory_more_information More information + +To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_AMD_device_coherent_memory.html) + +Example use of this extension can be found in the code of the sample and test suite +accompanying this library. + + +\page enabling_buffer_device_address Enabling buffer device address + +Device extension VK_KHR_buffer_device_address +allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code. +It has been promoted to core Vulkan 1.2. + +If you want to use this feature in connection with VMA, follow these steps: + +\section enabling_buffer_device_address_initialization Initialization + +1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device. +Check if the extension is supported - if returned array of `VkExtensionProperties` contains +"VK_KHR_buffer_device_address". + +2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. +Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned. +Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress` is true. + +3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add +"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. + +4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. +Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. +Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to +`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`. + +5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you +have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT +to VmaAllocatorCreateInfo::flags. + +\section enabling_buffer_device_address_usage Usage + +After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA. +The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to +allocated memory blocks wherever it might be needed. + +Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`. +The second part of this functionality related to "capture and replay" is not supported, +as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage. + +\section enabling_buffer_device_address_more_information More information + +To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address) + +Example use of this extension can be found in the code of the sample and test suite +accompanying this library. + +\page general_considerations General considerations + +\section general_considerations_thread_safety Thread safety + +- The library has no global state, so separate #VmaAllocator objects can be used + independently. + There should be no need to create multiple such objects though - one per `VkDevice` is enough. +- By default, all calls to functions that take #VmaAllocator as first parameter + are safe to call from multiple threads simultaneously because they are + synchronized internally when needed. + This includes allocation and deallocation from default memory pool, as well as custom #VmaPool. +- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT + flag, calls to functions that take such #VmaAllocator object must be + synchronized externally. +- Access to a #VmaAllocation object must be externally synchronized. For example, + you must not call vmaGetAllocationInfo() and vmaMapMemory() from different + threads at the same time if you pass the same #VmaAllocation object to these + functions. +- #VmaVirtualBlock is not safe to be used from multiple threads simultaneously. + +\section general_considerations_versioning_and_compatibility Versioning and compatibility + +The library uses [**Semantic Versioning**](https://semver.org/), +which means version numbers follow convention: Major.Minor.Patch (e.g. 2.3.0), where: + +- Incremented Patch version means a release is backward- and forward-compatible, + introducing only some internal improvements, bug fixes, optimizations etc. + or changes that are out of scope of the official API described in this documentation. +- Incremented Minor version means a release is backward-compatible, + so existing code that uses the library should continue to work, while some new + symbols could have been added: new structures, functions, new values in existing + enums and bit flags, new structure members, but not new function parameters. +- Incrementing Major version means a release could break some backward compatibility. + +All changes between official releases are documented in file "CHANGELOG.md". + +\warning Backward compatiblity is considered on the level of C++ source code, not binary linkage. +Adding new members to existing structures is treated as backward compatible if initializing +the new members to binary zero results in the old behavior. +You should always fully initialize all library structures to zeros and not rely on their +exact binary size. + +\section general_considerations_validation_layer_warnings Validation layer warnings + +When using this library, you can meet following types of warnings issued by +Vulkan validation layer. They don't necessarily indicate a bug, so you may need +to just ignore them. + +- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.* + - It happens when VK_KHR_dedicated_allocation extension is enabled. + `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it. +- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.* + - It happens when you map a buffer or image, because the library maps entire + `VkDeviceMemory` block, where different types of images and buffers may end + up together, especially on GPUs with unified memory like Intel. +- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.* + - It may happen when you use [defragmentation](@ref defragmentation). + +\section general_considerations_allocation_algorithm Allocation algorithm + +The library uses following algorithm for allocation, in order: + +-# Try to find free range of memory in existing blocks. +-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size. +-# If failed, try to create such block with size / 2, size / 4, size / 8. +-# If failed, try to allocate separate `VkDeviceMemory` for this allocation, + just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +-# If failed, choose other memory type that meets the requirements specified in + VmaAllocationCreateInfo and go to point 1. +-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + +\section general_considerations_features_not_supported Features not supported + +Features deliberately excluded from the scope of this library: + +-# **Data transfer.** Uploading (streaming) and downloading data of buffers and images + between CPU and GPU memory and related synchronization is responsibility of the user. + Defining some "texture" object that would automatically stream its data from a + staging copy in CPU memory to GPU memory would rather be a feature of another, + higher-level library implemented on top of VMA. + VMA doesn't record any commands to a `VkCommandBuffer`. It just allocates memory. +-# **Recreation of buffers and images.** Although the library has functions for + buffer and image creation: vmaCreateBuffer(), vmaCreateImage(), you need to + recreate these objects yourself after defragmentation. That is because the big + structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in + #VmaAllocation object. +-# **Handling CPU memory allocation failures.** When dynamically creating small C++ + objects in CPU memory (not Vulkan memory), allocation failures are not checked + and handled gracefully, because that would complicate code significantly and + is usually not needed in desktop PC applications anyway. + Success of an allocation is just checked with an assert. +-# **Code free of any compiler warnings.** Maintaining the library to compile and + work correctly on so many different platforms is hard enough. Being free of + any warnings, on any version of any compiler, is simply not feasible. + There are many preprocessor macros that make some variables unused, function parameters unreferenced, + or conditional expressions constant in some configurations. + The code of this library should not be bigger or more complicated just to silence these warnings. + It is recommended to disable such warnings instead. +-# This is a C++ library with C interface. **Bindings or ports to any other programming languages** are welcome as external projects but + are not going to be included into this repository. +*/ diff --git a/include/vku/vma/vk_mem_alloc.h.old b/include/vku/vma/vk_mem_alloc.h.old new file mode 100644 index 0000000..78ae0a5 --- /dev/null +++ b/include/vku/vma/vk_mem_alloc.h.old @@ -0,0 +1,18128 @@ +// +// Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +// THE SOFTWARE. +// + +#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H +#define AMD_VULKAN_MEMORY_ALLOCATOR_H + +#ifdef __cplusplus +extern "C" { +#endif + +/** \mainpage Vulkan Memory Allocator + +Version 2.3.0 (2019-12-04) + +Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. \n +License: MIT + +Documentation of all members: vk_mem_alloc.h + +\section main_table_of_contents Table of contents + +- User guide + - \subpage quick_start + - [Project setup](@ref quick_start_project_setup) + - [Initialization](@ref quick_start_initialization) + - [Resource allocation](@ref quick_start_resource_allocation) + - \subpage choosing_memory_type + - [Usage](@ref choosing_memory_type_usage) + - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags) + - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types) + - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools) + - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations) + - \subpage memory_mapping + - [Mapping functions](@ref memory_mapping_mapping_functions) + - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory) + - [Cache flush and invalidate](@ref memory_mapping_cache_control) + - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable) + - \subpage staying_within_budget + - [Querying for budget](@ref staying_within_budget_querying_for_budget) + - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage) + - \subpage custom_memory_pools + - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex) + - [Linear allocation algorithm](@ref linear_algorithm) + - [Free-at-once](@ref linear_algorithm_free_at_once) + - [Stack](@ref linear_algorithm_stack) + - [Double stack](@ref linear_algorithm_double_stack) + - [Ring buffer](@ref linear_algorithm_ring_buffer) + - [Buddy allocation algorithm](@ref buddy_algorithm) + - \subpage defragmentation + - [Defragmenting CPU memory](@ref defragmentation_cpu) + - [Defragmenting GPU memory](@ref defragmentation_gpu) + - [Additional notes](@ref defragmentation_additional_notes) + - [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm) + - \subpage lost_allocations + - \subpage statistics + - [Numeric statistics](@ref statistics_numeric_statistics) + - [JSON dump](@ref statistics_json_dump) + - \subpage allocation_annotation + - [Allocation user data](@ref allocation_user_data) + - [Allocation names](@ref allocation_names) + - \subpage debugging_memory_usage + - [Memory initialization](@ref debugging_memory_usage_initialization) + - [Margins](@ref debugging_memory_usage_margins) + - [Corruption detection](@ref debugging_memory_usage_corruption_detection) + - \subpage record_and_replay +- \subpage usage_patterns + - [Common mistakes](@ref usage_patterns_common_mistakes) + - [Simple patterns](@ref usage_patterns_simple) + - [Advanced patterns](@ref usage_patterns_advanced) +- \subpage configuration + - [Pointers to Vulkan functions](@ref config_Vulkan_functions) + - [Custom host memory allocator](@ref custom_memory_allocator) + - [Device memory allocation callbacks](@ref allocation_callbacks) + - [Device heap memory limit](@ref heap_memory_limit) + - \subpage vk_khr_dedicated_allocation +- \subpage general_considerations + - [Thread safety](@ref general_considerations_thread_safety) + - [Validation layer warnings](@ref general_considerations_validation_layer_warnings) + - [Allocation algorithm](@ref general_considerations_allocation_algorithm) + - [Features not supported](@ref general_considerations_features_not_supported) + +\section main_see_also See also + +- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/) +- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator) + + + + +\page quick_start Quick start + +\section quick_start_project_setup Project setup + +Vulkan Memory Allocator comes in form of a "stb-style" single header file. +You don't need to build it as a separate library project. +You can add this file directly to your project and submit it to code repository next to your other source files. + +"Single header" doesn't mean that everything is contained in C/C++ declarations, +like it tends to be in case of inline functions or C++ templates. +It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro. +If you don't do it properly, you will get linker errors. + +To do it properly: + +-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library. + This includes declarations of all members of the library. +-# In exacly one CPP file define following macro before this include. + It enables also internal definitions. + +\code +#define VMA_IMPLEMENTATION +#include "vk_mem_alloc.h" +\endcode + +It may be a good idea to create dedicated CPP file just for this purpose. + +Note on language: This library is written in C++, but has C-compatible interface. +Thus you can include and use vk_mem_alloc.h in C or C++ code, but full +implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C. + +Please note that this library includes header ``, which in turn +includes `` on Windows. If you need some specific macros defined +before including these headers (like `WIN32_LEAN_AND_MEAN` or +`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define +them before every `#include` of this library. + + +\section quick_start_initialization Initialization + +At program startup: + +-# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object. +-# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by + calling vmaCreateAllocator(). + +\code +VmaAllocatorCreateInfo allocatorInfo = {}; +allocatorInfo.physicalDevice = physicalDevice; +allocatorInfo.device = device; + +VmaAllocator allocator; +vmaCreateAllocator(&allocatorInfo, &allocator); +\endcode + +\section quick_start_resource_allocation Resource allocation + +When you want to create a buffer or image: + +-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure. +-# Fill VmaAllocationCreateInfo structure. +-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory + already allocated and bound to it. + +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufferInfo.size = 65536; +bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +Don't forget to destroy your objects when no longer needed: + +\code +vmaDestroyBuffer(allocator, buffer, allocation); +vmaDestroyAllocator(allocator); +\endcode + + +\page choosing_memory_type Choosing memory type + +Physical devices in Vulkan support various combinations of memory heaps and +types. Help with choosing correct and optimal memory type for your specific +resource is one of the key features of this library. You can use it by filling +appropriate members of VmaAllocationCreateInfo structure, as described below. +You can also combine multiple methods. + +-# If you just want to find memory type index that meets your requirements, you + can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(), + vmaFindMemoryTypeIndexForImageInfo(). +-# If you want to allocate a region of device memory without association with any + specific image or buffer, you can use function vmaAllocateMemory(). Usage of + this function is not recommended and usually not needed. + vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once, + which may be useful for sparse binding. +-# If you already have a buffer or an image created, you want to allocate memory + for it and then you will bind it yourself, you can use function + vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(). + For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory() + or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2(). +-# If you want to create a buffer or an image, allocate memory for it and bind + them together, all in one call, you can use function vmaCreateBuffer(), + vmaCreateImage(). This is the easiest and recommended way to use this library. + +When using 3. or 4., the library internally queries Vulkan for memory types +supported for that buffer or image (function `vkGetBufferMemoryRequirements()`) +and uses only one of these types. + +If no memory type can be found that meets all the requirements, these functions +return `VK_ERROR_FEATURE_NOT_PRESENT`. + +You can leave VmaAllocationCreateInfo structure completely filled with zeros. +It means no requirements are specified for memory type. +It is valid, although not very useful. + +\section choosing_memory_type_usage Usage + +The easiest way to specify memory requirements is to fill member +VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage. +It defines high level, common usage types. +For more details, see description of this enum. + +For example, if you want to create a uniform buffer that will be filled using +transfer only once or infrequently and used for rendering every frame, you can +do it using following code: + +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufferInfo.size = 65536; +bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +\section choosing_memory_type_required_preferred_flags Required and preferred flags + +You can specify more detailed requirements by filling members +VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags +with a combination of bits from enum `VkMemoryPropertyFlags`. For example, +if you want to create a buffer that will be persistently mapped on host (so it +must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`, +use following code: + +\code +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; +allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; +allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +A memory type is chosen that has all the required flags and as many preferred +flags set as possible. + +If you use VmaAllocationCreateInfo::usage, it is just internally converted to +a set of required and preferred flags. + +\section choosing_memory_type_explicit_memory_types Explicit memory types + +If you inspected memory types available on the physical device and you have +a preference for memory types that you want to use, you can fill member +VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set +means that a memory type with that index is allowed to be used for the +allocation. Special value 0, just like `UINT32_MAX`, means there are no +restrictions to memory type index. + +Please note that this member is NOT just a memory type index. +Still you can use it to choose just one, specific memory type. +For example, if you already determined that your buffer should be created in +memory type 2, use following code: + +\code +uint32_t memoryTypeIndex = 2; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.memoryTypeBits = 1u << memoryTypeIndex; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +\section choosing_memory_type_custom_memory_pools Custom memory pools + +If you allocate from custom memory pool, all the ways of specifying memory +requirements described above are not applicable and the aforementioned members +of VmaAllocationCreateInfo structure are ignored. Memory type is selected +explicitly when creating the pool and then used to make all the allocations from +that pool. For further details, see \ref custom_memory_pools. + +\section choosing_memory_type_dedicated_allocations Dedicated allocations + +Memory for allocations is reserved out of larger block of `VkDeviceMemory` +allocated from Vulkan internally. That's the main feature of this whole library. +You can still request a separate memory block to be created for an allocation, +just like you would do in a trivial solution without using any allocator. +In that case, a buffer or image is always bound to that memory at offset 0. +This is called a "dedicated allocation". +You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +The library can also internally decide to use dedicated allocation in some cases, e.g.: + +- When the size of the allocation is large. +- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled + and it reports that dedicated allocation is required or recommended for the resource. +- When allocation of next big memory block fails due to not enough device memory, + but allocation with the exact requested size succeeds. + + +\page memory_mapping Memory mapping + +To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`, +to be able to read from it or write to it in CPU code. +Mapping is possible only of memory allocated from a memory type that has +`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. +Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose. +You can use them directly with memory allocated by this library, +but it is not recommended because of following issue: +Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed. +This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan. +Because of this, Vulkan Memory Allocator provides following facilities: + +\section memory_mapping_mapping_functions Mapping functions + +The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory(). +They are safer and more convenient to use than standard Vulkan functions. +You can map an allocation multiple times simultaneously - mapping is reference-counted internally. +You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block. +The way it's implemented is that the library always maps entire memory block, not just region of the allocation. +For further details, see description of vmaMapMemory() function. +Example: + +\code +// Having these objects initialized: + +struct ConstantBuffer +{ + ... +}; +ConstantBuffer constantBufferData; + +VmaAllocator allocator; +VkBuffer constantBuffer; +VmaAllocation constantBufferAllocation; + +// You can map and fill your buffer using following code: + +void* mappedData; +vmaMapMemory(allocator, constantBufferAllocation, &mappedData); +memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); +vmaUnmapMemory(allocator, constantBufferAllocation); +\endcode + +When mapping, you may see a warning from Vulkan validation layer similar to this one: + +Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used. + +It happens because the library maps entire `VkDeviceMemory` block, where different +types of images and buffers may end up together, especially on GPUs with unified memory like Intel. +You can safely ignore it if you are sure you access only memory of the intended +object that you wanted to map. + + +\section memory_mapping_persistently_mapped_memory Persistently mapped memory + +Kepping your memory persistently mapped is generally OK in Vulkan. +You don't need to unmap it before using its data on the GPU. +The library provides a special feature designed for that: +Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in +VmaAllocationCreateInfo::flags stay mapped all the time, +so you can just access CPU pointer to it any time +without a need to call any "map" or "unmap" function. +Example: + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +// Buffer is already mapped. You can access its memory. +memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); +\endcode + +There are some exceptions though, when you should consider mapping memory only for a short period of time: + +- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2), + device is discrete AMD GPU, + and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory + (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU), + then whenever a memory block allocated from this memory type stays mapped + for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this + block is migrated by WDDM to system RAM, which degrades performance. It doesn't + matter if that particular memory block is actually used by the command buffer + being submitted. +- On Mac/MoltenVK there is a known bug - [Issue #175](https://github.com/KhronosGroup/MoltenVK/issues/175) + which requires unmapping before GPU can see updated texture. +- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools. + +\section memory_mapping_cache_control Cache flush and invalidate + +Memory in Vulkan doesn't need to be unmapped before using it on GPU, +but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set, +you need to manually **invalidate** cache before reading of mapped pointer +and **flush** cache after writing to mapped pointer. +Map/unmap operations don't do that automatically. +Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`, +`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient +functions that refer to given allocation object: vmaFlushAllocation(), +vmaInvalidateAllocation(). + +Regions of memory specified for flush/invalidate must be aligned to +`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library. +In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations +within blocks are aligned to this value, so their offsets are always multiply of +`nonCoherentAtomSize` and two different allocations never share same "line" of this size. + +Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`. + +Also, Windows drivers from all 3 **PC** GPU vendors (AMD, Intel, NVIDIA) +currently provide `HOST_COHERENT` flag on all memory types that are +`HOST_VISIBLE`, so on this platform you may not need to bother. + +\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable + +It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping) +despite it wasn't explicitly requested. +For example, application may work on integrated graphics with unified memory (like Intel) or +allocation from video memory might have failed, so the library chose system memory as fallback. + +You can detect this case and map such allocation to access its memory on CPU directly, +instead of launching a transfer operation. +In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(), +and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type. + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +VkMemoryPropertyFlags memFlags; +vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags); +if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) +{ + // Allocation ended up in mappable memory. You can map it and access it directly. + void* mappedData; + vmaMapMemory(allocator, alloc, &mappedData); + memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); + vmaUnmapMemory(allocator, alloc); +} +else +{ + // Allocation ended up in non-mappable memory. + // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. +} +\endcode + +You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations +that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY). +If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly. +If not, the flag is just ignored. +Example: + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +if(allocInfo.pUserData != nullptr) +{ + // Allocation ended up in mappable memory. + // It's persistently mapped. You can access it directly. + memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); +} +else +{ + // Allocation ended up in non-mappable memory. + // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. +} +\endcode + + +\page staying_within_budget Staying within budget + +When developing a graphics-intensive game or program, it is important to avoid allocating +more GPU memory than it's physically available. When the memory is over-committed, +various bad things can happen, depending on the specific GPU, graphics driver, and +operating system: + +- It may just work without any problems. +- The application may slow down because some memory blocks are moved to system RAM + and the GPU has to access them through PCI Express bus. +- A new allocation may take very long time to complete, even few seconds, and possibly + freeze entire system. +- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST` + returned somewhere later. + +\section staying_within_budget_querying_for_budget Querying for budget + +To query for current memory usage and available budget, use function vmaGetBudget(). +Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap. + +Please note that this function returns different information and works faster than +vmaCalculateStats(). vmaGetBudget() can be called every frame or even before every +allocation, while vmaCalculateStats() is intended to be used rarely, +only to obtain statistical information, e.g. for debugging purposes. + +It is recommended to use VK_EXT_memory_budget device extension to obtain information +about the budget from Vulkan device. VMA is able to use this extension automatically. +When not enabled, the allocator behaves same way, but then it estimates current usage +and available budget based on its internal information and Vulkan memory heap sizes, +which may be less precise. In order to use this extension: + +1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2 + required by it are available and enable them. Please note that the first is a device + extension and the second is instance extension! +2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object. +3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from + Vulkan inside of it to avoid overhead of querying it with every allocation. + +\section staying_within_budget_controlling_memory_usage Controlling memory usage + +There are many ways in which you can try to stay within the budget. + +First, when making new allocation requires allocating a new memory block, the library +tries not to exceed the budget automatically. If a block with default recommended size +(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even +dedicated memory for just this resource. + +If the size of the requested resource plus current memory usage is more than the +budget, by default the library still tries to create it, leaving it to the Vulkan +implementation whether the allocation succeeds or fails. You can change this behavior +by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is +not made if it would exceed the budget or if the budget is already exceeded. +Some other allocations become lost instead to make room for it, if the mechanism of +[lost allocations](@ref lost_allocations) is used. +If that is not possible, the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag +when creating resources that are not essential for the application (e.g. the texture +of a specific object) and not to pass it when creating critically important resources +(e.g. render targets). + +Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure +a new allocation is created only when it fits inside one of the existing memory blocks. +If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +This also ensures that the function call is very fast because it never goes to Vulkan +to obtain a new block. + +Please note that creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount +set to more than 0 will try to allocate memory blocks without checking whether they +fit within budget. + + +\page custom_memory_pools Custom memory pools + +A memory pool contains a number of `VkDeviceMemory` blocks. +The library automatically creates and manages default pool for each memory type available on the device. +Default memory pool automatically grows in size. +Size of allocated blocks is also variable and managed automatically. + +You can create custom pool and allocate memory out of it. +It can be useful if you want to: + +- Keep certain kind of allocations separate from others. +- Enforce particular, fixed size of Vulkan memory blocks. +- Limit maximum amount of Vulkan memory allocated for that pool. +- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool. + +To use custom memory pools: + +-# Fill VmaPoolCreateInfo structure. +-# Call vmaCreatePool() to obtain #VmaPool handle. +-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle. + You don't need to specify any other parameters of this structure, like `usage`. + +Example: + +\code +// Create a pool that can have at most 2 blocks, 128 MiB each. +VmaPoolCreateInfo poolCreateInfo = {}; +poolCreateInfo.memoryTypeIndex = ... +poolCreateInfo.blockSize = 128ull * 1024 * 1024; +poolCreateInfo.maxBlockCount = 2; + +VmaPool pool; +vmaCreatePool(allocator, &poolCreateInfo, &pool); + +// Allocate a buffer out of it. +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = 1024; +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.pool = pool; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); +\endcode + +You have to free all allocations made from this pool before destroying it. + +\code +vmaDestroyBuffer(allocator, buf, alloc); +vmaDestroyPool(allocator, pool); +\endcode + +\section custom_memory_pools_MemTypeIndex Choosing memory type index + +When creating a pool, you must explicitly specify memory type index. +To find the one suitable for your buffers or images, you can use helper functions +vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(). +You need to provide structures with example parameters of buffers or images +that you are going to create in that pool. + +\code +VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +exampleBufCreateInfo.size = 1024; // Whatever. +exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed. + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed. + +uint32_t memTypeIndex; +vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex); + +VmaPoolCreateInfo poolCreateInfo = {}; +poolCreateInfo.memoryTypeIndex = memTypeIndex; +// ... +\endcode + +When creating buffers/images allocated in that pool, provide following parameters: + +- `VkBufferCreateInfo`: Prefer to pass same parameters as above. + Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior. + Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers + or the other way around. +- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member. + Other members are ignored anyway. + +\section linear_algorithm Linear allocation algorithm + +Each Vulkan memory block managed by this library has accompanying metadata that +keeps track of used and unused regions. By default, the metadata structure and +algorithm tries to find best place for new allocations among free regions to +optimize memory usage. This way you can allocate and free objects in any order. + +![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png) + +Sometimes there is a need to use simpler, linear allocation algorithm. You can +create custom pool that uses such algorithm by adding flag +#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating +#VmaPool object. Then an alternative metadata management is used. It always +creates new allocations after last one and doesn't reuse free regions after +allocations freed in the middle. It results in better allocation performance and +less memory consumed by metadata. + +![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png) + +With this one flag, you can create a custom pool that can be used in many ways: +free-at-once, stack, double stack, and ring buffer. See below for details. + +\subsection linear_algorithm_free_at_once Free-at-once + +In a pool that uses linear algorithm, you still need to free all the allocations +individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free +them in any order. New allocations are always made after last one - free space +in the middle is not reused. However, when you release all the allocation and +the pool becomes empty, allocation starts from the beginning again. This way you +can use linear algorithm to speed up creation of allocations that you are going +to release all at once. + +![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png) + +This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount +value that allows multiple memory blocks. + +\subsection linear_algorithm_stack Stack + +When you free an allocation that was created last, its space can be reused. +Thanks to this, if you always release allocations in the order opposite to their +creation (LIFO - Last In First Out), you can achieve behavior of a stack. + +![Stack](../gfx/Linear_allocator_4_stack.png) + +This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount +value that allows multiple memory blocks. + +\subsection linear_algorithm_double_stack Double stack + +The space reserved by a custom pool with linear algorithm may be used by two +stacks: + +- First, default one, growing up from offset 0. +- Second, "upper" one, growing down from the end towards lower offsets. + +To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT +to VmaAllocationCreateInfo::flags. + +![Double stack](../gfx/Linear_allocator_7_double_stack.png) + +Double stack is available only in pools with one memory block - +VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. + +When the two stacks' ends meet so there is not enough space between them for a +new allocation, such allocation fails with usual +`VK_ERROR_OUT_OF_DEVICE_MEMORY` error. + +\subsection linear_algorithm_ring_buffer Ring buffer + +When you free some allocations from the beginning and there is not enough free space +for a new one at the end of a pool, allocator's "cursor" wraps around to the +beginning and starts allocation there. Thanks to this, if you always release +allocations in the same order as you created them (FIFO - First In First Out), +you can achieve behavior of a ring buffer / queue. + +![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png) + +Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer. +If there is not enough free space for a new allocation, but existing allocations +from the front of the queue can become lost, they become lost and the allocation +succeeds. + +![Ring buffer with lost allocations](../gfx/Linear_allocator_6_ring_buffer_lost.png) + +Ring buffer is available only in pools with one memory block - +VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. + +\section buddy_algorithm Buddy allocation algorithm + +There is another allocation algorithm that can be used with custom pools, called +"buddy". Its internal data structure is based on a tree of blocks, each having +size that is a power of two and a half of its parent's size. When you want to +allocate memory of certain size, a free node in the tree is located. If it's too +large, it is recursively split into two halves (called "buddies"). However, if +requested allocation size is not a power of two, the size of a tree node is +aligned up to the nearest power of two and the remaining space is wasted. When +two buddy nodes become free, they are merged back into one larger node. + +![Buddy allocator](../gfx/Buddy_allocator.png) + +The advantage of buddy allocation algorithm over default algorithm is faster +allocation and deallocation, as well as smaller external fragmentation. The +disadvantage is more wasted space (internal fragmentation). + +For more information, please read ["Buddy memory allocation" on Wikipedia](https://en.wikipedia.org/wiki/Buddy_memory_allocation) +or other sources that describe this concept in general. + +To use buddy allocation algorithm with a custom pool, add flag +#VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating +#VmaPool object. + +Several limitations apply to pools that use buddy algorithm: + +- It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two. + Otherwise, only largest power of two smaller than the size is used for + allocations. The remaining space always stays unused. +- [Margins](@ref debugging_memory_usage_margins) and + [corruption detection](@ref debugging_memory_usage_corruption_detection) + don't work in such pools. +- [Lost allocations](@ref lost_allocations) don't work in such pools. You can + use them, but they never become lost. Support may be added in the future. +- [Defragmentation](@ref defragmentation) doesn't work with allocations made from + such pool. + +\page defragmentation Defragmentation + +Interleaved allocations and deallocations of many objects of varying size can +cause fragmentation over time, which can lead to a situation where the library is unable +to find a continuous range of free memory for a new allocation despite there is +enough free space, just scattered across many small free ranges between existing +allocations. + +To mitigate this problem, you can use defragmentation feature: +structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd(). +Given set of allocations, +this function can move them to compact used memory, ensure more continuous free +space and possibly also free some `VkDeviceMemory` blocks. + +What the defragmentation does is: + +- Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset. + After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or + VmaAllocationInfo::offset changes. You must query them again using + vmaGetAllocationInfo() if you need them. +- Moves actual data in memory. + +What it doesn't do, so you need to do it yourself: + +- Recreate buffers and images that were bound to allocations that were defragmented and + bind them with their new places in memory. + You must use `vkDestroyBuffer()`, `vkDestroyImage()`, + `vkCreateBuffer()`, `vkCreateImage()`, vmaBindBufferMemory(), vmaBindImageMemory() + for that purpose and NOT vmaDestroyBuffer(), + vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to + destroy or create allocation objects! +- Recreate views and update descriptors that point to these buffers and images. + +\section defragmentation_cpu Defragmenting CPU memory + +Following example demonstrates how you can run defragmentation on CPU. +Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented. +Others are ignored. + +The way it works is: + +- It temporarily maps entire memory blocks when necessary. +- It moves data using `memmove()` function. + +\code +// Given following variables already initialized: +VkDevice device; +VmaAllocator allocator; +std::vector buffers; +std::vector allocations; + + +const uint32_t allocCount = (uint32_t)allocations.size(); +std::vector allocationsChanged(allocCount); + +VmaDefragmentationInfo2 defragInfo = {}; +defragInfo.allocationCount = allocCount; +defragInfo.pAllocations = allocations.data(); +defragInfo.pAllocationsChanged = allocationsChanged.data(); +defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit. +defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit. + +VmaDefragmentationContext defragCtx; +vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); +vmaDefragmentationEnd(allocator, defragCtx); + +for(uint32_t i = 0; i < allocCount; ++i) +{ + if(allocationsChanged[i]) + { + // Destroy buffer that is immutably bound to memory region which is no longer valid. + vkDestroyBuffer(device, buffers[i], nullptr); + + // Create new buffer with same parameters. + VkBufferCreateInfo bufferInfo = ...; + vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); + + // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. + + // Bind new buffer to new memory region. Data contained in it is already moved. + VmaAllocationInfo allocInfo; + vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); + vmaBindBufferMemory(allocator, allocations[i], buffers[i]); + } +} +\endcode + +Setting VmaDefragmentationInfo2::pAllocationsChanged is optional. +This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index +has been modified during defragmentation. +You can pass null, but you then need to query every allocation passed to defragmentation +for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it. + +If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools), +you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools +instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations +to defragment all allocations in given pools. +You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case. +You can also combine both methods. + +\section defragmentation_gpu Defragmenting GPU memory + +It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`. +To do that, you need to pass a command buffer that meets requirements as described in +VmaDefragmentationInfo2::commandBuffer. The way it works is: + +- It creates temporary buffers and binds them to entire memory blocks when necessary. +- It issues `vkCmdCopyBuffer()` to passed command buffer. + +Example: + +\code +// Given following variables already initialized: +VkDevice device; +VmaAllocator allocator; +VkCommandBuffer commandBuffer; +std::vector buffers; +std::vector allocations; + + +const uint32_t allocCount = (uint32_t)allocations.size(); +std::vector allocationsChanged(allocCount); + +VkCommandBufferBeginInfo cmdBufBeginInfo = ...; +vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo); + +VmaDefragmentationInfo2 defragInfo = {}; +defragInfo.allocationCount = allocCount; +defragInfo.pAllocations = allocations.data(); +defragInfo.pAllocationsChanged = allocationsChanged.data(); +defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it's "GPU" this time. +defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it's "GPU" this time. +defragInfo.commandBuffer = commandBuffer; + +VmaDefragmentationContext defragCtx; +vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); + +vkEndCommandBuffer(commandBuffer); + +// Submit commandBuffer. +// Wait for a fence that ensures commandBuffer execution finished. + +vmaDefragmentationEnd(allocator, defragCtx); + +for(uint32_t i = 0; i < allocCount; ++i) +{ + if(allocationsChanged[i]) + { + // Destroy buffer that is immutably bound to memory region which is no longer valid. + vkDestroyBuffer(device, buffers[i], nullptr); + + // Create new buffer with same parameters. + VkBufferCreateInfo bufferInfo = ...; + vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); + + // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. + + // Bind new buffer to new memory region. Data contained in it is already moved. + VmaAllocationInfo allocInfo; + vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); + vmaBindBufferMemory(allocator, allocations[i], buffers[i]); + } +} +\endcode + +You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters. +The library automatically chooses best method to defragment each memory pool. + +You may try not to block your entire program to wait until defragmentation finishes, +but do it in the background, as long as you carefully fullfill requirements described +in function vmaDefragmentationBegin(). + +\section defragmentation_additional_notes Additional notes + +It is only legal to defragment allocations bound to: + +- buffers +- images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and + being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`. + +Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other +layout may give undefined results. + +If you defragment allocations bound to images, new images to be bound to new +memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED` +and then transitioned to their original layout from before defragmentation if +needed using an image memory barrier. + +While using defragmentation, you may experience validation layer warnings, which you just need to ignore. +See [Validation layer warnings](@ref general_considerations_validation_layer_warnings). + +Please don't expect memory to be fully compacted after defragmentation. +Algorithms inside are based on some heuristics that try to maximize number of Vulkan +memory blocks to make totally empty to release them, as well as to maximimze continuous +empty space inside remaining blocks, while minimizing the number and size of allocations that +need to be moved. Some fragmentation may still remain - this is normal. + +\section defragmentation_custom_algorithm Writing custom defragmentation algorithm + +If you want to implement your own, custom defragmentation algorithm, +there is infrastructure prepared for that, +but it is not exposed through the library API - you need to hack its source code. +Here are steps needed to do this: + +-# Main thing you need to do is to define your own class derived from base abstract + class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods. + See definition and comments of this class for details. +-# Your code needs to interact with device memory block metadata. + If you need more access to its data than it's provided by its public interface, + declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`. +-# If you want to create a flag that would enable your algorithm or pass some additional + flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in + VmaDefragmentationInfo2::flags. +-# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object + of your new class whenever needed. + + +\page lost_allocations Lost allocations + +If your game oversubscribes video memory, if may work OK in previous-generation +graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically +paged to system RAM. In Vulkan you can't do it because when you run out of +memory, an allocation just fails. If you have more data (e.g. textures) that can +fit into VRAM and you don't need it all at once, you may want to upload them to +GPU on demand and "push out" ones that are not used for a long time to make room +for the new ones, effectively using VRAM (or a cartain memory pool) as a form of +cache. Vulkan Memory Allocator can help you with that by supporting a concept of +"lost allocations". + +To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT +flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to +such allocation in every new frame, you need to query it if it's not lost. +To check it, call vmaTouchAllocation(). +If the allocation is lost, you should not use it or buffer/image bound to it. +You mustn't forget to destroy this allocation and this buffer/image. +vmaGetAllocationInfo() can also be used for checking status of the allocation. +Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`. + +To create an allocation that can make some other allocations lost to make room +for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will +usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and +#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time. + +Warning! Current implementation uses quite naive, brute force algorithm, +which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT +flag quite slow. A new, more optimal algorithm and data structure to speed this +up is planned for the future. + +Q: When interleaving creation of new allocations with usage of existing ones, +how do you make sure that an allocation won't become lost while it's used in the +current frame? + +It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation +status/parameters and checks whether it's not lost, but when it's not, it also +atomically marks it as used in the current frame, which makes it impossible to +become lost in that frame. It uses lockless algorithm, so it works fast and +doesn't involve locking any internal mutex. + +Q: What if my allocation may still be in use by the GPU when it's rendering a +previous frame while I already submit new frame on the CPU? + +You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not +become lost for a number of additional frames back from the current one by +specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default +memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool). + +Q: How do you inform the library when new frame starts? + +You need to call function vmaSetCurrentFrameIndex(). + +Example code: + +\code +struct MyBuffer +{ + VkBuffer m_Buf = nullptr; + VmaAllocation m_Alloc = nullptr; + + // Called when the buffer is really needed in the current frame. + void EnsureBuffer(); +}; + +void MyBuffer::EnsureBuffer() +{ + // Buffer has been created. + if(m_Buf != VK_NULL_HANDLE) + { + // Check if its allocation is not lost + mark it as used in current frame. + if(vmaTouchAllocation(allocator, m_Alloc)) + { + // It's all OK - safe to use m_Buf. + return; + } + } + + // Buffer not yet exists or lost - destroy and recreate it. + + vmaDestroyBuffer(allocator, m_Buf, m_Alloc); + + VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; + bufCreateInfo.size = 1024; + bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + + VmaAllocationCreateInfo allocCreateInfo = {}; + allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; + allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT | + VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; + + vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr); +} +\endcode + +When using lost allocations, you may see some Vulkan validation layer warnings +about overlapping regions of memory bound to different kinds of buffers and +images. This is still valid as long as you implement proper handling of lost +allocations (like in the example above) and don't use them. + +You can create an allocation that is already in lost state from the beginning using function +vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null. + +You can call function vmaMakePoolAllocationsLost() to set all eligible allocations +in a specified custom pool to lost state. +Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back +cannot become lost. + +Q: Can I touch allocation that cannot become lost? + +Yes, although it has no visible effect. +Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index +also for allocations that cannot become lost, but the only way to observe it is to dump +internal allocator state using vmaBuildStatsString(). +You can use this feature for debugging purposes to explicitly mark allocations that you use +in current frame and then analyze JSON dump to see for how long each allocation stays unused. + + +\page statistics Statistics + +This library contains functions that return information about its internal state, +especially the amount of memory allocated from Vulkan. +Please keep in mind that these functions need to traverse all internal data structures +to gather these information, so they may be quite time-consuming. +Don't call them too often. + +\section statistics_numeric_statistics Numeric statistics + +You can query for overall statistics of the allocator using function vmaCalculateStats(). +Information are returned using structure #VmaStats. +It contains #VmaStatInfo - number of allocated blocks, number of allocations +(occupied ranges in these blocks), number of unused (free) ranges in these blocks, +number of bytes used and unused (but still allocated from Vulkan) and other information. +They are summed across memory heaps, memory types and total for whole allocator. + +You can query for statistics of a custom pool using function vmaGetPoolStats(). +Information are returned using structure #VmaPoolStats. + +You can query for information about specific allocation using function vmaGetAllocationInfo(). +It fill structure #VmaAllocationInfo. + +\section statistics_json_dump JSON dump + +You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString(). +The result is guaranteed to be correct JSON. +It uses ANSI encoding. +Any strings provided by user (see [Allocation names](@ref allocation_names)) +are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding, +this JSON string can be treated as using this encoding. +It must be freed using function vmaFreeStatsString(). + +The format of this JSON string is not part of official documentation of the library, +but it will not change in backward-incompatible way without increasing library major version number +and appropriate mention in changelog. + +The JSON string contains all the data that can be obtained using vmaCalculateStats(). +It can also contain detailed map of allocated memory blocks and their regions - +free and occupied by allocations. +This allows e.g. to visualize the memory or assess fragmentation. + + +\page allocation_annotation Allocation names and user data + +\section allocation_user_data Allocation user data + +You can annotate allocations with your own information, e.g. for debugging purposes. +To do that, fill VmaAllocationCreateInfo::pUserData field when creating +an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer, +some handle, index, key, ordinal number or any other value that would associate +the allocation with your custom metadata. + +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +// Fill bufferInfo... + +MyBufferMetadata* pMetadata = CreateBufferMetadata(); + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.pUserData = pMetadata; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr); +\endcode + +The pointer may be later retrieved as VmaAllocationInfo::pUserData: + +\code +VmaAllocationInfo allocInfo; +vmaGetAllocationInfo(allocator, allocation, &allocInfo); +MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData; +\endcode + +It can also be changed using function vmaSetAllocationUserData(). + +Values of (non-zero) allocations' `pUserData` are printed in JSON report created by +vmaBuildStatsString(), in hexadecimal form. + +\section allocation_names Allocation names + +There is alternative mode available where `pUserData` pointer is used to point to +a null-terminated string, giving a name to the allocation. To use this mode, +set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags. +Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to +vmaSetAllocationUserData() must be either null or pointer to a null-terminated string. +The library creates internal copy of the string, so the pointer you pass doesn't need +to be valid for whole lifetime of the allocation. You can free it after the call. + +\code +VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +// Fill imageInfo... + +std::string imageName = "Texture: "; +imageName += fileName; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT; +allocCreateInfo.pUserData = imageName.c_str(); + +VkImage image; +VmaAllocation allocation; +vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr); +\endcode + +The value of `pUserData` pointer of the allocation will be different than the one +you passed when setting allocation's name - pointing to a buffer managed +internally that holds copy of the string. + +\code +VmaAllocationInfo allocInfo; +vmaGetAllocationInfo(allocator, allocation, &allocInfo); +const char* imageName = (const char*)allocInfo.pUserData; +printf("Image name: %s\n", imageName); +\endcode + +That string is also printed in JSON report created by vmaBuildStatsString(). + +\note Passing string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it. +You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library. + + +\page debugging_memory_usage Debugging incorrect memory usage + +If you suspect a bug with memory usage, like usage of uninitialized memory or +memory being overwritten out of bounds of an allocation, +you can use debug features of this library to verify this. + +\section debugging_memory_usage_initialization Memory initialization + +If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used, +you can enable automatic memory initialization to verify this. +To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1. + +\code +#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1 +#include "vk_mem_alloc.h" +\endcode + +It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`. +Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`. +Memory is automatically mapped and unmapped if necessary. + +If you find these values while debugging your program, good chances are that you incorrectly +read Vulkan memory that is allocated but not initialized, or already freed, respectively. + +Memory initialization works only with memory types that are `HOST_VISIBLE`. +It works also with dedicated allocations. +It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, +as they cannot be mapped. + +\section debugging_memory_usage_margins Margins + +By default, allocations are laid out in memory blocks next to each other if possible +(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`). + +![Allocations without margin](../gfx/Margins_1.png) + +Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified +number of bytes as a margin before and after every allocation. + +\code +#define VMA_DEBUG_MARGIN 16 +#include "vk_mem_alloc.h" +\endcode + +![Allocations with margin](../gfx/Margins_2.png) + +If your bug goes away after enabling margins, it means it may be caused by memory +being overwritten outside of allocation boundaries. It is not 100% certain though. +Change in application behavior may also be caused by different order and distribution +of allocations across memory blocks after margins are applied. + +The margin is applied also before first and after last allocation in a block. +It may occur only once between two adjacent allocations. + +Margins work with all types of memory. + +Margin is applied only to allocations made out of memory blocks and not to dedicated +allocations, which have their own memory block of specific size. +It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag +or those automatically decided to put into dedicated allocations, e.g. due to its +large size or recommended by VK_KHR_dedicated_allocation extension. +Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag. + +Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space. + +Note that enabling margins increases memory usage and fragmentation. + +\section debugging_memory_usage_corruption_detection Corruption detection + +You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation +of contents of the margins. + +\code +#define VMA_DEBUG_MARGIN 16 +#define VMA_DEBUG_DETECT_CORRUPTION 1 +#include "vk_mem_alloc.h" +\endcode + +When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN` +(it must be multiply of 4) before and after every allocation is filled with a magic number. +This idea is also know as "canary". +Memory is automatically mapped and unmapped if necessary. + +This number is validated automatically when the allocation is destroyed. +If it's not equal to the expected value, `VMA_ASSERT()` is executed. +It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation, +which indicates a serious bug. + +You can also explicitly request checking margins of all allocations in all memory blocks +that belong to specified memory types by using function vmaCheckCorruption(), +or in memory blocks that belong to specified custom pool, by using function +vmaCheckPoolCorruption(). + +Margin validation (corruption detection) works only for memory types that are +`HOST_VISIBLE` and `HOST_COHERENT`. + + +\page record_and_replay Record and replay + +\section record_and_replay_introduction Introduction + +While using the library, sequence of calls to its functions together with their +parameters can be recorded to a file and later replayed using standalone player +application. It can be useful to: + +- Test correctness - check if same sequence of calls will not cause crash or + failures on a target platform. +- Gather statistics - see number of allocations, peak memory usage, number of + calls etc. +- Benchmark performance - see how much time it takes to replay the whole + sequence. + +\section record_and_replay_usage Usage + +Recording functionality is disabled by default. +To enable it, define following macro before every include of this library: + +\code +#define VMA_RECORDING_ENABLED 1 +\endcode + +To record sequence of calls to a file: Fill in +VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator +object. File is opened and written during whole lifetime of the allocator. + +To replay file: Use VmaReplay - standalone command-line program. +Precompiled binary can be found in "bin" directory. +Its source can be found in "src/VmaReplay" directory. +Its project is generated by Premake. +Command line syntax is printed when the program is launched without parameters. +Basic usage: + + VmaReplay.exe MyRecording.csv + +Documentation of file format can be found in file: "docs/Recording file format.md". +It's a human-readable, text file in CSV format (Comma Separated Values). + +\section record_and_replay_additional_considerations Additional considerations + +- Replaying file that was recorded on a different GPU (with different parameters + like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different + set of memory heaps and types) may give different performance and memory usage + results, as well as issue some warnings and errors. +- Current implementation of recording in VMA, as well as VmaReplay application, is + coded and tested only on Windows. Inclusion of recording code is driven by + `VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to + add. Contributions are welcomed. + + +\page usage_patterns Recommended usage patterns + +See also slides from talk: +[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New) + + +\section usage_patterns_common_mistakes Common mistakes + +Use of CPU_TO_GPU instead of CPU_ONLY memory + +#VMA_MEMORY_USAGE_CPU_TO_GPU is recommended only for resources that will be +mapped and written by the CPU, as well as read directly by the GPU - like some +buffers or textures updated every frame (dynamic). If you create a staging copy +of a resource to be written by CPU and then used as a source of transfer to +another resource placed in the GPU memory, that staging resource should be +created with #VMA_MEMORY_USAGE_CPU_ONLY. Please read the descriptions of these +enums carefully for details. + +Unnecessary use of custom pools + +\ref custom_memory_pools may be useful for special purposes - when you want to +keep certain type of resources separate e.g. to reserve minimum amount of memory +for them, limit maximum amount of memory they can occupy, or make some of them +push out the other through the mechanism of \ref lost_allocations. For most +resources this is not needed and so it is not recommended to create #VmaPool +objects and allocations out of them. Allocating from the default pool is sufficient. + +\section usage_patterns_simple Simple patterns + +\subsection usage_patterns_simple_render_targets Render targets + +When: +Any resources that you frequently write and read on GPU, +e.g. images used as color attachments (aka "render targets"), depth-stencil attachments, +images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)"). + +What to do: +Create them in video memory that is fastest to access from GPU using +#VMA_MEMORY_USAGE_GPU_ONLY. + +Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension +and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, +especially if they are large or if you plan to destroy and recreate them e.g. when +display resolution changes. +Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later. + +\subsection usage_patterns_simple_immutable_resources Immutable resources + +When: +Any resources that you fill on CPU only once (aka "immutable") or infrequently +and then read frequently on GPU, +e.g. textures, vertex and index buffers, constant buffers that don't change often. + +What to do: +Create them in video memory that is fastest to access from GPU using +#VMA_MEMORY_USAGE_GPU_ONLY. + +To initialize content of such resource, create a CPU-side (aka "staging") copy of it +in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it, +and submit a transfer from it to the GPU resource. +You can keep the staging copy if you need it for another upload transfer in the future. +If you don't, you can destroy it or reuse this buffer for uploading different resource +after the transfer finishes. + +Prefer to create just buffers in system memory rather than images, even for uploading textures. +Use `vkCmdCopyBufferToImage()`. +Dont use images with `VK_IMAGE_TILING_LINEAR`. + +\subsection usage_patterns_dynamic_resources Dynamic resources + +When: +Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call, +written on CPU, read on GPU. + +What to do: +Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU. +You can map it and write to it directly on CPU, as well as read from it on GPU. + +This is a more complex situation. Different solutions are possible, +and the best one depends on specific GPU type, but you can use this simple approach for the start. +Prefer to write to such resource sequentially (e.g. using `memcpy`). +Don't perform random access or any reads from it on CPU, as it may be very slow. + +\subsection usage_patterns_readback Readback + +When: +Resources that contain data written by GPU that you want to read back on CPU, +e.g. results of some computations. + +What to do: +Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU. +You can write to them directly on GPU, as well as map and read them on CPU. + +\section usage_patterns_advanced Advanced patterns + +\subsection usage_patterns_integrated_graphics Detecting integrated graphics + +You can support integrated graphics (like Intel HD Graphics, AMD APU) better +by detecting it in Vulkan. +To do it, call `vkGetPhysicalDeviceProperties()`, inspect +`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`. +When you find it, you can assume that memory is unified and all memory types are comparably fast +to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. + +You can then sum up sizes of all available memory heaps and treat them as useful for +your GPU resources, instead of only `DEVICE_LOCAL` ones. +You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them +directly instead of submitting explicit transfer (see below). + +\subsection usage_patterns_direct_vs_transfer Direct access versus transfer + +For resources that you frequently write on CPU and read on GPU, many solutions are possible: + +-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, + second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit tranfer each time. +-# Create just single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU, + read it directly on GPU. +-# Create just single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU, + read it directly on GPU. + +Which solution is the most efficient depends on your resource and especially on the GPU. +It is best to measure it and then make the decision. +Some general recommendations: + +- On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead + related to using a second copy and making transfer. +- For small resources (e.g. constant buffers) use (2). + Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable. + Even if the resource ends up in system memory, its data may be cached on GPU after first + fetch over PCIe bus. +- For larger resources (e.g. textures), decide between (1) and (2). + You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is + both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1). + +Similarly, for resources that you frequently write on GPU and read on CPU, multiple +solutions are possible: + +-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, + second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time. +-# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU, + map it and read it on CPU. + +You should take some measurements to decide which option is faster in case of your specific +resource. + +If you don't want to specialize your code for specific types of GPUs, you can still make +an simple optimization for cases when your resource ends up in mappable memory to use it +directly in this case instead of creating CPU-side staging copy. +For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable). + + +\page configuration Configuration + +Please check "CONFIGURATION SECTION" in the code to find macros that you can define +before each include of this file or change directly in this file to provide +your own implementation of basic facilities like assert, `min()` and `max()` functions, +mutex, atomic etc. +The library uses its own implementation of containers by default, but you can switch to using +STL containers instead. + +For example, define `VMA_ASSERT(expr)` before including the library to provide +custom implementation of the assertion, compatible with your project. +By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration +and empty otherwise. + +\section config_Vulkan_functions Pointers to Vulkan functions + +The library uses Vulkan functions straight from the `vulkan.h` header by default. +If you want to provide your own pointers to these functions, e.g. fetched using +`vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`: + +-# Define `VMA_STATIC_VULKAN_FUNCTIONS 0`. +-# Provide valid pointers through VmaAllocatorCreateInfo::pVulkanFunctions. + +\section custom_memory_allocator Custom host memory allocator + +If you use custom allocator for CPU memory rather than default operator `new` +and `delete` from C++, you can make this library using your allocator as well +by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These +functions will be passed to Vulkan, as well as used by the library itself to +make any CPU-side allocations. + +\section allocation_callbacks Device memory allocation callbacks + +The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally. +You can setup callbacks to be informed about these calls, e.g. for the purpose +of gathering some statistics. To do it, fill optional member +VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. + +\section heap_memory_limit Device heap memory limit + +When device memory of certain heap runs out of free space, new allocations may +fail (returning error code) or they may succeed, silently pushing some existing +memory blocks from GPU VRAM to system RAM (which degrades performance). This +behavior is implementation-dependant - it depends on GPU vendor and graphics +driver. + +On AMD cards it can be controlled while creating Vulkan device object by using +VK_AMD_memory_overallocation_behavior extension, if available. + +Alternatively, if you want to test how your program behaves with limited amount of Vulkan device +memory available without switching your graphics card to one that really has +smaller VRAM, you can use a feature of this library intended for this purpose. +To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit. + + + +\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation + +VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve +performance on some GPUs. It augments Vulkan API with possibility to query +driver whether it prefers particular buffer or image to have its own, dedicated +allocation (separate `VkDeviceMemory` block) for better efficiency - to be able +to do some internal optimizations. + +The extension is supported by this library. It will be used automatically when +enabled. To enable it: + +1 . When creating Vulkan device, check if following 2 device extensions are +supported (call `vkEnumerateDeviceExtensionProperties()`). +If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`). + +- VK_KHR_get_memory_requirements2 +- VK_KHR_dedicated_allocation + +If you enabled these extensions: + +2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating +your #VmaAllocator`to inform the library that you enabled required extensions +and you want the library to use them. + +\code +allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; + +vmaCreateAllocator(&allocatorInfo, &allocator); +\endcode + +That's all. The extension will be automatically used whenever you create a +buffer using vmaCreateBuffer() or image using vmaCreateImage(). + +When using the extension together with Vulkan Validation Layer, you will receive +warnings like this: + + vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer. + +It is OK, you should just ignore it. It happens because you use function +`vkGetBufferMemoryRequirements2KHR()` instead of standard +`vkGetBufferMemoryRequirements()`, while the validation layer seems to be +unaware of it. + +To learn more about this extension, see: + +- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#VK_KHR_dedicated_allocation) +- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5) + + + +\page general_considerations General considerations + +\section general_considerations_thread_safety Thread safety + +- The library has no global state, so separate #VmaAllocator objects can be used + independently. + There should be no need to create multiple such objects though - one per `VkDevice` is enough. +- By default, all calls to functions that take #VmaAllocator as first parameter + are safe to call from multiple threads simultaneously because they are + synchronized internally when needed. +- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT + flag, calls to functions that take such #VmaAllocator object must be + synchronized externally. +- Access to a #VmaAllocation object must be externally synchronized. For example, + you must not call vmaGetAllocationInfo() and vmaMapMemory() from different + threads at the same time if you pass the same #VmaAllocation object to these + functions. + +\section general_considerations_validation_layer_warnings Validation layer warnings + +When using this library, you can meet following types of warnings issued by +Vulkan validation layer. They don't necessarily indicate a bug, so you may need +to just ignore them. + +- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.* + - It happens when VK_KHR_dedicated_allocation extension is enabled. + `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it. +- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.* + - It happens when you map a buffer or image, because the library maps entire + `VkDeviceMemory` block, where different types of images and buffers may end + up together, especially on GPUs with unified memory like Intel. +- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.* + - It happens when you use lost allocations, and a new image or buffer is + created in place of an existing object that bacame lost. + - It may happen also when you use [defragmentation](@ref defragmentation). + +\section general_considerations_allocation_algorithm Allocation algorithm + +The library uses following algorithm for allocation, in order: + +-# Try to find free range of memory in existing blocks. +-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size. +-# If failed, try to create such block with size/2, size/4, size/8. +-# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was + specified, try to find space in existing blocks, possilby making some other + allocations lost. +-# If failed, try to allocate separate `VkDeviceMemory` for this allocation, + just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +-# If failed, choose other memory type that meets the requirements specified in + VmaAllocationCreateInfo and go to point 1. +-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + +\section general_considerations_features_not_supported Features not supported + +Features deliberately excluded from the scope of this library: + +- Data transfer. Uploading (straming) and downloading data of buffers and images + between CPU and GPU memory and related synchronization is responsibility of the user. + Defining some "texture" object that would automatically stream its data from a + staging copy in CPU memory to GPU memory would rather be a feature of another, + higher-level library implemented on top of VMA. +- Allocations for imported/exported external memory. They tend to require + explicit memory type index and dedicated allocation anyway, so they don't + interact with main features of this library. Such special purpose allocations + should be made manually, using `vkCreateBuffer()` and `vkAllocateMemory()`. +- Recreation of buffers and images. Although the library has functions for + buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to + recreate these objects yourself after defragmentation. That's because the big + structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in + #VmaAllocation object. +- Handling CPU memory allocation failures. When dynamically creating small C++ + objects in CPU memory (not Vulkan memory), allocation failures are not checked + and handled gracefully, because that would complicate code significantly and + is usually not needed in desktop PC applications anyway. +- Code free of any compiler warnings. Maintaining the library to compile and + work correctly on so many different platforms is hard enough. Being free of + any warnings, on any version of any compiler, is simply not feasible. +- This is a C++ library with C interface. + Bindings or ports to any other programming languages are welcomed as external projects and + are not going to be included into this repository. + +*/ + +/* +Define this macro to 0/1 to disable/enable support for recording functionality, +available through VmaAllocatorCreateInfo::pRecordSettings. +*/ +#ifndef VMA_RECORDING_ENABLED + #define VMA_RECORDING_ENABLED 0 +#endif + +#ifndef NOMINMAX + #define NOMINMAX // For windows.h +#endif + +#ifndef VULKAN_H_ + #include +#endif + +#if VMA_RECORDING_ENABLED + #include +#endif + +// Define this macro to declare maximum supported Vulkan version in format AAABBBCCC, +// where AAA = major, BBB = minor, CCC = patch. +// If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion. +#if !defined(VMA_VULKAN_VERSION) + #if defined(VK_VERSION_1_1) + #define VMA_VULKAN_VERSION 1001000 + #else + #define VMA_VULKAN_VERSION 1000000 + #endif +#endif + +#if !defined(VMA_DEDICATED_ALLOCATION) + #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation + #define VMA_DEDICATED_ALLOCATION 1 + #else + #define VMA_DEDICATED_ALLOCATION 0 + #endif +#endif + +#if !defined(VMA_BIND_MEMORY2) + #if VK_KHR_bind_memory2 + #define VMA_BIND_MEMORY2 1 + #else + #define VMA_BIND_MEMORY2 0 + #endif +#endif + +#if !defined(VMA_MEMORY_BUDGET) + #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000) + #define VMA_MEMORY_BUDGET 1 + #else + #define VMA_MEMORY_BUDGET 0 + #endif +#endif + +// Define these macros to decorate all public functions with additional code, +// before and after returned type, appropriately. This may be useful for +// exporing the functions when compiling VMA as a separate library. Example: +// #define VMA_CALL_PRE __declspec(dllexport) +// #define VMA_CALL_POST __cdecl +#ifndef VMA_CALL_PRE + #define VMA_CALL_PRE +#endif +#ifndef VMA_CALL_POST + #define VMA_CALL_POST +#endif + +/** \struct VmaAllocator +\brief Represents main object of this library initialized. + +Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it. +Call function vmaDestroyAllocator() to destroy it. + +It is recommended to create just one object of this type per `VkDevice` object, +right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed. +*/ +VK_DEFINE_HANDLE(VmaAllocator) + +/// Callback function called after successful vkAllocateMemory. +typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)( + VmaAllocator allocator, + uint32_t memoryType, + VkDeviceMemory memory, + VkDeviceSize size); +/// Callback function called before vkFreeMemory. +typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)( + VmaAllocator allocator, + uint32_t memoryType, + VkDeviceMemory memory, + VkDeviceSize size); + +/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`. + +Provided for informative purpose, e.g. to gather statistics about number of +allocations or total amount of memory allocated in Vulkan. + +Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. +*/ +typedef struct VmaDeviceMemoryCallbacks { + /// Optional, can be null. + PFN_vmaAllocateDeviceMemoryFunction pfnAllocate; + /// Optional, can be null. + PFN_vmaFreeDeviceMemoryFunction pfnFree; +} VmaDeviceMemoryCallbacks; + +/// Flags for created #VmaAllocator. +typedef enum VmaAllocatorCreateFlagBits { + /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. + + Using this flag may increase performance because internal mutexes are not used. + */ + VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001, + /** \brief Enables usage of VK_KHR_dedicated_allocation extension. + + The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. + When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. + + Using this extenion will automatically allocate dedicated blocks of memory for + some buffers and images instead of suballocating place for them out of bigger + memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT + flag) when it is recommended by the driver. It may improve performance on some + GPUs. + + You may set this flag only if you found out that following device extensions are + supported, you enabled them while creating Vulkan device passed as + VmaAllocatorCreateInfo::device, and you want them to be used internally by this + library: + + - VK_KHR_get_memory_requirements2 (device extension) + - VK_KHR_dedicated_allocation (device extension) + + When this flag is set, you can experience following warnings reported by Vulkan + validation layer. You can ignore them. + + > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer. + */ + VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002, + /** + Enables usage of VK_KHR_bind_memory2 extension. + + The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. + When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. + + You may set this flag only if you found out that this device extension is supported, + you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, + and you want it to be used internally by this library. + + The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`, + which allow to pass a chain of `pNext` structures while binding. + This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2(). + */ + VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004, + /** + Enables usage of VK_EXT_memory_budget extension. + + You may set this flag only if you found out that this device extension is supported, + you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, + and you want it to be used internally by this library, along with another instance extension + VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted). + + The extension provides query for current memory usage and budget, which will probably + be more accurate than an estimation used by the library otherwise. + */ + VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008, + + VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaAllocatorCreateFlagBits; +typedef VkFlags VmaAllocatorCreateFlags; + +/** \brief Pointers to some Vulkan functions - a subset used by the library. + +Used in VmaAllocatorCreateInfo::pVulkanFunctions. +*/ +typedef struct VmaVulkanFunctions { + PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; + PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; + PFN_vkAllocateMemory vkAllocateMemory; + PFN_vkFreeMemory vkFreeMemory; + PFN_vkMapMemory vkMapMemory; + PFN_vkUnmapMemory vkUnmapMemory; + PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; + PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; + PFN_vkBindBufferMemory vkBindBufferMemory; + PFN_vkBindImageMemory vkBindImageMemory; + PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; + PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; + PFN_vkCreateBuffer vkCreateBuffer; + PFN_vkDestroyBuffer vkDestroyBuffer; + PFN_vkCreateImage vkCreateImage; + PFN_vkDestroyImage vkDestroyImage; + PFN_vkCmdCopyBuffer vkCmdCopyBuffer; +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR; + PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR; +#endif +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + PFN_vkBindBufferMemory2KHR vkBindBufferMemory2KHR; + PFN_vkBindImageMemory2KHR vkBindImageMemory2KHR; +#endif +#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 + PFN_vkGetPhysicalDeviceMemoryProperties2KHR vkGetPhysicalDeviceMemoryProperties2KHR; +#endif +} VmaVulkanFunctions; + +/// Flags to be used in VmaRecordSettings::flags. +typedef enum VmaRecordFlagBits { + /** \brief Enables flush after recording every function call. + + Enable it if you expect your application to crash, which may leave recording file truncated. + It may degrade performance though. + */ + VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001, + + VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaRecordFlagBits; +typedef VkFlags VmaRecordFlags; + +/// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings. +typedef struct VmaRecordSettings +{ + /// Flags for recording. Use #VmaRecordFlagBits enum. + VmaRecordFlags flags; + /** \brief Path to the file that should be written by the recording. + + Suggested extension: "csv". + If the file already exists, it will be overwritten. + It will be opened for the whole time #VmaAllocator object is alive. + If opening this file fails, creation of the whole allocator object fails. + */ + const char* pFilePath; +} VmaRecordSettings; + +/// Description of a Allocator to be created. +typedef struct VmaAllocatorCreateInfo +{ + /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum. + VmaAllocatorCreateFlags flags; + /// Vulkan physical device. + /** It must be valid throughout whole lifetime of created allocator. */ + VkPhysicalDevice physicalDevice; + /// Vulkan device. + /** It must be valid throughout whole lifetime of created allocator. */ + VkDevice device; + /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional. + /** Set to 0 to use default, which is currently 256 MiB. */ + VkDeviceSize preferredLargeHeapBlockSize; + /// Custom CPU memory allocation callbacks. Optional. + /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */ + const VkAllocationCallbacks* pAllocationCallbacks; + /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional. + /** Optional, can be null. */ + const VmaDeviceMemoryCallbacks* pDeviceMemoryCallbacks; + /** \brief Maximum number of additional frames that are in use at the same time as current frame. + + This value is used only when you make allocations with + VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become + lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. + + For example, if you double-buffer your command buffers, so resources used for + rendering in previous frame may still be in use by the GPU at the moment you + allocate resources needed for the current frame, set this value to 1. + + If you want to allow any allocations other than used in the current frame to + become lost, set this value to 0. + */ + uint32_t frameInUseCount; + /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap. + + If not NULL, it must be a pointer to an array of + `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on + maximum number of bytes that can be allocated out of particular Vulkan memory + heap. + + Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that + heap. This is also the default in case of `pHeapSizeLimit` = NULL. + + If there is a limit defined for a heap: + + - If user tries to allocate more memory from that heap using this allocator, + the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the + value of this limit will be reported instead when using vmaGetMemoryProperties(). + + Warning! Using this feature may not be equivalent to installing a GPU with + smaller amount of memory, because graphics driver doesn't necessary fail new + allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is + exceeded. It may return success and just silently migrate some device memory + blocks to system RAM. This driver behavior can also be controlled using + VK_AMD_memory_overallocation_behavior extension. + */ + const VkDeviceSize* pHeapSizeLimit; + /** \brief Pointers to Vulkan functions. Can be null if you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1`. + + If you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1` in configuration section, + you can pass null as this member, because the library will fetch pointers to + Vulkan functions internally in a static way, like: + + vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; + + Fill this member if you want to provide your own pointers to Vulkan functions, + e.g. fetched using `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`. + */ + const VmaVulkanFunctions* pVulkanFunctions; + /** \brief Parameters for recording of VMA calls. Can be null. + + If not null, it enables recording of calls to VMA functions to a file. + If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro, + creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`. + */ + const VmaRecordSettings* pRecordSettings; + /** \brief Optional handle to Vulkan instance object. + + Optional, can be null. Must be set if #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT flas is used + or if `vulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)`. + */ + VkInstance instance; + /** \brief Optional. The highest version of Vulkan that the application is designed to use. + + It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`. + The patch version number specified is ignored. Only the major and minor versions are considered. + It must be less or euqal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`. + Only versions 1.0 and 1.1 are supported by the current implementation. + Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`. + */ + uint32_t vulkanApiVersion; +} VmaAllocatorCreateInfo; + +/// Creates Allocator object. +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( + const VmaAllocatorCreateInfo* pCreateInfo, + VmaAllocator* pAllocator); + +/// Destroys allocator object. +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( + VmaAllocator allocator); + +/** +PhysicalDeviceProperties are fetched from physicalDevice by the allocator. +You can access it here, without fetching it again on your own. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( + VmaAllocator allocator, + const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties); + +/** +PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator. +You can access it here, without fetching it again on your own. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( + VmaAllocator allocator, + const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties); + +/** +\brief Given Memory Type Index, returns Property Flags of this memory type. + +This is just a convenience function. Same information can be obtained using +vmaGetMemoryProperties(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( + VmaAllocator allocator, + uint32_t memoryTypeIndex, + VkMemoryPropertyFlags* pFlags); + +/** \brief Sets index of the current frame. + +This function must be used if you make allocations with +#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and +#VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator +when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot +become lost in the current frame. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( + VmaAllocator allocator, + uint32_t frameIndex); + +/** \brief Calculated statistics of memory usage in entire allocator. +*/ +typedef struct VmaStatInfo +{ + /// Number of `VkDeviceMemory` Vulkan memory blocks allocated. + uint32_t blockCount; + /// Number of #VmaAllocation allocation objects allocated. + uint32_t allocationCount; + /// Number of free ranges of memory between allocations. + uint32_t unusedRangeCount; + /// Total number of bytes occupied by all allocations. + VkDeviceSize usedBytes; + /// Total number of bytes occupied by unused ranges. + VkDeviceSize unusedBytes; + VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax; + VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax; +} VmaStatInfo; + +/// General statistics from current state of Allocator. +typedef struct VmaStats +{ + VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES]; + VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS]; + VmaStatInfo total; +} VmaStats; + +/** \brief Retrieves statistics from current state of the Allocator. + +This function is called "calculate" not "get" because it has to traverse all +internal data structures, so it may be quite slow. For faster but more brief statistics +suitable to be called every frame or every allocation, use vmaGetBudget(). + +Note that when using allocator from multiple threads, returned information may immediately +become outdated. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( + VmaAllocator allocator, + VmaStats* pStats); + +/** \brief Statistics of current memory usage and available budget, in bytes, for specific memory heap. +*/ +typedef struct VmaBudget +{ + /** \brief Sum size of all `VkDeviceMemory` blocks allocated from particular heap, in bytes. + */ + VkDeviceSize blockBytes; + + /** \brief Sum size of all allocations created in particular heap, in bytes. + + Usually less or equal than `blockBytes`. + Difference `blockBytes - allocationBytes` is the amount of memory allocated but unused - + available for new allocations or wasted due to fragmentation. + + It might be greater than `blockBytes` if there are some allocations in lost state, as they account + to this value as well. + */ + VkDeviceSize allocationBytes; + + /** \brief Estimated current memory usage of the program, in bytes. + + Fetched from system using `VK_EXT_memory_budget` extension if enabled. + + It might be different than `blockBytes` (usually higher) due to additional implicit objects + also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or + `VkDeviceMemory` blocks allocated outside of this library, if any. + */ + VkDeviceSize usage; + + /** \brief Estimated amount of memory available to the program, in bytes. + + Fetched from system using `VK_EXT_memory_budget` extension if enabled. + + It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors + external to the program, like other programs also consuming system resources. + Difference `budget - usage` is the amount of additional memory that can probably + be allocated without problems. Exceeding the budget may result in various problems. + */ + VkDeviceSize budget; +} VmaBudget; + +/** \brief Retrieves information about current memory budget for all memory heaps. + +\param[out] pBudget Must point to array with number of elements at least equal to number of memory heaps in physical device used. + +This function is called "get" not "calculate" because it is very fast, suitable to be called +every frame or every allocation. For more detailed statistics use vmaCalculateStats(). + +Note that when using allocator from multiple threads, returned information may immediately +become outdated. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget( + VmaAllocator allocator, + VmaBudget* pBudget); + +#ifndef VMA_STATS_STRING_ENABLED +#define VMA_STATS_STRING_ENABLED 1 +#endif + +#if VMA_STATS_STRING_ENABLED + +/// Builds and returns statistics as string in JSON format. +/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( + VmaAllocator allocator, + char** ppStatsString, + VkBool32 detailedMap); + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( + VmaAllocator allocator, + char* pStatsString); + +#endif // #if VMA_STATS_STRING_ENABLED + +/** \struct VmaPool +\brief Represents custom memory pool + +Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it. +Call function vmaDestroyPool() to destroy it. + +For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools). +*/ +VK_DEFINE_HANDLE(VmaPool) + +typedef enum VmaMemoryUsage +{ + /** No intended memory usage specified. + Use other members of VmaAllocationCreateInfo to specify your requirements. + */ + VMA_MEMORY_USAGE_UNKNOWN = 0, + /** Memory will be used on device only, so fast access from the device is preferred. + It usually means device-local GPU (video) memory. + No need to be mappable on host. + It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`. + + Usage: + + - Resources written and read by device, e.g. images used as attachments. + - Resources transferred from host once (immutable) or infrequently and read by + device multiple times, e.g. textures to be sampled, vertex buffers, uniform + (constant) buffers, and majority of other types of resources used on GPU. + + Allocation may still end up in `HOST_VISIBLE` memory on some implementations. + In such case, you are free to map it. + You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type. + */ + VMA_MEMORY_USAGE_GPU_ONLY = 1, + /** Memory will be mappable on host. + It usually means CPU (system) memory. + Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`. + CPU access is typically uncached. Writes may be write-combined. + Resources created in this pool may still be accessible to the device, but access to them can be slow. + It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`. + + Usage: Staging copy of resources used as transfer source. + */ + VMA_MEMORY_USAGE_CPU_ONLY = 2, + /** + Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU. + CPU access is typically uncached. Writes may be write-combined. + + Usage: Resources written frequently by host (dynamic), read by device. E.g. textures, vertex buffers, uniform buffers updated every frame or every draw call. + */ + VMA_MEMORY_USAGE_CPU_TO_GPU = 3, + /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached. + It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`. + + Usage: + + - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping. + - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection. + */ + VMA_MEMORY_USAGE_GPU_TO_CPU = 4, + /** CPU memory - memory that is preferably not `DEVICE_LOCAL`, but also not guaranteed to be `HOST_VISIBLE`. + + Usage: Staging copy of resources moved from GPU memory to CPU memory as part + of custom paging/residency mechanism, to be moved back to GPU memory when needed. + */ + VMA_MEMORY_USAGE_CPU_COPY = 5, + /** Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`. + Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation. + + Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`. + + Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + */ + VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6, + + VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF +} VmaMemoryUsage; + +/// Flags to be passed as VmaAllocationCreateInfo::flags. +typedef enum VmaAllocationCreateFlagBits { + /** \brief Set this flag if the allocation should have its own memory block. + + Use it for special, big resources, like fullscreen images used as attachments. + + You should not use this flag if VmaAllocationCreateInfo::pool is not null. + */ + VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001, + + /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block. + + If new allocation cannot be placed in any of the existing blocks, allocation + fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. + + You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and + #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense. + + If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */ + VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002, + /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it. + + Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData. + + Is it valid to use this flag for allocation made from memory type that is not + `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is + useful if you need an allocation that is efficient to use on GPU + (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that + support it (e.g. Intel GPU). + + You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT. + */ + VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004, + /** Allocation created with this flag can become lost as a result of another + allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you + must check it before use. + + To check if allocation is not lost, call vmaGetAllocationInfo() and check if + VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`. + + For details about supporting lost allocations, see Lost Allocations + chapter of User Guide on Main Page. + + You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT. + */ + VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008, + /** While creating allocation using this flag, other allocations that were + created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost. + + For details about supporting lost allocations, see Lost Allocations + chapter of User Guide on Main Page. + */ + VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010, + /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a + null-terminated string. Instead of copying pointer value, a local copy of the + string is made and stored in allocation's `pUserData`. The string is automatically + freed together with the allocation. It is also used in vmaBuildStatsString(). + */ + VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020, + /** Allocation will be created from upper stack in a double stack pool. + + This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag. + */ + VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040, + /** Create both buffer/image and allocation, but don't bind them together. + It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions. + The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage(). + Otherwise it is ignored. + */ + VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080, + /** Create allocation only if additional device memory required for it, if any, won't exceed + memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + */ + VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100, + + /** Allocation strategy that chooses smallest possible free range for the + allocation. + */ + VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = 0x00010000, + /** Allocation strategy that chooses biggest possible free range for the + allocation. + */ + VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000, + /** Allocation strategy that chooses first suitable free range for the + allocation. + + "First" doesn't necessarily means the one with smallest offset in memory, + but rather the one that is easiest and fastest to find. + */ + VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000, + + /** Allocation strategy that tries to minimize memory usage. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT, + /** Allocation strategy that tries to minimize allocation time. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, + /** Allocation strategy that tries to minimize memory fragmentation. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT, + + /** A bit mask to extract only `STRATEGY` bits from entire set of flags. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MASK = + VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT | + VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT | + VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, + + VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaAllocationCreateFlagBits; +typedef VkFlags VmaAllocationCreateFlags; + +typedef struct VmaAllocationCreateInfo +{ + /// Use #VmaAllocationCreateFlagBits enum. + VmaAllocationCreateFlags flags; + /** \brief Intended usage of memory. + + You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n + If `pool` is not null, this member is ignored. + */ + VmaMemoryUsage usage; + /** \brief Flags that must be set in a Memory Type chosen for an allocation. + + Leave 0 if you specify memory requirements in other way. \n + If `pool` is not null, this member is ignored.*/ + VkMemoryPropertyFlags requiredFlags; + /** \brief Flags that preferably should be set in a memory type chosen for an allocation. + + Set to 0 if no additional flags are prefered. \n + If `pool` is not null, this member is ignored. */ + VkMemoryPropertyFlags preferredFlags; + /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. + + Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if + it meets other requirements specified by this structure, with no further + restrictions on memory type index. \n + If `pool` is not null, this member is ignored. + */ + uint32_t memoryTypeBits; + /** \brief Pool that this allocation should be created in. + + Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: + `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. + */ + VmaPool pool; + + /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). + + If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either + null or pointer to a null-terminated string. The string will be then copied to + internal buffer, so it doesn't need to be valid after allocation call. + */ + void* pUserData; +} VmaAllocationCreateInfo; + +/** +\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo. + +This algorithm tries to find a memory type that: + +- Is allowed by memoryTypeBits. +- Contains all the flags from pAllocationCreateInfo->requiredFlags. +- Matches intended usage. +- Has as many flags from pAllocationCreateInfo->preferredFlags as possible. + +\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result +from this function or any other allocating function probably means that your +device doesn't support any memory type with requested features for the specific +type of resource you want to use it for. Please check parameters of your +resource, like image layout (OPTIMAL versus LINEAR) or mip level count. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( + VmaAllocator allocator, + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex); + +/** +\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo. + +It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. +It internally creates a temporary, dummy buffer that never has memory bound. +It is just a convenience function, equivalent to calling: + +- `vkCreateBuffer` +- `vkGetBufferMemoryRequirements` +- `vmaFindMemoryTypeIndex` +- `vkDestroyBuffer` +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex); + +/** +\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo. + +It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. +It internally creates a temporary, dummy image that never has memory bound. +It is just a convenience function, equivalent to calling: + +- `vkCreateImage` +- `vkGetImageMemoryRequirements` +- `vmaFindMemoryTypeIndex` +- `vkDestroyImage` +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( + VmaAllocator allocator, + const VkImageCreateInfo* pImageCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex); + +/// Flags to be passed as VmaPoolCreateInfo::flags. +typedef enum VmaPoolCreateFlagBits { + /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored. + + This is an optional optimization flag. + + If you always allocate using vmaCreateBuffer(), vmaCreateImage(), + vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator + knows exact type of your allocations so it can handle Buffer-Image Granularity + in the optimal way. + + If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(), + exact type of such allocations is not known, so allocator must be conservative + in handling Buffer-Image Granularity, which can lead to suboptimal allocation + (wasted memory). In that case, if you can make sure you always allocate only + buffers and linear images or only optimal images out of this pool, use this flag + to make allocator disregard Buffer-Image Granularity and so make allocations + faster and more optimal. + */ + VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002, + + /** \brief Enables alternative, linear allocation algorithm in this pool. + + Specify this flag to enable linear allocation algorithm, which always creates + new allocations after last one and doesn't reuse space from allocations freed in + between. It trades memory consumption for simplified algorithm and data + structure, which has better performance and uses less memory for metadata. + + By using this flag, you can achieve behavior of free-at-once, stack, + ring buffer, and double stack. For details, see documentation chapter + \ref linear_algorithm. + + When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default). + + For more details, see [Linear allocation algorithm](@ref linear_algorithm). + */ + VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004, + + /** \brief Enables alternative, buddy allocation algorithm in this pool. + + It operates on a tree of blocks, each having size that is a power of two and + a half of its parent's size. Comparing to default algorithm, this one provides + faster allocation and deallocation and decreased external fragmentation, + at the expense of more memory wasted (internal fragmentation). + + For more details, see [Buddy allocation algorithm](@ref buddy_algorithm). + */ + VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008, + + /** Bit mask to extract only `ALGORITHM` bits from entire set of flags. + */ + VMA_POOL_CREATE_ALGORITHM_MASK = + VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT | + VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT, + + VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaPoolCreateFlagBits; +typedef VkFlags VmaPoolCreateFlags; + +/** \brief Describes parameter of created #VmaPool. +*/ +typedef struct VmaPoolCreateInfo { + /** \brief Vulkan memory type index to allocate this pool from. + */ + uint32_t memoryTypeIndex; + /** \brief Use combination of #VmaPoolCreateFlagBits. + */ + VmaPoolCreateFlags flags; + /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional. + + Specify nonzero to set explicit, constant size of memory blocks used by this + pool. + + Leave 0 to use default and let the library manage block sizes automatically. + Sizes of particular blocks may vary. + */ + VkDeviceSize blockSize; + /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty. + + Set to 0 to have no preallocated blocks and allow the pool be completely empty. + */ + size_t minBlockCount; + /** \brief Maximum number of blocks that can be allocated in this pool. Optional. + + Set to 0 to use default, which is `SIZE_MAX`, which means no limit. + + Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated + throughout whole lifetime of this pool. + */ + size_t maxBlockCount; + /** \brief Maximum number of additional frames that are in use at the same time as current frame. + + This value is used only when you make allocations with + #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become + lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. + + For example, if you double-buffer your command buffers, so resources used for + rendering in previous frame may still be in use by the GPU at the moment you + allocate resources needed for the current frame, set this value to 1. + + If you want to allow any allocations other than used in the current frame to + become lost, set this value to 0. + */ + uint32_t frameInUseCount; +} VmaPoolCreateInfo; + +/** \brief Describes parameter of existing #VmaPool. +*/ +typedef struct VmaPoolStats { + /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes. + */ + VkDeviceSize size; + /** \brief Total number of bytes in the pool not used by any #VmaAllocation. + */ + VkDeviceSize unusedSize; + /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost. + */ + size_t allocationCount; + /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation. + */ + size_t unusedRangeCount; + /** \brief Size of the largest continuous free memory region available for new allocation. + + Making a new allocation of that size is not guaranteed to succeed because of + possible additional margin required to respect alignment and buffer/image + granularity. + */ + VkDeviceSize unusedRangeSizeMax; + /** \brief Number of `VkDeviceMemory` blocks allocated for this pool. + */ + size_t blockCount; +} VmaPoolStats; + +/** \brief Allocates Vulkan device memory and creates #VmaPool object. + +@param allocator Allocator object. +@param pCreateInfo Parameters of pool to create. +@param[out] pPool Handle to created pool. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( + VmaAllocator allocator, + const VmaPoolCreateInfo* pCreateInfo, + VmaPool* pPool); + +/** \brief Destroys #VmaPool object and frees Vulkan device memory. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( + VmaAllocator allocator, + VmaPool pool); + +/** \brief Retrieves statistics of existing #VmaPool object. + +@param allocator Allocator object. +@param pool Pool object. +@param[out] pPoolStats Statistics of specified pool. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( + VmaAllocator allocator, + VmaPool pool, + VmaPoolStats* pPoolStats); + +/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now. + +@param allocator Allocator object. +@param pool Pool. +@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost( + VmaAllocator allocator, + VmaPool pool, + size_t* pLostAllocationCount); + +/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions. + +Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, +`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is +`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). + +Possible return values: + +- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool. +- `VK_SUCCESS` - corruption detection has been performed and succeeded. +- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. + `VMA_ASSERT` is also fired in that case. +- Other value: Error returned by Vulkan, e.g. memory mapping failure. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool); + +/** \brief Retrieves name of a custom pool. + +After the call `ppName` is either null or points to an internally-owned null-terminated string +containing name of the pool that was previously set. The pointer becomes invalid when the pool is +destroyed or its name is changed using vmaSetPoolName(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( + VmaAllocator allocator, + VmaPool pool, + const char** ppName); + +/** \brief Sets name of a custom pool. + +`pName` can be either null or pointer to a null-terminated string with new name for the pool. +Function makes internal copy of the string, so it can be changed or freed immediately after this call. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( + VmaAllocator allocator, + VmaPool pool, + const char* pName); + +/** \struct VmaAllocation +\brief Represents single memory allocation. + +It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type +plus unique offset. + +There are multiple ways to create such object. +You need to fill structure VmaAllocationCreateInfo. +For more information see [Choosing memory type](@ref choosing_memory_type). + +Although the library provides convenience functions that create Vulkan buffer or image, +allocate memory for it and bind them together, +binding of the allocation to a buffer or an image is out of scope of the allocation itself. +Allocation object can exist without buffer/image bound, +binding can be done manually by the user, and destruction of it can be done +independently of destruction of the allocation. + +The object also remembers its size and some other information. +To retrieve this information, use function vmaGetAllocationInfo() and inspect +returned structure VmaAllocationInfo. + +Some kinds allocations can be in lost state. +For more information, see [Lost allocations](@ref lost_allocations). +*/ +VK_DEFINE_HANDLE(VmaAllocation) + +/** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo(). +*/ +typedef struct VmaAllocationInfo { + /** \brief Memory type index that this allocation was allocated from. + + It never changes. + */ + uint32_t memoryType; + /** \brief Handle to Vulkan memory object. + + Same memory object can be shared by multiple allocations. + + It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. + + If the allocation is lost, it is equal to `VK_NULL_HANDLE`. + */ + VkDeviceMemory deviceMemory; + /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation. + + It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. + */ + VkDeviceSize offset; + /** \brief Size of this allocation, in bytes. + + It never changes, unless allocation is lost. + */ + VkDeviceSize size; + /** \brief Pointer to the beginning of this allocation as mapped data. + + If the allocation hasn't been mapped using vmaMapMemory() and hasn't been + created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value null. + + It can change after call to vmaMapMemory(), vmaUnmapMemory(). + It can also change after call to vmaDefragment() if this allocation is passed to the function. + */ + void* pMappedData; + /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData(). + + It can change after call to vmaSetAllocationUserData() for this allocation. + */ + void* pUserData; +} VmaAllocationInfo; + +/** \brief General purpose memory allocation. + +@param[out] pAllocation Handle to allocated memory. +@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). + +It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(), +vmaCreateBuffer(), vmaCreateImage() instead whenever possible. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( + VmaAllocator allocator, + const VkMemoryRequirements* pVkMemoryRequirements, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo); + +/** \brief General purpose memory allocation for multiple allocation objects at once. + +@param allocator Allocator object. +@param pVkMemoryRequirements Memory requirements for each allocation. +@param pCreateInfo Creation parameters for each alloction. +@param allocationCount Number of allocations to make. +@param[out] pAllocations Pointer to array that will be filled with handles to created allocations. +@param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations. + +You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). + +Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding. +It is just a general purpose allocation function able to make multiple allocations at once. +It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times. + +All allocations are made using same parameters. All of them are created out of the same memory pool and type. +If any allocation fails, all allocations already made within this function call are also freed, so that when +returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( + VmaAllocator allocator, + const VkMemoryRequirements* pVkMemoryRequirements, + const VmaAllocationCreateInfo* pCreateInfo, + size_t allocationCount, + VmaAllocation* pAllocations, + VmaAllocationInfo* pAllocationInfo); + +/** +@param[out] pAllocation Handle to allocated memory. +@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +You should free the memory using vmaFreeMemory(). +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( + VmaAllocator allocator, + VkBuffer buffer, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo); + +/// Function similar to vmaAllocateMemoryForBuffer(). +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( + VmaAllocator allocator, + VkImage image, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo); + +/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage(). + +Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( + VmaAllocator allocator, + VmaAllocation allocation); + +/** \brief Frees memory and destroys multiple allocations. + +Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding. +It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(), +vmaAllocateMemoryPages() and other functions. +It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times. + +Allocations in `pAllocations` array can come from any memory pools and types. +Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( + VmaAllocator allocator, + size_t allocationCount, + VmaAllocation* pAllocations); + +/** \brief Deprecated. + +In version 2.2.0 it used to try to change allocation's size without moving or reallocating it. +In current version it returns `VK_SUCCESS` only if `newSize` equals current allocation's size. +Otherwise returns `VK_ERROR_OUT_OF_POOL_MEMORY`, indicating that allocation's size could not be changed. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize newSize); + +/** \brief Returns current information about specified allocation and atomically marks it as used in current frame. + +Current paramters of given allocation are returned in `pAllocationInfo`. + +This function also atomically "touches" allocation - marks it as used in current frame, +just like vmaTouchAllocation(). +If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`. + +Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient, +you can avoid calling it too often. + +- You can retrieve same VmaAllocationInfo structure while creating your resource, from function + vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change + (e.g. due to defragmentation or allocation becoming lost). +- If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( + VmaAllocator allocator, + VmaAllocation allocation, + VmaAllocationInfo* pAllocationInfo); + +/** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame. + +If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, +this function returns `VK_TRUE` if it's not in lost state, so it can still be used. +It then also atomically "touches" the allocation - marks it as used in current frame, +so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames. + +If the allocation is in lost state, the function returns `VK_FALSE`. +Memory of such allocation, as well as buffer or image bound to it, should not be used. +Lost allocation and the buffer/image still need to be destroyed. + +If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, +this function always returns `VK_TRUE`. +*/ +VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation( + VmaAllocator allocator, + VmaAllocation allocation); + +/** \brief Sets pUserData in given allocation to new value. + +If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT, +pUserData must be either null, or pointer to a null-terminated string. The function +makes local copy of the string and sets it as allocation's `pUserData`. String +passed as pUserData doesn't need to be valid for whole lifetime of the allocation - +you can free it after this call. String previously pointed by allocation's +pUserData is freed from memory. + +If the flag was not used, the value of pointer `pUserData` is just copied to +allocation's `pUserData`. It is opaque, so you can use it however you want - e.g. +as a pointer, ordinal number or some handle to you own data. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( + VmaAllocator allocator, + VmaAllocation allocation, + void* pUserData); + +/** \brief Creates new allocation that is in lost state from the beginning. + +It can be useful if you need a dummy, non-null allocation. + +You still need to destroy created object using vmaFreeMemory(). + +Returned allocation is not tied to any specific memory pool or memory type and +not bound to any image or buffer. It has size = 0. It cannot be turned into +a real, non-empty allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation( + VmaAllocator allocator, + VmaAllocation* pAllocation); + +/** \brief Maps memory represented by given allocation and returns pointer to it. + +Maps memory represented by given allocation to make it accessible to CPU code. +When succeeded, `*ppData` contains pointer to first byte of this memory. +If the allocation is part of bigger `VkDeviceMemory` block, the pointer is +correctly offseted to the beginning of region assigned to this particular +allocation. + +Mapping is internally reference-counted and synchronized, so despite raw Vulkan +function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory` +multiple times simultaneously, it is safe to call this function on allocations +assigned to the same memory block. Actual Vulkan memory will be mapped on first +mapping and unmapped on last unmapping. + +If the function succeeded, you must call vmaUnmapMemory() to unmap the +allocation when mapping is no longer needed or before freeing the allocation, at +the latest. + +It also safe to call this function multiple times on the same allocation. You +must call vmaUnmapMemory() same number of times as you called vmaMapMemory(). + +It is also safe to call this function on allocation created with +#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time. +You must still call vmaUnmapMemory() same number of times as you called +vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the +"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. + +This function fails when used on allocation made in memory type that is not +`HOST_VISIBLE`. + +This function always fails when called for allocation that was created with +#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be +mapped. + +This function doesn't automatically flush or invalidate caches. +If the allocation is made from a memory types that is not `HOST_COHERENT`, +you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( + VmaAllocator allocator, + VmaAllocation allocation, + void** ppData); + +/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory(). + +For details, see description of vmaMapMemory(). + +This function doesn't automatically flush or invalidate caches. +If the allocation is made from a memory types that is not `HOST_COHERENT`, +you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( + VmaAllocator allocator, + VmaAllocation allocation); + +/** \brief Flushes memory of given allocation. + +Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation. +It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`. +Unmap operation doesn't do that automatically. + +- `offset` must be relative to the beginning of allocation. +- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. +- `offset` and `size` don't have to be aligned. + They are internally rounded down/up to multiply of `nonCoherentAtomSize`. +- If `size` is 0, this call is ignored. +- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, + this call is ignored. + +Warning! `offset` and `size` are relative to the contents of given `allocation`. +If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. +Do not pass allocation's offset as `offset`!!! +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); + +/** \brief Invalidates memory of given allocation. + +Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation. +It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`. +Map operation doesn't do that automatically. + +- `offset` must be relative to the beginning of allocation. +- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. +- `offset` and `size` don't have to be aligned. + They are internally rounded down/up to multiply of `nonCoherentAtomSize`. +- If `size` is 0, this call is ignored. +- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, + this call is ignored. + +Warning! `offset` and `size` are relative to the contents of given `allocation`. +If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. +Do not pass allocation's offset as `offset`!!! +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); + +/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions. + +@param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked. + +Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, +`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are +`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). + +Possible return values: + +- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types. +- `VK_SUCCESS` - corruption detection has been performed and succeeded. +- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. + `VMA_ASSERT` is also fired in that case. +- Other value: Error returned by Vulkan, e.g. memory mapping failure. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits); + +/** \struct VmaDefragmentationContext +\brief Represents Opaque object that represents started defragmentation process. + +Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it. +Call function vmaDefragmentationEnd() to destroy it. +*/ +VK_DEFINE_HANDLE(VmaDefragmentationContext) + +/// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use. +typedef enum VmaDefragmentationFlagBits { + VMA_DEFRAGMENTATION_FLAG_INCREMENTAL = 0x1, + VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaDefragmentationFlagBits; +typedef VkFlags VmaDefragmentationFlags; + +/** \brief Parameters for defragmentation. + +To be used with function vmaDefragmentationBegin(). +*/ +typedef struct VmaDefragmentationInfo2 { + /** \brief Reserved for future use. Should be 0. + */ + VmaDefragmentationFlags flags; + /** \brief Number of allocations in `pAllocations` array. + */ + uint32_t allocationCount; + /** \brief Pointer to array of allocations that can be defragmented. + + The array should have `allocationCount` elements. + The array should not contain nulls. + Elements in the array should be unique - same allocation cannot occur twice. + It is safe to pass allocations that are in the lost state - they are ignored. + All allocations not present in this array are considered non-moveable during this defragmentation. + */ + VmaAllocation* pAllocations; + /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation. + + The array should have `allocationCount` elements. + You can pass null if you are not interested in this information. + */ + VkBool32* pAllocationsChanged; + /** \brief Numer of pools in `pPools` array. + */ + uint32_t poolCount; + /** \brief Either null or pointer to array of pools to be defragmented. + + All the allocations in the specified pools can be moved during defragmentation + and there is no way to check if they were really moved as in `pAllocationsChanged`, + so you must query all the allocations in all these pools for new `VkDeviceMemory` + and offset using vmaGetAllocationInfo() if you might need to recreate buffers + and images bound to them. + + The array should have `poolCount` elements. + The array should not contain nulls. + Elements in the array should be unique - same pool cannot occur twice. + + Using this array is equivalent to specifying all allocations from the pools in `pAllocations`. + It might be more efficient. + */ + VmaPool* pPools; + /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`. + + `VK_WHOLE_SIZE` means no limit. + */ + VkDeviceSize maxCpuBytesToMove; + /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`. + + `UINT32_MAX` means no limit. + */ + uint32_t maxCpuAllocationsToMove; + /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`. + + `VK_WHOLE_SIZE` means no limit. + */ + VkDeviceSize maxGpuBytesToMove; + /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`. + + `UINT32_MAX` means no limit. + */ + uint32_t maxGpuAllocationsToMove; + /** \brief Optional. Command buffer where GPU copy commands will be posted. + + If not null, it must be a valid command buffer handle that supports Transfer queue type. + It must be in the recording state and outside of a render pass instance. + You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd(). + + Passing null means that only CPU defragmentation will be performed. + */ + VkCommandBuffer commandBuffer; +} VmaDefragmentationInfo2; + +typedef struct VmaDefragmentationPassMoveInfo { + VmaAllocation allocation; + VkDeviceMemory memory; + VkDeviceSize offset; +} VmaDefragmentationPassMoveInfo; + +/** \brief Parameters for incremental defragmentation steps. + +To be used with function vmaBeginDefragmentationPass(). +*/ +typedef struct VmaDefragmentationPassInfo { + uint32_t moveCount; + VmaDefragmentationPassMoveInfo* pMoves; +} VmaDefragmentationPassInfo; + +/** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment(). + +\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. +*/ +typedef struct VmaDefragmentationInfo { + /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places. + + Default is `VK_WHOLE_SIZE`, which means no limit. + */ + VkDeviceSize maxBytesToMove; + /** \brief Maximum number of allocations that can be moved to different place. + + Default is `UINT32_MAX`, which means no limit. + */ + uint32_t maxAllocationsToMove; +} VmaDefragmentationInfo; + +/** \brief Statistics returned by function vmaDefragment(). */ +typedef struct VmaDefragmentationStats { + /// Total number of bytes that have been copied while moving allocations to different places. + VkDeviceSize bytesMoved; + /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects. + VkDeviceSize bytesFreed; + /// Number of allocations that have been moved to different places. + uint32_t allocationsMoved; + /// Number of empty `VkDeviceMemory` objects that have been released to the system. + uint32_t deviceMemoryBlocksFreed; +} VmaDefragmentationStats; + +/** \brief Begins defragmentation process. + +@param allocator Allocator object. +@param pInfo Structure filled with parameters of defragmentation. +@param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information. +@param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation. +@return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error. + +Use this function instead of old, deprecated vmaDefragment(). + +Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd(): + +- You should not use any of allocations passed as `pInfo->pAllocations` or + any allocations that belong to pools passed as `pInfo->pPools`, + including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access + their data. +- Some mutexes protecting internal data structures may be locked, so trying to + make or free any allocations, bind buffers or images, map memory, or launch + another simultaneous defragmentation in between may cause stall (when done on + another thread) or deadlock (when done on the same thread), unless you are + 100% sure that defragmented allocations are in different pools. +- Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined. + They become valid after call to vmaDefragmentationEnd(). +- If `pInfo->commandBuffer` is not null, you must submit that command buffer + and make sure it finished execution before calling vmaDefragmentationEnd(). + +For more information and important limitations regarding defragmentation, see documentation chapter: +[Defragmentation](@ref defragmentation). +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( + VmaAllocator allocator, + const VmaDefragmentationInfo2* pInfo, + VmaDefragmentationStats* pStats, + VmaDefragmentationContext *pContext); + +/** \brief Ends defragmentation process. + +Use this function to finish defragmentation started by vmaDefragmentationBegin(). +It is safe to pass `context == null`. The function then does nothing. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( + VmaAllocator allocator, + VmaDefragmentationContext context); + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( + VmaAllocator allocator, + VmaDefragmentationContext context, + VmaDefragmentationPassInfo* pInfo +); +VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( + VmaAllocator allocator, + VmaDefragmentationContext context +); + +/** \brief Deprecated. Compacts memory by moving allocations. + +@param pAllocations Array of allocations that can be moved during this compation. +@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays. +@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information. +@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values. +@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information. +@return `VK_SUCCESS` if completed, negative error code in case of error. + +\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. + +This function works by moving allocations to different places (different +`VkDeviceMemory` objects and/or different offsets) in order to optimize memory +usage. Only allocations that are in `pAllocations` array can be moved. All other +allocations are considered nonmovable in this call. Basic rules: + +- Only allocations made in memory types that have + `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` + flags can be compacted. You may pass other allocations but it makes no sense - + these will never be moved. +- Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or + #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations + passed to this function that come from such pools are ignored. +- Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or + created as dedicated allocations for any other reason are also ignored. +- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT + flag can be compacted. If not persistently mapped, memory will be mapped + temporarily inside this function if needed. +- You must not pass same #VmaAllocation object multiple times in `pAllocations` array. + +The function also frees empty `VkDeviceMemory` blocks. + +Warning: This function may be time-consuming, so you shouldn't call it too often +(like after every resource creation/destruction). +You can call it on special occasions (like when reloading a game level or +when you just destroyed a lot of objects). Calling it every frame may be OK, but +you should measure that on your platform. + +For more information, see [Defragmentation](@ref defragmentation) chapter. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( + VmaAllocator allocator, + VmaAllocation* pAllocations, + size_t allocationCount, + VkBool32* pAllocationsChanged, + const VmaDefragmentationInfo *pDefragmentationInfo, + VmaDefragmentationStats* pDefragmentationStats); + +/** \brief Binds buffer to allocation. + +Binds specified buffer to region of memory represented by specified allocation. +Gets `VkDeviceMemory` handle and offset from the allocation. +If you want to create a buffer, allocate memory for it and bind them together separately, +you should use this function for binding instead of standard `vkBindBufferMemory()`, +because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple +allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously +(which is illegal in Vulkan). + +It is recommended to use function vmaCreateBuffer() instead of this one. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkBuffer buffer); + +/** \brief Binds buffer to allocation with additional parameters. + +@param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0. +@param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null. + +This function is similar to vmaBindBufferMemory(), but it provides additional parameters. + +If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag +or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize allocationLocalOffset, + VkBuffer buffer, + const void* pNext); + +/** \brief Binds image to allocation. + +Binds specified image to region of memory represented by specified allocation. +Gets `VkDeviceMemory` handle and offset from the allocation. +If you want to create an image, allocate memory for it and bind them together separately, +you should use this function for binding instead of standard `vkBindImageMemory()`, +because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple +allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously +(which is illegal in Vulkan). + +It is recommended to use function vmaCreateImage() instead of this one. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkImage image); + +/** \brief Binds image to allocation with additional parameters. + +@param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0. +@param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null. + +This function is similar to vmaBindImageMemory(), but it provides additional parameters. + +If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag +or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize allocationLocalOffset, + VkImage image, + const void* pNext); + +/** +@param[out] pBuffer Buffer that was created. +@param[out] pAllocation Allocation that was created. +@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +This function automatically: + +-# Creates buffer. +-# Allocates appropriate memory for it. +-# Binds the buffer with the memory. + +If any of these operations fail, buffer and allocation are not created, +returned value is negative error code, *pBuffer and *pAllocation are null. + +If the function succeeded, you must destroy both buffer and allocation when you +no longer need them using either convenience function vmaDestroyBuffer() or +separately, using `vkDestroyBuffer()` and vmaFreeMemory(). + +If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used, +VK_KHR_dedicated_allocation extension is used internally to query driver whether +it requires or prefers the new buffer to have dedicated allocation. If yes, +and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null +and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated +allocation for this buffer, just like when using +VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkBuffer* pBuffer, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo); + +/** \brief Destroys Vulkan buffer and frees allocated memory. + +This is just a convenience function equivalent to: + +\code +vkDestroyBuffer(device, buffer, allocationCallbacks); +vmaFreeMemory(allocator, allocation); +\endcode + +It it safe to pass null as buffer and/or allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( + VmaAllocator allocator, + VkBuffer buffer, + VmaAllocation allocation); + +/// Function similar to vmaCreateBuffer(). +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( + VmaAllocator allocator, + const VkImageCreateInfo* pImageCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkImage* pImage, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo); + +/** \brief Destroys Vulkan image and frees allocated memory. + +This is just a convenience function equivalent to: + +\code +vkDestroyImage(device, image, allocationCallbacks); +vmaFreeMemory(allocator, allocation); +\endcode + +It it safe to pass null as image and/or allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( + VmaAllocator allocator, + VkImage image, + VmaAllocation allocation); + +#ifdef __cplusplus +} +#endif + +#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H + +// For Visual Studio IntelliSense. +#if defined(__cplusplus) && defined(__INTELLISENSE__) +#define VMA_IMPLEMENTATION +#endif + +#ifdef VMA_IMPLEMENTATION +#undef VMA_IMPLEMENTATION + +#include +#include +#include + +/******************************************************************************* +CONFIGURATION SECTION + +Define some of these macros before each #include of this header or change them +here if you need other then default behavior depending on your environment. +*/ + +/* +Define this macro to 1 to make the library fetch pointers to Vulkan functions +internally, like: + + vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; + +Define to 0 if you are going to provide you own pointers to Vulkan functions via +VmaAllocatorCreateInfo::pVulkanFunctions. +*/ +#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES) +#define VMA_STATIC_VULKAN_FUNCTIONS 1 +#endif + +// Define this macro to 1 to make the library use STL containers instead of its own implementation. +//#define VMA_USE_STL_CONTAINERS 1 + +/* Set this macro to 1 to make the library including and using STL containers: +std::pair, std::vector, std::list, std::unordered_map. + +Set it to 0 or undefined to make the library using its own implementation of +the containers. +*/ +#if VMA_USE_STL_CONTAINERS + #define VMA_USE_STL_VECTOR 1 + #define VMA_USE_STL_UNORDERED_MAP 1 + #define VMA_USE_STL_LIST 1 +#endif + +#ifndef VMA_USE_STL_SHARED_MUTEX + // Compiler conforms to C++17. + #if __cplusplus >= 201703L + #define VMA_USE_STL_SHARED_MUTEX 1 + // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus + // Otherwise it's always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2. + // See: https://blogs.msdn.microsoft.com/vcblog/2018/04/09/msvc-now-correctly-reports-__cplusplus/ + #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L + #define VMA_USE_STL_SHARED_MUTEX 1 + #else + #define VMA_USE_STL_SHARED_MUTEX 0 + #endif +#endif + +/* +THESE INCLUDES ARE NOT ENABLED BY DEFAULT. +Library has its own container implementation. +*/ +#if VMA_USE_STL_VECTOR + #include +#endif + +#if VMA_USE_STL_UNORDERED_MAP + #include +#endif + +#if VMA_USE_STL_LIST + #include +#endif + +/* +Following headers are used in this CONFIGURATION section only, so feel free to +remove them if not needed. +*/ +#include // for assert +#include // for min, max +#include + +#ifndef VMA_NULL + // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0. + #define VMA_NULL nullptr +#endif + +#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16) +#include +void *aligned_alloc(size_t alignment, size_t size) +{ + // alignment must be >= sizeof(void*) + if(alignment < sizeof(void*)) + { + alignment = sizeof(void*); + } + + return memalign(alignment, size); +} +#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)) +#include +void *aligned_alloc(size_t alignment, size_t size) +{ + // alignment must be >= sizeof(void*) + if(alignment < sizeof(void*)) + { + alignment = sizeof(void*); + } + + void *pointer; + if(posix_memalign(&pointer, alignment, size) == 0) + return pointer; + return VMA_NULL; +} +#endif + +// If your compiler is not compatible with C++11 and definition of +// aligned_alloc() function is missing, uncommeting following line may help: + +//#include + +// Normal assert to check for programmer's errors, especially in Debug configuration. +#ifndef VMA_ASSERT + #ifdef NDEBUG + #define VMA_ASSERT(expr) + #else + #define VMA_ASSERT(expr) assert(expr) + #endif +#endif + +// Assert that will be called very often, like inside data structures e.g. operator[]. +// Making it non-empty can make program slow. +#ifndef VMA_HEAVY_ASSERT + #ifdef NDEBUG + #define VMA_HEAVY_ASSERT(expr) + #else + #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr) + #endif +#endif + +#ifndef VMA_ALIGN_OF + #define VMA_ALIGN_OF(type) (__alignof(type)) +#endif + +#ifndef VMA_SYSTEM_ALIGNED_MALLOC + #if defined(_WIN32) + #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (_aligned_malloc((size), (alignment))) + #else + #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (aligned_alloc((alignment), (size) )) + #endif +#endif + +#ifndef VMA_SYSTEM_FREE + #if defined(_WIN32) + #define VMA_SYSTEM_FREE(ptr) _aligned_free(ptr) + #else + #define VMA_SYSTEM_FREE(ptr) free(ptr) + #endif +#endif + +#ifndef VMA_MIN + #define VMA_MIN(v1, v2) (std::min((v1), (v2))) +#endif + +#ifndef VMA_MAX + #define VMA_MAX(v1, v2) (std::max((v1), (v2))) +#endif + +#ifndef VMA_SWAP + #define VMA_SWAP(v1, v2) std::swap((v1), (v2)) +#endif + +#ifndef VMA_SORT + #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp) +#endif + +#ifndef VMA_DEBUG_LOG + #define VMA_DEBUG_LOG(format, ...) + /* + #define VMA_DEBUG_LOG(format, ...) do { \ + printf(format, __VA_ARGS__); \ + printf("\n"); \ + } while(false) + */ +#endif + +// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString. +#if VMA_STATS_STRING_ENABLED + static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num) + { + snprintf(outStr, strLen, "%u", static_cast(num)); + } + static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num) + { + snprintf(outStr, strLen, "%llu", static_cast(num)); + } + static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr) + { + snprintf(outStr, strLen, "%p", ptr); + } +#endif + +#ifndef VMA_MUTEX + class VmaMutex + { + public: + void Lock() { m_Mutex.lock(); } + void Unlock() { m_Mutex.unlock(); } + bool TryLock() { return m_Mutex.try_lock(); } + private: + std::mutex m_Mutex; + }; + #define VMA_MUTEX VmaMutex +#endif + +// Read-write mutex, where "read" is shared access, "write" is exclusive access. +#ifndef VMA_RW_MUTEX + #if VMA_USE_STL_SHARED_MUTEX + // Use std::shared_mutex from C++17. + #include + class VmaRWMutex + { + public: + void LockRead() { m_Mutex.lock_shared(); } + void UnlockRead() { m_Mutex.unlock_shared(); } + bool TryLockRead() { return m_Mutex.try_lock_shared(); } + void LockWrite() { m_Mutex.lock(); } + void UnlockWrite() { m_Mutex.unlock(); } + bool TryLockWrite() { return m_Mutex.try_lock(); } + private: + std::shared_mutex m_Mutex; + }; + #define VMA_RW_MUTEX VmaRWMutex + #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600 + // Use SRWLOCK from WinAPI. + // Minimum supported client = Windows Vista, server = Windows Server 2008. + class VmaRWMutex + { + public: + VmaRWMutex() { InitializeSRWLock(&m_Lock); } + void LockRead() { AcquireSRWLockShared(&m_Lock); } + void UnlockRead() { ReleaseSRWLockShared(&m_Lock); } + bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; } + void LockWrite() { AcquireSRWLockExclusive(&m_Lock); } + void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); } + bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; } + private: + SRWLOCK m_Lock; + }; + #define VMA_RW_MUTEX VmaRWMutex + #else + // Less efficient fallback: Use normal mutex. + class VmaRWMutex + { + public: + void LockRead() { m_Mutex.Lock(); } + void UnlockRead() { m_Mutex.Unlock(); } + bool TryLockRead() { return m_Mutex.TryLock(); } + void LockWrite() { m_Mutex.Lock(); } + void UnlockWrite() { m_Mutex.Unlock(); } + bool TryLockWrite() { return m_Mutex.TryLock(); } + private: + VMA_MUTEX m_Mutex; + }; + #define VMA_RW_MUTEX VmaRWMutex + #endif // #if VMA_USE_STL_SHARED_MUTEX +#endif // #ifndef VMA_RW_MUTEX + +/* +If providing your own implementation, you need to implement a subset of std::atomic. +*/ +#ifndef VMA_ATOMIC_UINT32 + #include + #define VMA_ATOMIC_UINT32 std::atomic +#endif + +#ifndef VMA_ATOMIC_UINT64 + #include + #define VMA_ATOMIC_UINT64 std::atomic +#endif + +#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY + /** + Every allocation will have its own memory block. + Define to 1 for debugging purposes only. + */ + #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0) +#endif + +#ifndef VMA_DEBUG_ALIGNMENT + /** + Minimum alignment of all allocations, in bytes. + Set to more than 1 for debugging purposes only. Must be power of two. + */ + #define VMA_DEBUG_ALIGNMENT (1) +#endif + +#ifndef VMA_DEBUG_MARGIN + /** + Minimum margin before and after every allocation, in bytes. + Set nonzero for debugging purposes only. + */ + #define VMA_DEBUG_MARGIN (0) +#endif + +#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS + /** + Define this macro to 1 to automatically fill new allocations and destroyed + allocations with some bit pattern. + */ + #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0) +#endif + +#ifndef VMA_DEBUG_DETECT_CORRUPTION + /** + Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to + enable writing magic value to the margin before and after every allocation and + validating it, so that memory corruptions (out-of-bounds writes) are detected. + */ + #define VMA_DEBUG_DETECT_CORRUPTION (0) +#endif + +#ifndef VMA_DEBUG_GLOBAL_MUTEX + /** + Set this to 1 for debugging purposes only, to enable single mutex protecting all + entry calls to the library. Can be useful for debugging multithreading issues. + */ + #define VMA_DEBUG_GLOBAL_MUTEX (0) +#endif + +#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY + /** + Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity. + Set to more than 1 for debugging purposes only. Must be power of two. + */ + #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1) +#endif + +#ifndef VMA_SMALL_HEAP_MAX_SIZE + /// Maximum size of a memory heap in Vulkan to consider it "small". + #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024) +#endif + +#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE + /// Default size of a block allocated as single VkDeviceMemory from a "large" heap. + #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024) +#endif + +#ifndef VMA_CLASS_NO_COPY + #define VMA_CLASS_NO_COPY(className) \ + private: \ + className(const className&) = delete; \ + className& operator=(const className&) = delete; +#endif + +static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX; + +// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F. +static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666; + +static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC; +static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF; + +/******************************************************************************* +END OF CONFIGURATION +*/ + +static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u; + +static VkAllocationCallbacks VmaEmptyAllocationCallbacks = { + VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL }; + +// Returns number of bits set to 1 in (v). +static inline uint32_t VmaCountBitsSet(uint32_t v) +{ + uint32_t c = v - ((v >> 1) & 0x55555555); + c = ((c >> 2) & 0x33333333) + (c & 0x33333333); + c = ((c >> 4) + c) & 0x0F0F0F0F; + c = ((c >> 8) + c) & 0x00FF00FF; + c = ((c >> 16) + c) & 0x0000FFFF; + return c; +} + +// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16. +// Use types like uint32_t, uint64_t as T. +template +static inline T VmaAlignUp(T val, T align) +{ + return (val + align - 1) / align * align; +} +// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8. +// Use types like uint32_t, uint64_t as T. +template +static inline T VmaAlignDown(T val, T align) +{ + return val / align * align; +} + +// Division with mathematical rounding to nearest number. +template +static inline T VmaRoundDiv(T x, T y) +{ + return (x + (y / (T)2)) / y; +} + +/* +Returns true if given number is a power of two. +T must be unsigned integer number or signed integer but always nonnegative. +For 0 returns true. +*/ +template +inline bool VmaIsPow2(T x) +{ + return (x & (x-1)) == 0; +} + +// Returns smallest power of 2 greater or equal to v. +static inline uint32_t VmaNextPow2(uint32_t v) +{ + v--; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v++; + return v; +} +static inline uint64_t VmaNextPow2(uint64_t v) +{ + v--; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v |= v >> 32; + v++; + return v; +} + +// Returns largest power of 2 less or equal to v. +static inline uint32_t VmaPrevPow2(uint32_t v) +{ + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v = v ^ (v >> 1); + return v; +} +static inline uint64_t VmaPrevPow2(uint64_t v) +{ + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v |= v >> 32; + v = v ^ (v >> 1); + return v; +} + +static inline bool VmaStrIsEmpty(const char* pStr) +{ + return pStr == VMA_NULL || *pStr == '\0'; +} + +#if VMA_STATS_STRING_ENABLED + +static const char* VmaAlgorithmToStr(uint32_t algorithm) +{ + switch(algorithm) + { + case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: + return "Linear"; + case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: + return "Buddy"; + case 0: + return "Default"; + default: + VMA_ASSERT(0); + return ""; + } +} + +#endif // #if VMA_STATS_STRING_ENABLED + +#ifndef VMA_SORT + +template +Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp) +{ + Iterator centerValue = end; --centerValue; + Iterator insertIndex = beg; + for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex) + { + if(cmp(*memTypeIndex, *centerValue)) + { + if(insertIndex != memTypeIndex) + { + VMA_SWAP(*memTypeIndex, *insertIndex); + } + ++insertIndex; + } + } + if(insertIndex != centerValue) + { + VMA_SWAP(*insertIndex, *centerValue); + } + return insertIndex; +} + +template +void VmaQuickSort(Iterator beg, Iterator end, Compare cmp) +{ + if(beg < end) + { + Iterator it = VmaQuickSortPartition(beg, end, cmp); + VmaQuickSort(beg, it, cmp); + VmaQuickSort(it + 1, end, cmp); + } +} + +#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp) + +#endif // #ifndef VMA_SORT + +/* +Returns true if two memory blocks occupy overlapping pages. +ResourceA must be in less memory offset than ResourceB. + +Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)" +chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity". +*/ +static inline bool VmaBlocksOnSamePage( + VkDeviceSize resourceAOffset, + VkDeviceSize resourceASize, + VkDeviceSize resourceBOffset, + VkDeviceSize pageSize) +{ + VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0); + VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1; + VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1); + VkDeviceSize resourceBStart = resourceBOffset; + VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1); + return resourceAEndPage == resourceBStartPage; +} + +enum VmaSuballocationType +{ + VMA_SUBALLOCATION_TYPE_FREE = 0, + VMA_SUBALLOCATION_TYPE_UNKNOWN = 1, + VMA_SUBALLOCATION_TYPE_BUFFER = 2, + VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3, + VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4, + VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5, + VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF +}; + +/* +Returns true if given suballocation types could conflict and must respect +VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer +or linear image and another one is optimal image. If type is unknown, behave +conservatively. +*/ +static inline bool VmaIsBufferImageGranularityConflict( + VmaSuballocationType suballocType1, + VmaSuballocationType suballocType2) +{ + if(suballocType1 > suballocType2) + { + VMA_SWAP(suballocType1, suballocType2); + } + + switch(suballocType1) + { + case VMA_SUBALLOCATION_TYPE_FREE: + return false; + case VMA_SUBALLOCATION_TYPE_UNKNOWN: + return true; + case VMA_SUBALLOCATION_TYPE_BUFFER: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL: + return false; + default: + VMA_ASSERT(0); + return true; + } +} + +static void VmaWriteMagicValue(void* pData, VkDeviceSize offset) +{ +#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION + uint32_t* pDst = (uint32_t*)((char*)pData + offset); + const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); + for(size_t i = 0; i < numberCount; ++i, ++pDst) + { + *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE; + } +#else + // no-op +#endif +} + +static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset) +{ +#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION + const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset); + const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); + for(size_t i = 0; i < numberCount; ++i, ++pSrc) + { + if(*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) + { + return false; + } + } +#endif + return true; +} + +/* +Fills structure with parameters of an example buffer to be used for transfers +during GPU memory defragmentation. +*/ +static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo) +{ + memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo)); + outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; + outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size. +} + +// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope). +struct VmaMutexLock +{ + VMA_CLASS_NO_COPY(VmaMutexLock) +public: + VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) : + m_pMutex(useMutex ? &mutex : VMA_NULL) + { if(m_pMutex) { m_pMutex->Lock(); } } + ~VmaMutexLock() + { if(m_pMutex) { m_pMutex->Unlock(); } } +private: + VMA_MUTEX* m_pMutex; +}; + +// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading. +struct VmaMutexLockRead +{ + VMA_CLASS_NO_COPY(VmaMutexLockRead) +public: + VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) : + m_pMutex(useMutex ? &mutex : VMA_NULL) + { if(m_pMutex) { m_pMutex->LockRead(); } } + ~VmaMutexLockRead() { if(m_pMutex) { m_pMutex->UnlockRead(); } } +private: + VMA_RW_MUTEX* m_pMutex; +}; + +// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing. +struct VmaMutexLockWrite +{ + VMA_CLASS_NO_COPY(VmaMutexLockWrite) +public: + VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) : + m_pMutex(useMutex ? &mutex : VMA_NULL) + { if(m_pMutex) { m_pMutex->LockWrite(); } } + ~VmaMutexLockWrite() { if(m_pMutex) { m_pMutex->UnlockWrite(); } } +private: + VMA_RW_MUTEX* m_pMutex; +}; + +#if VMA_DEBUG_GLOBAL_MUTEX + static VMA_MUTEX gDebugGlobalMutex; + #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true); +#else + #define VMA_DEBUG_GLOBAL_MUTEX_LOCK +#endif + +// Minimum size of a free suballocation to register it in the free suballocation collection. +static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16; + +/* +Performs binary search and returns iterator to first element that is greater or +equal to (key), according to comparison (cmp). + +Cmp should return true if first argument is less than second argument. + +Returned value is the found element, if present in the collection or place where +new element with value (key) should be inserted. +*/ +template +static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, const CmpLess& cmp) +{ + size_t down = 0, up = (end - beg); + while(down < up) + { + const size_t mid = (down + up) / 2; + if(cmp(*(beg+mid), key)) + { + down = mid + 1; + } + else + { + up = mid; + } + } + return beg + down; +} + +template +IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp) +{ + IterT it = VmaBinaryFindFirstNotLess( + beg, end, value, cmp); + if(it == end || + (!cmp(*it, value) && !cmp(value, *it))) + { + return it; + } + return end; +} + +#if VMA_HEAVY_ASSERT +/* +Returns true if all pointers in the array are not-null and unique. +Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT. +T must be pointer type, e.g. VmaAllocation, VmaPool. +*/ +template +static bool VmaValidatePointerArray(uint32_t count, const T* arr) +{ + for(uint32_t i = 0; i < count; ++i) + { + const T iPtr = arr[i]; + if(iPtr == VMA_NULL) + { + return false; + } + for(uint32_t j = i + 1; j < count; ++j) + { + if(iPtr == arr[j]) + { + return false; + } + } + } + return true; +} +#endif + +//////////////////////////////////////////////////////////////////////////////// +// Memory allocation + +static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment) +{ + if((pAllocationCallbacks != VMA_NULL) && + (pAllocationCallbacks->pfnAllocation != VMA_NULL)) + { + return (*pAllocationCallbacks->pfnAllocation)( + pAllocationCallbacks->pUserData, + size, + alignment, + VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); + } + else + { + return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment); + } +} + +static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr) +{ + if((pAllocationCallbacks != VMA_NULL) && + (pAllocationCallbacks->pfnFree != VMA_NULL)) + { + (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr); + } + else + { + VMA_SYSTEM_FREE(ptr); + } +} + +template +static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks) +{ + return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T)); +} + +template +static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count) +{ + return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T)); +} + +#define vma_new(allocator, type) new(VmaAllocate(allocator))(type) + +#define vma_new_array(allocator, type, count) new(VmaAllocateArray((allocator), (count)))(type) + +template +static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr) +{ + ptr->~T(); + VmaFree(pAllocationCallbacks, ptr); +} + +template +static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count) +{ + if(ptr != VMA_NULL) + { + for(size_t i = count; i--; ) + { + ptr[i].~T(); + } + VmaFree(pAllocationCallbacks, ptr); + } +} + +static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr) +{ + if(srcStr != VMA_NULL) + { + const size_t len = strlen(srcStr); + char* const result = vma_new_array(allocs, char, len + 1); + memcpy(result, srcStr, len + 1); + return result; + } + else + { + return VMA_NULL; + } +} + +static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str) +{ + if(str != VMA_NULL) + { + const size_t len = strlen(str); + vma_delete_array(allocs, str, len + 1); + } +} + +// STL-compatible allocator. +template +class VmaStlAllocator +{ +public: + const VkAllocationCallbacks* const m_pCallbacks; + typedef T value_type; + + VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { } + template VmaStlAllocator(const VmaStlAllocator& src) : m_pCallbacks(src.m_pCallbacks) { } + + T* allocate(size_t n) { return VmaAllocateArray(m_pCallbacks, n); } + void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); } + + template + bool operator==(const VmaStlAllocator& rhs) const + { + return m_pCallbacks == rhs.m_pCallbacks; + } + template + bool operator!=(const VmaStlAllocator& rhs) const + { + return m_pCallbacks != rhs.m_pCallbacks; + } + + VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete; +}; + +#if VMA_USE_STL_VECTOR + +#define VmaVector std::vector + +template +static void VmaVectorInsert(std::vector& vec, size_t index, const T& item) +{ + vec.insert(vec.begin() + index, item); +} + +template +static void VmaVectorRemove(std::vector& vec, size_t index) +{ + vec.erase(vec.begin() + index); +} + +#else // #if VMA_USE_STL_VECTOR + +/* Class with interface compatible with subset of std::vector. +T must be POD because constructors and destructors are not called and memcpy is +used for these objects. */ +template +class VmaVector +{ +public: + typedef T value_type; + + VmaVector(const AllocatorT& allocator) : + m_Allocator(allocator), + m_pArray(VMA_NULL), + m_Count(0), + m_Capacity(0) + { + } + + VmaVector(size_t count, const AllocatorT& allocator) : + m_Allocator(allocator), + m_pArray(count ? (T*)VmaAllocateArray(allocator.m_pCallbacks, count) : VMA_NULL), + m_Count(count), + m_Capacity(count) + { + } + + // This version of the constructor is here for compatibility with pre-C++14 std::vector. + // value is unused. + VmaVector(size_t count, const T& value, const AllocatorT& allocator) + : VmaVector(count, allocator) {} + + VmaVector(const VmaVector& src) : + m_Allocator(src.m_Allocator), + m_pArray(src.m_Count ? (T*)VmaAllocateArray(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL), + m_Count(src.m_Count), + m_Capacity(src.m_Count) + { + if(m_Count != 0) + { + memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T)); + } + } + + ~VmaVector() + { + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + } + + VmaVector& operator=(const VmaVector& rhs) + { + if(&rhs != this) + { + resize(rhs.m_Count); + if(m_Count != 0) + { + memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T)); + } + } + return *this; + } + + bool empty() const { return m_Count == 0; } + size_t size() const { return m_Count; } + T* data() { return m_pArray; } + const T* data() const { return m_pArray; } + + T& operator[](size_t index) + { + VMA_HEAVY_ASSERT(index < m_Count); + return m_pArray[index]; + } + const T& operator[](size_t index) const + { + VMA_HEAVY_ASSERT(index < m_Count); + return m_pArray[index]; + } + + T& front() + { + VMA_HEAVY_ASSERT(m_Count > 0); + return m_pArray[0]; + } + const T& front() const + { + VMA_HEAVY_ASSERT(m_Count > 0); + return m_pArray[0]; + } + T& back() + { + VMA_HEAVY_ASSERT(m_Count > 0); + return m_pArray[m_Count - 1]; + } + const T& back() const + { + VMA_HEAVY_ASSERT(m_Count > 0); + return m_pArray[m_Count - 1]; + } + + void reserve(size_t newCapacity, bool freeMemory = false) + { + newCapacity = VMA_MAX(newCapacity, m_Count); + + if((newCapacity < m_Capacity) && !freeMemory) + { + newCapacity = m_Capacity; + } + + if(newCapacity != m_Capacity) + { + T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator, newCapacity) : VMA_NULL; + if(m_Count != 0) + { + memcpy(newArray, m_pArray, m_Count * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = newCapacity; + m_pArray = newArray; + } + } + + void resize(size_t newCount, bool freeMemory = false) + { + size_t newCapacity = m_Capacity; + if(newCount > m_Capacity) + { + newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8)); + } + else if(freeMemory) + { + newCapacity = newCount; + } + + if(newCapacity != m_Capacity) + { + T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL; + const size_t elementsToCopy = VMA_MIN(m_Count, newCount); + if(elementsToCopy != 0) + { + memcpy(newArray, m_pArray, elementsToCopy * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = newCapacity; + m_pArray = newArray; + } + + m_Count = newCount; + } + + void clear(bool freeMemory = false) + { + resize(0, freeMemory); + } + + void insert(size_t index, const T& src) + { + VMA_HEAVY_ASSERT(index <= m_Count); + const size_t oldCount = size(); + resize(oldCount + 1); + if(index < oldCount) + { + memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T)); + } + m_pArray[index] = src; + } + + void remove(size_t index) + { + VMA_HEAVY_ASSERT(index < m_Count); + const size_t oldCount = size(); + if(index < oldCount - 1) + { + memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T)); + } + resize(oldCount - 1); + } + + void push_back(const T& src) + { + const size_t newIndex = size(); + resize(newIndex + 1); + m_pArray[newIndex] = src; + } + + void pop_back() + { + VMA_HEAVY_ASSERT(m_Count > 0); + resize(size() - 1); + } + + void push_front(const T& src) + { + insert(0, src); + } + + void pop_front() + { + VMA_HEAVY_ASSERT(m_Count > 0); + remove(0); + } + + typedef T* iterator; + + iterator begin() { return m_pArray; } + iterator end() { return m_pArray + m_Count; } + +private: + AllocatorT m_Allocator; + T* m_pArray; + size_t m_Count; + size_t m_Capacity; +}; + +template +static void VmaVectorInsert(VmaVector& vec, size_t index, const T& item) +{ + vec.insert(index, item); +} + +template +static void VmaVectorRemove(VmaVector& vec, size_t index) +{ + vec.remove(index); +} + +#endif // #if VMA_USE_STL_VECTOR + +template +size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value) +{ + const size_t indexToInsert = VmaBinaryFindFirstNotLess( + vector.data(), + vector.data() + vector.size(), + value, + CmpLess()) - vector.data(); + VmaVectorInsert(vector, indexToInsert, value); + return indexToInsert; +} + +template +bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value) +{ + CmpLess comparator; + typename VectorT::iterator it = VmaBinaryFindFirstNotLess( + vector.begin(), + vector.end(), + value, + comparator); + if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) + { + size_t indexToRemove = it - vector.begin(); + VmaVectorRemove(vector, indexToRemove); + return true; + } + return false; +} + +//////////////////////////////////////////////////////////////////////////////// +// class VmaPoolAllocator + +/* +Allocator for objects of type T using a list of arrays (pools) to speed up +allocation. Number of elements that can be allocated is not bounded because +allocator can create multiple blocks. +*/ +template +class VmaPoolAllocator +{ + VMA_CLASS_NO_COPY(VmaPoolAllocator) +public: + VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity); + ~VmaPoolAllocator(); + T* Alloc(); + void Free(T* ptr); + +private: + union Item + { + uint32_t NextFreeIndex; + alignas(T) char Value[sizeof(T)]; + }; + + struct ItemBlock + { + Item* pItems; + uint32_t Capacity; + uint32_t FirstFreeIndex; + }; + + const VkAllocationCallbacks* m_pAllocationCallbacks; + const uint32_t m_FirstBlockCapacity; + VmaVector< ItemBlock, VmaStlAllocator > m_ItemBlocks; + + ItemBlock& CreateNewBlock(); +}; + +template +VmaPoolAllocator::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) : + m_pAllocationCallbacks(pAllocationCallbacks), + m_FirstBlockCapacity(firstBlockCapacity), + m_ItemBlocks(VmaStlAllocator(pAllocationCallbacks)) +{ + VMA_ASSERT(m_FirstBlockCapacity > 1); +} + +template +VmaPoolAllocator::~VmaPoolAllocator() +{ + for(size_t i = m_ItemBlocks.size(); i--; ) + vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity); + m_ItemBlocks.clear(); +} + +template +T* VmaPoolAllocator::Alloc() +{ + for(size_t i = m_ItemBlocks.size(); i--; ) + { + ItemBlock& block = m_ItemBlocks[i]; + // This block has some free items: Use first one. + if(block.FirstFreeIndex != UINT32_MAX) + { + Item* const pItem = &block.pItems[block.FirstFreeIndex]; + block.FirstFreeIndex = pItem->NextFreeIndex; + T* result = (T*)&pItem->Value; + new(result)T(); // Explicit constructor call. + return result; + } + } + + // No block has free item: Create new one and use it. + ItemBlock& newBlock = CreateNewBlock(); + Item* const pItem = &newBlock.pItems[0]; + newBlock.FirstFreeIndex = pItem->NextFreeIndex; + T* result = (T*)&pItem->Value; + new(result)T(); // Explicit constructor call. + return result; +} + +template +void VmaPoolAllocator::Free(T* ptr) +{ + // Search all memory blocks to find ptr. + for(size_t i = m_ItemBlocks.size(); i--; ) + { + ItemBlock& block = m_ItemBlocks[i]; + + // Casting to union. + Item* pItemPtr; + memcpy(&pItemPtr, &ptr, sizeof(pItemPtr)); + + // Check if pItemPtr is in address range of this block. + if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity)) + { + ptr->~T(); // Explicit destructor call. + const uint32_t index = static_cast(pItemPtr - block.pItems); + pItemPtr->NextFreeIndex = block.FirstFreeIndex; + block.FirstFreeIndex = index; + return; + } + } + VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool."); +} + +template +typename VmaPoolAllocator::ItemBlock& VmaPoolAllocator::CreateNewBlock() +{ + const uint32_t newBlockCapacity = m_ItemBlocks.empty() ? + m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2; + + const ItemBlock newBlock = { + vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity), + newBlockCapacity, + 0 }; + + m_ItemBlocks.push_back(newBlock); + + // Setup singly-linked list of all free items in this block. + for(uint32_t i = 0; i < newBlockCapacity - 1; ++i) + newBlock.pItems[i].NextFreeIndex = i + 1; + newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX; + return m_ItemBlocks.back(); +} + +//////////////////////////////////////////////////////////////////////////////// +// class VmaRawList, VmaList + +#if VMA_USE_STL_LIST + +#define VmaList std::list + +#else // #if VMA_USE_STL_LIST + +template +struct VmaListItem +{ + VmaListItem* pPrev; + VmaListItem* pNext; + T Value; +}; + +// Doubly linked list. +template +class VmaRawList +{ + VMA_CLASS_NO_COPY(VmaRawList) +public: + typedef VmaListItem ItemType; + + VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks); + ~VmaRawList(); + void Clear(); + + size_t GetCount() const { return m_Count; } + bool IsEmpty() const { return m_Count == 0; } + + ItemType* Front() { return m_pFront; } + const ItemType* Front() const { return m_pFront; } + ItemType* Back() { return m_pBack; } + const ItemType* Back() const { return m_pBack; } + + ItemType* PushBack(); + ItemType* PushFront(); + ItemType* PushBack(const T& value); + ItemType* PushFront(const T& value); + void PopBack(); + void PopFront(); + + // Item can be null - it means PushBack. + ItemType* InsertBefore(ItemType* pItem); + // Item can be null - it means PushFront. + ItemType* InsertAfter(ItemType* pItem); + + ItemType* InsertBefore(ItemType* pItem, const T& value); + ItemType* InsertAfter(ItemType* pItem, const T& value); + + void Remove(ItemType* pItem); + +private: + const VkAllocationCallbacks* const m_pAllocationCallbacks; + VmaPoolAllocator m_ItemAllocator; + ItemType* m_pFront; + ItemType* m_pBack; + size_t m_Count; +}; + +template +VmaRawList::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) : + m_pAllocationCallbacks(pAllocationCallbacks), + m_ItemAllocator(pAllocationCallbacks, 128), + m_pFront(VMA_NULL), + m_pBack(VMA_NULL), + m_Count(0) +{ +} + +template +VmaRawList::~VmaRawList() +{ + // Intentionally not calling Clear, because that would be unnecessary + // computations to return all items to m_ItemAllocator as free. +} + +template +void VmaRawList::Clear() +{ + if(IsEmpty() == false) + { + ItemType* pItem = m_pBack; + while(pItem != VMA_NULL) + { + ItemType* const pPrevItem = pItem->pPrev; + m_ItemAllocator.Free(pItem); + pItem = pPrevItem; + } + m_pFront = VMA_NULL; + m_pBack = VMA_NULL; + m_Count = 0; + } +} + +template +VmaListItem* VmaRawList::PushBack() +{ + ItemType* const pNewItem = m_ItemAllocator.Alloc(); + pNewItem->pNext = VMA_NULL; + if(IsEmpty()) + { + pNewItem->pPrev = VMA_NULL; + m_pFront = pNewItem; + m_pBack = pNewItem; + m_Count = 1; + } + else + { + pNewItem->pPrev = m_pBack; + m_pBack->pNext = pNewItem; + m_pBack = pNewItem; + ++m_Count; + } + return pNewItem; +} + +template +VmaListItem* VmaRawList::PushFront() +{ + ItemType* const pNewItem = m_ItemAllocator.Alloc(); + pNewItem->pPrev = VMA_NULL; + if(IsEmpty()) + { + pNewItem->pNext = VMA_NULL; + m_pFront = pNewItem; + m_pBack = pNewItem; + m_Count = 1; + } + else + { + pNewItem->pNext = m_pFront; + m_pFront->pPrev = pNewItem; + m_pFront = pNewItem; + ++m_Count; + } + return pNewItem; +} + +template +VmaListItem* VmaRawList::PushBack(const T& value) +{ + ItemType* const pNewItem = PushBack(); + pNewItem->Value = value; + return pNewItem; +} + +template +VmaListItem* VmaRawList::PushFront(const T& value) +{ + ItemType* const pNewItem = PushFront(); + pNewItem->Value = value; + return pNewItem; +} + +template +void VmaRawList::PopBack() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const pBackItem = m_pBack; + ItemType* const pPrevItem = pBackItem->pPrev; + if(pPrevItem != VMA_NULL) + { + pPrevItem->pNext = VMA_NULL; + } + m_pBack = pPrevItem; + m_ItemAllocator.Free(pBackItem); + --m_Count; +} + +template +void VmaRawList::PopFront() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const pFrontItem = m_pFront; + ItemType* const pNextItem = pFrontItem->pNext; + if(pNextItem != VMA_NULL) + { + pNextItem->pPrev = VMA_NULL; + } + m_pFront = pNextItem; + m_ItemAllocator.Free(pFrontItem); + --m_Count; +} + +template +void VmaRawList::Remove(ItemType* pItem) +{ + VMA_HEAVY_ASSERT(pItem != VMA_NULL); + VMA_HEAVY_ASSERT(m_Count > 0); + + if(pItem->pPrev != VMA_NULL) + { + pItem->pPrev->pNext = pItem->pNext; + } + else + { + VMA_HEAVY_ASSERT(m_pFront == pItem); + m_pFront = pItem->pNext; + } + + if(pItem->pNext != VMA_NULL) + { + pItem->pNext->pPrev = pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(m_pBack == pItem); + m_pBack = pItem->pPrev; + } + + m_ItemAllocator.Free(pItem); + --m_Count; +} + +template +VmaListItem* VmaRawList::InsertBefore(ItemType* pItem) +{ + if(pItem != VMA_NULL) + { + ItemType* const prevItem = pItem->pPrev; + ItemType* const newItem = m_ItemAllocator.Alloc(); + newItem->pPrev = prevItem; + newItem->pNext = pItem; + pItem->pPrev = newItem; + if(prevItem != VMA_NULL) + { + prevItem->pNext = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_pFront == pItem); + m_pFront = newItem; + } + ++m_Count; + return newItem; + } + else + return PushBack(); +} + +template +VmaListItem* VmaRawList::InsertAfter(ItemType* pItem) +{ + if(pItem != VMA_NULL) + { + ItemType* const nextItem = pItem->pNext; + ItemType* const newItem = m_ItemAllocator.Alloc(); + newItem->pNext = nextItem; + newItem->pPrev = pItem; + pItem->pNext = newItem; + if(nextItem != VMA_NULL) + { + nextItem->pPrev = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_pBack == pItem); + m_pBack = newItem; + } + ++m_Count; + return newItem; + } + else + return PushFront(); +} + +template +VmaListItem* VmaRawList::InsertBefore(ItemType* pItem, const T& value) +{ + ItemType* const newItem = InsertBefore(pItem); + newItem->Value = value; + return newItem; +} + +template +VmaListItem* VmaRawList::InsertAfter(ItemType* pItem, const T& value) +{ + ItemType* const newItem = InsertAfter(pItem); + newItem->Value = value; + return newItem; +} + +template +class VmaList +{ + VMA_CLASS_NO_COPY(VmaList) +public: + class iterator + { + public: + iterator() : + m_pList(VMA_NULL), + m_pItem(VMA_NULL) + { + } + + T& operator*() const + { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + return m_pItem->Value; + } + T* operator->() const + { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + return &m_pItem->Value; + } + + iterator& operator++() + { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + m_pItem = m_pItem->pNext; + return *this; + } + iterator& operator--() + { + if(m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; + } + + iterator operator++(int) + { + iterator result = *this; + ++*this; + return result; + } + iterator operator--(int) + { + iterator result = *this; + --*this; + return result; + } + + bool operator==(const iterator& rhs) const + { + VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); + return m_pItem == rhs.m_pItem; + } + bool operator!=(const iterator& rhs) const + { + VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); + return m_pItem != rhs.m_pItem; + } + + private: + VmaRawList* m_pList; + VmaListItem* m_pItem; + + iterator(VmaRawList* pList, VmaListItem* pItem) : + m_pList(pList), + m_pItem(pItem) + { + } + + friend class VmaList; + }; + + class const_iterator + { + public: + const_iterator() : + m_pList(VMA_NULL), + m_pItem(VMA_NULL) + { + } + + const_iterator(const iterator& src) : + m_pList(src.m_pList), + m_pItem(src.m_pItem) + { + } + + const T& operator*() const + { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + return m_pItem->Value; + } + const T* operator->() const + { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + return &m_pItem->Value; + } + + const_iterator& operator++() + { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + m_pItem = m_pItem->pNext; + return *this; + } + const_iterator& operator--() + { + if(m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; + } + + const_iterator operator++(int) + { + const_iterator result = *this; + ++*this; + return result; + } + const_iterator operator--(int) + { + const_iterator result = *this; + --*this; + return result; + } + + bool operator==(const const_iterator& rhs) const + { + VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); + return m_pItem == rhs.m_pItem; + } + bool operator!=(const const_iterator& rhs) const + { + VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); + return m_pItem != rhs.m_pItem; + } + + private: + const_iterator(const VmaRawList* pList, const VmaListItem* pItem) : + m_pList(pList), + m_pItem(pItem) + { + } + + const VmaRawList* m_pList; + const VmaListItem* m_pItem; + + friend class VmaList; + }; + + VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { } + + bool empty() const { return m_RawList.IsEmpty(); } + size_t size() const { return m_RawList.GetCount(); } + + iterator begin() { return iterator(&m_RawList, m_RawList.Front()); } + iterator end() { return iterator(&m_RawList, VMA_NULL); } + + const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); } + const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); } + + void clear() { m_RawList.Clear(); } + void push_back(const T& value) { m_RawList.PushBack(value); } + void erase(iterator it) { m_RawList.Remove(it.m_pItem); } + iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); } + +private: + VmaRawList m_RawList; +}; + +#endif // #if VMA_USE_STL_LIST + +//////////////////////////////////////////////////////////////////////////////// +// class VmaMap + +// Unused in this version. +#if 0 + +#if VMA_USE_STL_UNORDERED_MAP + +#define VmaPair std::pair + +#define VMA_MAP_TYPE(KeyT, ValueT) \ + std::unordered_map< KeyT, ValueT, std::hash, std::equal_to, VmaStlAllocator< std::pair > > + +#else // #if VMA_USE_STL_UNORDERED_MAP + +template +struct VmaPair +{ + T1 first; + T2 second; + + VmaPair() : first(), second() { } + VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { } +}; + +/* Class compatible with subset of interface of std::unordered_map. +KeyT, ValueT must be POD because they will be stored in VmaVector. +*/ +template +class VmaMap +{ +public: + typedef VmaPair PairType; + typedef PairType* iterator; + + VmaMap(const VmaStlAllocator& allocator) : m_Vector(allocator) { } + + iterator begin() { return m_Vector.begin(); } + iterator end() { return m_Vector.end(); } + + void insert(const PairType& pair); + iterator find(const KeyT& key); + void erase(iterator it); + +private: + VmaVector< PairType, VmaStlAllocator > m_Vector; +}; + +#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap + +template +struct VmaPairFirstLess +{ + bool operator()(const VmaPair& lhs, const VmaPair& rhs) const + { + return lhs.first < rhs.first; + } + bool operator()(const VmaPair& lhs, const FirstT& rhsFirst) const + { + return lhs.first < rhsFirst; + } +}; + +template +void VmaMap::insert(const PairType& pair) +{ + const size_t indexToInsert = VmaBinaryFindFirstNotLess( + m_Vector.data(), + m_Vector.data() + m_Vector.size(), + pair, + VmaPairFirstLess()) - m_Vector.data(); + VmaVectorInsert(m_Vector, indexToInsert, pair); +} + +template +VmaPair* VmaMap::find(const KeyT& key) +{ + PairType* it = VmaBinaryFindFirstNotLess( + m_Vector.data(), + m_Vector.data() + m_Vector.size(), + key, + VmaPairFirstLess()); + if((it != m_Vector.end()) && (it->first == key)) + { + return it; + } + else + { + return m_Vector.end(); + } +} + +template +void VmaMap::erase(iterator it) +{ + VmaVectorRemove(m_Vector, it - m_Vector.begin()); +} + +#endif // #if VMA_USE_STL_UNORDERED_MAP + +#endif // #if 0 + +//////////////////////////////////////////////////////////////////////////////// + +class VmaDeviceMemoryBlock; + +enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, VMA_CACHE_INVALIDATE }; + +struct VmaAllocation_T +{ +private: + static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80; + + enum FLAGS + { + FLAG_USER_DATA_STRING = 0x01, + }; + +public: + enum ALLOCATION_TYPE + { + ALLOCATION_TYPE_NONE, + ALLOCATION_TYPE_BLOCK, + ALLOCATION_TYPE_DEDICATED, + }; + + /* + This struct is allocated using VmaPoolAllocator. + */ + + void Ctor(uint32_t currentFrameIndex, bool userDataString) + { + m_Alignment = 1; + m_Size = 0; + m_MemoryTypeIndex = 0; + m_pUserData = VMA_NULL; + m_LastUseFrameIndex = currentFrameIndex; + m_Type = (uint8_t)ALLOCATION_TYPE_NONE; + m_SuballocationType = (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN; + m_MapCount = 0; + m_Flags = userDataString ? (uint8_t)FLAG_USER_DATA_STRING : 0; + +#if VMA_STATS_STRING_ENABLED + m_CreationFrameIndex = currentFrameIndex; + m_BufferImageUsage = 0; +#endif + } + + void Dtor() + { + VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction."); + + // Check if owned string was freed. + VMA_ASSERT(m_pUserData == VMA_NULL); + } + + void InitBlockAllocation( + VmaDeviceMemoryBlock* block, + VkDeviceSize offset, + VkDeviceSize alignment, + VkDeviceSize size, + uint32_t memoryTypeIndex, + VmaSuballocationType suballocationType, + bool mapped, + bool canBecomeLost) + { + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(block != VMA_NULL); + m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; + m_Alignment = alignment; + m_Size = size; + m_MemoryTypeIndex = memoryTypeIndex; + m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; + m_SuballocationType = (uint8_t)suballocationType; + m_BlockAllocation.m_Block = block; + m_BlockAllocation.m_Offset = offset; + m_BlockAllocation.m_CanBecomeLost = canBecomeLost; + } + + void InitLost() + { + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST); + m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; + m_MemoryTypeIndex = 0; + m_BlockAllocation.m_Block = VMA_NULL; + m_BlockAllocation.m_Offset = 0; + m_BlockAllocation.m_CanBecomeLost = true; + } + + void ChangeBlockAllocation( + VmaAllocator hAllocator, + VmaDeviceMemoryBlock* block, + VkDeviceSize offset); + + void ChangeOffset(VkDeviceSize newOffset); + + // pMappedData not null means allocation is created with MAPPED flag. + void InitDedicatedAllocation( + uint32_t memoryTypeIndex, + VkDeviceMemory hMemory, + VmaSuballocationType suballocationType, + void* pMappedData, + VkDeviceSize size) + { + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(hMemory != VK_NULL_HANDLE); + m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED; + m_Alignment = 0; + m_Size = size; + m_MemoryTypeIndex = memoryTypeIndex; + m_SuballocationType = (uint8_t)suballocationType; + m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; + m_DedicatedAllocation.m_hMemory = hMemory; + m_DedicatedAllocation.m_pMappedData = pMappedData; + } + + ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; } + VkDeviceSize GetAlignment() const { return m_Alignment; } + VkDeviceSize GetSize() const { return m_Size; } + bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; } + void* GetUserData() const { return m_pUserData; } + void SetUserData(VmaAllocator hAllocator, void* pUserData); + VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; } + + VmaDeviceMemoryBlock* GetBlock() const + { + VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); + return m_BlockAllocation.m_Block; + } + VkDeviceSize GetOffset() const; + VkDeviceMemory GetMemory() const; + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; } + void* GetMappedData() const; + bool CanBecomeLost() const; + + uint32_t GetLastUseFrameIndex() const + { + return m_LastUseFrameIndex.load(); + } + bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired) + { + return m_LastUseFrameIndex.compare_exchange_weak(expected, desired); + } + /* + - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex, + makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true. + - Else, returns false. + + If hAllocation is already lost, assert - you should not call it then. + If hAllocation was not created with CAN_BECOME_LOST_BIT, assert. + */ + bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); + + void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo) + { + VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED); + outInfo.blockCount = 1; + outInfo.allocationCount = 1; + outInfo.unusedRangeCount = 0; + outInfo.usedBytes = m_Size; + outInfo.unusedBytes = 0; + outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size; + outInfo.unusedRangeSizeMin = UINT64_MAX; + outInfo.unusedRangeSizeMax = 0; + } + + void BlockAllocMap(); + void BlockAllocUnmap(); + VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData); + void DedicatedAllocUnmap(VmaAllocator hAllocator); + +#if VMA_STATS_STRING_ENABLED + uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; } + uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; } + + void InitBufferImageUsage(uint32_t bufferImageUsage) + { + VMA_ASSERT(m_BufferImageUsage == 0); + m_BufferImageUsage = bufferImageUsage; + } + + void PrintParameters(class VmaJsonWriter& json) const; +#endif + +private: + VkDeviceSize m_Alignment; + VkDeviceSize m_Size; + void* m_pUserData; + VMA_ATOMIC_UINT32 m_LastUseFrameIndex; + uint32_t m_MemoryTypeIndex; + uint8_t m_Type; // ALLOCATION_TYPE + uint8_t m_SuballocationType; // VmaSuballocationType + // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT. + // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory(). + uint8_t m_MapCount; + uint8_t m_Flags; // enum FLAGS + + // Allocation out of VmaDeviceMemoryBlock. + struct BlockAllocation + { + VmaDeviceMemoryBlock* m_Block; + VkDeviceSize m_Offset; + bool m_CanBecomeLost; + }; + + // Allocation for an object that has its own private VkDeviceMemory. + struct DedicatedAllocation + { + VkDeviceMemory m_hMemory; + void* m_pMappedData; // Not null means memory is mapped. + }; + + union + { + // Allocation out of VmaDeviceMemoryBlock. + BlockAllocation m_BlockAllocation; + // Allocation for an object that has its own private VkDeviceMemory. + DedicatedAllocation m_DedicatedAllocation; + }; + +#if VMA_STATS_STRING_ENABLED + uint32_t m_CreationFrameIndex; + uint32_t m_BufferImageUsage; // 0 if unknown. +#endif + + void FreeUserDataString(VmaAllocator hAllocator); +}; + +/* +Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as +allocated memory block or free. +*/ +struct VmaSuballocation +{ + VkDeviceSize offset; + VkDeviceSize size; + VmaAllocation hAllocation; + VmaSuballocationType type; +}; + +// Comparator for offsets. +struct VmaSuballocationOffsetLess +{ + bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const + { + return lhs.offset < rhs.offset; + } +}; +struct VmaSuballocationOffsetGreater +{ + bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const + { + return lhs.offset > rhs.offset; + } +}; + +typedef VmaList< VmaSuballocation, VmaStlAllocator > VmaSuballocationList; + +// Cost of one additional allocation lost, as equivalent in bytes. +static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576; + +enum class VmaAllocationRequestType +{ + Normal, + // Used by "Linear" algorithm. + UpperAddress, + EndOf1st, + EndOf2nd, +}; + +/* +Parameters of planned allocation inside a VmaDeviceMemoryBlock. + +If canMakeOtherLost was false: +- item points to a FREE suballocation. +- itemsToMakeLostCount is 0. + +If canMakeOtherLost was true: +- item points to first of sequence of suballocations, which are either FREE, + or point to VmaAllocations that can become lost. +- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for + the requested allocation to succeed. +*/ +struct VmaAllocationRequest +{ + VkDeviceSize offset; + VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation. + VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation. + VmaSuballocationList::iterator item; + size_t itemsToMakeLostCount; + void* customData; + VmaAllocationRequestType type; + + VkDeviceSize CalcCost() const + { + return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST; + } +}; + +/* +Data structure used for bookkeeping of allocations and unused ranges of memory +in a single VkDeviceMemory block. +*/ +class VmaBlockMetadata +{ +public: + VmaBlockMetadata(VmaAllocator hAllocator); + virtual ~VmaBlockMetadata() { } + virtual void Init(VkDeviceSize size) { m_Size = size; } + + // Validates all data structures inside this object. If not valid, returns false. + virtual bool Validate() const = 0; + VkDeviceSize GetSize() const { return m_Size; } + virtual size_t GetAllocationCount() const = 0; + virtual VkDeviceSize GetSumFreeSize() const = 0; + virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0; + // Returns true if this block is empty - contains only single free suballocation. + virtual bool IsEmpty() const = 0; + + virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0; + // Shouldn't modify blockCount. + virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0; + +#if VMA_STATS_STRING_ENABLED + virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0; +#endif + + // Tries to find a place for suballocation with given parameters inside this block. + // If succeeded, fills pAllocationRequest and returns true. + // If failed, returns false. + virtual bool CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags. + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) = 0; + + virtual bool MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest* pAllocationRequest) = 0; + + virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0; + + virtual VkResult CheckCorruption(const void* pBlockData) = 0; + + // Makes actual allocation based on request. Request must already be checked and valid. + virtual void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation) = 0; + + // Frees suballocation assigned to given memory region. + virtual void Free(const VmaAllocation allocation) = 0; + virtual void FreeAtOffset(VkDeviceSize offset) = 0; + +protected: + const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; } + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap_Begin(class VmaJsonWriter& json, + VkDeviceSize unusedBytes, + size_t allocationCount, + size_t unusedRangeCount) const; + void PrintDetailedMap_Allocation(class VmaJsonWriter& json, + VkDeviceSize offset, + VmaAllocation hAllocation) const; + void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, + VkDeviceSize offset, + VkDeviceSize size) const; + void PrintDetailedMap_End(class VmaJsonWriter& json) const; +#endif + +private: + VkDeviceSize m_Size; + const VkAllocationCallbacks* m_pAllocationCallbacks; +}; + +#define VMA_VALIDATE(cond) do { if(!(cond)) { \ + VMA_ASSERT(0 && "Validation failed: " #cond); \ + return false; \ + } } while(false) + +class VmaBlockMetadata_Generic : public VmaBlockMetadata +{ + VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic) +public: + VmaBlockMetadata_Generic(VmaAllocator hAllocator); + virtual ~VmaBlockMetadata_Generic(); + virtual void Init(VkDeviceSize size); + + virtual bool Validate() const; + virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; } + virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } + virtual VkDeviceSize GetUnusedRangeSizeMax() const; + virtual bool IsEmpty() const; + + virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; + virtual void AddPoolStats(VmaPoolStats& inoutStats) const; + +#if VMA_STATS_STRING_ENABLED + virtual void PrintDetailedMap(class VmaJsonWriter& json) const; +#endif + + virtual bool CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest); + + virtual bool MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest* pAllocationRequest); + + virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); + + virtual VkResult CheckCorruption(const void* pBlockData); + + virtual void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation); + + virtual void Free(const VmaAllocation allocation); + virtual void FreeAtOffset(VkDeviceSize offset); + + //////////////////////////////////////////////////////////////////////////////// + // For defragmentation + + bool IsBufferImageGranularityConflictPossible( + VkDeviceSize bufferImageGranularity, + VmaSuballocationType& inOutPrevSuballocType) const; + +private: + friend class VmaDefragmentationAlgorithm_Generic; + friend class VmaDefragmentationAlgorithm_Fast; + + uint32_t m_FreeCount; + VkDeviceSize m_SumFreeSize; + VmaSuballocationList m_Suballocations; + // Suballocations that are free and have size greater than certain threshold. + // Sorted by size, ascending. + VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize; + + bool ValidateFreeSuballocationList() const; + + // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem. + // If yes, fills pOffset and returns true. If no, returns false. + bool CheckAllocation( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaSuballocationList::const_iterator suballocItem, + bool canMakeOtherLost, + VkDeviceSize* pOffset, + size_t* itemsToMakeLostCount, + VkDeviceSize* pSumFreeSize, + VkDeviceSize* pSumItemSize) const; + // Given free suballocation, it merges it with following one, which must also be free. + void MergeFreeWithNext(VmaSuballocationList::iterator item); + // Releases given suballocation, making it free. + // Merges it with adjacent free suballocations if applicable. + // Returns iterator to new free suballocation at this place. + VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem); + // Given free suballocation, it inserts it into sorted list of + // m_FreeSuballocationsBySize if it's suitable. + void RegisterFreeSuballocation(VmaSuballocationList::iterator item); + // Given free suballocation, it removes it from sorted list of + // m_FreeSuballocationsBySize if it's suitable. + void UnregisterFreeSuballocation(VmaSuballocationList::iterator item); +}; + +/* +Allocations and their references in internal data structure look like this: + +if(m_2ndVectorMode == SECOND_VECTOR_EMPTY): + + 0 +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | + | | + | | +GetSize() +-------+ + +if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER): + + 0 +-------+ + | Alloc | 2nd[0] + +-------+ + | Alloc | 2nd[1] + +-------+ + | ... | + +-------+ + | Alloc | 2nd[2nd.size() - 1] + +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | +GetSize() +-------+ + +if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK): + + 0 +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | + | | + | | + +-------+ + | Alloc | 2nd[2nd.size() - 1] + +-------+ + | ... | + +-------+ + | Alloc | 2nd[1] + +-------+ + | Alloc | 2nd[0] +GetSize() +-------+ + +*/ +class VmaBlockMetadata_Linear : public VmaBlockMetadata +{ + VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear) +public: + VmaBlockMetadata_Linear(VmaAllocator hAllocator); + virtual ~VmaBlockMetadata_Linear(); + virtual void Init(VkDeviceSize size); + + virtual bool Validate() const; + virtual size_t GetAllocationCount() const; + virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } + virtual VkDeviceSize GetUnusedRangeSizeMax() const; + virtual bool IsEmpty() const { return GetAllocationCount() == 0; } + + virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; + virtual void AddPoolStats(VmaPoolStats& inoutStats) const; + +#if VMA_STATS_STRING_ENABLED + virtual void PrintDetailedMap(class VmaJsonWriter& json) const; +#endif + + virtual bool CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest); + + virtual bool MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest* pAllocationRequest); + + virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); + + virtual VkResult CheckCorruption(const void* pBlockData); + + virtual void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation); + + virtual void Free(const VmaAllocation allocation); + virtual void FreeAtOffset(VkDeviceSize offset); + +private: + /* + There are two suballocation vectors, used in ping-pong way. + The one with index m_1stVectorIndex is called 1st. + The one with index (m_1stVectorIndex ^ 1) is called 2nd. + 2nd can be non-empty only when 1st is not empty. + When 2nd is not empty, m_2ndVectorMode indicates its mode of operation. + */ + typedef VmaVector< VmaSuballocation, VmaStlAllocator > SuballocationVectorType; + + enum SECOND_VECTOR_MODE + { + SECOND_VECTOR_EMPTY, + /* + Suballocations in 2nd vector are created later than the ones in 1st, but they + all have smaller offset. + */ + SECOND_VECTOR_RING_BUFFER, + /* + Suballocations in 2nd vector are upper side of double stack. + They all have offsets higher than those in 1st vector. + Top of this stack means smaller offsets, but higher indices in this vector. + */ + SECOND_VECTOR_DOUBLE_STACK, + }; + + VkDeviceSize m_SumFreeSize; + SuballocationVectorType m_Suballocations0, m_Suballocations1; + uint32_t m_1stVectorIndex; + SECOND_VECTOR_MODE m_2ndVectorMode; + + SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } + SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } + const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } + const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } + + // Number of items in 1st vector with hAllocation = null at the beginning. + size_t m_1stNullItemsBeginCount; + // Number of other items in 1st vector with hAllocation = null somewhere in the middle. + size_t m_1stNullItemsMiddleCount; + // Number of items in 2nd vector with hAllocation = null. + size_t m_2ndNullItemsCount; + + bool ShouldCompact1st() const; + void CleanupAfterFree(); + + bool CreateAllocationRequest_LowerAddress( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest); + bool CreateAllocationRequest_UpperAddress( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest); +}; + +/* +- GetSize() is the original size of allocated memory block. +- m_UsableSize is this size aligned down to a power of two. + All allocations and calculations happen relative to m_UsableSize. +- GetUnusableSize() is the difference between them. + It is repoted as separate, unused range, not available for allocations. + +Node at level 0 has size = m_UsableSize. +Each next level contains nodes with size 2 times smaller than current level. +m_LevelCount is the maximum number of levels to use in the current object. +*/ +class VmaBlockMetadata_Buddy : public VmaBlockMetadata +{ + VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy) +public: + VmaBlockMetadata_Buddy(VmaAllocator hAllocator); + virtual ~VmaBlockMetadata_Buddy(); + virtual void Init(VkDeviceSize size); + + virtual bool Validate() const; + virtual size_t GetAllocationCount() const { return m_AllocationCount; } + virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); } + virtual VkDeviceSize GetUnusedRangeSizeMax() const; + virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; } + + virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; + virtual void AddPoolStats(VmaPoolStats& inoutStats) const; + +#if VMA_STATS_STRING_ENABLED + virtual void PrintDetailedMap(class VmaJsonWriter& json) const; +#endif + + virtual bool CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest); + + virtual bool MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest* pAllocationRequest); + + virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); + + virtual VkResult CheckCorruption(const void* pBlockData) { return VK_ERROR_FEATURE_NOT_PRESENT; } + + virtual void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation); + + virtual void Free(const VmaAllocation allocation) { FreeAtOffset(allocation, allocation->GetOffset()); } + virtual void FreeAtOffset(VkDeviceSize offset) { FreeAtOffset(VMA_NULL, offset); } + +private: + static const VkDeviceSize MIN_NODE_SIZE = 32; + static const size_t MAX_LEVELS = 30; + + struct ValidationContext + { + size_t calculatedAllocationCount; + size_t calculatedFreeCount; + VkDeviceSize calculatedSumFreeSize; + + ValidationContext() : + calculatedAllocationCount(0), + calculatedFreeCount(0), + calculatedSumFreeSize(0) { } + }; + + struct Node + { + VkDeviceSize offset; + enum TYPE + { + TYPE_FREE, + TYPE_ALLOCATION, + TYPE_SPLIT, + TYPE_COUNT + } type; + Node* parent; + Node* buddy; + + union + { + struct + { + Node* prev; + Node* next; + } free; + struct + { + VmaAllocation alloc; + } allocation; + struct + { + Node* leftChild; + } split; + }; + }; + + // Size of the memory block aligned down to a power of two. + VkDeviceSize m_UsableSize; + uint32_t m_LevelCount; + + Node* m_Root; + struct { + Node* front; + Node* back; + } m_FreeList[MAX_LEVELS]; + // Number of nodes in the tree with type == TYPE_ALLOCATION. + size_t m_AllocationCount; + // Number of nodes in the tree with type == TYPE_FREE. + size_t m_FreeCount; + // This includes space wasted due to internal fragmentation. Doesn't include unusable size. + VkDeviceSize m_SumFreeSize; + + VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; } + void DeleteNode(Node* node); + bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const; + uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const; + inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; } + // Alloc passed just for validation. Can be null. + void FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset); + void CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const; + // Adds node to the front of FreeList at given level. + // node->type must be FREE. + // node->free.prev, next can be undefined. + void AddToFreeListFront(uint32_t level, Node* node); + // Removes node from FreeList at given level. + // node->type must be FREE. + // node->free.prev, next stay untouched. + void RemoveFromFreeList(uint32_t level, Node* node); + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const; +#endif +}; + +/* +Represents a single block of device memory (`VkDeviceMemory`) with all the +data about its regions (aka suballocations, #VmaAllocation), assigned and free. + +Thread-safety: This class must be externally synchronized. +*/ +class VmaDeviceMemoryBlock +{ + VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock) +public: + VmaBlockMetadata* m_pMetadata; + + VmaDeviceMemoryBlock(VmaAllocator hAllocator); + + ~VmaDeviceMemoryBlock() + { + VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped."); + VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); + } + + // Always call after construction. + void Init( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t newMemoryTypeIndex, + VkDeviceMemory newMemory, + VkDeviceSize newSize, + uint32_t id, + uint32_t algorithm); + // Always call before destruction. + void Destroy(VmaAllocator allocator); + + VmaPool GetParentPool() const { return m_hParentPool; } + VkDeviceMemory GetDeviceMemory() const { return m_hMemory; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + uint32_t GetId() const { return m_Id; } + void* GetMappedData() const { return m_pMappedData; } + + // Validates all data structures inside this object. If not valid, returns false. + bool Validate() const; + + VkResult CheckCorruption(VmaAllocator hAllocator); + + // ppData can be null. + VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData); + void Unmap(VmaAllocator hAllocator, uint32_t count); + + VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); + VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); + + VkResult BindBufferMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext); + VkResult BindImageMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext); + +private: + VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. + uint32_t m_MemoryTypeIndex; + uint32_t m_Id; + VkDeviceMemory m_hMemory; + + /* + Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory. + Also protects m_MapCount, m_pMappedData. + Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex. + */ + VMA_MUTEX m_Mutex; + uint32_t m_MapCount; + void* m_pMappedData; +}; + +struct VmaPointerLess +{ + bool operator()(const void* lhs, const void* rhs) const + { + return lhs < rhs; + } +}; + +struct VmaDefragmentationMove +{ + size_t srcBlockIndex; + size_t dstBlockIndex; + VkDeviceSize srcOffset; + VkDeviceSize dstOffset; + VkDeviceSize size; + VmaAllocation hAllocation; + VmaDeviceMemoryBlock* pSrcBlock; + VmaDeviceMemoryBlock* pDstBlock; +}; + +class VmaDefragmentationAlgorithm; + +/* +Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific +Vulkan memory type. + +Synchronized internally with a mutex. +*/ +struct VmaBlockVector +{ + VMA_CLASS_NO_COPY(VmaBlockVector) +public: + VmaBlockVector( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceSize preferredBlockSize, + size_t minBlockCount, + size_t maxBlockCount, + VkDeviceSize bufferImageGranularity, + uint32_t frameInUseCount, + bool explicitBlockSize, + uint32_t algorithm); + ~VmaBlockVector(); + + VkResult CreateMinBlocks(); + + VmaAllocator GetAllocator() const { return m_hAllocator; } + VmaPool GetParentPool() const { return m_hParentPool; } + bool IsCustomPool() const { return m_hParentPool != VMA_NULL; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; } + VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } + uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; } + uint32_t GetAlgorithm() const { return m_Algorithm; } + + void GetPoolStats(VmaPoolStats* pStats); + + bool IsEmpty(); + bool IsCorruptionDetectionEnabled() const; + + VkResult Allocate( + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations); + + void Free(const VmaAllocation hAllocation); + + // Adds statistics of this BlockVector to pStats. + void AddStats(VmaStats* pStats); + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json); +#endif + + void MakePoolAllocationsLost( + uint32_t currentFrameIndex, + size_t* pLostAllocationCount); + VkResult CheckCorruption(); + + // Saves results in pCtx->res. + void Defragment( + class VmaBlockVectorDefragmentationContext* pCtx, + VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, + VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, + VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer); + void DefragmentationEnd( + class VmaBlockVectorDefragmentationContext* pCtx, + VmaDefragmentationStats* pStats); + + uint32_t ProcessDefragmentations( + class VmaBlockVectorDefragmentationContext *pCtx, + VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves); + + void CommitDefragmentations( + class VmaBlockVectorDefragmentationContext *pCtx, + VmaDefragmentationStats* pStats); + + //////////////////////////////////////////////////////////////////////////////// + // To be used only while the m_Mutex is locked. Used during defragmentation. + + size_t GetBlockCount() const { return m_Blocks.size(); } + VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; } + size_t CalcAllocationCount() const; + bool IsBufferImageGranularityConflictPossible() const; + +private: + friend class VmaDefragmentationAlgorithm_Generic; + + const VmaAllocator m_hAllocator; + const VmaPool m_hParentPool; + const uint32_t m_MemoryTypeIndex; + const VkDeviceSize m_PreferredBlockSize; + const size_t m_MinBlockCount; + const size_t m_MaxBlockCount; + const VkDeviceSize m_BufferImageGranularity; + const uint32_t m_FrameInUseCount; + const bool m_ExplicitBlockSize; + const uint32_t m_Algorithm; + VMA_RW_MUTEX m_Mutex; + + /* There can be at most one allocation that is completely empty (except when minBlockCount > 0) - + a hysteresis to avoid pessimistic case of alternating creation and destruction of a VkDeviceMemory. */ + bool m_HasEmptyBlock; + // Incrementally sorted by sumFreeSize, ascending. + VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator > m_Blocks; + uint32_t m_NextBlockId; + + VkDeviceSize CalcMaxBlockSize() const; + + // Finds and removes given block from vector. + void Remove(VmaDeviceMemoryBlock* pBlock); + + // Performs single step in sorting m_Blocks. They may not be fully sorted + // after this call. + void IncrementallySortBlocks(); + + VkResult AllocatePage( + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation); + + // To be used only without CAN_MAKE_OTHER_LOST flag. + VkResult AllocateFromBlock( + VmaDeviceMemoryBlock* pBlock, + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + uint32_t strategy, + VmaAllocation* pAllocation); + + VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex); + + // Saves result to pCtx->res. + void ApplyDefragmentationMovesCpu( + class VmaBlockVectorDefragmentationContext* pDefragCtx, + const VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves); + // Saves result to pCtx->res. + void ApplyDefragmentationMovesGpu( + class VmaBlockVectorDefragmentationContext* pDefragCtx, + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkCommandBuffer commandBuffer); + + /* + Used during defragmentation. pDefragmentationStats is optional. It's in/out + - updated with new data. + */ + void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats); + + void UpdateHasEmptyBlock(); +}; + +struct VmaPool_T +{ + VMA_CLASS_NO_COPY(VmaPool_T) +public: + VmaBlockVector m_BlockVector; + + VmaPool_T( + VmaAllocator hAllocator, + const VmaPoolCreateInfo& createInfo, + VkDeviceSize preferredBlockSize); + ~VmaPool_T(); + + uint32_t GetId() const { return m_Id; } + void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; } + + const char* GetName() const { return m_Name; } + void SetName(const char* pName); + +#if VMA_STATS_STRING_ENABLED + //void PrintDetailedMap(class VmaStringBuilder& sb); +#endif + +private: + uint32_t m_Id; + char* m_Name; +}; + +/* +Performs defragmentation: + +- Updates `pBlockVector->m_pMetadata`. +- Updates allocations by calling ChangeBlockAllocation() or ChangeOffset(). +- Does not move actual data, only returns requested moves as `moves`. +*/ +class VmaDefragmentationAlgorithm +{ + VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm) +public: + VmaDefragmentationAlgorithm( + VmaAllocator hAllocator, + VmaBlockVector* pBlockVector, + uint32_t currentFrameIndex) : + m_hAllocator(hAllocator), + m_pBlockVector(pBlockVector), + m_CurrentFrameIndex(currentFrameIndex) + { + } + virtual ~VmaDefragmentationAlgorithm() + { + } + + virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0; + virtual void AddAll() = 0; + + virtual VkResult Defragment( + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + VmaDefragmentationFlags flags) = 0; + + virtual VkDeviceSize GetBytesMoved() const = 0; + virtual uint32_t GetAllocationsMoved() const = 0; + +protected: + VmaAllocator const m_hAllocator; + VmaBlockVector* const m_pBlockVector; + const uint32_t m_CurrentFrameIndex; + + struct AllocationInfo + { + VmaAllocation m_hAllocation; + VkBool32* m_pChanged; + + AllocationInfo() : + m_hAllocation(VK_NULL_HANDLE), + m_pChanged(VMA_NULL) + { + } + AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) : + m_hAllocation(hAlloc), + m_pChanged(pChanged) + { + } + }; +}; + +class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm +{ + VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic) +public: + VmaDefragmentationAlgorithm_Generic( + VmaAllocator hAllocator, + VmaBlockVector* pBlockVector, + uint32_t currentFrameIndex, + bool overlappingMoveSupported); + virtual ~VmaDefragmentationAlgorithm_Generic(); + + virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); + virtual void AddAll() { m_AllAllocations = true; } + + virtual VkResult Defragment( + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + VmaDefragmentationFlags flags); + + virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } + virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } + +private: + uint32_t m_AllocationCount; + bool m_AllAllocations; + + VkDeviceSize m_BytesMoved; + uint32_t m_AllocationsMoved; + + struct AllocationInfoSizeGreater + { + bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const + { + return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize(); + } + }; + + struct AllocationInfoOffsetGreater + { + bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const + { + return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset(); + } + }; + + struct BlockInfo + { + size_t m_OriginalBlockIndex; + VmaDeviceMemoryBlock* m_pBlock; + bool m_HasNonMovableAllocations; + VmaVector< AllocationInfo, VmaStlAllocator > m_Allocations; + + BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) : + m_OriginalBlockIndex(SIZE_MAX), + m_pBlock(VMA_NULL), + m_HasNonMovableAllocations(true), + m_Allocations(pAllocationCallbacks) + { + } + + void CalcHasNonMovableAllocations() + { + const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount(); + const size_t defragmentAllocCount = m_Allocations.size(); + m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount; + } + + void SortAllocationsBySizeDescending() + { + VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater()); + } + + void SortAllocationsByOffsetDescending() + { + VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater()); + } + }; + + struct BlockPointerLess + { + bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const + { + return pLhsBlockInfo->m_pBlock < pRhsBlock; + } + bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const + { + return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock; + } + }; + + // 1. Blocks with some non-movable allocations go first. + // 2. Blocks with smaller sumFreeSize go first. + struct BlockInfoCompareMoveDestination + { + bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const + { + if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations) + { + return true; + } + if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations) + { + return false; + } + if(pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize()) + { + return true; + } + return false; + } + }; + + typedef VmaVector< BlockInfo*, VmaStlAllocator > BlockInfoVector; + BlockInfoVector m_Blocks; + + VkResult DefragmentRound( + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + bool freeOldAllocations); + + size_t CalcBlocksWithNonMovableCount() const; + + static bool MoveMakesSense( + size_t dstBlockIndex, VkDeviceSize dstOffset, + size_t srcBlockIndex, VkDeviceSize srcOffset); +}; + +class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm +{ + VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast) +public: + VmaDefragmentationAlgorithm_Fast( + VmaAllocator hAllocator, + VmaBlockVector* pBlockVector, + uint32_t currentFrameIndex, + bool overlappingMoveSupported); + virtual ~VmaDefragmentationAlgorithm_Fast(); + + virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { ++m_AllocationCount; } + virtual void AddAll() { m_AllAllocations = true; } + + virtual VkResult Defragment( + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + VmaDefragmentationFlags flags); + + virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } + virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } + +private: + struct BlockInfo + { + size_t origBlockIndex; + }; + + class FreeSpaceDatabase + { + public: + FreeSpaceDatabase() + { + FreeSpace s = {}; + s.blockInfoIndex = SIZE_MAX; + for(size_t i = 0; i < MAX_COUNT; ++i) + { + m_FreeSpaces[i] = s; + } + } + + void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size) + { + if(size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) + { + return; + } + + // Find first invalid or the smallest structure. + size_t bestIndex = SIZE_MAX; + for(size_t i = 0; i < MAX_COUNT; ++i) + { + // Empty structure. + if(m_FreeSpaces[i].blockInfoIndex == SIZE_MAX) + { + bestIndex = i; + break; + } + if(m_FreeSpaces[i].size < size && + (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size)) + { + bestIndex = i; + } + } + + if(bestIndex != SIZE_MAX) + { + m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex; + m_FreeSpaces[bestIndex].offset = offset; + m_FreeSpaces[bestIndex].size = size; + } + } + + bool Fetch(VkDeviceSize alignment, VkDeviceSize size, + size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset) + { + size_t bestIndex = SIZE_MAX; + VkDeviceSize bestFreeSpaceAfter = 0; + for(size_t i = 0; i < MAX_COUNT; ++i) + { + // Structure is valid. + if(m_FreeSpaces[i].blockInfoIndex != SIZE_MAX) + { + const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment); + // Allocation fits into this structure. + if(dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size) + { + const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) - + (dstOffset + size); + if(bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter) + { + bestIndex = i; + bestFreeSpaceAfter = freeSpaceAfter; + } + } + } + } + + if(bestIndex != SIZE_MAX) + { + outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex; + outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment); + + if(bestFreeSpaceAfter >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) + { + // Leave this structure for remaining empty space. + const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size; + m_FreeSpaces[bestIndex].offset += alignmentPlusSize; + m_FreeSpaces[bestIndex].size -= alignmentPlusSize; + } + else + { + // This structure becomes invalid. + m_FreeSpaces[bestIndex].blockInfoIndex = SIZE_MAX; + } + + return true; + } + + return false; + } + + private: + static const size_t MAX_COUNT = 4; + + struct FreeSpace + { + size_t blockInfoIndex; // SIZE_MAX means this structure is invalid. + VkDeviceSize offset; + VkDeviceSize size; + } m_FreeSpaces[MAX_COUNT]; + }; + + const bool m_OverlappingMoveSupported; + + uint32_t m_AllocationCount; + bool m_AllAllocations; + + VkDeviceSize m_BytesMoved; + uint32_t m_AllocationsMoved; + + VmaVector< BlockInfo, VmaStlAllocator > m_BlockInfos; + + void PreprocessMetadata(); + void PostprocessMetadata(); + void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc); +}; + +struct VmaBlockDefragmentationContext +{ + enum BLOCK_FLAG + { + BLOCK_FLAG_USED = 0x00000001, + }; + uint32_t flags; + VkBuffer hBuffer; +}; + +class VmaBlockVectorDefragmentationContext +{ + VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext) +public: + VkResult res; + bool mutexLocked; + VmaVector< VmaBlockDefragmentationContext, VmaStlAllocator > blockContexts; + VmaVector< VmaDefragmentationMove, VmaStlAllocator > defragmentationMoves; + uint32_t defragmentationMovesProcessed; + uint32_t defragmentationMovesCommitted; + bool hasDefragmentationPlan; + + VmaBlockVectorDefragmentationContext( + VmaAllocator hAllocator, + VmaPool hCustomPool, // Optional. + VmaBlockVector* pBlockVector, + uint32_t currFrameIndex); + ~VmaBlockVectorDefragmentationContext(); + + VmaPool GetCustomPool() const { return m_hCustomPool; } + VmaBlockVector* GetBlockVector() const { return m_pBlockVector; } + VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; } + + void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); + void AddAll() { m_AllAllocations = true; } + + void Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags); + +private: + const VmaAllocator m_hAllocator; + // Null if not from custom pool. + const VmaPool m_hCustomPool; + // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors. + VmaBlockVector* const m_pBlockVector; + const uint32_t m_CurrFrameIndex; + // Owner of this object. + VmaDefragmentationAlgorithm* m_pAlgorithm; + + struct AllocInfo + { + VmaAllocation hAlloc; + VkBool32* pChanged; + }; + // Used between constructor and Begin. + VmaVector< AllocInfo, VmaStlAllocator > m_Allocations; + bool m_AllAllocations; +}; + +struct VmaDefragmentationContext_T +{ +private: + VMA_CLASS_NO_COPY(VmaDefragmentationContext_T) +public: + VmaDefragmentationContext_T( + VmaAllocator hAllocator, + uint32_t currFrameIndex, + uint32_t flags, + VmaDefragmentationStats* pStats); + ~VmaDefragmentationContext_T(); + + void AddPools(uint32_t poolCount, VmaPool* pPools); + void AddAllocations( + uint32_t allocationCount, + VmaAllocation* pAllocations, + VkBool32* pAllocationsChanged); + + /* + Returns: + - `VK_SUCCESS` if succeeded and object can be destroyed immediately. + - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd(). + - Negative value if error occured and object can be destroyed immediately. + */ + VkResult Defragment( + VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, + VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags); + + VkResult DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo); + VkResult DefragmentPassEnd(); + +private: + const VmaAllocator m_hAllocator; + const uint32_t m_CurrFrameIndex; + const uint32_t m_Flags; + VmaDefragmentationStats* const m_pStats; + + VkDeviceSize m_MaxCpuBytesToMove; + uint32_t m_MaxCpuAllocationsToMove; + VkDeviceSize m_MaxGpuBytesToMove; + uint32_t m_MaxGpuAllocationsToMove; + + // Owner of these objects. + VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES]; + // Owner of these objects. + VmaVector< VmaBlockVectorDefragmentationContext*, VmaStlAllocator > m_CustomPoolContexts; +}; + +#if VMA_RECORDING_ENABLED + +class VmaRecorder +{ +public: + VmaRecorder(); + VkResult Init(const VmaRecordSettings& settings, bool useMutex); + void WriteConfiguration( + const VkPhysicalDeviceProperties& devProps, + const VkPhysicalDeviceMemoryProperties& memProps, + uint32_t vulkanApiVersion, + bool dedicatedAllocationExtensionEnabled, + bool bindMemory2ExtensionEnabled, + bool memoryBudgetExtensionEnabled); + ~VmaRecorder(); + + void RecordCreateAllocator(uint32_t frameIndex); + void RecordDestroyAllocator(uint32_t frameIndex); + void RecordCreatePool(uint32_t frameIndex, + const VmaPoolCreateInfo& createInfo, + VmaPool pool); + void RecordDestroyPool(uint32_t frameIndex, VmaPool pool); + void RecordAllocateMemory(uint32_t frameIndex, + const VkMemoryRequirements& vkMemReq, + const VmaAllocationCreateInfo& createInfo, + VmaAllocation allocation); + void RecordAllocateMemoryPages(uint32_t frameIndex, + const VkMemoryRequirements& vkMemReq, + const VmaAllocationCreateInfo& createInfo, + uint64_t allocationCount, + const VmaAllocation* pAllocations); + void RecordAllocateMemoryForBuffer(uint32_t frameIndex, + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + const VmaAllocationCreateInfo& createInfo, + VmaAllocation allocation); + void RecordAllocateMemoryForImage(uint32_t frameIndex, + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + const VmaAllocationCreateInfo& createInfo, + VmaAllocation allocation); + void RecordFreeMemory(uint32_t frameIndex, + VmaAllocation allocation); + void RecordFreeMemoryPages(uint32_t frameIndex, + uint64_t allocationCount, + const VmaAllocation* pAllocations); + void RecordSetAllocationUserData(uint32_t frameIndex, + VmaAllocation allocation, + const void* pUserData); + void RecordCreateLostAllocation(uint32_t frameIndex, + VmaAllocation allocation); + void RecordMapMemory(uint32_t frameIndex, + VmaAllocation allocation); + void RecordUnmapMemory(uint32_t frameIndex, + VmaAllocation allocation); + void RecordFlushAllocation(uint32_t frameIndex, + VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); + void RecordInvalidateAllocation(uint32_t frameIndex, + VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); + void RecordCreateBuffer(uint32_t frameIndex, + const VkBufferCreateInfo& bufCreateInfo, + const VmaAllocationCreateInfo& allocCreateInfo, + VmaAllocation allocation); + void RecordCreateImage(uint32_t frameIndex, + const VkImageCreateInfo& imageCreateInfo, + const VmaAllocationCreateInfo& allocCreateInfo, + VmaAllocation allocation); + void RecordDestroyBuffer(uint32_t frameIndex, + VmaAllocation allocation); + void RecordDestroyImage(uint32_t frameIndex, + VmaAllocation allocation); + void RecordTouchAllocation(uint32_t frameIndex, + VmaAllocation allocation); + void RecordGetAllocationInfo(uint32_t frameIndex, + VmaAllocation allocation); + void RecordMakePoolAllocationsLost(uint32_t frameIndex, + VmaPool pool); + void RecordDefragmentationBegin(uint32_t frameIndex, + const VmaDefragmentationInfo2& info, + VmaDefragmentationContext ctx); + void RecordDefragmentationEnd(uint32_t frameIndex, + VmaDefragmentationContext ctx); + void RecordSetPoolName(uint32_t frameIndex, + VmaPool pool, + const char* name); + +private: + struct CallParams + { + uint32_t threadId; + double time; + }; + + class UserDataString + { + public: + UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData); + const char* GetString() const { return m_Str; } + + private: + char m_PtrStr[17]; + const char* m_Str; + }; + + bool m_UseMutex; + VmaRecordFlags m_Flags; + FILE* m_File; + VMA_MUTEX m_FileMutex; + int64_t m_Freq; + int64_t m_StartCounter; + + void GetBasicParams(CallParams& outParams); + + // T must be a pointer type, e.g. VmaAllocation, VmaPool. + template + void PrintPointerList(uint64_t count, const T* pItems) + { + if(count) + { + fprintf(m_File, "%p", pItems[0]); + for(uint64_t i = 1; i < count; ++i) + { + fprintf(m_File, " %p", pItems[i]); + } + } + } + + void PrintPointerList(uint64_t count, const VmaAllocation* pItems); + void Flush(); +}; + +#endif // #if VMA_RECORDING_ENABLED + +/* +Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects. +*/ +class VmaAllocationObjectAllocator +{ + VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator) +public: + VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks); + + VmaAllocation Allocate(); + void Free(VmaAllocation hAlloc); + +private: + VMA_MUTEX m_Mutex; + VmaPoolAllocator m_Allocator; +}; + +struct VmaCurrentBudgetData +{ + VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS]; + VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS]; + +#if VMA_MEMORY_BUDGET + VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch; + VMA_RW_MUTEX m_BudgetMutex; + uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS]; + uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS]; + uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS]; +#endif // #if VMA_MEMORY_BUDGET + + VmaCurrentBudgetData() + { + for(uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex) + { + m_BlockBytes[heapIndex] = 0; + m_AllocationBytes[heapIndex] = 0; +#if VMA_MEMORY_BUDGET + m_VulkanUsage[heapIndex] = 0; + m_VulkanBudget[heapIndex] = 0; + m_BlockBytesAtBudgetFetch[heapIndex] = 0; +#endif + } + +#if VMA_MEMORY_BUDGET + m_OperationsSinceBudgetFetch = 0; +#endif + } + + void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) + { + m_AllocationBytes[heapIndex] += allocationSize; +#if VMA_MEMORY_BUDGET + ++m_OperationsSinceBudgetFetch; +#endif + } + + void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) + { + VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); // DELME + m_AllocationBytes[heapIndex] -= allocationSize; +#if VMA_MEMORY_BUDGET + ++m_OperationsSinceBudgetFetch; +#endif + } +}; + +// Main allocator object. +struct VmaAllocator_T +{ + VMA_CLASS_NO_COPY(VmaAllocator_T) +public: + bool m_UseMutex; + uint32_t m_VulkanApiVersion; + bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). + bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). + bool m_UseExtMemoryBudget; + VkDevice m_hDevice; + VkInstance m_hInstance; + bool m_AllocationCallbacksSpecified; + VkAllocationCallbacks m_AllocationCallbacks; + VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks; + VmaAllocationObjectAllocator m_AllocationObjectAllocator; + + // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size. + uint32_t m_HeapSizeLimitMask; + + VkPhysicalDeviceProperties m_PhysicalDeviceProperties; + VkPhysicalDeviceMemoryProperties m_MemProps; + + // Default pools. + VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; + + // Each vector is sorted by memory (handle value). + typedef VmaVector< VmaAllocation, VmaStlAllocator > AllocationVectorType; + AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES]; + VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES]; + + VmaCurrentBudgetData m_Budget; + + VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo); + VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo); + ~VmaAllocator_T(); + + const VkAllocationCallbacks* GetAllocationCallbacks() const + { + return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0; + } + const VmaVulkanFunctions& GetVulkanFunctions() const + { + return m_VulkanFunctions; + } + + VkDeviceSize GetBufferImageGranularity() const + { + return VMA_MAX( + static_cast(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY), + m_PhysicalDeviceProperties.limits.bufferImageGranularity); + } + + uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; } + uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; } + + uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const + { + VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount); + return m_MemProps.memoryTypes[memTypeIndex].heapIndex; + } + // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT. + bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const + { + return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) == + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + } + // Minimum alignment for all allocations in specific memory type. + VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const + { + return IsMemoryTypeNonCoherent(memTypeIndex) ? + VMA_MAX((VkDeviceSize)VMA_DEBUG_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) : + (VkDeviceSize)VMA_DEBUG_ALIGNMENT; + } + + bool IsIntegratedGpu() const + { + return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; + } + +#if VMA_RECORDING_ENABLED + VmaRecorder* GetRecorder() const { return m_pRecorder; } +#endif + + void GetBufferMemoryRequirements( + VkBuffer hBuffer, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const; + void GetImageMemoryRequirements( + VkImage hImage, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const; + + // Main allocation function. + VkResult AllocateMemory( + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations); + + // Main deallocation function. + void FreeMemory( + size_t allocationCount, + const VmaAllocation* pAllocations); + + VkResult ResizeAllocation( + const VmaAllocation alloc, + VkDeviceSize newSize); + + void CalculateStats(VmaStats* pStats); + + void GetBudget( + VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount); + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json); +#endif + + VkResult DefragmentationBegin( + const VmaDefragmentationInfo2& info, + VmaDefragmentationStats* pStats, + VmaDefragmentationContext* pContext); + VkResult DefragmentationEnd( + VmaDefragmentationContext context); + + VkResult DefragmentationPassBegin( + VmaDefragmentationPassInfo* pInfo, + VmaDefragmentationContext context); + VkResult DefragmentationPassEnd( + VmaDefragmentationContext context); + + void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo); + bool TouchAllocation(VmaAllocation hAllocation); + + VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool); + void DestroyPool(VmaPool pool); + void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats); + + void SetCurrentFrameIndex(uint32_t frameIndex); + uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); } + + void MakePoolAllocationsLost( + VmaPool hPool, + size_t* pLostAllocationCount); + VkResult CheckPoolCorruption(VmaPool hPool); + VkResult CheckCorruption(uint32_t memoryTypeBits); + + void CreateLostAllocation(VmaAllocation* pAllocation); + + // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping. + VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory); + // Call to Vulkan function vkFreeMemory with accompanying bookkeeping. + void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory); + // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR. + VkResult BindVulkanBuffer( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkBuffer buffer, + const void* pNext); + // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR. + VkResult BindVulkanImage( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkImage image, + const void* pNext); + + VkResult Map(VmaAllocation hAllocation, void** ppData); + void Unmap(VmaAllocation hAllocation); + + VkResult BindBufferMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext); + VkResult BindImageMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext); + + void FlushOrInvalidateAllocation( + VmaAllocation hAllocation, + VkDeviceSize offset, VkDeviceSize size, + VMA_CACHE_OPERATION op); + + void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern); + + /* + Returns bit mask of memory types that can support defragmentation on GPU as + they support creation of required buffer for copy operations. + */ + uint32_t GetGpuDefragmentationMemoryTypeBits(); + +private: + VkDeviceSize m_PreferredLargeHeapBlockSize; + + VkPhysicalDevice m_PhysicalDevice; + VMA_ATOMIC_UINT32 m_CurrentFrameIndex; + VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized. + + VMA_RW_MUTEX m_PoolsMutex; + // Protected by m_PoolsMutex. Sorted by pointer value. + VmaVector > m_Pools; + uint32_t m_NextPoolId; + + VmaVulkanFunctions m_VulkanFunctions; + +#if VMA_RECORDING_ENABLED + VmaRecorder* m_pRecorder; +#endif + + void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions); + + VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); + + VkResult AllocateMemoryOfType( + VkDeviceSize size, + VkDeviceSize alignment, + bool dedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + const VmaAllocationCreateInfo& createInfo, + uint32_t memTypeIndex, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations); + + // Helper function only to be used inside AllocateDedicatedMemory. + VkResult AllocateDedicatedMemoryPage( + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + const VkMemoryAllocateInfo& allocInfo, + bool map, + bool isUserDataString, + void* pUserData, + VmaAllocation* pAllocation); + + // Allocates and registers new VkDeviceMemory specifically for dedicated allocations. + VkResult AllocateDedicatedMemory( + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + bool withinBudget, + bool map, + bool isUserDataString, + void* pUserData, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + size_t allocationCount, + VmaAllocation* pAllocations); + + void FreeDedicatedMemory(const VmaAllocation allocation); + + /* + Calculates and returns bit mask of memory types that can support defragmentation + on GPU as they support creation of required buffer for copy operations. + */ + uint32_t CalculateGpuDefragmentationMemoryTypeBits() const; + +#if VMA_MEMORY_BUDGET + void UpdateVulkanBudget(); +#endif // #if VMA_MEMORY_BUDGET +}; + +//////////////////////////////////////////////////////////////////////////////// +// Memory allocation #2 after VmaAllocator_T definition + +static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) +{ + return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment); +} + +static void VmaFree(VmaAllocator hAllocator, void* ptr) +{ + VmaFree(&hAllocator->m_AllocationCallbacks, ptr); +} + +template +static T* VmaAllocate(VmaAllocator hAllocator) +{ + return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T)); +} + +template +static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count) +{ + return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T)); +} + +template +static void vma_delete(VmaAllocator hAllocator, T* ptr) +{ + if(ptr != VMA_NULL) + { + ptr->~T(); + VmaFree(hAllocator, ptr); + } +} + +template +static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count) +{ + if(ptr != VMA_NULL) + { + for(size_t i = count; i--; ) + ptr[i].~T(); + VmaFree(hAllocator, ptr); + } +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaStringBuilder + +#if VMA_STATS_STRING_ENABLED + +class VmaStringBuilder +{ +public: + VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator(alloc->GetAllocationCallbacks())) { } + size_t GetLength() const { return m_Data.size(); } + const char* GetData() const { return m_Data.data(); } + + void Add(char ch) { m_Data.push_back(ch); } + void Add(const char* pStr); + void AddNewLine() { Add('\n'); } + void AddNumber(uint32_t num); + void AddNumber(uint64_t num); + void AddPointer(const void* ptr); + +private: + VmaVector< char, VmaStlAllocator > m_Data; +}; + +void VmaStringBuilder::Add(const char* pStr) +{ + const size_t strLen = strlen(pStr); + if(strLen > 0) + { + const size_t oldCount = m_Data.size(); + m_Data.resize(oldCount + strLen); + memcpy(m_Data.data() + oldCount, pStr, strLen); + } +} + +void VmaStringBuilder::AddNumber(uint32_t num) +{ + char buf[11]; + buf[10] = '\0'; + char *p = &buf[10]; + do + { + *--p = '0' + (num % 10); + num /= 10; + } + while(num); + Add(p); +} + +void VmaStringBuilder::AddNumber(uint64_t num) +{ + char buf[21]; + buf[20] = '\0'; + char *p = &buf[20]; + do + { + *--p = '0' + (num % 10); + num /= 10; + } + while(num); + Add(p); +} + +void VmaStringBuilder::AddPointer(const void* ptr) +{ + char buf[21]; + VmaPtrToStr(buf, sizeof(buf), ptr); + Add(buf); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +//////////////////////////////////////////////////////////////////////////////// +// VmaJsonWriter + +#if VMA_STATS_STRING_ENABLED + +class VmaJsonWriter +{ + VMA_CLASS_NO_COPY(VmaJsonWriter) +public: + VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb); + ~VmaJsonWriter(); + + void BeginObject(bool singleLine = false); + void EndObject(); + + void BeginArray(bool singleLine = false); + void EndArray(); + + void WriteString(const char* pStr); + void BeginString(const char* pStr = VMA_NULL); + void ContinueString(const char* pStr); + void ContinueString(uint32_t n); + void ContinueString(uint64_t n); + void ContinueString_Pointer(const void* ptr); + void EndString(const char* pStr = VMA_NULL); + + void WriteNumber(uint32_t n); + void WriteNumber(uint64_t n); + void WriteBool(bool b); + void WriteNull(); + +private: + static const char* const INDENT; + + enum COLLECTION_TYPE + { + COLLECTION_TYPE_OBJECT, + COLLECTION_TYPE_ARRAY, + }; + struct StackItem + { + COLLECTION_TYPE type; + uint32_t valueCount; + bool singleLineMode; + }; + + VmaStringBuilder& m_SB; + VmaVector< StackItem, VmaStlAllocator > m_Stack; + bool m_InsideString; + + void BeginValue(bool isString); + void WriteIndent(bool oneLess = false); +}; + +const char* const VmaJsonWriter::INDENT = " "; + +VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) : + m_SB(sb), + m_Stack(VmaStlAllocator(pAllocationCallbacks)), + m_InsideString(false) +{ +} + +VmaJsonWriter::~VmaJsonWriter() +{ + VMA_ASSERT(!m_InsideString); + VMA_ASSERT(m_Stack.empty()); +} + +void VmaJsonWriter::BeginObject(bool singleLine) +{ + VMA_ASSERT(!m_InsideString); + + BeginValue(false); + m_SB.Add('{'); + + StackItem item; + item.type = COLLECTION_TYPE_OBJECT; + item.valueCount = 0; + item.singleLineMode = singleLine; + m_Stack.push_back(item); +} + +void VmaJsonWriter::EndObject() +{ + VMA_ASSERT(!m_InsideString); + + WriteIndent(true); + m_SB.Add('}'); + + VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT); + m_Stack.pop_back(); +} + +void VmaJsonWriter::BeginArray(bool singleLine) +{ + VMA_ASSERT(!m_InsideString); + + BeginValue(false); + m_SB.Add('['); + + StackItem item; + item.type = COLLECTION_TYPE_ARRAY; + item.valueCount = 0; + item.singleLineMode = singleLine; + m_Stack.push_back(item); +} + +void VmaJsonWriter::EndArray() +{ + VMA_ASSERT(!m_InsideString); + + WriteIndent(true); + m_SB.Add(']'); + + VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY); + m_Stack.pop_back(); +} + +void VmaJsonWriter::WriteString(const char* pStr) +{ + BeginString(pStr); + EndString(); +} + +void VmaJsonWriter::BeginString(const char* pStr) +{ + VMA_ASSERT(!m_InsideString); + + BeginValue(true); + m_SB.Add('"'); + m_InsideString = true; + if(pStr != VMA_NULL && pStr[0] != '\0') + { + ContinueString(pStr); + } +} + +void VmaJsonWriter::ContinueString(const char* pStr) +{ + VMA_ASSERT(m_InsideString); + + const size_t strLen = strlen(pStr); + for(size_t i = 0; i < strLen; ++i) + { + char ch = pStr[i]; + if(ch == '\\') + { + m_SB.Add("\\\\"); + } + else if(ch == '"') + { + m_SB.Add("\\\""); + } + else if(ch >= 32) + { + m_SB.Add(ch); + } + else switch(ch) + { + case '\b': + m_SB.Add("\\b"); + break; + case '\f': + m_SB.Add("\\f"); + break; + case '\n': + m_SB.Add("\\n"); + break; + case '\r': + m_SB.Add("\\r"); + break; + case '\t': + m_SB.Add("\\t"); + break; + default: + VMA_ASSERT(0 && "Character not currently supported."); + break; + } + } +} + +void VmaJsonWriter::ContinueString(uint32_t n) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::ContinueString(uint64_t n) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::ContinueString_Pointer(const void* ptr) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddPointer(ptr); +} + +void VmaJsonWriter::EndString(const char* pStr) +{ + VMA_ASSERT(m_InsideString); + if(pStr != VMA_NULL && pStr[0] != '\0') + { + ContinueString(pStr); + } + m_SB.Add('"'); + m_InsideString = false; +} + +void VmaJsonWriter::WriteNumber(uint32_t n) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::WriteNumber(uint64_t n) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::WriteBool(bool b) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.Add(b ? "true" : "false"); +} + +void VmaJsonWriter::WriteNull() +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.Add("null"); +} + +void VmaJsonWriter::BeginValue(bool isString) +{ + if(!m_Stack.empty()) + { + StackItem& currItem = m_Stack.back(); + if(currItem.type == COLLECTION_TYPE_OBJECT && + currItem.valueCount % 2 == 0) + { + VMA_ASSERT(isString); + } + + if(currItem.type == COLLECTION_TYPE_OBJECT && + currItem.valueCount % 2 != 0) + { + m_SB.Add(": "); + } + else if(currItem.valueCount > 0) + { + m_SB.Add(", "); + WriteIndent(); + } + else + { + WriteIndent(); + } + ++currItem.valueCount; + } +} + +void VmaJsonWriter::WriteIndent(bool oneLess) +{ + if(!m_Stack.empty() && !m_Stack.back().singleLineMode) + { + m_SB.AddNewLine(); + + size_t count = m_Stack.size(); + if(count > 0 && oneLess) + { + --count; + } + for(size_t i = 0; i < count; ++i) + { + m_SB.Add(INDENT); + } + } +} + +#endif // #if VMA_STATS_STRING_ENABLED + +//////////////////////////////////////////////////////////////////////////////// + +void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData) +{ + if(IsUserDataString()) + { + VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData); + + FreeUserDataString(hAllocator); + + if(pUserData != VMA_NULL) + { + m_pUserData = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), (const char*)pUserData); + } + } + else + { + m_pUserData = pUserData; + } +} + +void VmaAllocation_T::ChangeBlockAllocation( + VmaAllocator hAllocator, + VmaDeviceMemoryBlock* block, + VkDeviceSize offset) +{ + VMA_ASSERT(block != VMA_NULL); + VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); + + // Move mapping reference counter from old block to new block. + if(block != m_BlockAllocation.m_Block) + { + uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP; + if(IsPersistentMap()) + ++mapRefCount; + m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount); + block->Map(hAllocator, mapRefCount, VMA_NULL); + } + + m_BlockAllocation.m_Block = block; + m_BlockAllocation.m_Offset = offset; +} + +void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset) +{ + VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); + m_BlockAllocation.m_Offset = newOffset; +} + +VkDeviceSize VmaAllocation_T::GetOffset() const +{ + switch(m_Type) + { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Offset; + case ALLOCATION_TYPE_DEDICATED: + return 0; + default: + VMA_ASSERT(0); + return 0; + } +} + +VkDeviceMemory VmaAllocation_T::GetMemory() const +{ + switch(m_Type) + { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->GetDeviceMemory(); + case ALLOCATION_TYPE_DEDICATED: + return m_DedicatedAllocation.m_hMemory; + default: + VMA_ASSERT(0); + return VK_NULL_HANDLE; + } +} + +void* VmaAllocation_T::GetMappedData() const +{ + switch(m_Type) + { + case ALLOCATION_TYPE_BLOCK: + if(m_MapCount != 0) + { + void* pBlockData = m_BlockAllocation.m_Block->GetMappedData(); + VMA_ASSERT(pBlockData != VMA_NULL); + return (char*)pBlockData + m_BlockAllocation.m_Offset; + } + else + { + return VMA_NULL; + } + break; + case ALLOCATION_TYPE_DEDICATED: + VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0)); + return m_DedicatedAllocation.m_pMappedData; + default: + VMA_ASSERT(0); + return VMA_NULL; + } +} + +bool VmaAllocation_T::CanBecomeLost() const +{ + switch(m_Type) + { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_CanBecomeLost; + case ALLOCATION_TYPE_DEDICATED: + return false; + default: + VMA_ASSERT(0); + return false; + } +} + +bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) +{ + VMA_ASSERT(CanBecomeLost()); + + /* + Warning: This is a carefully designed algorithm. + Do not modify unless you really know what you're doing :) + */ + uint32_t localLastUseFrameIndex = GetLastUseFrameIndex(); + for(;;) + { + if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) + { + VMA_ASSERT(0); + return false; + } + else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex) + { + return false; + } + else // Last use time earlier than current time. + { + if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST)) + { + // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST. + // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock. + return true; + } + } + } +} + +#if VMA_STATS_STRING_ENABLED + +// Correspond to values of enum VmaSuballocationType. +static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = { + "FREE", + "UNKNOWN", + "BUFFER", + "IMAGE_UNKNOWN", + "IMAGE_LINEAR", + "IMAGE_OPTIMAL", +}; + +void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const +{ + json.WriteString("Type"); + json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]); + + json.WriteString("Size"); + json.WriteNumber(m_Size); + + if(m_pUserData != VMA_NULL) + { + json.WriteString("UserData"); + if(IsUserDataString()) + { + json.WriteString((const char*)m_pUserData); + } + else + { + json.BeginString(); + json.ContinueString_Pointer(m_pUserData); + json.EndString(); + } + } + + json.WriteString("CreationFrameIndex"); + json.WriteNumber(m_CreationFrameIndex); + + json.WriteString("LastUseFrameIndex"); + json.WriteNumber(GetLastUseFrameIndex()); + + if(m_BufferImageUsage != 0) + { + json.WriteString("Usage"); + json.WriteNumber(m_BufferImageUsage); + } +} + +#endif + +void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator) +{ + VMA_ASSERT(IsUserDataString()); + VmaFreeString(hAllocator->GetAllocationCallbacks(), (char*)m_pUserData); + m_pUserData = VMA_NULL; +} + +void VmaAllocation_T::BlockAllocMap() +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); + + if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) + { + ++m_MapCount; + } + else + { + VMA_ASSERT(0 && "Allocation mapped too many times simultaneously."); + } +} + +void VmaAllocation_T::BlockAllocUnmap() +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); + + if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) + { + --m_MapCount; + } + else + { + VMA_ASSERT(0 && "Unmapping allocation not previously mapped."); + } +} + +VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData) +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); + + if(m_MapCount != 0) + { + if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) + { + VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL); + *ppData = m_DedicatedAllocation.m_pMappedData; + ++m_MapCount; + return VK_SUCCESS; + } + else + { + VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously."); + return VK_ERROR_MEMORY_MAP_FAILED; + } + } + else + { + VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( + hAllocator->m_hDevice, + m_DedicatedAllocation.m_hMemory, + 0, // offset + VK_WHOLE_SIZE, + 0, // flags + ppData); + if(result == VK_SUCCESS) + { + m_DedicatedAllocation.m_pMappedData = *ppData; + m_MapCount = 1; + } + return result; + } +} + +void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); + + if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) + { + --m_MapCount; + if(m_MapCount == 0) + { + m_DedicatedAllocation.m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)( + hAllocator->m_hDevice, + m_DedicatedAllocation.m_hMemory); + } + } + else + { + VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped."); + } +} + +#if VMA_STATS_STRING_ENABLED + +static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat) +{ + json.BeginObject(); + + json.WriteString("Blocks"); + json.WriteNumber(stat.blockCount); + + json.WriteString("Allocations"); + json.WriteNumber(stat.allocationCount); + + json.WriteString("UnusedRanges"); + json.WriteNumber(stat.unusedRangeCount); + + json.WriteString("UsedBytes"); + json.WriteNumber(stat.usedBytes); + + json.WriteString("UnusedBytes"); + json.WriteNumber(stat.unusedBytes); + + if(stat.allocationCount > 1) + { + json.WriteString("AllocationSize"); + json.BeginObject(true); + json.WriteString("Min"); + json.WriteNumber(stat.allocationSizeMin); + json.WriteString("Avg"); + json.WriteNumber(stat.allocationSizeAvg); + json.WriteString("Max"); + json.WriteNumber(stat.allocationSizeMax); + json.EndObject(); + } + + if(stat.unusedRangeCount > 1) + { + json.WriteString("UnusedRangeSize"); + json.BeginObject(true); + json.WriteString("Min"); + json.WriteNumber(stat.unusedRangeSizeMin); + json.WriteString("Avg"); + json.WriteNumber(stat.unusedRangeSizeAvg); + json.WriteString("Max"); + json.WriteNumber(stat.unusedRangeSizeMax); + json.EndObject(); + } + + json.EndObject(); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +struct VmaSuballocationItemSizeLess +{ + bool operator()( + const VmaSuballocationList::iterator lhs, + const VmaSuballocationList::iterator rhs) const + { + return lhs->size < rhs->size; + } + bool operator()( + const VmaSuballocationList::iterator lhs, + VkDeviceSize rhsSize) const + { + return lhs->size < rhsSize; + } +}; + + +//////////////////////////////////////////////////////////////////////////////// +// class VmaBlockMetadata + +VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) : + m_Size(0), + m_pAllocationCallbacks(hAllocator->GetAllocationCallbacks()) +{ +} + +#if VMA_STATS_STRING_ENABLED + +void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json, + VkDeviceSize unusedBytes, + size_t allocationCount, + size_t unusedRangeCount) const +{ + json.BeginObject(); + + json.WriteString("TotalBytes"); + json.WriteNumber(GetSize()); + + json.WriteString("UnusedBytes"); + json.WriteNumber(unusedBytes); + + json.WriteString("Allocations"); + json.WriteNumber((uint64_t)allocationCount); + + json.WriteString("UnusedRanges"); + json.WriteNumber((uint64_t)unusedRangeCount); + + json.WriteString("Suballocations"); + json.BeginArray(); +} + +void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json, + VkDeviceSize offset, + VmaAllocation hAllocation) const +{ + json.BeginObject(true); + + json.WriteString("Offset"); + json.WriteNumber(offset); + + hAllocation->PrintParameters(json); + + json.EndObject(); +} + +void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, + VkDeviceSize offset, + VkDeviceSize size) const +{ + json.BeginObject(true); + + json.WriteString("Offset"); + json.WriteNumber(offset); + + json.WriteString("Type"); + json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]); + + json.WriteString("Size"); + json.WriteNumber(size); + + json.EndObject(); +} + +void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const +{ + json.EndArray(); + json.EndObject(); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +//////////////////////////////////////////////////////////////////////////////// +// class VmaBlockMetadata_Generic + +VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(VmaAllocator hAllocator) : + VmaBlockMetadata(hAllocator), + m_FreeCount(0), + m_SumFreeSize(0), + m_Suballocations(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + m_FreeSuballocationsBySize(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) +{ +} + +VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic() +{ +} + +void VmaBlockMetadata_Generic::Init(VkDeviceSize size) +{ + VmaBlockMetadata::Init(size); + + m_FreeCount = 1; + m_SumFreeSize = size; + + VmaSuballocation suballoc = {}; + suballoc.offset = 0; + suballoc.size = size; + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.hAllocation = VK_NULL_HANDLE; + + VMA_ASSERT(size > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); + m_Suballocations.push_back(suballoc); + VmaSuballocationList::iterator suballocItem = m_Suballocations.end(); + --suballocItem; + m_FreeSuballocationsBySize.push_back(suballocItem); +} + +bool VmaBlockMetadata_Generic::Validate() const +{ + VMA_VALIDATE(!m_Suballocations.empty()); + + // Expected offset of new suballocation as calculated from previous ones. + VkDeviceSize calculatedOffset = 0; + // Expected number of free suballocations as calculated from traversing their list. + uint32_t calculatedFreeCount = 0; + // Expected sum size of free suballocations as calculated from traversing their list. + VkDeviceSize calculatedSumFreeSize = 0; + // Expected number of free suballocations that should be registered in + // m_FreeSuballocationsBySize calculated from traversing their list. + size_t freeSuballocationsToRegister = 0; + // True if previous visited suballocation was free. + bool prevFree = false; + + for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); + suballocItem != m_Suballocations.cend(); + ++suballocItem) + { + const VmaSuballocation& subAlloc = *suballocItem; + + // Actual offset of this suballocation doesn't match expected one. + VMA_VALIDATE(subAlloc.offset == calculatedOffset); + + const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE); + // Two adjacent free suballocations are invalid. They should be merged. + VMA_VALIDATE(!prevFree || !currFree); + + VMA_VALIDATE(currFree == (subAlloc.hAllocation == VK_NULL_HANDLE)); + + if(currFree) + { + calculatedSumFreeSize += subAlloc.size; + ++calculatedFreeCount; + if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) + { + ++freeSuballocationsToRegister; + } + + // Margin required between allocations - every free space must be at least that large. + VMA_VALIDATE(subAlloc.size >= VMA_DEBUG_MARGIN); + } + else + { + VMA_VALIDATE(subAlloc.hAllocation->GetOffset() == subAlloc.offset); + VMA_VALIDATE(subAlloc.hAllocation->GetSize() == subAlloc.size); + + // Margin required between allocations - previous allocation must be free. + VMA_VALIDATE(VMA_DEBUG_MARGIN == 0 || prevFree); + } + + calculatedOffset += subAlloc.size; + prevFree = currFree; + } + + // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't + // match expected one. + VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister); + + VkDeviceSize lastSize = 0; + for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i) + { + VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i]; + + // Only free suballocations can be registered in m_FreeSuballocationsBySize. + VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE); + // They must be sorted by size ascending. + VMA_VALIDATE(suballocItem->size >= lastSize); + + lastSize = suballocItem->size; + } + + // Check if totals match calculacted values. + VMA_VALIDATE(ValidateFreeSuballocationList()); + VMA_VALIDATE(calculatedOffset == GetSize()); + VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize); + VMA_VALIDATE(calculatedFreeCount == m_FreeCount); + + return true; +} + +VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const +{ + if(!m_FreeSuballocationsBySize.empty()) + { + return m_FreeSuballocationsBySize.back()->size; + } + else + { + return 0; + } +} + +bool VmaBlockMetadata_Generic::IsEmpty() const +{ + return (m_Suballocations.size() == 1) && (m_FreeCount == 1); +} + +void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const +{ + outInfo.blockCount = 1; + + const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); + outInfo.allocationCount = rangeCount - m_FreeCount; + outInfo.unusedRangeCount = m_FreeCount; + + outInfo.unusedBytes = m_SumFreeSize; + outInfo.usedBytes = GetSize() - outInfo.unusedBytes; + + outInfo.allocationSizeMin = UINT64_MAX; + outInfo.allocationSizeMax = 0; + outInfo.unusedRangeSizeMin = UINT64_MAX; + outInfo.unusedRangeSizeMax = 0; + + for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); + suballocItem != m_Suballocations.cend(); + ++suballocItem) + { + const VmaSuballocation& suballoc = *suballocItem; + if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + { + outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); + outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size); + } + else + { + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size); + outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size); + } + } +} + +void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const +{ + const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); + + inoutStats.size += GetSize(); + inoutStats.unusedSize += m_SumFreeSize; + inoutStats.allocationCount += rangeCount - m_FreeCount; + inoutStats.unusedRangeCount += m_FreeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); +} + +#if VMA_STATS_STRING_ENABLED + +void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json) const +{ + PrintDetailedMap_Begin(json, + m_SumFreeSize, // unusedBytes + m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount + m_FreeCount); // unusedRangeCount + + size_t i = 0; + for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); + suballocItem != m_Suballocations.cend(); + ++suballocItem, ++i) + { + if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) + { + PrintDetailedMap_UnusedRange(json, suballocItem->offset, suballocItem->size); + } + else + { + PrintDetailedMap_Allocation(json, suballocItem->offset, suballocItem->hAllocation); + } + } + + PrintDetailedMap_End(json); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +bool VmaBlockMetadata_Generic::CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(!upperAddress); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(pAllocationRequest != VMA_NULL); + VMA_HEAVY_ASSERT(Validate()); + + pAllocationRequest->type = VmaAllocationRequestType::Normal; + + // There is not enough total free space in this block to fullfill the request: Early return. + if(canMakeOtherLost == false && + m_SumFreeSize < allocSize + 2 * VMA_DEBUG_MARGIN) + { + return false; + } + + // New algorithm, efficiently searching freeSuballocationsBySize. + const size_t freeSuballocCount = m_FreeSuballocationsBySize.size(); + if(freeSuballocCount > 0) + { + if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) + { + // Find first free suballocation with size not less than allocSize + 2 * VMA_DEBUG_MARGIN. + VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( + m_FreeSuballocationsBySize.data(), + m_FreeSuballocationsBySize.data() + freeSuballocCount, + allocSize + 2 * VMA_DEBUG_MARGIN, + VmaSuballocationItemSizeLess()); + size_t index = it - m_FreeSuballocationsBySize.data(); + for(; index < freeSuballocCount; ++index) + { + if(CheckAllocation( + currentFrameIndex, + frameInUseCount, + bufferImageGranularity, + allocSize, + allocAlignment, + allocType, + m_FreeSuballocationsBySize[index], + false, // canMakeOtherLost + &pAllocationRequest->offset, + &pAllocationRequest->itemsToMakeLostCount, + &pAllocationRequest->sumFreeSize, + &pAllocationRequest->sumItemSize)) + { + pAllocationRequest->item = m_FreeSuballocationsBySize[index]; + return true; + } + } + } + else if(strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET) + { + for(VmaSuballocationList::iterator it = m_Suballocations.begin(); + it != m_Suballocations.end(); + ++it) + { + if(it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation( + currentFrameIndex, + frameInUseCount, + bufferImageGranularity, + allocSize, + allocAlignment, + allocType, + it, + false, // canMakeOtherLost + &pAllocationRequest->offset, + &pAllocationRequest->itemsToMakeLostCount, + &pAllocationRequest->sumFreeSize, + &pAllocationRequest->sumItemSize)) + { + pAllocationRequest->item = it; + return true; + } + } + } + else // WORST_FIT, FIRST_FIT + { + // Search staring from biggest suballocations. + for(size_t index = freeSuballocCount; index--; ) + { + if(CheckAllocation( + currentFrameIndex, + frameInUseCount, + bufferImageGranularity, + allocSize, + allocAlignment, + allocType, + m_FreeSuballocationsBySize[index], + false, // canMakeOtherLost + &pAllocationRequest->offset, + &pAllocationRequest->itemsToMakeLostCount, + &pAllocationRequest->sumFreeSize, + &pAllocationRequest->sumItemSize)) + { + pAllocationRequest->item = m_FreeSuballocationsBySize[index]; + return true; + } + } + } + } + + if(canMakeOtherLost) + { + // Brute-force algorithm. TODO: Come up with something better. + + bool found = false; + VmaAllocationRequest tmpAllocRequest = {}; + tmpAllocRequest.type = VmaAllocationRequestType::Normal; + for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin(); + suballocIt != m_Suballocations.end(); + ++suballocIt) + { + if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE || + suballocIt->hAllocation->CanBecomeLost()) + { + if(CheckAllocation( + currentFrameIndex, + frameInUseCount, + bufferImageGranularity, + allocSize, + allocAlignment, + allocType, + suballocIt, + canMakeOtherLost, + &tmpAllocRequest.offset, + &tmpAllocRequest.itemsToMakeLostCount, + &tmpAllocRequest.sumFreeSize, + &tmpAllocRequest.sumItemSize)) + { + if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) + { + *pAllocationRequest = tmpAllocRequest; + pAllocationRequest->item = suballocIt; + break; + } + if(!found || tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost()) + { + *pAllocationRequest = tmpAllocRequest; + pAllocationRequest->item = suballocIt; + found = true; + } + } + } + } + + return found; + } + + return false; +} + +bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(pAllocationRequest && pAllocationRequest->type == VmaAllocationRequestType::Normal); + + while(pAllocationRequest->itemsToMakeLostCount > 0) + { + if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE) + { + ++pAllocationRequest->item; + } + VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); + VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE); + VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost()); + if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) + { + pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item); + --pAllocationRequest->itemsToMakeLostCount; + } + else + { + return false; + } + } + + VMA_HEAVY_ASSERT(Validate()); + VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); + VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE); + + return true; +} + +uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) +{ + uint32_t lostAllocationCount = 0; + for(VmaSuballocationList::iterator it = m_Suballocations.begin(); + it != m_Suballocations.end(); + ++it) + { + if(it->type != VMA_SUBALLOCATION_TYPE_FREE && + it->hAllocation->CanBecomeLost() && + it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) + { + it = FreeSuballocation(it); + ++lostAllocationCount; + } + } + return lostAllocationCount; +} + +VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData) +{ + for(VmaSuballocationList::iterator it = m_Suballocations.begin(); + it != m_Suballocations.end(); + ++it) + { + if(it->type != VMA_SUBALLOCATION_TYPE_FREE) + { + if(!VmaValidateMagicValue(pBlockData, it->offset - VMA_DEBUG_MARGIN)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + if(!VmaValidateMagicValue(pBlockData, it->offset + it->size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + } + } + + return VK_SUCCESS; +} + +void VmaBlockMetadata_Generic::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation) +{ + VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); + VMA_ASSERT(request.item != m_Suballocations.end()); + VmaSuballocation& suballoc = *request.item; + // Given suballocation is a free block. + VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + // Given offset is inside this suballocation. + VMA_ASSERT(request.offset >= suballoc.offset); + const VkDeviceSize paddingBegin = request.offset - suballoc.offset; + VMA_ASSERT(suballoc.size >= paddingBegin + allocSize); + const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize; + + // Unregister this free suballocation from m_FreeSuballocationsBySize and update + // it to become used. + UnregisterFreeSuballocation(request.item); + + suballoc.offset = request.offset; + suballoc.size = allocSize; + suballoc.type = type; + suballoc.hAllocation = hAllocation; + + // If there are any free bytes remaining at the end, insert new free suballocation after current one. + if(paddingEnd) + { + VmaSuballocation paddingSuballoc = {}; + paddingSuballoc.offset = request.offset + allocSize; + paddingSuballoc.size = paddingEnd; + paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + VmaSuballocationList::iterator next = request.item; + ++next; + const VmaSuballocationList::iterator paddingEndItem = + m_Suballocations.insert(next, paddingSuballoc); + RegisterFreeSuballocation(paddingEndItem); + } + + // If there are any free bytes remaining at the beginning, insert new free suballocation before current one. + if(paddingBegin) + { + VmaSuballocation paddingSuballoc = {}; + paddingSuballoc.offset = request.offset - paddingBegin; + paddingSuballoc.size = paddingBegin; + paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + const VmaSuballocationList::iterator paddingBeginItem = + m_Suballocations.insert(request.item, paddingSuballoc); + RegisterFreeSuballocation(paddingBeginItem); + } + + // Update totals. + m_FreeCount = m_FreeCount - 1; + if(paddingBegin > 0) + { + ++m_FreeCount; + } + if(paddingEnd > 0) + { + ++m_FreeCount; + } + m_SumFreeSize -= allocSize; +} + +void VmaBlockMetadata_Generic::Free(const VmaAllocation allocation) +{ + for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); + suballocItem != m_Suballocations.end(); + ++suballocItem) + { + VmaSuballocation& suballoc = *suballocItem; + if(suballoc.hAllocation == allocation) + { + FreeSuballocation(suballocItem); + VMA_HEAVY_ASSERT(Validate()); + return; + } + } + VMA_ASSERT(0 && "Not found!"); +} + +void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset) +{ + for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); + suballocItem != m_Suballocations.end(); + ++suballocItem) + { + VmaSuballocation& suballoc = *suballocItem; + if(suballoc.offset == offset) + { + FreeSuballocation(suballocItem); + return; + } + } + VMA_ASSERT(0 && "Not found!"); +} + +bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const +{ + VkDeviceSize lastSize = 0; + for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i) + { + const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i]; + + VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_VALIDATE(it->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); + VMA_VALIDATE(it->size >= lastSize); + lastSize = it->size; + } + return true; +} + +bool VmaBlockMetadata_Generic::CheckAllocation( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaSuballocationList::const_iterator suballocItem, + bool canMakeOtherLost, + VkDeviceSize* pOffset, + size_t* itemsToMakeLostCount, + VkDeviceSize* pSumFreeSize, + VkDeviceSize* pSumItemSize) const +{ + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(suballocItem != m_Suballocations.cend()); + VMA_ASSERT(pOffset != VMA_NULL); + + *itemsToMakeLostCount = 0; + *pSumFreeSize = 0; + *pSumItemSize = 0; + + if(canMakeOtherLost) + { + if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) + { + *pSumFreeSize = suballocItem->size; + } + else + { + if(suballocItem->hAllocation->CanBecomeLost() && + suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) + { + ++*itemsToMakeLostCount; + *pSumItemSize = suballocItem->size; + } + else + { + return false; + } + } + + // Remaining size is too small for this request: Early return. + if(GetSize() - suballocItem->offset < allocSize) + { + return false; + } + + // Start from offset equal to beginning of this suballocation. + *pOffset = suballocItem->offset; + + // Apply VMA_DEBUG_MARGIN at the beginning. + if(VMA_DEBUG_MARGIN > 0) + { + *pOffset += VMA_DEBUG_MARGIN; + } + + // Apply alignment. + *pOffset = VmaAlignUp(*pOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if(bufferImageGranularity > 1) + { + bool bufferImageGranularityConflict = false; + VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; + while(prevSuballocItem != m_Suballocations.cbegin()) + { + --prevSuballocItem; + const VmaSuballocation& prevSuballoc = *prevSuballocItem; + if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) + { + if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if(bufferImageGranularityConflict) + { + *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); + } + } + + // Now that we have final *pOffset, check if we are past suballocItem. + // If yes, return false - this function should be called for another suballocItem as starting point. + if(*pOffset >= suballocItem->offset + suballocItem->size) + { + return false; + } + + // Calculate padding at the beginning based on current offset. + const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset; + + // Calculate required margin at the end. + const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; + + const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin; + // Another early return check. + if(suballocItem->offset + totalSize > GetSize()) + { + return false; + } + + // Advance lastSuballocItem until desired size is reached. + // Update itemsToMakeLostCount. + VmaSuballocationList::const_iterator lastSuballocItem = suballocItem; + if(totalSize > suballocItem->size) + { + VkDeviceSize remainingSize = totalSize - suballocItem->size; + while(remainingSize > 0) + { + ++lastSuballocItem; + if(lastSuballocItem == m_Suballocations.cend()) + { + return false; + } + if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) + { + *pSumFreeSize += lastSuballocItem->size; + } + else + { + VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE); + if(lastSuballocItem->hAllocation->CanBecomeLost() && + lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) + { + ++*itemsToMakeLostCount; + *pSumItemSize += lastSuballocItem->size; + } + else + { + return false; + } + } + remainingSize = (lastSuballocItem->size < remainingSize) ? + remainingSize - lastSuballocItem->size : 0; + } + } + + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, we must mark more allocations lost or fail. + if(bufferImageGranularity > 1) + { + VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem; + ++nextSuballocItem; + while(nextSuballocItem != m_Suballocations.cend()) + { + const VmaSuballocation& nextSuballoc = *nextSuballocItem; + if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE); + if(nextSuballoc.hAllocation->CanBecomeLost() && + nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) + { + ++*itemsToMakeLostCount; + } + else + { + return false; + } + } + } + else + { + // Already on next page. + break; + } + ++nextSuballocItem; + } + } + } + else + { + const VmaSuballocation& suballoc = *suballocItem; + VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + *pSumFreeSize = suballoc.size; + + // Size of this suballocation is too small for this request: Early return. + if(suballoc.size < allocSize) + { + return false; + } + + // Start from offset equal to beginning of this suballocation. + *pOffset = suballoc.offset; + + // Apply VMA_DEBUG_MARGIN at the beginning. + if(VMA_DEBUG_MARGIN > 0) + { + *pOffset += VMA_DEBUG_MARGIN; + } + + // Apply alignment. + *pOffset = VmaAlignUp(*pOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if(bufferImageGranularity > 1) + { + bool bufferImageGranularityConflict = false; + VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; + while(prevSuballocItem != m_Suballocations.cbegin()) + { + --prevSuballocItem; + const VmaSuballocation& prevSuballoc = *prevSuballocItem; + if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) + { + if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if(bufferImageGranularityConflict) + { + *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); + } + } + + // Calculate padding at the beginning based on current offset. + const VkDeviceSize paddingBegin = *pOffset - suballoc.offset; + + // Calculate required margin at the end. + const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; + + // Fail if requested size plus margin before and after is bigger than size of this suballocation. + if(paddingBegin + allocSize + requiredEndMargin > suballoc.size) + { + return false; + } + + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if(bufferImageGranularity > 1) + { + VmaSuballocationList::const_iterator nextSuballocItem = suballocItem; + ++nextSuballocItem; + while(nextSuballocItem != m_Suballocations.cend()) + { + const VmaSuballocation& nextSuballoc = *nextSuballocItem; + if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + return false; + } + } + else + { + // Already on next page. + break; + } + ++nextSuballocItem; + } + } + } + + // All tests passed: Success. pOffset is already filled. + return true; +} + +void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item) +{ + VMA_ASSERT(item != m_Suballocations.end()); + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); + + VmaSuballocationList::iterator nextItem = item; + ++nextItem; + VMA_ASSERT(nextItem != m_Suballocations.end()); + VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE); + + item->size += nextItem->size; + --m_FreeCount; + m_Suballocations.erase(nextItem); +} + +VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem) +{ + // Change this suballocation to be marked as free. + VmaSuballocation& suballoc = *suballocItem; + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.hAllocation = VK_NULL_HANDLE; + + // Update totals. + ++m_FreeCount; + m_SumFreeSize += suballoc.size; + + // Merge with previous and/or next suballocation if it's also free. + bool mergeWithNext = false; + bool mergeWithPrev = false; + + VmaSuballocationList::iterator nextItem = suballocItem; + ++nextItem; + if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE)) + { + mergeWithNext = true; + } + + VmaSuballocationList::iterator prevItem = suballocItem; + if(suballocItem != m_Suballocations.begin()) + { + --prevItem; + if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE) + { + mergeWithPrev = true; + } + } + + if(mergeWithNext) + { + UnregisterFreeSuballocation(nextItem); + MergeFreeWithNext(suballocItem); + } + + if(mergeWithPrev) + { + UnregisterFreeSuballocation(prevItem); + MergeFreeWithNext(prevItem); + RegisterFreeSuballocation(prevItem); + return prevItem; + } + else + { + RegisterFreeSuballocation(suballocItem); + return suballocItem; + } +} + +void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item) +{ + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(item->size > 0); + + // You may want to enable this validation at the beginning or at the end of + // this function, depending on what do you want to check. + VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); + + if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) + { + if(m_FreeSuballocationsBySize.empty()) + { + m_FreeSuballocationsBySize.push_back(item); + } + else + { + VmaVectorInsertSorted(m_FreeSuballocationsBySize, item); + } + } + + //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); +} + + +void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item) +{ + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(item->size > 0); + + // You may want to enable this validation at the beginning or at the end of + // this function, depending on what do you want to check. + VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); + + if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) + { + VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( + m_FreeSuballocationsBySize.data(), + m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(), + item, + VmaSuballocationItemSizeLess()); + for(size_t index = it - m_FreeSuballocationsBySize.data(); + index < m_FreeSuballocationsBySize.size(); + ++index) + { + if(m_FreeSuballocationsBySize[index] == item) + { + VmaVectorRemove(m_FreeSuballocationsBySize, index); + return; + } + VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found."); + } + VMA_ASSERT(0 && "Not found."); + } + + //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); +} + +bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible( + VkDeviceSize bufferImageGranularity, + VmaSuballocationType& inOutPrevSuballocType) const +{ + if(bufferImageGranularity == 1 || IsEmpty()) + { + return false; + } + + VkDeviceSize minAlignment = VK_WHOLE_SIZE; + bool typeConflictFound = false; + for(VmaSuballocationList::const_iterator it = m_Suballocations.cbegin(); + it != m_Suballocations.cend(); + ++it) + { + const VmaSuballocationType suballocType = it->type; + if(suballocType != VMA_SUBALLOCATION_TYPE_FREE) + { + minAlignment = VMA_MIN(minAlignment, it->hAllocation->GetAlignment()); + if(VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType)) + { + typeConflictFound = true; + } + inOutPrevSuballocType = suballocType; + } + } + + return typeConflictFound || minAlignment >= bufferImageGranularity; +} + +//////////////////////////////////////////////////////////////////////////////// +// class VmaBlockMetadata_Linear + +VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(VmaAllocator hAllocator) : + VmaBlockMetadata(hAllocator), + m_SumFreeSize(0), + m_Suballocations0(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + m_Suballocations1(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + m_1stVectorIndex(0), + m_2ndVectorMode(SECOND_VECTOR_EMPTY), + m_1stNullItemsBeginCount(0), + m_1stNullItemsMiddleCount(0), + m_2ndNullItemsCount(0) +{ +} + +VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear() +{ +} + +void VmaBlockMetadata_Linear::Init(VkDeviceSize size) +{ + VmaBlockMetadata::Init(size); + m_SumFreeSize = size; +} + +bool VmaBlockMetadata_Linear::Validate() const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY)); + VMA_VALIDATE(!suballocations1st.empty() || + suballocations2nd.empty() || + m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER); + + if(!suballocations1st.empty()) + { + // Null item at the beginning should be accounted into m_1stNullItemsBeginCount. + VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].hAllocation != VK_NULL_HANDLE); + // Null item at the end should be just pop_back(). + VMA_VALIDATE(suballocations1st.back().hAllocation != VK_NULL_HANDLE); + } + if(!suballocations2nd.empty()) + { + // Null item at the end should be just pop_back(). + VMA_VALIDATE(suballocations2nd.back().hAllocation != VK_NULL_HANDLE); + } + + VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size()); + VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size()); + + VkDeviceSize sumUsedSize = 0; + const size_t suballoc1stCount = suballocations1st.size(); + VkDeviceSize offset = VMA_DEBUG_MARGIN; + + if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const size_t suballoc2ndCount = suballocations2nd.size(); + size_t nullItem2ndCount = 0; + for(size_t i = 0; i < suballoc2ndCount; ++i) + { + const VmaSuballocation& suballoc = suballocations2nd[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); + VMA_VALIDATE(suballoc.offset >= offset); + + if(!currFree) + { + VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); + VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); + sumUsedSize += suballoc.size; + } + else + { + ++nullItem2ndCount; + } + + offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; + } + + VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); + } + + for(size_t i = 0; i < m_1stNullItemsBeginCount; ++i) + { + const VmaSuballocation& suballoc = suballocations1st[i]; + VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE && + suballoc.hAllocation == VK_NULL_HANDLE); + } + + size_t nullItem1stCount = m_1stNullItemsBeginCount; + + for(size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) + { + const VmaSuballocation& suballoc = suballocations1st[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); + VMA_VALIDATE(suballoc.offset >= offset); + VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree); + + if(!currFree) + { + VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); + VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); + sumUsedSize += suballoc.size; + } + else + { + ++nullItem1stCount; + } + + offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; + } + VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount); + + if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + const size_t suballoc2ndCount = suballocations2nd.size(); + size_t nullItem2ndCount = 0; + for(size_t i = suballoc2ndCount; i--; ) + { + const VmaSuballocation& suballoc = suballocations2nd[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); + VMA_VALIDATE(suballoc.offset >= offset); + + if(!currFree) + { + VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); + VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); + sumUsedSize += suballoc.size; + } + else + { + ++nullItem2ndCount; + } + + offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; + } + + VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); + } + + VMA_VALIDATE(offset <= GetSize()); + VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize); + + return true; +} + +size_t VmaBlockMetadata_Linear::GetAllocationCount() const +{ + return AccessSuballocations1st().size() - (m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount) + + AccessSuballocations2nd().size() - m_2ndNullItemsCount; +} + +VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const +{ + const VkDeviceSize size = GetSize(); + + /* + We don't consider gaps inside allocation vectors with freed allocations because + they are not suitable for reuse in linear allocator. We consider only space that + is available for new allocations. + */ + if(IsEmpty()) + { + return size; + } + + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + + switch(m_2ndVectorMode) + { + case SECOND_VECTOR_EMPTY: + /* + Available space is after end of 1st, as well as before beginning of 1st (which + whould make it a ring buffer). + */ + { + const size_t suballocations1stCount = suballocations1st.size(); + VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount); + const VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; + const VmaSuballocation& lastSuballoc = suballocations1st[suballocations1stCount - 1]; + return VMA_MAX( + firstSuballoc.offset, + size - (lastSuballoc.offset + lastSuballoc.size)); + } + break; + + case SECOND_VECTOR_RING_BUFFER: + /* + Available space is only between end of 2nd and beginning of 1st. + */ + { + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const VmaSuballocation& lastSuballoc2nd = suballocations2nd.back(); + const VmaSuballocation& firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount]; + return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size); + } + break; + + case SECOND_VECTOR_DOUBLE_STACK: + /* + Available space is only between end of 1st and top of 2nd. + */ + { + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const VmaSuballocation& topSuballoc2nd = suballocations2nd.back(); + const VmaSuballocation& lastSuballoc1st = suballocations1st.back(); + return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size); + } + break; + + default: + VMA_ASSERT(0); + return 0; + } +} + +void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const +{ + const VkDeviceSize size = GetSize(); + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + outInfo.blockCount = 1; + outInfo.allocationCount = (uint32_t)GetAllocationCount(); + outInfo.unusedRangeCount = 0; + outInfo.usedBytes = 0; + outInfo.allocationSizeMin = UINT64_MAX; + outInfo.allocationSizeMax = 0; + outInfo.unusedRangeSizeMin = UINT64_MAX; + outInfo.unusedRangeSizeMax = 0; + + VkDeviceSize lastOffset = 0; + + if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while(lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while(nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if(nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + outInfo.usedBytes += suballoc.size; + outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); + outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + if(lastOffset < freeSpace2ndTo1stEnd) + { + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while(lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while(nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if(nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + outInfo.usedBytes += suballoc.size; + outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); + outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + if(lastOffset < freeSpace1stTo2ndEnd) + { + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while(lastOffset < size) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while(nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if(nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + outInfo.usedBytes += suballoc.size; + outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); + outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + // There is free space from lastOffset to size. + if(lastOffset < size) + { + const VkDeviceSize unusedRangeSize = size - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = size; + } + } + } + + outInfo.unusedBytes = size - outInfo.usedBytes; +} + +void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const VkDeviceSize size = GetSize(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + inoutStats.size += size; + + VkDeviceSize lastOffset = 0; + + if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount; + while(lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while(nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if(nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + if(lastOffset < freeSpace2ndTo1stEnd) + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while(lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while(nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if(nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + if(lastOffset < freeSpace1stTo2ndEnd) + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while(lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while(nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if(nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + if(lastOffset < size) + { + // There is free space from lastOffset to size. + const VkDeviceSize unusedRangeSize = size - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = size; + } + } + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const +{ + const VkDeviceSize size = GetSize(); + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + // FIRST PASS + + size_t unusedRangeCount = 0; + VkDeviceSize usedBytes = 0; + + VkDeviceSize lastOffset = 0; + + size_t alloc2ndCount = 0; + if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while(lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while(nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if(nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc2ndCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + if(lastOffset < freeSpace2ndTo1stEnd) + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + size_t alloc1stCount = 0; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while(lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while(nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if(nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc1stCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + if(lastOffset < size) + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while(lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while(nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if(nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc2ndCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + if(lastOffset < size) + { + // There is free space from lastOffset to size. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = size; + } + } + } + + const VkDeviceSize unusedBytes = size - usedBytes; + PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount); + + // SECOND PASS + lastOffset = 0; + + if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while(lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while(nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if(nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + if(lastOffset < freeSpace2ndTo1stEnd) + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + nextAlloc1stIndex = m_1stNullItemsBeginCount; + while(lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while(nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if(nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + if(lastOffset < freeSpace1stTo2ndEnd) + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while(lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while(nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if(nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if(lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + if(lastOffset < size) + { + // There is free space from lastOffset to size. + const VkDeviceSize unusedRangeSize = size - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = size; + } + } + } + + PrintDetailedMap_End(json); +} +#endif // #if VMA_STATS_STRING_ENABLED + +bool VmaBlockMetadata_Linear::CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(pAllocationRequest != VMA_NULL); + VMA_HEAVY_ASSERT(Validate()); + return upperAddress ? + CreateAllocationRequest_UpperAddress( + currentFrameIndex, frameInUseCount, bufferImageGranularity, + allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest) : + CreateAllocationRequest_LowerAddress( + currentFrameIndex, frameInUseCount, bufferImageGranularity, + allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest); +} + +bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + const VkDeviceSize size = GetSize(); + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer."); + return false; + } + + // Try to allocate before 2nd.back(), or end of block if 2nd.empty(). + if(allocSize > size) + { + return false; + } + VkDeviceSize resultBaseOffset = size - allocSize; + if(!suballocations2nd.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations2nd.back(); + resultBaseOffset = lastSuballoc.offset - allocSize; + if(allocSize > lastSuballoc.offset) + { + return false; + } + } + + // Start from offset equal to end of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + // Apply VMA_DEBUG_MARGIN at the end. + if(VMA_DEBUG_MARGIN > 0) + { + if(resultOffset < VMA_DEBUG_MARGIN) + { + return false; + } + resultOffset -= VMA_DEBUG_MARGIN; + } + + // Apply alignment. + resultOffset = VmaAlignDown(resultOffset, allocAlignment); + + // Check next suballocations from 2nd for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if(bufferImageGranularity > 1 && !suballocations2nd.empty()) + { + bool bufferImageGranularityConflict = false; + for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) + { + const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; + if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if(VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if(bufferImageGranularityConflict) + { + resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity); + } + } + + // There is enough free space. + const VkDeviceSize endOf1st = !suballocations1st.empty() ? + suballocations1st.back().offset + suballocations1st.back().size : + 0; + if(endOf1st + VMA_DEBUG_MARGIN <= resultOffset) + { + // Check previous suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if(bufferImageGranularity > 1) + { + for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; + if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if(VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) + { + return false; + } + } + else + { + // Already on next page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->offset = resultOffset; + pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st; + pAllocationRequest->sumItemSize = 0; + // pAllocationRequest->item unused. + pAllocationRequest->itemsToMakeLostCount = 0; + pAllocationRequest->type = VmaAllocationRequestType::UpperAddress; + return true; + } + + return false; +} + +bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + const VkDeviceSize size = GetSize(); + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + // Try to allocate at the end of 1st vector. + + VkDeviceSize resultBaseOffset = 0; + if(!suballocations1st.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations1st.back(); + resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; + } + + // Start from offset equal to beginning of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + // Apply VMA_DEBUG_MARGIN at the beginning. + if(VMA_DEBUG_MARGIN > 0) + { + resultOffset += VMA_DEBUG_MARGIN; + } + + // Apply alignment. + resultOffset = VmaAlignUp(resultOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if(bufferImageGranularity > 1 && !suballocations1st.empty()) + { + bool bufferImageGranularityConflict = false; + for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; + if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if(bufferImageGranularityConflict) + { + resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); + } + } + + const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? + suballocations2nd.back().offset : size; + + // There is enough free space at the end after alignment. + if(resultOffset + allocSize + VMA_DEBUG_MARGIN <= freeSpaceEnd) + { + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if(bufferImageGranularity > 1 && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) + { + const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; + if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + return false; + } + } + else + { + // Already on previous page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->offset = resultOffset; + pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset; + pAllocationRequest->sumItemSize = 0; + // pAllocationRequest->item, customData unused. + pAllocationRequest->type = VmaAllocationRequestType::EndOf1st; + pAllocationRequest->itemsToMakeLostCount = 0; + return true; + } + } + + // Wrap-around to end of 2nd vector. Try to allocate there, watching for the + // beginning of 1st vector as the end of free space. + if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + VMA_ASSERT(!suballocations1st.empty()); + + VkDeviceSize resultBaseOffset = 0; + if(!suballocations2nd.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations2nd.back(); + resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; + } + + // Start from offset equal to beginning of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + // Apply VMA_DEBUG_MARGIN at the beginning. + if(VMA_DEBUG_MARGIN > 0) + { + resultOffset += VMA_DEBUG_MARGIN; + } + + // Apply alignment. + resultOffset = VmaAlignUp(resultOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if(bufferImageGranularity > 1 && !suballocations2nd.empty()) + { + bool bufferImageGranularityConflict = false; + for(size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex]; + if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if(bufferImageGranularityConflict) + { + resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); + } + } + + pAllocationRequest->itemsToMakeLostCount = 0; + pAllocationRequest->sumItemSize = 0; + size_t index1st = m_1stNullItemsBeginCount; + + if(canMakeOtherLost) + { + while(index1st < suballocations1st.size() && + resultOffset + allocSize + VMA_DEBUG_MARGIN > suballocations1st[index1st].offset) + { + // Next colliding allocation at the beginning of 1st vector found. Try to make it lost. + const VmaSuballocation& suballoc = suballocations1st[index1st]; + if(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE) + { + // No problem. + } + else + { + VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); + if(suballoc.hAllocation->CanBecomeLost() && + suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) + { + ++pAllocationRequest->itemsToMakeLostCount; + pAllocationRequest->sumItemSize += suballoc.size; + } + else + { + return false; + } + } + ++index1st; + } + + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, we must mark more allocations lost or fail. + if(bufferImageGranularity > 1) + { + while(index1st < suballocations1st.size()) + { + const VmaSuballocation& suballoc = suballocations1st[index1st]; + if(VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity)) + { + if(suballoc.hAllocation != VK_NULL_HANDLE) + { + // Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type). + if(suballoc.hAllocation->CanBecomeLost() && + suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) + { + ++pAllocationRequest->itemsToMakeLostCount; + pAllocationRequest->sumItemSize += suballoc.size; + } + else + { + return false; + } + } + } + else + { + // Already on next page. + break; + } + ++index1st; + } + } + + // Special case: There is not enough room at the end for this allocation, even after making all from the 1st lost. + if(index1st == suballocations1st.size() && + resultOffset + allocSize + VMA_DEBUG_MARGIN > size) + { + // TODO: This is a known bug that it's not yet implemented and the allocation is failing. + VMA_DEBUG_LOG("Unsupported special case in custom pool with linear allocation algorithm used as ring buffer with allocations that can be lost."); + } + } + + // There is enough free space at the end after alignment. + if((index1st == suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= size) || + (index1st < suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= suballocations1st[index1st].offset)) + { + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if(bufferImageGranularity > 1) + { + for(size_t nextSuballocIndex = index1st; + nextSuballocIndex < suballocations1st.size(); + nextSuballocIndex++) + { + const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex]; + if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + return false; + } + } + else + { + // Already on next page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->offset = resultOffset; + pAllocationRequest->sumFreeSize = + (index1st < suballocations1st.size() ? suballocations1st[index1st].offset : size) + - resultBaseOffset + - pAllocationRequest->sumItemSize; + pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd; + // pAllocationRequest->item, customData unused. + return true; + } + } + + return false; +} + +bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest* pAllocationRequest) +{ + if(pAllocationRequest->itemsToMakeLostCount == 0) + { + return true; + } + + VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER); + + // We always start from 1st. + SuballocationVectorType* suballocations = &AccessSuballocations1st(); + size_t index = m_1stNullItemsBeginCount; + size_t madeLostCount = 0; + while(madeLostCount < pAllocationRequest->itemsToMakeLostCount) + { + if(index == suballocations->size()) + { + index = 0; + // If we get to the end of 1st, we wrap around to beginning of 2nd of 1st. + if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + suballocations = &AccessSuballocations2nd(); + } + // else: m_2ndVectorMode == SECOND_VECTOR_EMPTY: + // suballocations continues pointing at AccessSuballocations1st(). + VMA_ASSERT(!suballocations->empty()); + } + VmaSuballocation& suballoc = (*suballocations)[index]; + if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + { + VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); + VMA_ASSERT(suballoc.hAllocation->CanBecomeLost()); + if(suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) + { + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.hAllocation = VK_NULL_HANDLE; + m_SumFreeSize += suballoc.size; + if(suballocations == &AccessSuballocations1st()) + { + ++m_1stNullItemsMiddleCount; + } + else + { + ++m_2ndNullItemsCount; + } + ++madeLostCount; + } + else + { + return false; + } + } + ++index; + } + + CleanupAfterFree(); + //VMA_HEAVY_ASSERT(Validate()); // Already called by ClanupAfterFree(). + + return true; +} + +uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) +{ + uint32_t lostAllocationCount = 0; + + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) + { + VmaSuballocation& suballoc = suballocations1st[i]; + if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && + suballoc.hAllocation->CanBecomeLost() && + suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) + { + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.hAllocation = VK_NULL_HANDLE; + ++m_1stNullItemsMiddleCount; + m_SumFreeSize += suballoc.size; + ++lostAllocationCount; + } + } + + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i) + { + VmaSuballocation& suballoc = suballocations2nd[i]; + if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && + suballoc.hAllocation->CanBecomeLost() && + suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) + { + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.hAllocation = VK_NULL_HANDLE; + ++m_2ndNullItemsCount; + m_SumFreeSize += suballoc.size; + ++lostAllocationCount; + } + } + + if(lostAllocationCount) + { + CleanupAfterFree(); + } + + return lostAllocationCount; +} + +VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData) +{ + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) + { + const VmaSuballocation& suballoc = suballocations1st[i]; + if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + { + if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + } + } + + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i) + { + const VmaSuballocation& suballoc = suballocations2nd[i]; + if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + { + if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + } + } + + return VK_SUCCESS; +} + +void VmaBlockMetadata_Linear::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation) +{ + const VmaSuballocation newSuballoc = { request.offset, allocSize, hAllocation, type }; + + switch(request.type) + { + case VmaAllocationRequestType::UpperAddress: + { + VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER && + "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer."); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + suballocations2nd.push_back(newSuballoc); + m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK; + } + break; + case VmaAllocationRequestType::EndOf1st: + { + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + + VMA_ASSERT(suballocations1st.empty() || + request.offset >= suballocations1st.back().offset + suballocations1st.back().size); + // Check if it fits before the end of the block. + VMA_ASSERT(request.offset + allocSize <= GetSize()); + + suballocations1st.push_back(newSuballoc); + } + break; + case VmaAllocationRequestType::EndOf2nd: + { + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector. + VMA_ASSERT(!suballocations1st.empty() && + request.offset + allocSize <= suballocations1st[m_1stNullItemsBeginCount].offset); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + switch(m_2ndVectorMode) + { + case SECOND_VECTOR_EMPTY: + // First allocation from second part ring buffer. + VMA_ASSERT(suballocations2nd.empty()); + m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER; + break; + case SECOND_VECTOR_RING_BUFFER: + // 2-part ring buffer is already started. + VMA_ASSERT(!suballocations2nd.empty()); + break; + case SECOND_VECTOR_DOUBLE_STACK: + VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack."); + break; + default: + VMA_ASSERT(0); + } + + suballocations2nd.push_back(newSuballoc); + } + break; + default: + VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR."); + } + + m_SumFreeSize -= newSuballoc.size; +} + +void VmaBlockMetadata_Linear::Free(const VmaAllocation allocation) +{ + FreeAtOffset(allocation->GetOffset()); +} + +void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset) +{ + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + if(!suballocations1st.empty()) + { + // First allocation: Mark it as next empty at the beginning. + VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; + if(firstSuballoc.offset == offset) + { + firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + firstSuballoc.hAllocation = VK_NULL_HANDLE; + m_SumFreeSize += firstSuballoc.size; + ++m_1stNullItemsBeginCount; + CleanupAfterFree(); + return; + } + } + + // Last allocation in 2-part ring buffer or top of upper stack (same logic). + if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER || + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + VmaSuballocation& lastSuballoc = suballocations2nd.back(); + if(lastSuballoc.offset == offset) + { + m_SumFreeSize += lastSuballoc.size; + suballocations2nd.pop_back(); + CleanupAfterFree(); + return; + } + } + // Last allocation in 1st vector. + else if(m_2ndVectorMode == SECOND_VECTOR_EMPTY) + { + VmaSuballocation& lastSuballoc = suballocations1st.back(); + if(lastSuballoc.offset == offset) + { + m_SumFreeSize += lastSuballoc.size; + suballocations1st.pop_back(); + CleanupAfterFree(); + return; + } + } + + // Item from the middle of 1st vector. + { + VmaSuballocation refSuballoc; + refSuballoc.offset = offset; + // Rest of members stays uninitialized intentionally for better performance. + SuballocationVectorType::iterator it = VmaBinaryFindSorted( + suballocations1st.begin() + m_1stNullItemsBeginCount, + suballocations1st.end(), + refSuballoc, + VmaSuballocationOffsetLess()); + if(it != suballocations1st.end()) + { + it->type = VMA_SUBALLOCATION_TYPE_FREE; + it->hAllocation = VK_NULL_HANDLE; + ++m_1stNullItemsMiddleCount; + m_SumFreeSize += it->size; + CleanupAfterFree(); + return; + } + } + + if(m_2ndVectorMode != SECOND_VECTOR_EMPTY) + { + // Item from the middle of 2nd vector. + VmaSuballocation refSuballoc; + refSuballoc.offset = offset; + // Rest of members stays uninitialized intentionally for better performance. + SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); + if(it != suballocations2nd.end()) + { + it->type = VMA_SUBALLOCATION_TYPE_FREE; + it->hAllocation = VK_NULL_HANDLE; + ++m_2ndNullItemsCount; + m_SumFreeSize += it->size; + CleanupAfterFree(); + return; + } + } + + VMA_ASSERT(0 && "Allocation to free not found in linear allocator!"); +} + +bool VmaBlockMetadata_Linear::ShouldCompact1st() const +{ + const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; + const size_t suballocCount = AccessSuballocations1st().size(); + return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3; +} + +void VmaBlockMetadata_Linear::CleanupAfterFree() +{ + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + if(IsEmpty()) + { + suballocations1st.clear(); + suballocations2nd.clear(); + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + m_2ndNullItemsCount = 0; + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + } + else + { + const size_t suballoc1stCount = suballocations1st.size(); + const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; + VMA_ASSERT(nullItem1stCount <= suballoc1stCount); + + // Find more null items at the beginning of 1st vector. + while(m_1stNullItemsBeginCount < suballoc1stCount && + suballocations1st[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) + { + ++m_1stNullItemsBeginCount; + --m_1stNullItemsMiddleCount; + } + + // Find more null items at the end of 1st vector. + while(m_1stNullItemsMiddleCount > 0 && + suballocations1st.back().hAllocation == VK_NULL_HANDLE) + { + --m_1stNullItemsMiddleCount; + suballocations1st.pop_back(); + } + + // Find more null items at the end of 2nd vector. + while(m_2ndNullItemsCount > 0 && + suballocations2nd.back().hAllocation == VK_NULL_HANDLE) + { + --m_2ndNullItemsCount; + suballocations2nd.pop_back(); + } + + // Find more null items at the beginning of 2nd vector. + while(m_2ndNullItemsCount > 0 && + suballocations2nd[0].hAllocation == VK_NULL_HANDLE) + { + --m_2ndNullItemsCount; + VmaVectorRemove(suballocations2nd, 0); + } + + if(ShouldCompact1st()) + { + const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount; + size_t srcIndex = m_1stNullItemsBeginCount; + for(size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) + { + while(suballocations1st[srcIndex].hAllocation == VK_NULL_HANDLE) + { + ++srcIndex; + } + if(dstIndex != srcIndex) + { + suballocations1st[dstIndex] = suballocations1st[srcIndex]; + } + ++srcIndex; + } + suballocations1st.resize(nonNullItemCount); + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + } + + // 2nd vector became empty. + if(suballocations2nd.empty()) + { + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + } + + // 1st vector became empty. + if(suballocations1st.size() - m_1stNullItemsBeginCount == 0) + { + suballocations1st.clear(); + m_1stNullItemsBeginCount = 0; + + if(!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + // Swap 1st with 2nd. Now 2nd is empty. + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + m_1stNullItemsMiddleCount = m_2ndNullItemsCount; + while(m_1stNullItemsBeginCount < suballocations2nd.size() && + suballocations2nd[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) + { + ++m_1stNullItemsBeginCount; + --m_1stNullItemsMiddleCount; + } + m_2ndNullItemsCount = 0; + m_1stVectorIndex ^= 1; + } + } + } + + VMA_HEAVY_ASSERT(Validate()); +} + + +//////////////////////////////////////////////////////////////////////////////// +// class VmaBlockMetadata_Buddy + +VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(VmaAllocator hAllocator) : + VmaBlockMetadata(hAllocator), + m_Root(VMA_NULL), + m_AllocationCount(0), + m_FreeCount(1), + m_SumFreeSize(0) +{ + memset(m_FreeList, 0, sizeof(m_FreeList)); +} + +VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy() +{ + DeleteNode(m_Root); +} + +void VmaBlockMetadata_Buddy::Init(VkDeviceSize size) +{ + VmaBlockMetadata::Init(size); + + m_UsableSize = VmaPrevPow2(size); + m_SumFreeSize = m_UsableSize; + + // Calculate m_LevelCount. + m_LevelCount = 1; + while(m_LevelCount < MAX_LEVELS && + LevelToNodeSize(m_LevelCount) >= MIN_NODE_SIZE) + { + ++m_LevelCount; + } + + Node* rootNode = vma_new(GetAllocationCallbacks(), Node)(); + rootNode->offset = 0; + rootNode->type = Node::TYPE_FREE; + rootNode->parent = VMA_NULL; + rootNode->buddy = VMA_NULL; + + m_Root = rootNode; + AddToFreeListFront(0, rootNode); +} + +bool VmaBlockMetadata_Buddy::Validate() const +{ + // Validate tree. + ValidationContext ctx; + if(!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0))) + { + VMA_VALIDATE(false && "ValidateNode failed."); + } + VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount); + VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize); + + // Validate free node lists. + for(uint32_t level = 0; level < m_LevelCount; ++level) + { + VMA_VALIDATE(m_FreeList[level].front == VMA_NULL || + m_FreeList[level].front->free.prev == VMA_NULL); + + for(Node* node = m_FreeList[level].front; + node != VMA_NULL; + node = node->free.next) + { + VMA_VALIDATE(node->type == Node::TYPE_FREE); + + if(node->free.next == VMA_NULL) + { + VMA_VALIDATE(m_FreeList[level].back == node); + } + else + { + VMA_VALIDATE(node->free.next->free.prev == node); + } + } + } + + // Validate that free lists ar higher levels are empty. + for(uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level) + { + VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL); + } + + return true; +} + +VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const +{ + for(uint32_t level = 0; level < m_LevelCount; ++level) + { + if(m_FreeList[level].front != VMA_NULL) + { + return LevelToNodeSize(level); + } + } + return 0; +} + +void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const +{ + const VkDeviceSize unusableSize = GetUnusableSize(); + + outInfo.blockCount = 1; + + outInfo.allocationCount = outInfo.unusedRangeCount = 0; + outInfo.usedBytes = outInfo.unusedBytes = 0; + + outInfo.allocationSizeMax = outInfo.unusedRangeSizeMax = 0; + outInfo.allocationSizeMin = outInfo.unusedRangeSizeMin = UINT64_MAX; + outInfo.allocationSizeAvg = outInfo.unusedRangeSizeAvg = 0; // Unused. + + CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0)); + + if(unusableSize > 0) + { + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusableSize; + outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusableSize); + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusableSize); + } +} + +void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const +{ + const VkDeviceSize unusableSize = GetUnusableSize(); + + inoutStats.size += GetSize(); + inoutStats.unusedSize += m_SumFreeSize + unusableSize; + inoutStats.allocationCount += m_AllocationCount; + inoutStats.unusedRangeCount += m_FreeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); + + if(unusableSize > 0) + { + ++inoutStats.unusedRangeCount; + // Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations. + } +} + +#if VMA_STATS_STRING_ENABLED + +void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json) const +{ + // TODO optimize + VmaStatInfo stat; + CalcAllocationStatInfo(stat); + + PrintDetailedMap_Begin( + json, + stat.unusedBytes, + stat.allocationCount, + stat.unusedRangeCount); + + PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0)); + + const VkDeviceSize unusableSize = GetUnusableSize(); + if(unusableSize > 0) + { + PrintDetailedMap_UnusedRange(json, + m_UsableSize, // offset + unusableSize); // size + } + + PrintDetailedMap_End(json); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +bool VmaBlockMetadata_Buddy::CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); + + // Simple way to respect bufferImageGranularity. May be optimized some day. + // Whenever it might be an OPTIMAL image... + if(allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) + { + allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity); + allocSize = VMA_MAX(allocSize, bufferImageGranularity); + } + + if(allocSize > m_UsableSize) + { + return false; + } + + const uint32_t targetLevel = AllocSizeToLevel(allocSize); + for(uint32_t level = targetLevel + 1; level--; ) + { + for(Node* freeNode = m_FreeList[level].front; + freeNode != VMA_NULL; + freeNode = freeNode->free.next) + { + if(freeNode->offset % allocAlignment == 0) + { + pAllocationRequest->type = VmaAllocationRequestType::Normal; + pAllocationRequest->offset = freeNode->offset; + pAllocationRequest->sumFreeSize = LevelToNodeSize(level); + pAllocationRequest->sumItemSize = 0; + pAllocationRequest->itemsToMakeLostCount = 0; + pAllocationRequest->customData = (void*)(uintptr_t)level; + return true; + } + } + } + + return false; +} + +bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest* pAllocationRequest) +{ + /* + Lost allocations are not supported in buddy allocator at the moment. + Support might be added in the future. + */ + return pAllocationRequest->itemsToMakeLostCount == 0; +} + +uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) +{ + /* + Lost allocations are not supported in buddy allocator at the moment. + Support might be added in the future. + */ + return 0; +} + +void VmaBlockMetadata_Buddy::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation) +{ + VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); + + const uint32_t targetLevel = AllocSizeToLevel(allocSize); + uint32_t currLevel = (uint32_t)(uintptr_t)request.customData; + + Node* currNode = m_FreeList[currLevel].front; + VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); + while(currNode->offset != request.offset) + { + currNode = currNode->free.next; + VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); + } + + // Go down, splitting free nodes. + while(currLevel < targetLevel) + { + // currNode is already first free node at currLevel. + // Remove it from list of free nodes at this currLevel. + RemoveFromFreeList(currLevel, currNode); + + const uint32_t childrenLevel = currLevel + 1; + + // Create two free sub-nodes. + Node* leftChild = vma_new(GetAllocationCallbacks(), Node)(); + Node* rightChild = vma_new(GetAllocationCallbacks(), Node)(); + + leftChild->offset = currNode->offset; + leftChild->type = Node::TYPE_FREE; + leftChild->parent = currNode; + leftChild->buddy = rightChild; + + rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel); + rightChild->type = Node::TYPE_FREE; + rightChild->parent = currNode; + rightChild->buddy = leftChild; + + // Convert current currNode to split type. + currNode->type = Node::TYPE_SPLIT; + currNode->split.leftChild = leftChild; + + // Add child nodes to free list. Order is important! + AddToFreeListFront(childrenLevel, rightChild); + AddToFreeListFront(childrenLevel, leftChild); + + ++m_FreeCount; + //m_SumFreeSize -= LevelToNodeSize(currLevel) % 2; // Useful only when level node sizes can be non power of 2. + ++currLevel; + currNode = m_FreeList[currLevel].front; + + /* + We can be sure that currNode, as left child of node previously split, + also fullfills the alignment requirement. + */ + } + + // Remove from free list. + VMA_ASSERT(currLevel == targetLevel && + currNode != VMA_NULL && + currNode->type == Node::TYPE_FREE); + RemoveFromFreeList(currLevel, currNode); + + // Convert to allocation node. + currNode->type = Node::TYPE_ALLOCATION; + currNode->allocation.alloc = hAllocation; + + ++m_AllocationCount; + --m_FreeCount; + m_SumFreeSize -= allocSize; +} + +void VmaBlockMetadata_Buddy::DeleteNode(Node* node) +{ + if(node->type == Node::TYPE_SPLIT) + { + DeleteNode(node->split.leftChild->buddy); + DeleteNode(node->split.leftChild); + } + + vma_delete(GetAllocationCallbacks(), node); +} + +bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const +{ + VMA_VALIDATE(level < m_LevelCount); + VMA_VALIDATE(curr->parent == parent); + VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL)); + VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr); + switch(curr->type) + { + case Node::TYPE_FREE: + // curr->free.prev, next are validated separately. + ctx.calculatedSumFreeSize += levelNodeSize; + ++ctx.calculatedFreeCount; + break; + case Node::TYPE_ALLOCATION: + ++ctx.calculatedAllocationCount; + ctx.calculatedSumFreeSize += levelNodeSize - curr->allocation.alloc->GetSize(); + VMA_VALIDATE(curr->allocation.alloc != VK_NULL_HANDLE); + break; + case Node::TYPE_SPLIT: + { + const uint32_t childrenLevel = level + 1; + const VkDeviceSize childrenLevelNodeSize = levelNodeSize / 2; + const Node* const leftChild = curr->split.leftChild; + VMA_VALIDATE(leftChild != VMA_NULL); + VMA_VALIDATE(leftChild->offset == curr->offset); + if(!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize)) + { + VMA_VALIDATE(false && "ValidateNode for left child failed."); + } + const Node* const rightChild = leftChild->buddy; + VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize); + if(!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize)) + { + VMA_VALIDATE(false && "ValidateNode for right child failed."); + } + } + break; + default: + return false; + } + + return true; +} + +uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const +{ + // I know this could be optimized somehow e.g. by using std::log2p1 from C++20. + uint32_t level = 0; + VkDeviceSize currLevelNodeSize = m_UsableSize; + VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1; + while(allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount) + { + ++level; + currLevelNodeSize = nextLevelNodeSize; + nextLevelNodeSize = currLevelNodeSize >> 1; + } + return level; +} + +void VmaBlockMetadata_Buddy::FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset) +{ + // Find node and level. + Node* node = m_Root; + VkDeviceSize nodeOffset = 0; + uint32_t level = 0; + VkDeviceSize levelNodeSize = LevelToNodeSize(0); + while(node->type == Node::TYPE_SPLIT) + { + const VkDeviceSize nextLevelSize = levelNodeSize >> 1; + if(offset < nodeOffset + nextLevelSize) + { + node = node->split.leftChild; + } + else + { + node = node->split.leftChild->buddy; + nodeOffset += nextLevelSize; + } + ++level; + levelNodeSize = nextLevelSize; + } + + VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION); + VMA_ASSERT(alloc == VK_NULL_HANDLE || node->allocation.alloc == alloc); + + ++m_FreeCount; + --m_AllocationCount; + m_SumFreeSize += alloc->GetSize(); + + node->type = Node::TYPE_FREE; + + // Join free nodes if possible. + while(level > 0 && node->buddy->type == Node::TYPE_FREE) + { + RemoveFromFreeList(level, node->buddy); + Node* const parent = node->parent; + + vma_delete(GetAllocationCallbacks(), node->buddy); + vma_delete(GetAllocationCallbacks(), node); + parent->type = Node::TYPE_FREE; + + node = parent; + --level; + //m_SumFreeSize += LevelToNodeSize(level) % 2; // Useful only when level node sizes can be non power of 2. + --m_FreeCount; + } + + AddToFreeListFront(level, node); +} + +void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const +{ + switch(node->type) + { + case Node::TYPE_FREE: + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += levelNodeSize; + outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, levelNodeSize); + outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, levelNodeSize); + break; + case Node::TYPE_ALLOCATION: + { + const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); + ++outInfo.allocationCount; + outInfo.usedBytes += allocSize; + outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, allocSize); + outInfo.allocationSizeMin = VMA_MAX(outInfo.allocationSizeMin, allocSize); + + const VkDeviceSize unusedRangeSize = levelNodeSize - allocSize; + if(unusedRangeSize > 0) + { + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusedRangeSize); + outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, unusedRangeSize); + } + } + break; + case Node::TYPE_SPLIT: + { + const VkDeviceSize childrenNodeSize = levelNodeSize / 2; + const Node* const leftChild = node->split.leftChild; + CalcAllocationStatInfoNode(outInfo, leftChild, childrenNodeSize); + const Node* const rightChild = leftChild->buddy; + CalcAllocationStatInfoNode(outInfo, rightChild, childrenNodeSize); + } + break; + default: + VMA_ASSERT(0); + } +} + +void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node) +{ + VMA_ASSERT(node->type == Node::TYPE_FREE); + + // List is empty. + Node* const frontNode = m_FreeList[level].front; + if(frontNode == VMA_NULL) + { + VMA_ASSERT(m_FreeList[level].back == VMA_NULL); + node->free.prev = node->free.next = VMA_NULL; + m_FreeList[level].front = m_FreeList[level].back = node; + } + else + { + VMA_ASSERT(frontNode->free.prev == VMA_NULL); + node->free.prev = VMA_NULL; + node->free.next = frontNode; + frontNode->free.prev = node; + m_FreeList[level].front = node; + } +} + +void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node) +{ + VMA_ASSERT(m_FreeList[level].front != VMA_NULL); + + // It is at the front. + if(node->free.prev == VMA_NULL) + { + VMA_ASSERT(m_FreeList[level].front == node); + m_FreeList[level].front = node->free.next; + } + else + { + Node* const prevFreeNode = node->free.prev; + VMA_ASSERT(prevFreeNode->free.next == node); + prevFreeNode->free.next = node->free.next; + } + + // It is at the back. + if(node->free.next == VMA_NULL) + { + VMA_ASSERT(m_FreeList[level].back == node); + m_FreeList[level].back = node->free.prev; + } + else + { + Node* const nextFreeNode = node->free.next; + VMA_ASSERT(nextFreeNode->free.prev == node); + nextFreeNode->free.prev = node->free.prev; + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const +{ + switch(node->type) + { + case Node::TYPE_FREE: + PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize); + break; + case Node::TYPE_ALLOCATION: + { + PrintDetailedMap_Allocation(json, node->offset, node->allocation.alloc); + const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); + if(allocSize < levelNodeSize) + { + PrintDetailedMap_UnusedRange(json, node->offset + allocSize, levelNodeSize - allocSize); + } + } + break; + case Node::TYPE_SPLIT: + { + const VkDeviceSize childrenNodeSize = levelNodeSize / 2; + const Node* const leftChild = node->split.leftChild; + PrintDetailedMapNode(json, leftChild, childrenNodeSize); + const Node* const rightChild = leftChild->buddy; + PrintDetailedMapNode(json, rightChild, childrenNodeSize); + } + break; + default: + VMA_ASSERT(0); + } +} +#endif // #if VMA_STATS_STRING_ENABLED + + +//////////////////////////////////////////////////////////////////////////////// +// class VmaDeviceMemoryBlock + +VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) : + m_pMetadata(VMA_NULL), + m_MemoryTypeIndex(UINT32_MAX), + m_Id(0), + m_hMemory(VK_NULL_HANDLE), + m_MapCount(0), + m_pMappedData(VMA_NULL) +{ +} + +void VmaDeviceMemoryBlock::Init( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t newMemoryTypeIndex, + VkDeviceMemory newMemory, + VkDeviceSize newSize, + uint32_t id, + uint32_t algorithm) +{ + VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); + + m_hParentPool = hParentPool; + m_MemoryTypeIndex = newMemoryTypeIndex; + m_Id = id; + m_hMemory = newMemory; + + switch(algorithm) + { + case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator); + break; + case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator); + break; + default: + VMA_ASSERT(0); + // Fall-through. + case 0: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator); + } + m_pMetadata->Init(newSize); +} + +void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) +{ + // This is the most important assert in the entire library. + // Hitting it means you have some memory leak - unreleased VmaAllocation objects. + VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!"); + + VMA_ASSERT(m_hMemory != VK_NULL_HANDLE); + allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory); + m_hMemory = VK_NULL_HANDLE; + + vma_delete(allocator, m_pMetadata); + m_pMetadata = VMA_NULL; +} + +bool VmaDeviceMemoryBlock::Validate() const +{ + VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) && + (m_pMetadata->GetSize() != 0)); + + return m_pMetadata->Validate(); +} + +VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) +{ + void* pData = nullptr; + VkResult res = Map(hAllocator, 1, &pData); + if(res != VK_SUCCESS) + { + return res; + } + + res = m_pMetadata->CheckCorruption(pData); + + Unmap(hAllocator, 1); + + return res; +} + +VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData) +{ + if(count == 0) + { + return VK_SUCCESS; + } + + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + if(m_MapCount != 0) + { + m_MapCount += count; + VMA_ASSERT(m_pMappedData != VMA_NULL); + if(ppData != VMA_NULL) + { + *ppData = m_pMappedData; + } + return VK_SUCCESS; + } + else + { + VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( + hAllocator->m_hDevice, + m_hMemory, + 0, // offset + VK_WHOLE_SIZE, + 0, // flags + &m_pMappedData); + if(result == VK_SUCCESS) + { + if(ppData != VMA_NULL) + { + *ppData = m_pMappedData; + } + m_MapCount = count; + } + return result; + } +} + +void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) +{ + if(count == 0) + { + return; + } + + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + if(m_MapCount >= count) + { + m_MapCount -= count; + if(m_MapCount == 0) + { + m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); + } + } + else + { + VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped."); + } +} + +VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) +{ + VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); + VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); + + void* pData; + VkResult res = Map(hAllocator, 1, &pData); + if(res != VK_SUCCESS) + { + return res; + } + + VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN); + VmaWriteMagicValue(pData, allocOffset + allocSize); + + Unmap(hAllocator, 1); + + return VK_SUCCESS; +} + +VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) +{ + VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); + VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); + + void* pData; + VkResult res = Map(hAllocator, 1, &pData); + if(res != VK_SUCCESS) + { + return res; + } + + if(!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!"); + } + else if(!VmaValidateMagicValue(pData, allocOffset + allocSize)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!"); + } + + Unmap(hAllocator, 1); + + return VK_SUCCESS; +} + +VkResult VmaDeviceMemoryBlock::BindBufferMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext) +{ + VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && + hAllocation->GetBlock() == this); + VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && + "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); + const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; + // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext); +} + +VkResult VmaDeviceMemoryBlock::BindImageMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext) +{ + VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && + hAllocation->GetBlock() == this); + VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && + "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); + const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; + // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext); +} + +static void InitStatInfo(VmaStatInfo& outInfo) +{ + memset(&outInfo, 0, sizeof(outInfo)); + outInfo.allocationSizeMin = UINT64_MAX; + outInfo.unusedRangeSizeMin = UINT64_MAX; +} + +// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo. +static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo) +{ + inoutInfo.blockCount += srcInfo.blockCount; + inoutInfo.allocationCount += srcInfo.allocationCount; + inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount; + inoutInfo.usedBytes += srcInfo.usedBytes; + inoutInfo.unusedBytes += srcInfo.unusedBytes; + inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin); + inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax); + inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin); + inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax); +} + +static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo) +{ + inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ? + VmaRoundDiv(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0; + inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ? + VmaRoundDiv(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0; +} + +VmaPool_T::VmaPool_T( + VmaAllocator hAllocator, + const VmaPoolCreateInfo& createInfo, + VkDeviceSize preferredBlockSize) : + m_BlockVector( + hAllocator, + this, // hParentPool + createInfo.memoryTypeIndex, + createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, + createInfo.minBlockCount, + createInfo.maxBlockCount, + (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), + createInfo.frameInUseCount, + createInfo.blockSize != 0, // explicitBlockSize + createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK), // algorithm + m_Id(0), + m_Name(VMA_NULL) +{ +} + +VmaPool_T::~VmaPool_T() +{ +} + +void VmaPool_T::SetName(const char* pName) +{ + const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); + VmaFreeString(allocs, m_Name); + + if(pName != VMA_NULL) + { + m_Name = VmaCreateStringCopy(allocs, pName); + } + else + { + m_Name = VMA_NULL; + } +} + +#if VMA_STATS_STRING_ENABLED + +#endif // #if VMA_STATS_STRING_ENABLED + +VmaBlockVector::VmaBlockVector( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceSize preferredBlockSize, + size_t minBlockCount, + size_t maxBlockCount, + VkDeviceSize bufferImageGranularity, + uint32_t frameInUseCount, + bool explicitBlockSize, + uint32_t algorithm) : + m_hAllocator(hAllocator), + m_hParentPool(hParentPool), + m_MemoryTypeIndex(memoryTypeIndex), + m_PreferredBlockSize(preferredBlockSize), + m_MinBlockCount(minBlockCount), + m_MaxBlockCount(maxBlockCount), + m_BufferImageGranularity(bufferImageGranularity), + m_FrameInUseCount(frameInUseCount), + m_ExplicitBlockSize(explicitBlockSize), + m_Algorithm(algorithm), + m_HasEmptyBlock(false), + m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + m_NextBlockId(0) +{ +} + +VmaBlockVector::~VmaBlockVector() +{ + for(size_t i = m_Blocks.size(); i--; ) + { + m_Blocks[i]->Destroy(m_hAllocator); + vma_delete(m_hAllocator, m_Blocks[i]); + } +} + +VkResult VmaBlockVector::CreateMinBlocks() +{ + for(size_t i = 0; i < m_MinBlockCount; ++i) + { + VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL); + if(res != VK_SUCCESS) + { + return res; + } + } + return VK_SUCCESS; +} + +void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats) +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + const size_t blockCount = m_Blocks.size(); + + pStats->size = 0; + pStats->unusedSize = 0; + pStats->allocationCount = 0; + pStats->unusedRangeCount = 0; + pStats->unusedRangeSizeMax = 0; + pStats->blockCount = blockCount; + + for(uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + { + const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VMA_HEAVY_ASSERT(pBlock->Validate()); + pBlock->m_pMetadata->AddPoolStats(*pStats); + } +} + +bool VmaBlockVector::IsEmpty() +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + return m_Blocks.empty(); +} + +bool VmaBlockVector::IsCorruptionDetectionEnabled() const +{ + const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + return (VMA_DEBUG_DETECT_CORRUPTION != 0) && + (VMA_DEBUG_MARGIN > 0) && + (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) && + (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags; +} + +static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32; + +VkResult VmaBlockVector::Allocate( + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + size_t allocIndex; + VkResult res = VK_SUCCESS; + + if(IsCorruptionDetectionEnabled()) + { + size = VmaAlignUp(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); + alignment = VmaAlignUp(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); + } + + { + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + res = AllocatePage( + currentFrameIndex, + size, + alignment, + createInfo, + suballocType, + pAllocations + allocIndex); + if(res != VK_SUCCESS) + { + break; + } + } + } + + if(res != VK_SUCCESS) + { + // Free all already created allocations. + while(allocIndex--) + { + Free(pAllocations[allocIndex]); + } + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + } + + return res; +} + +VkResult VmaBlockVector::AllocatePage( + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation) +{ + const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; + bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0; + const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; + const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; + + const bool withinBudget = (createInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0; + VkDeviceSize freeMemory; + { + const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); + VmaBudget heapBudget = {}; + m_hAllocator->GetBudget(&heapBudget, heapIndex, 1); + freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0; + } + + const bool canFallbackToDedicated = !IsCustomPool(); + const bool canCreateNewBlock = + ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) && + (m_Blocks.size() < m_MaxBlockCount) && + (freeMemory >= size || !canFallbackToDedicated); + uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK; + + // If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer. + // Which in turn is available only when maxBlockCount = 1. + if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1) + { + canMakeOtherLost = false; + } + + // Upper address can only be used with linear allocator and within single memory block. + if(isUpperAddress && + (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) + { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + // Validate strategy. + switch(strategy) + { + case 0: + strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT; + break; + case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT: + case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT: + case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT: + break; + default: + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + // Early reject: requested allocation size is larger that maximum block size for this block vector. + if(size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + + /* + Under certain condition, this whole section can be skipped for optimization, so + we move on directly to trying to allocate with canMakeOtherLost. That's the case + e.g. for custom pools with linear algorithm. + */ + if(!canMakeOtherLost || canCreateNewBlock) + { + // 1. Search existing allocations. Try to allocate without making other allocations lost. + VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags; + allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; + + if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) + { + // Use only last block. + if(!m_Blocks.empty()) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back(); + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, + currentFrameIndex, + size, + alignment, + allocFlagsCopy, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if(res == VK_SUCCESS) + { + VMA_DEBUG_LOG(" Returned from last block #%u", pCurrBlock->GetId()); + return VK_SUCCESS; + } + } + } + else + { + if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) + { + // Forward order in m_Blocks - prefer blocks with smallest amount of free space. + for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex ) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, + currentFrameIndex, + size, + alignment, + allocFlagsCopy, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if(res == VK_SUCCESS) + { + VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); + return VK_SUCCESS; + } + } + } + else // WORST_FIT, FIRST_FIT + { + // Backward order in m_Blocks - prefer blocks with largest amount of free space. + for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, + currentFrameIndex, + size, + alignment, + allocFlagsCopy, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if(res == VK_SUCCESS) + { + VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); + return VK_SUCCESS; + } + } + } + } + + // 2. Try to create new block. + if(canCreateNewBlock) + { + // Calculate optimal size for new block. + VkDeviceSize newBlockSize = m_PreferredBlockSize; + uint32_t newBlockSizeShift = 0; + const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3; + + if(!m_ExplicitBlockSize) + { + // Allocate 1/8, 1/4, 1/2 as first blocks. + const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize(); + for(uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) + { + const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; + if(smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) + { + newBlockSize = smallerNewBlockSize; + ++newBlockSizeShift; + } + else + { + break; + } + } + } + + size_t newBlockIndex = 0; + VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? + CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; + // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize. + if(!m_ExplicitBlockSize) + { + while(res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) + { + const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; + if(smallerNewBlockSize >= size) + { + newBlockSize = smallerNewBlockSize; + ++newBlockSizeShift; + res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? + CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + else + { + break; + } + } + } + + if(res == VK_SUCCESS) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex]; + VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size); + + res = AllocateFromBlock( + pBlock, + currentFrameIndex, + size, + alignment, + allocFlagsCopy, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if(res == VK_SUCCESS) + { + VMA_DEBUG_LOG(" Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize); + return VK_SUCCESS; + } + else + { + // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment. + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + } + } + + // 3. Try to allocate from existing blocks with making other allocations lost. + if(canMakeOtherLost) + { + uint32_t tryIndex = 0; + for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex) + { + VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL; + VmaAllocationRequest bestRequest = {}; + VkDeviceSize bestRequestCost = VK_WHOLE_SIZE; + + // 1. Search existing allocations. + if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) + { + // Forward order in m_Blocks - prefer blocks with smallest amount of free space. + for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex ) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VmaAllocationRequest currRequest = {}; + if(pCurrBlock->m_pMetadata->CreateAllocationRequest( + currentFrameIndex, + m_FrameInUseCount, + m_BufferImageGranularity, + size, + alignment, + (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, + suballocType, + canMakeOtherLost, + strategy, + &currRequest)) + { + const VkDeviceSize currRequestCost = currRequest.CalcCost(); + if(pBestRequestBlock == VMA_NULL || + currRequestCost < bestRequestCost) + { + pBestRequestBlock = pCurrBlock; + bestRequest = currRequest; + bestRequestCost = currRequestCost; + + if(bestRequestCost == 0) + { + break; + } + } + } + } + } + else // WORST_FIT, FIRST_FIT + { + // Backward order in m_Blocks - prefer blocks with largest amount of free space. + for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VmaAllocationRequest currRequest = {}; + if(pCurrBlock->m_pMetadata->CreateAllocationRequest( + currentFrameIndex, + m_FrameInUseCount, + m_BufferImageGranularity, + size, + alignment, + (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, + suballocType, + canMakeOtherLost, + strategy, + &currRequest)) + { + const VkDeviceSize currRequestCost = currRequest.CalcCost(); + if(pBestRequestBlock == VMA_NULL || + currRequestCost < bestRequestCost || + strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) + { + pBestRequestBlock = pCurrBlock; + bestRequest = currRequest; + bestRequestCost = currRequestCost; + + if(bestRequestCost == 0 || + strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) + { + break; + } + } + } + } + } + + if(pBestRequestBlock != VMA_NULL) + { + if(mapped) + { + VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL); + if(res != VK_SUCCESS) + { + return res; + } + } + + if(pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost( + currentFrameIndex, + m_FrameInUseCount, + &bestRequest)) + { + // Allocate from this pBlock. + *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(); + (*pAllocation)->Ctor(currentFrameIndex, isUserDataString); + pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, size, *pAllocation); + UpdateHasEmptyBlock(); + (*pAllocation)->InitBlockAllocation( + pBestRequestBlock, + bestRequest.offset, + alignment, + size, + m_MemoryTypeIndex, + suballocType, + mapped, + (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); + VMA_HEAVY_ASSERT(pBestRequestBlock->Validate()); + VMA_DEBUG_LOG(" Returned from existing block"); + (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData); + m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size); + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } + if(IsCorruptionDetectionEnabled()) + { + VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, size); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); + } + return VK_SUCCESS; + } + // else: Some allocations must have been touched while we are here. Next try. + } + else + { + // Could not find place in any of the blocks - break outer loop. + break; + } + } + /* Maximum number of tries exceeded - a very unlike event when many other + threads are simultaneously touching allocations making it impossible to make + lost at the same time as we try to allocate. */ + if(tryIndex == VMA_ALLOCATION_TRY_COUNT) + { + return VK_ERROR_TOO_MANY_OBJECTS; + } + } + + return VK_ERROR_OUT_OF_DEVICE_MEMORY; +} + +void VmaBlockVector::Free( + const VmaAllocation hAllocation) +{ + VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL; + + bool budgetExceeded = false; + { + const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); + VmaBudget heapBudget = {}; + m_hAllocator->GetBudget(&heapBudget, heapIndex, 1); + budgetExceeded = heapBudget.usage >= heapBudget.budget; + } + + // Scope for lock. + { + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + + VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); + + if(IsCorruptionDetectionEnabled()) + { + VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize()); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value."); + } + + if(hAllocation->IsPersistentMap()) + { + pBlock->Unmap(m_hAllocator, 1); + } + + pBlock->m_pMetadata->Free(hAllocation); + VMA_HEAVY_ASSERT(pBlock->Validate()); + + VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex); + + const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount; + // pBlock became empty after this deallocation. + if(pBlock->m_pMetadata->IsEmpty()) + { + // Already has empty block. We don't want to have two, so delete this one. + if((m_HasEmptyBlock || budgetExceeded) && canDeleteBlock) + { + pBlockToDelete = pBlock; + Remove(pBlock); + } + // else: We now have an empty block - leave it. + } + // pBlock didn't become empty, but we have another empty block - find and free that one. + // (This is optional, heuristics.) + else if(m_HasEmptyBlock && canDeleteBlock) + { + VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back(); + if(pLastBlock->m_pMetadata->IsEmpty()) + { + pBlockToDelete = pLastBlock; + m_Blocks.pop_back(); + } + } + + UpdateHasEmptyBlock(); + IncrementallySortBlocks(); + } + + // Destruction of a free block. Deferred until this point, outside of mutex + // lock, for performance reason. + if(pBlockToDelete != VMA_NULL) + { + VMA_DEBUG_LOG(" Deleted empty block"); + pBlockToDelete->Destroy(m_hAllocator); + vma_delete(m_hAllocator, pBlockToDelete); + } +} + +VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const +{ + VkDeviceSize result = 0; + for(size_t i = m_Blocks.size(); i--; ) + { + result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize()); + if(result >= m_PreferredBlockSize) + { + break; + } + } + return result; +} + +void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock) +{ + for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + if(m_Blocks[blockIndex] == pBlock) + { + VmaVectorRemove(m_Blocks, blockIndex); + return; + } + } + VMA_ASSERT(0); +} + +void VmaBlockVector::IncrementallySortBlocks() +{ + if(m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) + { + // Bubble sort only until first swap. + for(size_t i = 1; i < m_Blocks.size(); ++i) + { + if(m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) + { + VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]); + return; + } + } + } +} + +VkResult VmaBlockVector::AllocateFromBlock( + VmaDeviceMemoryBlock* pBlock, + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + uint32_t strategy, + VmaAllocation* pAllocation) +{ + VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0); + const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; + const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; + const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; + + VmaAllocationRequest currRequest = {}; + if(pBlock->m_pMetadata->CreateAllocationRequest( + currentFrameIndex, + m_FrameInUseCount, + m_BufferImageGranularity, + size, + alignment, + isUpperAddress, + suballocType, + false, // canMakeOtherLost + strategy, + &currRequest)) + { + // Allocate from pCurrBlock. + VMA_ASSERT(currRequest.itemsToMakeLostCount == 0); + + if(mapped) + { + VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL); + if(res != VK_SUCCESS) + { + return res; + } + } + + *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(); + (*pAllocation)->Ctor(currentFrameIndex, isUserDataString); + pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, *pAllocation); + UpdateHasEmptyBlock(); + (*pAllocation)->InitBlockAllocation( + pBlock, + currRequest.offset, + alignment, + size, + m_MemoryTypeIndex, + suballocType, + mapped, + (allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); + VMA_HEAVY_ASSERT(pBlock->Validate()); + (*pAllocation)->SetUserData(m_hAllocator, pUserData); + m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size); + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } + if(IsCorruptionDetectionEnabled()) + { + VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); + } + return VK_SUCCESS; + } + return VK_ERROR_OUT_OF_DEVICE_MEMORY; +} + +VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex) +{ + VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; + allocInfo.memoryTypeIndex = m_MemoryTypeIndex; + allocInfo.allocationSize = blockSize; + VkDeviceMemory mem = VK_NULL_HANDLE; + VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem); + if(res < 0) + { + return res; + } + + // New VkDeviceMemory successfully created. + + // Create new Allocation for it. + VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator); + pBlock->Init( + m_hAllocator, + m_hParentPool, + m_MemoryTypeIndex, + mem, + allocInfo.allocationSize, + m_NextBlockId++, + m_Algorithm); + + m_Blocks.push_back(pBlock); + if(pNewBlockIndex != VMA_NULL) + { + *pNewBlockIndex = m_Blocks.size() - 1; + } + + return VK_SUCCESS; +} + +void VmaBlockVector::ApplyDefragmentationMovesCpu( + class VmaBlockVectorDefragmentationContext* pDefragCtx, + const VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves) +{ + const size_t blockCount = m_Blocks.size(); + const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex); + + enum BLOCK_FLAG + { + BLOCK_FLAG_USED = 0x00000001, + BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002, + }; + + struct BlockInfo + { + uint32_t flags; + void* pMappedData; + }; + VmaVector< BlockInfo, VmaStlAllocator > + blockInfo(blockCount, BlockInfo(), VmaStlAllocator(m_hAllocator->GetAllocationCallbacks())); + memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo)); + + // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. + const size_t moveCount = moves.size(); + for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) + { + const VmaDefragmentationMove& move = moves[moveIndex]; + blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED; + blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED; + } + + VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); + + // Go over all blocks. Get mapped pointer or map if necessary. + for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) + { + BlockInfo& currBlockInfo = blockInfo[blockIndex]; + VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; + if((currBlockInfo.flags & BLOCK_FLAG_USED) != 0) + { + currBlockInfo.pMappedData = pBlock->GetMappedData(); + // It is not originally mapped - map it. + if(currBlockInfo.pMappedData == VMA_NULL) + { + pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData); + if(pDefragCtx->res == VK_SUCCESS) + { + currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION; + } + } + } + } + + // Go over all moves. Do actual data transfer. + if(pDefragCtx->res == VK_SUCCESS) + { + const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; + VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE }; + + for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) + { + const VmaDefragmentationMove& move = moves[moveIndex]; + + const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex]; + const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex]; + + VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData); + + // Invalidate source. + if(isNonCoherent) + { + VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex]; + memRange.memory = pSrcBlock->GetDeviceMemory(); + memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize); + memRange.size = VMA_MIN( + VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize), + pSrcBlock->m_pMetadata->GetSize() - memRange.offset); + (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); + } + + // THE PLACE WHERE ACTUAL DATA COPY HAPPENS. + memmove( + reinterpret_cast(dstBlockInfo.pMappedData) + move.dstOffset, + reinterpret_cast(srcBlockInfo.pMappedData) + move.srcOffset, + static_cast(move.size)); + + if(IsCorruptionDetectionEnabled()) + { + VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN); + VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size); + } + + // Flush destination. + if(isNonCoherent) + { + VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex]; + memRange.memory = pDstBlock->GetDeviceMemory(); + memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize); + memRange.size = VMA_MIN( + VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize), + pDstBlock->m_pMetadata->GetSize() - memRange.offset); + (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); + } + } + } + + // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation. + // Regardless of pCtx->res == VK_SUCCESS. + for(size_t blockIndex = blockCount; blockIndex--; ) + { + const BlockInfo& currBlockInfo = blockInfo[blockIndex]; + if((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0) + { + VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; + pBlock->Unmap(m_hAllocator, 1); + } + } +} + +void VmaBlockVector::ApplyDefragmentationMovesGpu( + class VmaBlockVectorDefragmentationContext* pDefragCtx, + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkCommandBuffer commandBuffer) +{ + const size_t blockCount = m_Blocks.size(); + + pDefragCtx->blockContexts.resize(blockCount); + memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext)); + + // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. + const size_t moveCount = moves.size(); + for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) + { + const VmaDefragmentationMove& move = moves[moveIndex]; + + //if(move.type == VMA_ALLOCATION_TYPE_UNKNOWN) + { + // Old school move still require us to map the whole block + pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; + pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; + } + } + + VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); + + // Go over all blocks. Create and bind buffer for whole block if necessary. + { + VkBufferCreateInfo bufCreateInfo; + VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo); + + for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) + { + VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex]; + VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; + if((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0) + { + bufCreateInfo.size = pBlock->m_pMetadata->GetSize(); + pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)( + m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer); + if(pDefragCtx->res == VK_SUCCESS) + { + pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)( + m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0); + } + } + } + } + + // Go over all moves. Post data transfer commands to command buffer. + if(pDefragCtx->res == VK_SUCCESS) + { + for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) + { + const VmaDefragmentationMove& move = moves[moveIndex]; + + const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex]; + const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex]; + + VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer); + + VkBufferCopy region = { + move.srcOffset, + move.dstOffset, + move.size }; + (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)( + commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, ®ion); + } + } + + // Save buffers to defrag context for later destruction. + if(pDefragCtx->res == VK_SUCCESS && moveCount > 0) + { + pDefragCtx->res = VK_NOT_READY; + } +} + +void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats) +{ + for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) + { + VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; + if(pBlock->m_pMetadata->IsEmpty()) + { + if(m_Blocks.size() > m_MinBlockCount) + { + if(pDefragmentationStats != VMA_NULL) + { + ++pDefragmentationStats->deviceMemoryBlocksFreed; + pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize(); + } + + VmaVectorRemove(m_Blocks, blockIndex); + pBlock->Destroy(m_hAllocator); + vma_delete(m_hAllocator, pBlock); + } + else + { + break; + } + } + } + UpdateHasEmptyBlock(); +} + +void VmaBlockVector::UpdateHasEmptyBlock() +{ + m_HasEmptyBlock = false; + for(size_t index = 0, count = m_Blocks.size(); index < count; ++index) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[index]; + if(pBlock->m_pMetadata->IsEmpty()) + { + m_HasEmptyBlock = true; + break; + } + } +} + +#if VMA_STATS_STRING_ENABLED + +void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json) +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + json.BeginObject(); + + if(IsCustomPool()) + { + const char* poolName = m_hParentPool->GetName(); + if(poolName != VMA_NULL && poolName[0] != '\0') + { + json.WriteString("Name"); + json.WriteString(poolName); + } + + json.WriteString("MemoryTypeIndex"); + json.WriteNumber(m_MemoryTypeIndex); + + json.WriteString("BlockSize"); + json.WriteNumber(m_PreferredBlockSize); + + json.WriteString("BlockCount"); + json.BeginObject(true); + if(m_MinBlockCount > 0) + { + json.WriteString("Min"); + json.WriteNumber((uint64_t)m_MinBlockCount); + } + if(m_MaxBlockCount < SIZE_MAX) + { + json.WriteString("Max"); + json.WriteNumber((uint64_t)m_MaxBlockCount); + } + json.WriteString("Cur"); + json.WriteNumber((uint64_t)m_Blocks.size()); + json.EndObject(); + + if(m_FrameInUseCount > 0) + { + json.WriteString("FrameInUseCount"); + json.WriteNumber(m_FrameInUseCount); + } + + if(m_Algorithm != 0) + { + json.WriteString("Algorithm"); + json.WriteString(VmaAlgorithmToStr(m_Algorithm)); + } + } + else + { + json.WriteString("PreferredBlockSize"); + json.WriteNumber(m_PreferredBlockSize); + } + + json.WriteString("Blocks"); + json.BeginObject(); + for(size_t i = 0; i < m_Blocks.size(); ++i) + { + json.BeginString(); + json.ContinueString(m_Blocks[i]->GetId()); + json.EndString(); + + m_Blocks[i]->m_pMetadata->PrintDetailedMap(json); + } + json.EndObject(); + + json.EndObject(); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +void VmaBlockVector::Defragment( + class VmaBlockVectorDefragmentationContext* pCtx, + VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, + VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, + VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer) +{ + pCtx->res = VK_SUCCESS; + + const VkMemoryPropertyFlags memPropFlags = + m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags; + const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; + + const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 && + isHostVisible; + const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 && + !IsCorruptionDetectionEnabled() && + ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0; + + // There are options to defragment this memory type. + if(canDefragmentOnCpu || canDefragmentOnGpu) + { + bool defragmentOnGpu; + // There is only one option to defragment this memory type. + if(canDefragmentOnGpu != canDefragmentOnCpu) + { + defragmentOnGpu = canDefragmentOnGpu; + } + // Both options are available: Heuristics to choose the best one. + else + { + defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 || + m_hAllocator->IsIntegratedGpu(); + } + + bool overlappingMoveSupported = !defragmentOnGpu; + + if(m_hAllocator->m_UseMutex) + { + if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) + { + if(!m_Mutex.TryLockWrite()) + { + pCtx->res = VK_ERROR_INITIALIZATION_FAILED; + return; + } + } + else + { + m_Mutex.LockWrite(); + pCtx->mutexLocked = true; + } + } + + pCtx->Begin(overlappingMoveSupported, flags); + + // Defragment. + + const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove; + const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove; + pCtx->res = pCtx->GetAlgorithm()->Defragment(pCtx->defragmentationMoves, maxBytesToMove, maxAllocationsToMove, flags); + + // Accumulate statistics. + if(pStats != VMA_NULL) + { + const VkDeviceSize bytesMoved = pCtx->GetAlgorithm()->GetBytesMoved(); + const uint32_t allocationsMoved = pCtx->GetAlgorithm()->GetAllocationsMoved(); + pStats->bytesMoved += bytesMoved; + pStats->allocationsMoved += allocationsMoved; + VMA_ASSERT(bytesMoved <= maxBytesToMove); + VMA_ASSERT(allocationsMoved <= maxAllocationsToMove); + if(defragmentOnGpu) + { + maxGpuBytesToMove -= bytesMoved; + maxGpuAllocationsToMove -= allocationsMoved; + } + else + { + maxCpuBytesToMove -= bytesMoved; + maxCpuAllocationsToMove -= allocationsMoved; + } + } + + if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) + { + if(m_hAllocator->m_UseMutex) + m_Mutex.UnlockWrite(); + + if(pCtx->res >= VK_SUCCESS && !pCtx->defragmentationMoves.empty()) + pCtx->res = VK_NOT_READY; + + return; + } + + if(pCtx->res >= VK_SUCCESS) + { + if(defragmentOnGpu) + { + ApplyDefragmentationMovesGpu(pCtx, pCtx->defragmentationMoves, commandBuffer); + } + else + { + ApplyDefragmentationMovesCpu(pCtx, pCtx->defragmentationMoves); + } + } + } +} + +void VmaBlockVector::DefragmentationEnd( + class VmaBlockVectorDefragmentationContext* pCtx, + VmaDefragmentationStats* pStats) +{ + // Destroy buffers. + for(size_t blockIndex = pCtx->blockContexts.size(); blockIndex--; ) + { + VmaBlockDefragmentationContext& blockCtx = pCtx->blockContexts[blockIndex]; + if(blockCtx.hBuffer) + { + (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)( + m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks()); + } + } + + if(pCtx->res >= VK_SUCCESS) + { + FreeEmptyBlocks(pStats); + } + + if(pCtx->mutexLocked) + { + VMA_ASSERT(m_hAllocator->m_UseMutex); + m_Mutex.UnlockWrite(); + } +} + +uint32_t VmaBlockVector::ProcessDefragmentations( + class VmaBlockVectorDefragmentationContext *pCtx, + VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves) +{ + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + + const uint32_t moveCount = std::min(uint32_t(pCtx->defragmentationMoves.size()) - pCtx->defragmentationMovesProcessed, maxMoves); + + for(uint32_t i = pCtx->defragmentationMovesProcessed; i < moveCount; ++ i) + { + VmaDefragmentationMove& move = pCtx->defragmentationMoves[i]; + + pMove->allocation = move.hAllocation; + pMove->memory = move.pDstBlock->GetDeviceMemory(); + pMove->offset = move.dstOffset; + + ++ pMove; + } + + pCtx->defragmentationMovesProcessed += moveCount; + + return moveCount; +} + +void VmaBlockVector::CommitDefragmentations( + class VmaBlockVectorDefragmentationContext *pCtx, + VmaDefragmentationStats* pStats) +{ + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + + for(uint32_t i = pCtx->defragmentationMovesCommitted; i < pCtx->defragmentationMovesProcessed; ++ i) + { + const VmaDefragmentationMove &move = pCtx->defragmentationMoves[i]; + + move.pSrcBlock->m_pMetadata->FreeAtOffset(move.srcOffset); + move.hAllocation->ChangeBlockAllocation(m_hAllocator, move.pDstBlock, move.dstOffset); + } + + pCtx->defragmentationMovesCommitted = pCtx->defragmentationMovesProcessed; + FreeEmptyBlocks(pStats); +} + +size_t VmaBlockVector::CalcAllocationCount() const +{ + size_t result = 0; + for(size_t i = 0; i < m_Blocks.size(); ++i) + { + result += m_Blocks[i]->m_pMetadata->GetAllocationCount(); + } + return result; +} + +bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const +{ + if(m_BufferImageGranularity == 1) + { + return false; + } + VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE; + for(size_t i = 0, count = m_Blocks.size(); i < count; ++i) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[i]; + VMA_ASSERT(m_Algorithm == 0); + VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata; + if(pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType)) + { + return true; + } + } + return false; +} + +void VmaBlockVector::MakePoolAllocationsLost( + uint32_t currentFrameIndex, + size_t* pLostAllocationCount) +{ + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + size_t lostAllocationCount = 0; + for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount); + } + if(pLostAllocationCount != VMA_NULL) + { + *pLostAllocationCount = lostAllocationCount; + } +} + +VkResult VmaBlockVector::CheckCorruption() +{ + if(!IsCorruptionDetectionEnabled()) + { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VkResult res = pBlock->CheckCorruption(m_hAllocator); + if(res != VK_SUCCESS) + { + return res; + } + } + return VK_SUCCESS; +} + +void VmaBlockVector::AddStats(VmaStats* pStats) +{ + const uint32_t memTypeIndex = m_MemoryTypeIndex; + const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex); + + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VMA_HEAVY_ASSERT(pBlock->Validate()); + VmaStatInfo allocationStatInfo; + pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo); + VmaAddStatInfo(pStats->total, allocationStatInfo); + VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); + VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); + } +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaDefragmentationAlgorithm_Generic members definition + +VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic( + VmaAllocator hAllocator, + VmaBlockVector* pBlockVector, + uint32_t currentFrameIndex, + bool overlappingMoveSupported) : + VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), + m_AllocationCount(0), + m_AllAllocations(false), + m_BytesMoved(0), + m_AllocationsMoved(0), + m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) +{ + // Create block info for each block. + const size_t blockCount = m_pBlockVector->m_Blocks.size(); + for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + { + BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks()); + pBlockInfo->m_OriginalBlockIndex = blockIndex; + pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex]; + m_Blocks.push_back(pBlockInfo); + } + + // Sort them by m_pBlock pointer value. + VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess()); +} + +VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic() +{ + for(size_t i = m_Blocks.size(); i--; ) + { + vma_delete(m_hAllocator, m_Blocks[i]); + } +} + +void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) +{ + // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost. + if(hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST) + { + VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock(); + BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess()); + if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock) + { + AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged); + (*it)->m_Allocations.push_back(allocInfo); + } + else + { + VMA_ASSERT(0); + } + + ++m_AllocationCount; + } +} + +VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound( + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + bool freeOldAllocations) +{ + if(m_Blocks.empty()) + { + return VK_SUCCESS; + } + + // This is a choice based on research. + // Option 1: + uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT; + // Option 2: + //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT; + // Option 3: + //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT; + + size_t srcBlockMinIndex = 0; + // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations. + /* + if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT) + { + const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount(); + if(blocksWithNonMovableCount > 0) + { + srcBlockMinIndex = blocksWithNonMovableCount - 1; + } + } + */ + + size_t srcBlockIndex = m_Blocks.size() - 1; + size_t srcAllocIndex = SIZE_MAX; + for(;;) + { + // 1. Find next allocation to move. + // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source". + // 1.2. Then start from last to first m_Allocations. + while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size()) + { + if(m_Blocks[srcBlockIndex]->m_Allocations.empty()) + { + // Finished: no more allocations to process. + if(srcBlockIndex == srcBlockMinIndex) + { + return VK_SUCCESS; + } + else + { + --srcBlockIndex; + srcAllocIndex = SIZE_MAX; + } + } + else + { + srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1; + } + } + + BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex]; + AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex]; + + const VkDeviceSize size = allocInfo.m_hAllocation->GetSize(); + const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset(); + const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment(); + const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType(); + + // 2. Try to find new place for this allocation in preceding or current block. + for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex) + { + BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex]; + VmaAllocationRequest dstAllocRequest; + if(pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest( + m_CurrentFrameIndex, + m_pBlockVector->GetFrameInUseCount(), + m_pBlockVector->GetBufferImageGranularity(), + size, + alignment, + false, // upperAddress + suballocType, + false, // canMakeOtherLost + strategy, + &dstAllocRequest) && + MoveMakesSense( + dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset)) + { + VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0); + + // Reached limit on number of allocations or bytes to move. + if((m_AllocationsMoved + 1 > maxAllocationsToMove) || + (m_BytesMoved + size > maxBytesToMove)) + { + return VK_SUCCESS; + } + + VmaDefragmentationMove move = {}; + move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex; + move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex; + move.srcOffset = srcOffset; + move.dstOffset = dstAllocRequest.offset; + move.size = size; + move.hAllocation = allocInfo.m_hAllocation; + move.pSrcBlock = pSrcBlockInfo->m_pBlock; + move.pDstBlock = pDstBlockInfo->m_pBlock; + + moves.push_back(move); + + pDstBlockInfo->m_pBlock->m_pMetadata->Alloc( + dstAllocRequest, + suballocType, + size, + allocInfo.m_hAllocation); + + if(freeOldAllocations) + { + pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset); + allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset); + } + + if(allocInfo.m_pChanged != VMA_NULL) + { + *allocInfo.m_pChanged = VK_TRUE; + } + + ++m_AllocationsMoved; + m_BytesMoved += size; + + VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex); + + break; + } + } + + // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round. + + if(srcAllocIndex > 0) + { + --srcAllocIndex; + } + else + { + if(srcBlockIndex > 0) + { + --srcBlockIndex; + srcAllocIndex = SIZE_MAX; + } + else + { + return VK_SUCCESS; + } + } + } +} + +size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const +{ + size_t result = 0; + for(size_t i = 0; i < m_Blocks.size(); ++i) + { + if(m_Blocks[i]->m_HasNonMovableAllocations) + { + ++result; + } + } + return result; +} + +VkResult VmaDefragmentationAlgorithm_Generic::Defragment( + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + VmaDefragmentationFlags flags) +{ + if(!m_AllAllocations && m_AllocationCount == 0) + { + return VK_SUCCESS; + } + + const size_t blockCount = m_Blocks.size(); + for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + { + BlockInfo* pBlockInfo = m_Blocks[blockIndex]; + + if(m_AllAllocations) + { + VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata; + for(VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin(); + it != pMetadata->m_Suballocations.end(); + ++it) + { + if(it->type != VMA_SUBALLOCATION_TYPE_FREE) + { + AllocationInfo allocInfo = AllocationInfo(it->hAllocation, VMA_NULL); + pBlockInfo->m_Allocations.push_back(allocInfo); + } + } + } + + pBlockInfo->CalcHasNonMovableAllocations(); + + // This is a choice based on research. + // Option 1: + pBlockInfo->SortAllocationsByOffsetDescending(); + // Option 2: + //pBlockInfo->SortAllocationsBySizeDescending(); + } + + // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks. + VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination()); + + // This is a choice based on research. + const uint32_t roundCount = 2; + + // Execute defragmentation rounds (the main part). + VkResult result = VK_SUCCESS; + for(uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round) + { + result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove, !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)); + } + + return result; +} + +bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense( + size_t dstBlockIndex, VkDeviceSize dstOffset, + size_t srcBlockIndex, VkDeviceSize srcOffset) +{ + if(dstBlockIndex < srcBlockIndex) + { + return true; + } + if(dstBlockIndex > srcBlockIndex) + { + return false; + } + if(dstOffset < srcOffset) + { + return true; + } + return false; +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaDefragmentationAlgorithm_Fast + +VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast( + VmaAllocator hAllocator, + VmaBlockVector* pBlockVector, + uint32_t currentFrameIndex, + bool overlappingMoveSupported) : + VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), + m_OverlappingMoveSupported(overlappingMoveSupported), + m_AllocationCount(0), + m_AllAllocations(false), + m_BytesMoved(0), + m_AllocationsMoved(0), + m_BlockInfos(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) +{ + VMA_ASSERT(VMA_DEBUG_MARGIN == 0); + +} + +VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast() +{ +} + +VkResult VmaDefragmentationAlgorithm_Fast::Defragment( + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + VmaDefragmentationFlags flags) +{ + VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount); + + const size_t blockCount = m_pBlockVector->GetBlockCount(); + if(blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0) + { + return VK_SUCCESS; + } + + PreprocessMetadata(); + + // Sort blocks in order from most destination. + + m_BlockInfos.resize(blockCount); + for(size_t i = 0; i < blockCount; ++i) + { + m_BlockInfos[i].origBlockIndex = i; + } + + VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool { + return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() < + m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize(); + }); + + // THE MAIN ALGORITHM + + FreeSpaceDatabase freeSpaceDb; + + size_t dstBlockInfoIndex = 0; + size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; + VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); + VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; + VkDeviceSize dstBlockSize = pDstMetadata->GetSize(); + VkDeviceSize dstOffset = 0; + + bool end = false; + for(size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex) + { + const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex; + VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex); + VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata; + for(VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin(); + !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); ) + { + VmaAllocation_T* const pAlloc = srcSuballocIt->hAllocation; + const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment(); + const VkDeviceSize srcAllocSize = srcSuballocIt->size; + if(m_AllocationsMoved == maxAllocationsToMove || + m_BytesMoved + srcAllocSize > maxBytesToMove) + { + end = true; + break; + } + const VkDeviceSize srcAllocOffset = srcSuballocIt->offset; + + VmaDefragmentationMove move = {}; + // Try to place it in one of free spaces from the database. + size_t freeSpaceInfoIndex; + VkDeviceSize dstAllocOffset; + if(freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize, + freeSpaceInfoIndex, dstAllocOffset)) + { + size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex; + VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex); + VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata; + + // Same block + if(freeSpaceInfoIndex == srcBlockInfoIndex) + { + VMA_ASSERT(dstAllocOffset <= srcAllocOffset); + + // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. + + VmaSuballocation suballoc = *srcSuballocIt; + suballoc.offset = dstAllocOffset; + suballoc.hAllocation->ChangeOffset(dstAllocOffset); + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; + + VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; + ++nextSuballocIt; + pSrcMetadata->m_Suballocations.erase(srcSuballocIt); + srcSuballocIt = nextSuballocIt; + + InsertSuballoc(pFreeSpaceMetadata, suballoc); + + move.srcBlockIndex = srcOrigBlockIndex; + move.dstBlockIndex = freeSpaceOrigBlockIndex; + move.srcOffset = srcAllocOffset; + move.dstOffset = dstAllocOffset; + move.size = srcAllocSize; + + moves.push_back(move); + } + // Different block + else + { + // MOVE OPTION 2: Move the allocation to a different block. + + VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex); + + VmaSuballocation suballoc = *srcSuballocIt; + suballoc.offset = dstAllocOffset; + suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset); + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; + + VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; + ++nextSuballocIt; + pSrcMetadata->m_Suballocations.erase(srcSuballocIt); + srcSuballocIt = nextSuballocIt; + + InsertSuballoc(pFreeSpaceMetadata, suballoc); + + move.srcBlockIndex = srcOrigBlockIndex; + move.dstBlockIndex = freeSpaceOrigBlockIndex; + move.srcOffset = srcAllocOffset; + move.dstOffset = dstAllocOffset; + move.size = srcAllocSize; + + moves.push_back(move); + } + } + else + { + dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment); + + // If the allocation doesn't fit before the end of dstBlock, forward to next block. + while(dstBlockInfoIndex < srcBlockInfoIndex && + dstAllocOffset + srcAllocSize > dstBlockSize) + { + // But before that, register remaining free space at the end of dst block. + freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset); + + ++dstBlockInfoIndex; + dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; + pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); + pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; + dstBlockSize = pDstMetadata->GetSize(); + dstOffset = 0; + dstAllocOffset = 0; + } + + // Same block + if(dstBlockInfoIndex == srcBlockInfoIndex) + { + VMA_ASSERT(dstAllocOffset <= srcAllocOffset); + + const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset; + + bool skipOver = overlap; + if(overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset) + { + // If destination and source place overlap, skip if it would move it + // by only < 1/64 of its size. + skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize; + } + + if(skipOver) + { + freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset); + + dstOffset = srcAllocOffset + srcAllocSize; + ++srcSuballocIt; + } + // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. + else + { + srcSuballocIt->offset = dstAllocOffset; + srcSuballocIt->hAllocation->ChangeOffset(dstAllocOffset); + dstOffset = dstAllocOffset + srcAllocSize; + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; + ++srcSuballocIt; + + move.srcBlockIndex = srcOrigBlockIndex; + move.dstBlockIndex = dstOrigBlockIndex; + move.srcOffset = srcAllocOffset; + move.dstOffset = dstAllocOffset; + move.size = srcAllocSize; + + moves.push_back(move); + } + } + // Different block + else + { + // MOVE OPTION 2: Move the allocation to a different block. + + VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex); + VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize); + + VmaSuballocation suballoc = *srcSuballocIt; + suballoc.offset = dstAllocOffset; + suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset); + dstOffset = dstAllocOffset + srcAllocSize; + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; + + VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; + ++nextSuballocIt; + pSrcMetadata->m_Suballocations.erase(srcSuballocIt); + srcSuballocIt = nextSuballocIt; + + pDstMetadata->m_Suballocations.push_back(suballoc); + + move.srcBlockIndex = srcOrigBlockIndex; + move.dstBlockIndex = dstOrigBlockIndex; + move.srcOffset = srcAllocOffset; + move.dstOffset = dstAllocOffset; + move.size = srcAllocSize; + + moves.push_back(move); + } + } + } + } + + m_BlockInfos.clear(); + + PostprocessMetadata(); + + return VK_SUCCESS; +} + +void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata() +{ + const size_t blockCount = m_pBlockVector->GetBlockCount(); + for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + { + VmaBlockMetadata_Generic* const pMetadata = + (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; + pMetadata->m_FreeCount = 0; + pMetadata->m_SumFreeSize = pMetadata->GetSize(); + pMetadata->m_FreeSuballocationsBySize.clear(); + for(VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); + it != pMetadata->m_Suballocations.end(); ) + { + if(it->type == VMA_SUBALLOCATION_TYPE_FREE) + { + VmaSuballocationList::iterator nextIt = it; + ++nextIt; + pMetadata->m_Suballocations.erase(it); + it = nextIt; + } + else + { + ++it; + } + } + } +} + +void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata() +{ + const size_t blockCount = m_pBlockVector->GetBlockCount(); + for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + { + VmaBlockMetadata_Generic* const pMetadata = + (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; + const VkDeviceSize blockSize = pMetadata->GetSize(); + + // No allocations in this block - entire area is free. + if(pMetadata->m_Suballocations.empty()) + { + pMetadata->m_FreeCount = 1; + //pMetadata->m_SumFreeSize is already set to blockSize. + VmaSuballocation suballoc = { + 0, // offset + blockSize, // size + VMA_NULL, // hAllocation + VMA_SUBALLOCATION_TYPE_FREE }; + pMetadata->m_Suballocations.push_back(suballoc); + pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin()); + } + // There are some allocations in this block. + else + { + VkDeviceSize offset = 0; + VmaSuballocationList::iterator it; + for(it = pMetadata->m_Suballocations.begin(); + it != pMetadata->m_Suballocations.end(); + ++it) + { + VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(it->offset >= offset); + + // Need to insert preceding free space. + if(it->offset > offset) + { + ++pMetadata->m_FreeCount; + const VkDeviceSize freeSize = it->offset - offset; + VmaSuballocation suballoc = { + offset, // offset + freeSize, // size + VMA_NULL, // hAllocation + VMA_SUBALLOCATION_TYPE_FREE }; + VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); + if(freeSize >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) + { + pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt); + } + } + + pMetadata->m_SumFreeSize -= it->size; + offset = it->offset + it->size; + } + + // Need to insert trailing free space. + if(offset < blockSize) + { + ++pMetadata->m_FreeCount; + const VkDeviceSize freeSize = blockSize - offset; + VmaSuballocation suballoc = { + offset, // offset + freeSize, // size + VMA_NULL, // hAllocation + VMA_SUBALLOCATION_TYPE_FREE }; + VMA_ASSERT(it == pMetadata->m_Suballocations.end()); + VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); + if(freeSize > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) + { + pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt); + } + } + + VMA_SORT( + pMetadata->m_FreeSuballocationsBySize.begin(), + pMetadata->m_FreeSuballocationsBySize.end(), + VmaSuballocationItemSizeLess()); + } + + VMA_HEAVY_ASSERT(pMetadata->Validate()); + } +} + +void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc) +{ + // TODO: Optimize somehow. Remember iterator instead of searching for it linearly. + VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); + while(it != pMetadata->m_Suballocations.end()) + { + if(it->offset < suballoc.offset) + { + ++it; + } + } + pMetadata->m_Suballocations.insert(it, suballoc); +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaBlockVectorDefragmentationContext + +VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext( + VmaAllocator hAllocator, + VmaPool hCustomPool, + VmaBlockVector* pBlockVector, + uint32_t currFrameIndex) : + res(VK_SUCCESS), + mutexLocked(false), + blockContexts(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + defragmentationMoves(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + defragmentationMovesProcessed(0), + defragmentationMovesCommitted(0), + hasDefragmentationPlan(0), + m_hAllocator(hAllocator), + m_hCustomPool(hCustomPool), + m_pBlockVector(pBlockVector), + m_CurrFrameIndex(currFrameIndex), + m_pAlgorithm(VMA_NULL), + m_Allocations(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + m_AllAllocations(false) +{ +} + +VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext() +{ + vma_delete(m_hAllocator, m_pAlgorithm); +} + +void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) +{ + AllocInfo info = { hAlloc, pChanged }; + m_Allocations.push_back(info); +} + +void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags) +{ + const bool allAllocations = m_AllAllocations || + m_Allocations.size() == m_pBlockVector->CalcAllocationCount(); + + /******************************** + HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM. + ********************************/ + + /* + Fast algorithm is supported only when certain criteria are met: + - VMA_DEBUG_MARGIN is 0. + - All allocations in this block vector are moveable. + - There is no possibility of image/buffer granularity conflict. + - The defragmentation is not incremental + */ + if(VMA_DEBUG_MARGIN == 0 && + allAllocations && + !m_pBlockVector->IsBufferImageGranularityConflictPossible() && + !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)) + { + m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)( + m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); + } + else + { + m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)( + m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); + } + + if(allAllocations) + { + m_pAlgorithm->AddAll(); + } + else + { + for(size_t i = 0, count = m_Allocations.size(); i < count; ++i) + { + m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged); + } + } +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaDefragmentationContext + +VmaDefragmentationContext_T::VmaDefragmentationContext_T( + VmaAllocator hAllocator, + uint32_t currFrameIndex, + uint32_t flags, + VmaDefragmentationStats* pStats) : + m_hAllocator(hAllocator), + m_CurrFrameIndex(currFrameIndex), + m_Flags(flags), + m_pStats(pStats), + m_CustomPoolContexts(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) +{ + memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts)); +} + +VmaDefragmentationContext_T::~VmaDefragmentationContext_T() +{ + for(size_t i = m_CustomPoolContexts.size(); i--; ) + { + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i]; + pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats); + vma_delete(m_hAllocator, pBlockVectorCtx); + } + for(size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; ) + { + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i]; + if(pBlockVectorCtx) + { + pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats); + vma_delete(m_hAllocator, pBlockVectorCtx); + } + } +} + +void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, VmaPool* pPools) +{ + for(uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) + { + VmaPool pool = pPools[poolIndex]; + VMA_ASSERT(pool); + // Pools with algorithm other than default are not defragmented. + if(pool->m_BlockVector.GetAlgorithm() == 0) + { + VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; + + for(size_t i = m_CustomPoolContexts.size(); i--; ) + { + if(m_CustomPoolContexts[i]->GetCustomPool() == pool) + { + pBlockVectorDefragCtx = m_CustomPoolContexts[i]; + break; + } + } + + if(!pBlockVectorDefragCtx) + { + pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( + m_hAllocator, + pool, + &pool->m_BlockVector, + m_CurrFrameIndex); + m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); + } + + pBlockVectorDefragCtx->AddAll(); + } + } +} + +void VmaDefragmentationContext_T::AddAllocations( + uint32_t allocationCount, + VmaAllocation* pAllocations, + VkBool32* pAllocationsChanged) +{ + // Dispatch pAllocations among defragmentators. Create them when necessary. + for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + const VmaAllocation hAlloc = pAllocations[allocIndex]; + VMA_ASSERT(hAlloc); + // DedicatedAlloc cannot be defragmented. + if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) && + // Lost allocation cannot be defragmented. + (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)) + { + VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; + + const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool(); + // This allocation belongs to custom pool. + if(hAllocPool != VK_NULL_HANDLE) + { + // Pools with algorithm other than default are not defragmented. + if(hAllocPool->m_BlockVector.GetAlgorithm() == 0) + { + for(size_t i = m_CustomPoolContexts.size(); i--; ) + { + if(m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool) + { + pBlockVectorDefragCtx = m_CustomPoolContexts[i]; + break; + } + } + if(!pBlockVectorDefragCtx) + { + pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( + m_hAllocator, + hAllocPool, + &hAllocPool->m_BlockVector, + m_CurrFrameIndex); + m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); + } + } + } + // This allocation belongs to default pool. + else + { + const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); + pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex]; + if(!pBlockVectorDefragCtx) + { + pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( + m_hAllocator, + VMA_NULL, // hCustomPool + m_hAllocator->m_pBlockVectors[memTypeIndex], + m_CurrFrameIndex); + m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx; + } + } + + if(pBlockVectorDefragCtx) + { + VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ? + &pAllocationsChanged[allocIndex] : VMA_NULL; + pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged); + } + } + } +} + +VkResult VmaDefragmentationContext_T::Defragment( + VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, + VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags) +{ + if(pStats) + { + memset(pStats, 0, sizeof(VmaDefragmentationStats)); + } + + if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) + { + // For incremental defragmetnations, we just earmark how much we can move + // The real meat is in the defragmentation steps + m_MaxCpuBytesToMove = maxCpuBytesToMove; + m_MaxCpuAllocationsToMove = maxCpuAllocationsToMove; + + m_MaxGpuBytesToMove = maxGpuBytesToMove; + m_MaxGpuAllocationsToMove = maxGpuAllocationsToMove; + + if(m_MaxCpuBytesToMove == 0 && m_MaxCpuAllocationsToMove == 0 && + m_MaxGpuBytesToMove == 0 && m_MaxGpuAllocationsToMove == 0) + return VK_SUCCESS; + + return VK_NOT_READY; + } + + if(commandBuffer == VK_NULL_HANDLE) + { + maxGpuBytesToMove = 0; + maxGpuAllocationsToMove = 0; + } + + VkResult res = VK_SUCCESS; + + // Process default pools. + for(uint32_t memTypeIndex = 0; + memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS; + ++memTypeIndex) + { + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; + if(pBlockVectorCtx) + { + VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); + pBlockVectorCtx->GetBlockVector()->Defragment( + pBlockVectorCtx, + pStats, flags, + maxCpuBytesToMove, maxCpuAllocationsToMove, + maxGpuBytesToMove, maxGpuAllocationsToMove, + commandBuffer); + if(pBlockVectorCtx->res != VK_SUCCESS) + { + res = pBlockVectorCtx->res; + } + } + } + + // Process custom pools. + for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); + customCtxIndex < customCtxCount && res >= VK_SUCCESS; + ++customCtxIndex) + { + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; + VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); + pBlockVectorCtx->GetBlockVector()->Defragment( + pBlockVectorCtx, + pStats, flags, + maxCpuBytesToMove, maxCpuAllocationsToMove, + maxGpuBytesToMove, maxGpuAllocationsToMove, + commandBuffer); + if(pBlockVectorCtx->res != VK_SUCCESS) + { + res = pBlockVectorCtx->res; + } + } + + return res; +} + +VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo) +{ + VmaDefragmentationPassMoveInfo* pCurrentMove = pInfo->pMoves; + uint32_t movesLeft = pInfo->moveCount; + + // Process default pools. + for(uint32_t memTypeIndex = 0; + memTypeIndex < m_hAllocator->GetMemoryTypeCount(); + ++memTypeIndex) + { + VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; + if(pBlockVectorCtx) + { + VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); + + if(!pBlockVectorCtx->hasDefragmentationPlan) + { + pBlockVectorCtx->GetBlockVector()->Defragment( + pBlockVectorCtx, + m_pStats, m_Flags, + m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, + m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, + VK_NULL_HANDLE); + + if(pBlockVectorCtx->res < VK_SUCCESS) + continue; + + pBlockVectorCtx->hasDefragmentationPlan = true; + } + + const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( + pBlockVectorCtx, + pCurrentMove, movesLeft); + + movesLeft -= processed; + pCurrentMove += processed; + } + } + + // Process custom pools. + for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); + customCtxIndex < customCtxCount; + ++customCtxIndex) + { + VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; + VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); + + if(!pBlockVectorCtx->hasDefragmentationPlan) + { + pBlockVectorCtx->GetBlockVector()->Defragment( + pBlockVectorCtx, + m_pStats, m_Flags, + m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, + m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, + VK_NULL_HANDLE); + + if(pBlockVectorCtx->res < VK_SUCCESS) + continue; + + pBlockVectorCtx->hasDefragmentationPlan = true; + } + + const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( + pBlockVectorCtx, + pCurrentMove, movesLeft); + + movesLeft -= processed; + pCurrentMove += processed; + } + + pInfo->moveCount = pInfo->moveCount - movesLeft; + + return VK_SUCCESS; +} +VkResult VmaDefragmentationContext_T::DefragmentPassEnd() +{ + VkResult res = VK_SUCCESS; + + // Process default pools. + for(uint32_t memTypeIndex = 0; + memTypeIndex < m_hAllocator->GetMemoryTypeCount(); + ++memTypeIndex) + { + VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; + if(pBlockVectorCtx) + { + VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); + + if(!pBlockVectorCtx->hasDefragmentationPlan) + { + res = VK_NOT_READY; + continue; + } + + pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( + pBlockVectorCtx, m_pStats); + + if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) + res = VK_NOT_READY; + } + } + + // Process custom pools. + for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); + customCtxIndex < customCtxCount; + ++customCtxIndex) + { + VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; + VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); + + if(!pBlockVectorCtx->hasDefragmentationPlan) + { + res = VK_NOT_READY; + continue; + } + + pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( + pBlockVectorCtx, m_pStats); + + if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) + res = VK_NOT_READY; + } + + return res; +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaRecorder + +#if VMA_RECORDING_ENABLED + +VmaRecorder::VmaRecorder() : + m_UseMutex(true), + m_Flags(0), + m_File(VMA_NULL), + m_Freq(INT64_MAX), + m_StartCounter(INT64_MAX) +{ +} + +VkResult VmaRecorder::Init(const VmaRecordSettings& settings, bool useMutex) +{ + m_UseMutex = useMutex; + m_Flags = settings.flags; + + QueryPerformanceFrequency((LARGE_INTEGER*)&m_Freq); + QueryPerformanceCounter((LARGE_INTEGER*)&m_StartCounter); + + // Open file for writing. + errno_t err = fopen_s(&m_File, settings.pFilePath, "wb"); + if(err != 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + + // Write header. + fprintf(m_File, "%s\n", "Vulkan Memory Allocator,Calls recording"); + fprintf(m_File, "%s\n", "1,8"); + + return VK_SUCCESS; +} + +VmaRecorder::~VmaRecorder() +{ + if(m_File != VMA_NULL) + { + fclose(m_File); + } +} + +void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n", callParams.threadId, callParams.time, frameIndex); + Flush(); +} + +void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n", callParams.threadId, callParams.time, frameIndex); + Flush(); +} + +void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo& createInfo, VmaPool pool) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n", callParams.threadId, callParams.time, frameIndex, + createInfo.memoryTypeIndex, + createInfo.flags, + createInfo.blockSize, + (uint64_t)createInfo.minBlockCount, + (uint64_t)createInfo.maxBlockCount, + createInfo.frameInUseCount, + pool); + Flush(); +} + +void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n", callParams.threadId, callParams.time, frameIndex, + pool); + Flush(); +} + +void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex, + const VkMemoryRequirements& vkMemReq, + const VmaAllocationCreateInfo& createInfo, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(createInfo.flags, createInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + vkMemReq.size, + vkMemReq.alignment, + vkMemReq.memoryTypeBits, + createInfo.flags, + createInfo.usage, + createInfo.requiredFlags, + createInfo.preferredFlags, + createInfo.memoryTypeBits, + createInfo.pool, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex, + const VkMemoryRequirements& vkMemReq, + const VmaAllocationCreateInfo& createInfo, + uint64_t allocationCount, + const VmaAllocation* pAllocations) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(createInfo.flags, createInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,", callParams.threadId, callParams.time, frameIndex, + vkMemReq.size, + vkMemReq.alignment, + vkMemReq.memoryTypeBits, + createInfo.flags, + createInfo.usage, + createInfo.requiredFlags, + createInfo.preferredFlags, + createInfo.memoryTypeBits, + createInfo.pool); + PrintPointerList(allocationCount, pAllocations); + fprintf(m_File, ",%s\n", userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex, + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + const VmaAllocationCreateInfo& createInfo, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(createInfo.flags, createInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + vkMemReq.size, + vkMemReq.alignment, + vkMemReq.memoryTypeBits, + requiresDedicatedAllocation ? 1 : 0, + prefersDedicatedAllocation ? 1 : 0, + createInfo.flags, + createInfo.usage, + createInfo.requiredFlags, + createInfo.preferredFlags, + createInfo.memoryTypeBits, + createInfo.pool, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex, + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + const VmaAllocationCreateInfo& createInfo, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(createInfo.flags, createInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + vkMemReq.size, + vkMemReq.alignment, + vkMemReq.memoryTypeBits, + requiresDedicatedAllocation ? 1 : 0, + prefersDedicatedAllocation ? 1 : 0, + createInfo.flags, + createInfo.usage, + createInfo.requiredFlags, + createInfo.preferredFlags, + createInfo.memoryTypeBits, + createInfo.pool, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordFreeMemory(uint32_t frameIndex, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex, + uint64_t allocationCount, + const VmaAllocation* pAllocations) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages,", callParams.threadId, callParams.time, frameIndex); + PrintPointerList(allocationCount, pAllocations); + fprintf(m_File, "\n"); + Flush(); +} + +void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex, + VmaAllocation allocation, + const void* pUserData) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr( + allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0, + pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordMapMemory(uint32_t frameIndex, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex, + VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex, + allocation, + offset, + size); + Flush(); +} + +void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex, + VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex, + allocation, + offset, + size); + Flush(); +} + +void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex, + const VkBufferCreateInfo& bufCreateInfo, + const VmaAllocationCreateInfo& allocCreateInfo, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + bufCreateInfo.flags, + bufCreateInfo.size, + bufCreateInfo.usage, + bufCreateInfo.sharingMode, + allocCreateInfo.flags, + allocCreateInfo.usage, + allocCreateInfo.requiredFlags, + allocCreateInfo.preferredFlags, + allocCreateInfo.memoryTypeBits, + allocCreateInfo.pool, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordCreateImage(uint32_t frameIndex, + const VkImageCreateInfo& imageCreateInfo, + const VmaAllocationCreateInfo& allocCreateInfo, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + imageCreateInfo.flags, + imageCreateInfo.imageType, + imageCreateInfo.format, + imageCreateInfo.extent.width, + imageCreateInfo.extent.height, + imageCreateInfo.extent.depth, + imageCreateInfo.mipLevels, + imageCreateInfo.arrayLayers, + imageCreateInfo.samples, + imageCreateInfo.tiling, + imageCreateInfo.usage, + imageCreateInfo.sharingMode, + imageCreateInfo.initialLayout, + allocCreateInfo.flags, + allocCreateInfo.usage, + allocCreateInfo.requiredFlags, + allocCreateInfo.preferredFlags, + allocCreateInfo.memoryTypeBits, + allocCreateInfo.pool, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordDestroyImage(uint32_t frameIndex, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex, + VmaAllocation allocation) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex, + VmaPool pool) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n", callParams.threadId, callParams.time, frameIndex, + pool); + Flush(); +} + +void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex, + const VmaDefragmentationInfo2& info, + VmaDefragmentationContext ctx) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u,", callParams.threadId, callParams.time, frameIndex, + info.flags); + PrintPointerList(info.allocationCount, info.pAllocations); + fprintf(m_File, ","); + PrintPointerList(info.poolCount, info.pPools); + fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n", + info.maxCpuBytesToMove, + info.maxCpuAllocationsToMove, + info.maxGpuBytesToMove, + info.maxGpuAllocationsToMove, + info.commandBuffer, + ctx); + Flush(); +} + +void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex, + VmaDefragmentationContext ctx) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n", callParams.threadId, callParams.time, frameIndex, + ctx); + Flush(); +} + +void VmaRecorder::RecordSetPoolName(uint32_t frameIndex, + VmaPool pool, + const char* name) +{ + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaSetPoolName,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + pool, name != VMA_NULL ? name : ""); + Flush(); +} + +VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData) +{ + if(pUserData != VMA_NULL) + { + if((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0) + { + m_Str = (const char*)pUserData; + } + else + { + sprintf_s(m_PtrStr, "%p", pUserData); + m_Str = m_PtrStr; + } + } + else + { + m_Str = ""; + } +} + +void VmaRecorder::WriteConfiguration( + const VkPhysicalDeviceProperties& devProps, + const VkPhysicalDeviceMemoryProperties& memProps, + uint32_t vulkanApiVersion, + bool dedicatedAllocationExtensionEnabled, + bool bindMemory2ExtensionEnabled, + bool memoryBudgetExtensionEnabled) +{ + fprintf(m_File, "Config,Begin\n"); + + fprintf(m_File, "VulkanApiVersion,%u,%u\n", VK_VERSION_MAJOR(vulkanApiVersion), VK_VERSION_MINOR(vulkanApiVersion)); + + fprintf(m_File, "PhysicalDevice,apiVersion,%u\n", devProps.apiVersion); + fprintf(m_File, "PhysicalDevice,driverVersion,%u\n", devProps.driverVersion); + fprintf(m_File, "PhysicalDevice,vendorID,%u\n", devProps.vendorID); + fprintf(m_File, "PhysicalDevice,deviceID,%u\n", devProps.deviceID); + fprintf(m_File, "PhysicalDevice,deviceType,%u\n", devProps.deviceType); + fprintf(m_File, "PhysicalDevice,deviceName,%s\n", devProps.deviceName); + + fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n", devProps.limits.maxMemoryAllocationCount); + fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n", devProps.limits.bufferImageGranularity); + fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n", devProps.limits.nonCoherentAtomSize); + + fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n", memProps.memoryHeapCount); + for(uint32_t i = 0; i < memProps.memoryHeapCount; ++i) + { + fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n", i, memProps.memoryHeaps[i].size); + fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n", i, memProps.memoryHeaps[i].flags); + } + fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n", memProps.memoryTypeCount); + for(uint32_t i = 0; i < memProps.memoryTypeCount; ++i) + { + fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n", i, memProps.memoryTypes[i].heapIndex); + fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n", i, memProps.memoryTypes[i].propertyFlags); + } + + fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n", dedicatedAllocationExtensionEnabled ? 1 : 0); + fprintf(m_File, "Extension,VK_KHR_bind_memory2,%u\n", bindMemory2ExtensionEnabled ? 1 : 0); + fprintf(m_File, "Extension,VK_EXT_memory_budget,%u\n", memoryBudgetExtensionEnabled ? 1 : 0); + + fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n", VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0); + fprintf(m_File, "Macro,VMA_DEBUG_ALIGNMENT,%llu\n", (VkDeviceSize)VMA_DEBUG_ALIGNMENT); + fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n", (VkDeviceSize)VMA_DEBUG_MARGIN); + fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n", VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0); + fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n", VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0); + fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n", VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0); + fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n", (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY); + fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n", (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE); + fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n", (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); + + fprintf(m_File, "Config,End\n"); +} + +void VmaRecorder::GetBasicParams(CallParams& outParams) +{ + outParams.threadId = GetCurrentThreadId(); + + LARGE_INTEGER counter; + QueryPerformanceCounter(&counter); + outParams.time = (double)(counter.QuadPart - m_StartCounter) / (double)m_Freq; +} + +void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation* pItems) +{ + if(count) + { + fprintf(m_File, "%p", pItems[0]); + for(uint64_t i = 1; i < count; ++i) + { + fprintf(m_File, " %p", pItems[i]); + } + } +} + +void VmaRecorder::Flush() +{ + if((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0) + { + fflush(m_File); + } +} + +#endif // #if VMA_RECORDING_ENABLED + +//////////////////////////////////////////////////////////////////////////////// +// VmaAllocationObjectAllocator + +VmaAllocationObjectAllocator::VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) : + m_Allocator(pAllocationCallbacks, 1024) +{ +} + +VmaAllocation VmaAllocationObjectAllocator::Allocate() +{ + VmaMutexLock mutexLock(m_Mutex); + return m_Allocator.Alloc(); +} + +void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc) +{ + VmaMutexLock mutexLock(m_Mutex); + m_Allocator.Free(hAlloc); +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaAllocator_T + +VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) : + m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0), + m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0), + m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0), + m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0), + m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0), + m_hDevice(pCreateInfo->device), + m_hInstance(pCreateInfo->instance), + m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL), + m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ? + *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks), + m_AllocationObjectAllocator(&m_AllocationCallbacks), + m_HeapSizeLimitMask(0), + m_PreferredLargeHeapBlockSize(0), + m_PhysicalDevice(pCreateInfo->physicalDevice), + m_CurrentFrameIndex(0), + m_GpuDefragmentationMemoryTypeBits(UINT32_MAX), + m_Pools(VmaStlAllocator(GetAllocationCallbacks())), + m_NextPoolId(0) +#if VMA_RECORDING_ENABLED + ,m_pRecorder(VMA_NULL) +#endif +{ + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + m_UseKhrDedicatedAllocation = false; + m_UseKhrBindMemory2 = false; + } + + if(VMA_DEBUG_DETECT_CORRUPTION) + { + // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it. + VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0); + } + + VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device); + + if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0)) + { +#if !(VMA_DEDICATED_ALLOCATION) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros."); + } +#endif +#if !(VMA_BIND_MEMORY2) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros."); + } +#endif + } +#if !(VMA_MEMORY_BUDGET) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros."); + } +#endif +#if VMA_VULKAN_VERSION < 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros."); + } +#endif + + memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks)); + memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties)); + memset(&m_MemProps, 0, sizeof(m_MemProps)); + + memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors)); + memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations)); + memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions)); + + if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) + { + m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate; + m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree; + } + + ImportVulkanFunctions(pCreateInfo->pVulkanFunctions); + + (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties); + (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps); + + VMA_ASSERT(VmaIsPow2(VMA_DEBUG_ALIGNMENT)); + VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY)); + VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity)); + VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize)); + + m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ? + pCreateInfo->preferredLargeHeapBlockSize : static_cast(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); + + if(pCreateInfo->pHeapSizeLimit != VMA_NULL) + { + for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) + { + const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex]; + if(limit != VK_WHOLE_SIZE) + { + m_HeapSizeLimitMask |= 1u << heapIndex; + if(limit < m_MemProps.memoryHeaps[heapIndex].size) + { + m_MemProps.memoryHeaps[heapIndex].size = limit; + } + } + } + } + + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex); + + m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( + this, + VK_NULL_HANDLE, // hParentPool + memTypeIndex, + preferredBlockSize, + 0, + SIZE_MAX, + GetBufferImageGranularity(), + pCreateInfo->frameInUseCount, + false, // explicitBlockSize + false); // linearAlgorithm + // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here, + // becase minBlockCount is 0. + m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator(GetAllocationCallbacks())); + + } +} + +VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo) +{ + VkResult res = VK_SUCCESS; + + if(pCreateInfo->pRecordSettings != VMA_NULL && + !VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath)) + { +#if VMA_RECORDING_ENABLED + m_pRecorder = vma_new(this, VmaRecorder)(); + res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex); + if(res != VK_SUCCESS) + { + return res; + } + m_pRecorder->WriteConfiguration( + m_PhysicalDeviceProperties, + m_MemProps, + m_VulkanApiVersion, + m_UseKhrDedicatedAllocation, + m_UseKhrBindMemory2, + m_UseExtMemoryBudget); + m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex()); +#else + VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1."); + return VK_ERROR_FEATURE_NOT_PRESENT; +#endif + } + +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) + { + UpdateVulkanBudget(); + } +#endif // #if VMA_MEMORY_BUDGET + + return res; +} + +VmaAllocator_T::~VmaAllocator_T() +{ +#if VMA_RECORDING_ENABLED + if(m_pRecorder != VMA_NULL) + { + m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex()); + vma_delete(this, m_pRecorder); + } +#endif + + VMA_ASSERT(m_Pools.empty()); + + for(size_t i = GetMemoryTypeCount(); i--; ) + { + if(m_pDedicatedAllocations[i] != VMA_NULL && !m_pDedicatedAllocations[i]->empty()) + { + VMA_ASSERT(0 && "Unfreed dedicated allocations found."); + } + + vma_delete(this, m_pDedicatedAllocations[i]); + vma_delete(this, m_pBlockVectors[i]); + } +} + +void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions) +{ +#if VMA_STATIC_VULKAN_FUNCTIONS == 1 + m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties; + m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties; + m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; + m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory; + m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory; + m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory; + m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges; + m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges; + m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory; + m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory; + m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements; + m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements; + m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer; + m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer; + m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage; + m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage; + m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer; +#if VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_ASSERT(m_hInstance != VK_NULL_HANDLE); + m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = + (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2"); + m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = + (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2"); + m_VulkanFunctions.vkBindBufferMemory2KHR = + (PFN_vkBindBufferMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindBufferMemory2"); + m_VulkanFunctions.vkBindImageMemory2KHR = + (PFN_vkBindImageMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindImageMemory2"); + m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = + (PFN_vkGetPhysicalDeviceMemoryProperties2KHR)vkGetInstanceProcAddr(m_hInstance, "vkGetPhysicalDeviceMemoryProperties2"); + } +#endif +#if VMA_DEDICATED_ALLOCATION + if(m_UseKhrDedicatedAllocation) + { + m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = + (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2KHR"); + m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = + (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2KHR"); + } +#endif +#if VMA_BIND_MEMORY2 + if(m_UseKhrBindMemory2) + { + m_VulkanFunctions.vkBindBufferMemory2KHR = + (PFN_vkBindBufferMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindBufferMemory2KHR"); + m_VulkanFunctions.vkBindImageMemory2KHR = + (PFN_vkBindImageMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindImageMemory2KHR"); + } +#endif // #if VMA_BIND_MEMORY2 +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget && m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0)) + { + VMA_ASSERT(m_hInstance != VK_NULL_HANDLE); + m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = + (PFN_vkGetPhysicalDeviceMemoryProperties2KHR)vkGetInstanceProcAddr(m_hInstance, "vkGetPhysicalDeviceMemoryProperties2KHR"); + } +#endif // #if VMA_MEMORY_BUDGET +#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1 + +#define VMA_COPY_IF_NOT_NULL(funcName) \ + if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName; + + if(pVulkanFunctions != VMA_NULL) + { + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties); + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties); + VMA_COPY_IF_NOT_NULL(vkAllocateMemory); + VMA_COPY_IF_NOT_NULL(vkFreeMemory); + VMA_COPY_IF_NOT_NULL(vkMapMemory); + VMA_COPY_IF_NOT_NULL(vkUnmapMemory); + VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges); + VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges); + VMA_COPY_IF_NOT_NULL(vkBindBufferMemory); + VMA_COPY_IF_NOT_NULL(vkBindImageMemory); + VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkCreateBuffer); + VMA_COPY_IF_NOT_NULL(vkDestroyBuffer); + VMA_COPY_IF_NOT_NULL(vkCreateImage); + VMA_COPY_IF_NOT_NULL(vkDestroyImage); + VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer); +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR); + VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR); +#endif +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR); + VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR); +#endif +#if VMA_MEMORY_BUDGET + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR); +#endif + } + +#undef VMA_COPY_IF_NOT_NULL + + // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1 + // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions. + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL); +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation) + { + VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL); + } +#endif +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2) + { + VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL); + } +#endif +#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 + if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL); + } +#endif +} + +VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) +{ + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; + const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE; + return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32); +} + +VkResult VmaAllocator_T::AllocateMemoryOfType( + VkDeviceSize size, + VkDeviceSize alignment, + bool dedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + const VmaAllocationCreateInfo& createInfo, + uint32_t memTypeIndex, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + VMA_ASSERT(pAllocations != VMA_NULL); + VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size); + + VmaAllocationCreateInfo finalCreateInfo = createInfo; + + // If memory type is not HOST_VISIBLE, disable MAPPED. + if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && + (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; + } + // If memory is lazily allocated, it should be always dedicated. + if(finalCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED) + { + finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; + } + + VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(blockVector); + + const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize(); + bool preferDedicatedMemory = + VMA_DEBUG_ALWAYS_DEDICATED_MEMORY || + dedicatedAllocation || + // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size. + size > preferredBlockSize / 2; + + if(preferDedicatedMemory && + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 && + finalCreateInfo.pool == VK_NULL_HANDLE) + { + finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; + } + + if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) + { + if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + else + { + return AllocateDedicatedMemory( + size, + suballocType, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + finalCreateInfo.pUserData, + dedicatedBuffer, + dedicatedImage, + allocationCount, + pAllocations); + } + } + else + { + VkResult res = blockVector->Allocate( + m_CurrentFrameIndex.load(), + size, + alignment, + finalCreateInfo, + suballocType, + allocationCount, + pAllocations); + if(res == VK_SUCCESS) + { + return res; + } + + // 5. Try dedicated memory. + if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + else + { + res = AllocateDedicatedMemory( + size, + suballocType, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + finalCreateInfo.pUserData, + dedicatedBuffer, + dedicatedImage, + allocationCount, + pAllocations); + if(res == VK_SUCCESS) + { + // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. + VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); + return VK_SUCCESS; + } + else + { + // Everything failed: Return error code. + VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); + return res; + } + } + } +} + +VkResult VmaAllocator_T::AllocateDedicatedMemory( + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + bool withinBudget, + bool map, + bool isUserDataString, + void* pUserData, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + VMA_ASSERT(allocationCount > 0 && pAllocations); + + if(withinBudget) + { + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + VmaBudget heapBudget = {}; + GetBudget(&heapBudget, heapIndex, 1); + if(heapBudget.usage + size * allocationCount > heapBudget.budget) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + + VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; + allocInfo.memoryTypeIndex = memTypeIndex; + allocInfo.allocationSize = size; + +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR }; + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + if(dedicatedBuffer != VK_NULL_HANDLE) + { + VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE); + dedicatedAllocInfo.buffer = dedicatedBuffer; + allocInfo.pNext = &dedicatedAllocInfo; + } + else if(dedicatedImage != VK_NULL_HANDLE) + { + dedicatedAllocInfo.image = dedicatedImage; + allocInfo.pNext = &dedicatedAllocInfo; + } + } +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + + size_t allocIndex; + VkResult res = VK_SUCCESS; + for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + res = AllocateDedicatedMemoryPage( + size, + suballocType, + memTypeIndex, + allocInfo, + map, + isUserDataString, + pUserData, + pAllocations + allocIndex); + if(res != VK_SUCCESS) + { + break; + } + } + + if(res == VK_SUCCESS) + { + // Register them in m_pDedicatedAllocations. + { + VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); + AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex]; + VMA_ASSERT(pDedicatedAllocations); + for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + VmaVectorInsertSorted(*pDedicatedAllocations, pAllocations[allocIndex]); + } + } + + VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex); + } + else + { + // Free all already created allocations. + while(allocIndex--) + { + VmaAllocation currAlloc = pAllocations[allocIndex]; + VkDeviceMemory hMemory = currAlloc->GetMemory(); + + /* + There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory + before vkFreeMemory. + + if(currAlloc->GetMappedData() != VMA_NULL) + { + (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); + } + */ + + FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory); + m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize()); + currAlloc->SetUserData(this, VMA_NULL); + currAlloc->Dtor(); + m_AllocationObjectAllocator.Free(currAlloc); + } + + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + } + + return res; +} + +VkResult VmaAllocator_T::AllocateDedicatedMemoryPage( + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + const VkMemoryAllocateInfo& allocInfo, + bool map, + bool isUserDataString, + void* pUserData, + VmaAllocation* pAllocation) +{ + VkDeviceMemory hMemory = VK_NULL_HANDLE; + VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory); + if(res < 0) + { + VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); + return res; + } + + void* pMappedData = VMA_NULL; + if(map) + { + res = (*m_VulkanFunctions.vkMapMemory)( + m_hDevice, + hMemory, + 0, + VK_WHOLE_SIZE, + 0, + &pMappedData); + if(res < 0) + { + VMA_DEBUG_LOG(" vkMapMemory FAILED"); + FreeVulkanMemory(memTypeIndex, size, hMemory); + return res; + } + } + + *pAllocation = m_AllocationObjectAllocator.Allocate(); + (*pAllocation)->Ctor(m_CurrentFrameIndex.load(), isUserDataString); + (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size); + (*pAllocation)->SetUserData(this, pUserData); + m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size); + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } + + return VK_SUCCESS; +} + +void VmaAllocator_T::GetBufferMemoryRequirements( + VkBuffer hBuffer, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const +{ +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR }; + memReqInfo.buffer = hBuffer; + + VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; + + VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; + memReq2.pNext = &memDedicatedReq; + + (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); + + memReq = memReq2.memoryRequirements; + requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); + prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); + } + else +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + { + (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq); + requiresDedicatedAllocation = false; + prefersDedicatedAllocation = false; + } +} + +void VmaAllocator_T::GetImageMemoryRequirements( + VkImage hImage, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const +{ +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR }; + memReqInfo.image = hImage; + + VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; + + VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; + memReq2.pNext = &memDedicatedReq; + + (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); + + memReq = memReq2.memoryRequirements; + requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); + prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); + } + else +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + { + (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq); + requiresDedicatedAllocation = false; + prefersDedicatedAllocation = false; + } +} + +VkResult VmaAllocator_T::AllocateMemory( + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + + VMA_ASSERT(VmaIsPow2(vkMemReq.alignment)); + + if(vkMemReq.size == 0) + { + return VK_ERROR_VALIDATION_FAILED_EXT; + } + if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && + (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) + { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense."); + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && + (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0) + { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid."); + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + if(requiresDedicatedAllocation) + { + if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) + { + VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required."); + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + if(createInfo.pool != VK_NULL_HANDLE) + { + VMA_ASSERT(0 && "Pool specified while dedicated allocation is required."); + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + if((createInfo.pool != VK_NULL_HANDLE) && + ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0)) + { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid."); + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + + if(createInfo.pool != VK_NULL_HANDLE) + { + const VkDeviceSize alignmentForPool = VMA_MAX( + vkMemReq.alignment, + GetMemoryTypeMinAlignment(createInfo.pool->m_BlockVector.GetMemoryTypeIndex())); + + VmaAllocationCreateInfo createInfoForPool = createInfo; + // If memory type is not HOST_VISIBLE, disable MAPPED. + if((createInfoForPool.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && + (m_MemProps.memoryTypes[createInfo.pool->m_BlockVector.GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + createInfoForPool.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; + } + + return createInfo.pool->m_BlockVector.Allocate( + m_CurrentFrameIndex.load(), + vkMemReq.size, + alignmentForPool, + createInfoForPool, + suballocType, + allocationCount, + pAllocations); + } + else + { + // Bit mask of memory Vulkan types acceptable for this allocation. + uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; + uint32_t memTypeIndex = UINT32_MAX; + VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); + if(res == VK_SUCCESS) + { + VkDeviceSize alignmentForMemType = VMA_MAX( + vkMemReq.alignment, + GetMemoryTypeMinAlignment(memTypeIndex)); + + res = AllocateMemoryOfType( + vkMemReq.size, + alignmentForMemType, + requiresDedicatedAllocation || prefersDedicatedAllocation, + dedicatedBuffer, + dedicatedImage, + createInfo, + memTypeIndex, + suballocType, + allocationCount, + pAllocations); + // Succeeded on first try. + if(res == VK_SUCCESS) + { + return res; + } + // Allocation from this memory type failed. Try other compatible memory types. + else + { + for(;;) + { + // Remove old memTypeIndex from list of possibilities. + memoryTypeBits &= ~(1u << memTypeIndex); + // Find alternative memTypeIndex. + res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); + if(res == VK_SUCCESS) + { + alignmentForMemType = VMA_MAX( + vkMemReq.alignment, + GetMemoryTypeMinAlignment(memTypeIndex)); + + res = AllocateMemoryOfType( + vkMemReq.size, + alignmentForMemType, + requiresDedicatedAllocation || prefersDedicatedAllocation, + dedicatedBuffer, + dedicatedImage, + createInfo, + memTypeIndex, + suballocType, + allocationCount, + pAllocations); + // Allocation from this alternative memory type succeeded. + if(res == VK_SUCCESS) + { + return res; + } + // else: Allocation from this memory type failed. Try next one - next loop iteration. + } + // No other matching memory type index could be found. + else + { + // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + } + } + // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. + else + return res; + } +} + +void VmaAllocator_T::FreeMemory( + size_t allocationCount, + const VmaAllocation* pAllocations) +{ + VMA_ASSERT(pAllocations); + + for(size_t allocIndex = allocationCount; allocIndex--; ) + { + VmaAllocation allocation = pAllocations[allocIndex]; + + if(allocation != VK_NULL_HANDLE) + { + if(TouchAllocation(allocation)) + { + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED); + } + + switch(allocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaBlockVector* pBlockVector = VMA_NULL; + VmaPool hPool = allocation->GetBlock()->GetParentPool(); + if(hPool != VK_NULL_HANDLE) + { + pBlockVector = &hPool->m_BlockVector; + } + else + { + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + pBlockVector = m_pBlockVectors[memTypeIndex]; + } + pBlockVector->Free(allocation); + } + break; + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + FreeDedicatedMemory(allocation); + break; + default: + VMA_ASSERT(0); + } + } + + // Do this regardless of whether the allocation is lost. Lost allocations still account to Budget.AllocationBytes. + m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize()); + allocation->SetUserData(this, VMA_NULL); + allocation->Dtor(); + m_AllocationObjectAllocator.Free(allocation); + } + } +} + +VkResult VmaAllocator_T::ResizeAllocation( + const VmaAllocation alloc, + VkDeviceSize newSize) +{ + // This function is deprecated and so it does nothing. It's left for backward compatibility. + if(newSize == 0 || alloc->GetLastUseFrameIndex() == VMA_FRAME_INDEX_LOST) + { + return VK_ERROR_VALIDATION_FAILED_EXT; + } + if(newSize == alloc->GetSize()) + { + return VK_SUCCESS; + } + return VK_ERROR_OUT_OF_POOL_MEMORY; +} + +void VmaAllocator_T::CalculateStats(VmaStats* pStats) +{ + // Initialize. + InitStatInfo(pStats->total); + for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) + InitStatInfo(pStats->memoryType[i]); + for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) + InitStatInfo(pStats->memoryHeap[i]); + + // Process default pools. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(pBlockVector); + pBlockVector->AddStats(pStats); + } + + // Process custom pools. + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) + { + m_Pools[poolIndex]->m_BlockVector.AddStats(pStats); + } + } + + // Process dedicated allocations. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); + AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex]; + VMA_ASSERT(pDedicatedAllocVector); + for(size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex) + { + VmaStatInfo allocationStatInfo; + (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo); + VmaAddStatInfo(pStats->total, allocationStatInfo); + VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); + VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); + } + } + + // Postprocess. + VmaPostprocessCalcStatInfo(pStats->total); + for(size_t i = 0; i < GetMemoryTypeCount(); ++i) + VmaPostprocessCalcStatInfo(pStats->memoryType[i]); + for(size_t i = 0; i < GetMemoryHeapCount(); ++i) + VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]); +} + +void VmaAllocator_T::GetBudget(VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount) +{ +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) + { + if(m_Budget.m_OperationsSinceBudgetFetch < 30) + { + VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex); + for(uint32_t i = 0; i < heapCount; ++i, ++outBudget) + { + const uint32_t heapIndex = firstHeap + i; + + outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex]; + outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; + + if(m_Budget.m_VulkanUsage[heapIndex] + outBudget->blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]) + { + outBudget->usage = m_Budget.m_VulkanUsage[heapIndex] + + outBudget->blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; + } + else + { + outBudget->usage = 0; + } + + // Have to take MIN with heap size because explicit HeapSizeLimit is included in it. + outBudget->budget = VMA_MIN( + m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size); + } + } + else + { + UpdateVulkanBudget(); // Outside of mutex lock + GetBudget(outBudget, firstHeap, heapCount); // Recursion + } + } + else +#endif + { + for(uint32_t i = 0; i < heapCount; ++i, ++outBudget) + { + const uint32_t heapIndex = firstHeap + i; + + outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex]; + outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; + + outBudget->usage = outBudget->blockBytes; + outBudget->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. + } + } +} + +static const uint32_t VMA_VENDOR_ID_AMD = 4098; + +VkResult VmaAllocator_T::DefragmentationBegin( + const VmaDefragmentationInfo2& info, + VmaDefragmentationStats* pStats, + VmaDefragmentationContext* pContext) +{ + if(info.pAllocationsChanged != VMA_NULL) + { + memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32)); + } + + *pContext = vma_new(this, VmaDefragmentationContext_T)( + this, m_CurrentFrameIndex.load(), info.flags, pStats); + + (*pContext)->AddPools(info.poolCount, info.pPools); + (*pContext)->AddAllocations( + info.allocationCount, info.pAllocations, info.pAllocationsChanged); + + VkResult res = (*pContext)->Defragment( + info.maxCpuBytesToMove, info.maxCpuAllocationsToMove, + info.maxGpuBytesToMove, info.maxGpuAllocationsToMove, + info.commandBuffer, pStats, info.flags); + + if(res != VK_NOT_READY) + { + vma_delete(this, *pContext); + *pContext = VMA_NULL; + } + + return res; +} + +VkResult VmaAllocator_T::DefragmentationEnd( + VmaDefragmentationContext context) +{ + vma_delete(this, context); + return VK_SUCCESS; +} + +VkResult VmaAllocator_T::DefragmentationPassBegin( + VmaDefragmentationPassInfo* pInfo, + VmaDefragmentationContext context) +{ + return context->DefragmentPassBegin(pInfo); +} +VkResult VmaAllocator_T::DefragmentationPassEnd( + VmaDefragmentationContext context) +{ + return context->DefragmentPassEnd(); + +} + +void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo) +{ + if(hAllocation->CanBecomeLost()) + { + /* + Warning: This is a carefully designed algorithm. + Do not modify unless you really know what you're doing :) + */ + const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); + uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); + for(;;) + { + if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) + { + pAllocationInfo->memoryType = UINT32_MAX; + pAllocationInfo->deviceMemory = VK_NULL_HANDLE; + pAllocationInfo->offset = 0; + pAllocationInfo->size = hAllocation->GetSize(); + pAllocationInfo->pMappedData = VMA_NULL; + pAllocationInfo->pUserData = hAllocation->GetUserData(); + return; + } + else if(localLastUseFrameIndex == localCurrFrameIndex) + { + pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); + pAllocationInfo->deviceMemory = hAllocation->GetMemory(); + pAllocationInfo->offset = hAllocation->GetOffset(); + pAllocationInfo->size = hAllocation->GetSize(); + pAllocationInfo->pMappedData = VMA_NULL; + pAllocationInfo->pUserData = hAllocation->GetUserData(); + return; + } + else // Last use time earlier than current time. + { + if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) + { + localLastUseFrameIndex = localCurrFrameIndex; + } + } + } + } + else + { +#if VMA_STATS_STRING_ENABLED + uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); + uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); + for(;;) + { + VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); + if(localLastUseFrameIndex == localCurrFrameIndex) + { + break; + } + else // Last use time earlier than current time. + { + if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) + { + localLastUseFrameIndex = localCurrFrameIndex; + } + } + } +#endif + + pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); + pAllocationInfo->deviceMemory = hAllocation->GetMemory(); + pAllocationInfo->offset = hAllocation->GetOffset(); + pAllocationInfo->size = hAllocation->GetSize(); + pAllocationInfo->pMappedData = hAllocation->GetMappedData(); + pAllocationInfo->pUserData = hAllocation->GetUserData(); + } +} + +bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation) +{ + // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo. + if(hAllocation->CanBecomeLost()) + { + uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); + uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); + for(;;) + { + if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) + { + return false; + } + else if(localLastUseFrameIndex == localCurrFrameIndex) + { + return true; + } + else // Last use time earlier than current time. + { + if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) + { + localLastUseFrameIndex = localCurrFrameIndex; + } + } + } + } + else + { +#if VMA_STATS_STRING_ENABLED + uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); + uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); + for(;;) + { + VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); + if(localLastUseFrameIndex == localCurrFrameIndex) + { + break; + } + else // Last use time earlier than current time. + { + if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) + { + localLastUseFrameIndex = localCurrFrameIndex; + } + } + } +#endif + + return true; + } +} + +VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool) +{ + VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags); + + VmaPoolCreateInfo newCreateInfo = *pCreateInfo; + + if(newCreateInfo.maxBlockCount == 0) + { + newCreateInfo.maxBlockCount = SIZE_MAX; + } + if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + + const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); + + *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); + + VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); + if(res != VK_SUCCESS) + { + vma_delete(this, *pPool); + *pPool = VMA_NULL; + return res; + } + + // Add to m_Pools. + { + VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); + (*pPool)->SetId(m_NextPoolId++); + VmaVectorInsertSorted(m_Pools, *pPool); + } + + return VK_SUCCESS; +} + +void VmaAllocator_T::DestroyPool(VmaPool pool) +{ + // Remove from m_Pools. + { + VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); + bool success = VmaVectorRemoveSorted(m_Pools, pool); + VMA_ASSERT(success && "Pool not found in Allocator."); + } + + vma_delete(this, pool); +} + +void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats) +{ + pool->m_BlockVector.GetPoolStats(pPoolStats); +} + +void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) +{ + m_CurrentFrameIndex.store(frameIndex); + +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) + { + UpdateVulkanBudget(); + } +#endif // #if VMA_MEMORY_BUDGET +} + +void VmaAllocator_T::MakePoolAllocationsLost( + VmaPool hPool, + size_t* pLostAllocationCount) +{ + hPool->m_BlockVector.MakePoolAllocationsLost( + m_CurrentFrameIndex.load(), + pLostAllocationCount); +} + +VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) +{ + return hPool->m_BlockVector.CheckCorruption(); +} + +VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) +{ + VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT; + + // Process default pools. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + if(((1u << memTypeIndex) & memoryTypeBits) != 0) + { + VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(pBlockVector); + VkResult localRes = pBlockVector->CheckCorruption(); + switch(localRes) + { + case VK_ERROR_FEATURE_NOT_PRESENT: + break; + case VK_SUCCESS: + finalRes = VK_SUCCESS; + break; + default: + return localRes; + } + } + } + + // Process custom pools. + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) + { + if(((1u << m_Pools[poolIndex]->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) + { + VkResult localRes = m_Pools[poolIndex]->m_BlockVector.CheckCorruption(); + switch(localRes) + { + case VK_ERROR_FEATURE_NOT_PRESENT: + break; + case VK_SUCCESS: + finalRes = VK_SUCCESS; + break; + default: + return localRes; + } + } + } + } + + return finalRes; +} + +void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation) +{ + *pAllocation = m_AllocationObjectAllocator.Allocate(); + (*pAllocation)->Ctor(VMA_FRAME_INDEX_LOST, false); + (*pAllocation)->InitLost(); +} + +VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory) +{ + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex); + + // HeapSizeLimit is in effect for this heap. + if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0) + { + const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; + VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex]; + for(;;) + { + const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize; + if(blockBytesAfterAllocation > heapSize) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation)) + { + break; + } + } + } + else + { + m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize; + } + + // VULKAN CALL vkAllocateMemory. + VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); + + if(res == VK_SUCCESS) + { +#if VMA_MEMORY_BUDGET + ++m_Budget.m_OperationsSinceBudgetFetch; +#endif + + // Informative callback. + if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) + { + (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize); + } + } + else + { + m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize; + } + + return res; +} + +void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) +{ + // Informative callback. + if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) + { + (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size); + } + + // VULKAN CALL vkFreeMemory. + (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks()); + + m_Budget.m_BlockBytes[MemoryTypeIndexToHeapIndex(memoryType)] -= size; +} + +VkResult VmaAllocator_T::BindVulkanBuffer( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkBuffer buffer, + const void* pNext) +{ + if(pNext != VMA_NULL) + { +#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 + if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && + m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL) + { + VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR }; + bindBufferMemoryInfo.pNext = pNext; + bindBufferMemoryInfo.buffer = buffer; + bindBufferMemoryInfo.memory = memory; + bindBufferMemoryInfo.memoryOffset = memoryOffset; + return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); + } + else +#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 + { + return VK_ERROR_EXTENSION_NOT_PRESENT; + } + } + else + { + return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset); + } +} + +VkResult VmaAllocator_T::BindVulkanImage( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkImage image, + const void* pNext) +{ + if(pNext != VMA_NULL) + { +#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 + if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && + m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL) + { + VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR }; + bindBufferMemoryInfo.pNext = pNext; + bindBufferMemoryInfo.image = image; + bindBufferMemoryInfo.memory = memory; + bindBufferMemoryInfo.memoryOffset = memoryOffset; + return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); + } + else +#endif // #if VMA_BIND_MEMORY2 + { + return VK_ERROR_EXTENSION_NOT_PRESENT; + } + } + else + { + return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset); + } +} + +VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData) +{ + if(hAllocation->CanBecomeLost()) + { + return VK_ERROR_MEMORY_MAP_FAILED; + } + + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + char *pBytes = VMA_NULL; + VkResult res = pBlock->Map(this, 1, (void**)&pBytes); + if(res == VK_SUCCESS) + { + *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset(); + hAllocation->BlockAllocMap(); + } + return res; + } + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + return hAllocation->DedicatedAllocMap(this, ppData); + default: + VMA_ASSERT(0); + return VK_ERROR_MEMORY_MAP_FAILED; + } +} + +void VmaAllocator_T::Unmap(VmaAllocation hAllocation) +{ + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + hAllocation->BlockAllocUnmap(); + pBlock->Unmap(this, 1); + } + break; + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + hAllocation->DedicatedAllocUnmap(this); + break; + default: + VMA_ASSERT(0); + } +} + +VkResult VmaAllocator_T::BindBufferMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext) +{ + VkResult res = VK_SUCCESS; + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext); + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?"); + res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext); + break; + } + default: + VMA_ASSERT(0); + } + return res; +} + +VkResult VmaAllocator_T::BindImageMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext) +{ + VkResult res = VK_SUCCESS; + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext); + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); + VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?"); + res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext); + break; + } + default: + VMA_ASSERT(0); + } + return res; +} + +void VmaAllocator_T::FlushOrInvalidateAllocation( + VmaAllocation hAllocation, + VkDeviceSize offset, VkDeviceSize size, + VMA_CACHE_OPERATION op) +{ + const uint32_t memTypeIndex = hAllocation->GetMemoryTypeIndex(); + if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) + { + const VkDeviceSize allocationSize = hAllocation->GetSize(); + VMA_ASSERT(offset <= allocationSize); + + const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; + + VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE }; + memRange.memory = hAllocation->GetMemory(); + + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); + if(size == VK_WHOLE_SIZE) + { + memRange.size = allocationSize - memRange.offset; + } + else + { + VMA_ASSERT(offset + size <= allocationSize); + memRange.size = VMA_MIN( + VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize), + allocationSize - memRange.offset); + } + break; + + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + // 1. Still within this allocation. + memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); + if(size == VK_WHOLE_SIZE) + { + size = allocationSize - offset; + } + else + { + VMA_ASSERT(offset + size <= allocationSize); + } + memRange.size = VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize); + + // 2. Adjust to whole block. + const VkDeviceSize allocationOffset = hAllocation->GetOffset(); + VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0); + const VkDeviceSize blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize(); + memRange.offset += allocationOffset; + memRange.size = VMA_MIN(memRange.size, blockSize - memRange.offset); + + break; + } + + default: + VMA_ASSERT(0); + } + + switch(op) + { + case VMA_CACHE_FLUSH: + (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange); + break; + case VMA_CACHE_INVALIDATE: + (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange); + break; + default: + VMA_ASSERT(0); + } + } + // else: Just ignore this call. +} + +void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation) +{ + VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + { + VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); + AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex]; + VMA_ASSERT(pDedicatedAllocations); + bool success = VmaVectorRemoveSorted(*pDedicatedAllocations, allocation); + VMA_ASSERT(success); + } + + VkDeviceMemory hMemory = allocation->GetMemory(); + + /* + There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory + before vkFreeMemory. + + if(allocation->GetMappedData() != VMA_NULL) + { + (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); + } + */ + + FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory); + + VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex); +} + +uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const +{ + VkBufferCreateInfo dummyBufCreateInfo; + VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo); + + uint32_t memoryTypeBits = 0; + + // Create buffer. + VkBuffer buf = VK_NULL_HANDLE; + VkResult res = (*GetVulkanFunctions().vkCreateBuffer)( + m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf); + if(res == VK_SUCCESS) + { + // Query for supported memory types. + VkMemoryRequirements memReq; + (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq); + memoryTypeBits = memReq.memoryTypeBits; + + // Destroy buffer. + (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks()); + } + + return memoryTypeBits; +} + +#if VMA_MEMORY_BUDGET + +void VmaAllocator_T::UpdateVulkanBudget() +{ + VMA_ASSERT(m_UseExtMemoryBudget); + + VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR }; + + VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT }; + memProps.pNext = &budgetProps; + + GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps); + + { + VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex); + + for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) + { + m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex]; + m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex]; + m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load(); + } + m_Budget.m_OperationsSinceBudgetFetch = 0; + } +} + +#endif // #if VMA_MEMORY_BUDGET + +void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) +{ + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS && + !hAllocation->CanBecomeLost() && + (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) + { + void* pData = VMA_NULL; + VkResult res = Map(hAllocation, &pData); + if(res == VK_SUCCESS) + { + memset(pData, (int)pattern, (size_t)hAllocation->GetSize()); + FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH); + Unmap(hAllocation); + } + else + { + VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation."); + } + } +} + +uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits() +{ + uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load(); + if(memoryTypeBits == UINT32_MAX) + { + memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits(); + m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits); + } + return memoryTypeBits; +} + +#if VMA_STATS_STRING_ENABLED + +void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) +{ + bool dedicatedAllocationsStarted = false; + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); + AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex]; + VMA_ASSERT(pDedicatedAllocVector); + if(pDedicatedAllocVector->empty() == false) + { + if(dedicatedAllocationsStarted == false) + { + dedicatedAllocationsStarted = true; + json.WriteString("DedicatedAllocations"); + json.BeginObject(); + } + + json.BeginString("Type "); + json.ContinueString(memTypeIndex); + json.EndString(); + + json.BeginArray(); + + for(size_t i = 0; i < pDedicatedAllocVector->size(); ++i) + { + json.BeginObject(true); + const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i]; + hAlloc->PrintParameters(json); + json.EndObject(); + } + + json.EndArray(); + } + } + if(dedicatedAllocationsStarted) + { + json.EndObject(); + } + + { + bool allocationsStarted = false; + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false) + { + if(allocationsStarted == false) + { + allocationsStarted = true; + json.WriteString("DefaultPools"); + json.BeginObject(); + } + + json.BeginString("Type "); + json.ContinueString(memTypeIndex); + json.EndString(); + + m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json); + } + } + if(allocationsStarted) + { + json.EndObject(); + } + } + + // Custom pools + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + const size_t poolCount = m_Pools.size(); + if(poolCount > 0) + { + json.WriteString("Pools"); + json.BeginObject(); + for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) + { + json.BeginString(); + json.ContinueString(m_Pools[poolIndex]->GetId()); + json.EndString(); + + m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json); + } + json.EndObject(); + } + } +} + +#endif // #if VMA_STATS_STRING_ENABLED + +//////////////////////////////////////////////////////////////////////////////// +// Public interface + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( + const VmaAllocatorCreateInfo* pCreateInfo, + VmaAllocator* pAllocator) +{ + VMA_ASSERT(pCreateInfo && pAllocator); + VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 || + (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) >= 1)); + VMA_DEBUG_LOG("vmaCreateAllocator"); + *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo); + return (*pAllocator)->Init(pCreateInfo); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( + VmaAllocator allocator) +{ + if(allocator != VK_NULL_HANDLE) + { + VMA_DEBUG_LOG("vmaDestroyAllocator"); + VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; + vma_delete(&allocationCallbacks, allocator); + } +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( + VmaAllocator allocator, + const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties) +{ + VMA_ASSERT(allocator && ppPhysicalDeviceProperties); + *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( + VmaAllocator allocator, + const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties) +{ + VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties); + *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( + VmaAllocator allocator, + uint32_t memoryTypeIndex, + VkMemoryPropertyFlags* pFlags) +{ + VMA_ASSERT(allocator && pFlags); + VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount()); + *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( + VmaAllocator allocator, + uint32_t frameIndex) +{ + VMA_ASSERT(allocator); + VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->SetCurrentFrameIndex(frameIndex); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( + VmaAllocator allocator, + VmaStats* pStats) +{ + VMA_ASSERT(allocator && pStats); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + allocator->CalculateStats(pStats); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget( + VmaAllocator allocator, + VmaBudget* pBudget) +{ + VMA_ASSERT(allocator && pBudget); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + allocator->GetBudget(pBudget, 0, allocator->GetMemoryHeapCount()); +} + +#if VMA_STATS_STRING_ENABLED + +VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( + VmaAllocator allocator, + char** ppStatsString, + VkBool32 detailedMap) +{ + VMA_ASSERT(allocator && ppStatsString); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VmaStringBuilder sb(allocator); + { + VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb); + json.BeginObject(); + + VmaBudget budget[VK_MAX_MEMORY_HEAPS]; + allocator->GetBudget(budget, 0, allocator->GetMemoryHeapCount()); + + VmaStats stats; + allocator->CalculateStats(&stats); + + json.WriteString("Total"); + VmaPrintStatInfo(json, stats.total); + + for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) + { + json.BeginString("Heap "); + json.ContinueString(heapIndex); + json.EndString(); + json.BeginObject(); + + json.WriteString("Size"); + json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size); + + json.WriteString("Flags"); + json.BeginArray(true); + if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0) + { + json.WriteString("DEVICE_LOCAL"); + } + json.EndArray(); + + json.WriteString("Budget"); + json.BeginObject(); + { + json.WriteString("BlockBytes"); + json.WriteNumber(budget[heapIndex].blockBytes); + json.WriteString("AllocationBytes"); + json.WriteNumber(budget[heapIndex].allocationBytes); + json.WriteString("Usage"); + json.WriteNumber(budget[heapIndex].usage); + json.WriteString("Budget"); + json.WriteNumber(budget[heapIndex].budget); + } + json.EndObject(); + + if(stats.memoryHeap[heapIndex].blockCount > 0) + { + json.WriteString("Stats"); + VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]); + } + + for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) + { + if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) + { + json.BeginString("Type "); + json.ContinueString(typeIndex); + json.EndString(); + + json.BeginObject(); + + json.WriteString("Flags"); + json.BeginArray(true); + VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags; + if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0) + { + json.WriteString("DEVICE_LOCAL"); + } + if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) + { + json.WriteString("HOST_VISIBLE"); + } + if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0) + { + json.WriteString("HOST_COHERENT"); + } + if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0) + { + json.WriteString("HOST_CACHED"); + } + if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0) + { + json.WriteString("LAZILY_ALLOCATED"); + } + json.EndArray(); + + if(stats.memoryType[typeIndex].blockCount > 0) + { + json.WriteString("Stats"); + VmaPrintStatInfo(json, stats.memoryType[typeIndex]); + } + + json.EndObject(); + } + } + + json.EndObject(); + } + if(detailedMap == VK_TRUE) + { + allocator->PrintDetailedMap(json); + } + + json.EndObject(); + } + + const size_t len = sb.GetLength(); + char* const pChars = vma_new_array(allocator, char, len + 1); + if(len > 0) + { + memcpy(pChars, sb.GetData(), len); + } + pChars[len] = '\0'; + *ppStatsString = pChars; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( + VmaAllocator allocator, + char* pStatsString) +{ + if(pStatsString != VMA_NULL) + { + VMA_ASSERT(allocator); + size_t len = strlen(pStatsString); + vma_delete_array(allocator, pStatsString, len + 1); + } +} + +#endif // #if VMA_STATS_STRING_ENABLED + +/* +This function is not protected by any mutex because it just reads immutable data. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( + VmaAllocator allocator, + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) +{ + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + if(pAllocationCreateInfo->memoryTypeBits != 0) + { + memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits; + } + + uint32_t excludeFlags = 0; + uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags; + uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags; + uint32_t notPreferredFlags = 0; + + // Convert usage to requiredFlags and preferredFlags. + switch(pAllocationCreateInfo->usage) + { + case VMA_MEMORY_USAGE_UNKNOWN: + break; + case VMA_MEMORY_USAGE_GPU_ONLY: + if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + case VMA_MEMORY_USAGE_CPU_ONLY: + // supposed to be CPU ONLY - Propose change to this so it is guarenteed + excludeFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + break; + case VMA_MEMORY_USAGE_CPU_TO_GPU: + requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + case VMA_MEMORY_USAGE_GPU_TO_CPU: + requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + preferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; + break; + case VMA_MEMORY_USAGE_CPU_COPY: + notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + break; + case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED: + requiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; + break; + default: + VMA_ASSERT(0); + break; + } + + *pMemoryTypeIndex = UINT32_MAX; + uint32_t minCost = UINT32_MAX; + for(uint32_t memTypeIndex = 0, memTypeBit = 1; + memTypeIndex < allocator->GetMemoryTypeCount(); + ++memTypeIndex, memTypeBit <<= 1) + { + // This memory type is acceptable according to memoryTypeBits bitmask. + if((memTypeBit & memoryTypeBits) != 0) + { + const VkMemoryPropertyFlags currFlags = + allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; + // This memory type contains requiredFlags. + if((requiredFlags & ~currFlags) == 0 && (excludeFlags & currFlags) == 0) + { + // Calculate cost as number of bits from preferredFlags not present in this memory type. + uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags) + + VmaCountBitsSet(currFlags & notPreferredFlags); + // Remember memory type with lowest cost. + if(currCost < minCost) + { + *pMemoryTypeIndex = memTypeIndex; + if(currCost == 0) + { + return VK_SUCCESS; + } + minCost = currCost; + } + } + } + } + return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) +{ + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pBufferCreateInfo != VMA_NULL); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + const VkDevice hDev = allocator->m_hDevice; + VkBuffer hBuffer = VK_NULL_HANDLE; + VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer( + hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer); + if(res == VK_SUCCESS) + { + VkMemoryRequirements memReq = {}; + allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements( + hDev, hBuffer, &memReq); + + res = vmaFindMemoryTypeIndex( + allocator, + memReq.memoryTypeBits, + pAllocationCreateInfo, + pMemoryTypeIndex); + + allocator->GetVulkanFunctions().vkDestroyBuffer( + hDev, hBuffer, allocator->GetAllocationCallbacks()); + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( + VmaAllocator allocator, + const VkImageCreateInfo* pImageCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) +{ + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pImageCreateInfo != VMA_NULL); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + const VkDevice hDev = allocator->m_hDevice; + VkImage hImage = VK_NULL_HANDLE; + VkResult res = allocator->GetVulkanFunctions().vkCreateImage( + hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage); + if(res == VK_SUCCESS) + { + VkMemoryRequirements memReq = {}; + allocator->GetVulkanFunctions().vkGetImageMemoryRequirements( + hDev, hImage, &memReq); + + res = vmaFindMemoryTypeIndex( + allocator, + memReq.memoryTypeBits, + pAllocationCreateInfo, + pMemoryTypeIndex); + + allocator->GetVulkanFunctions().vkDestroyImage( + hDev, hImage, allocator->GetAllocationCallbacks()); + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( + VmaAllocator allocator, + const VmaPoolCreateInfo* pCreateInfo, + VmaPool* pPool) +{ + VMA_ASSERT(allocator && pCreateInfo && pPool); + + VMA_DEBUG_LOG("vmaCreatePool"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult res = allocator->CreatePool(pCreateInfo, pPool); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool); + } +#endif + + return res; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( + VmaAllocator allocator, + VmaPool pool) +{ + VMA_ASSERT(allocator); + + if(pool == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaDestroyPool"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool); + } +#endif + + allocator->DestroyPool(pool); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( + VmaAllocator allocator, + VmaPool pool, + VmaPoolStats* pPoolStats) +{ + VMA_ASSERT(allocator && pool && pPoolStats); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->GetPoolStats(pool, pPoolStats); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost( + VmaAllocator allocator, + VmaPool pool, + size_t* pLostAllocationCount) +{ + VMA_ASSERT(allocator && pool); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool); + } +#endif + + allocator->MakePoolAllocationsLost(pool, pLostAllocationCount); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) +{ + VMA_ASSERT(allocator && pool); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VMA_DEBUG_LOG("vmaCheckPoolCorruption"); + + return allocator->CheckPoolCorruption(pool); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( + VmaAllocator allocator, + VmaPool pool, + const char** ppName) +{ + VMA_ASSERT(allocator && pool); + + VMA_DEBUG_LOG("vmaGetPoolName"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *ppName = pool->GetName(); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( + VmaAllocator allocator, + VmaPool pool, + const char* pName) +{ + VMA_ASSERT(allocator && pool); + + VMA_DEBUG_LOG("vmaSetPoolName"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + pool->SetName(pName); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordSetPoolName(allocator->GetCurrentFrameIndex(), pool, pName); + } +#endif +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( + VmaAllocator allocator, + const VkMemoryRequirements* pVkMemoryRequirements, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult result = allocator->AllocateMemory( + *pVkMemoryRequirements, + false, // requiresDedicatedAllocation + false, // prefersDedicatedAllocation + VK_NULL_HANDLE, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_UNKNOWN, + 1, // allocationCount + pAllocation); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordAllocateMemory( + allocator->GetCurrentFrameIndex(), + *pVkMemoryRequirements, + *pCreateInfo, + *pAllocation); + } +#endif + + if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( + VmaAllocator allocator, + const VkMemoryRequirements* pVkMemoryRequirements, + const VmaAllocationCreateInfo* pCreateInfo, + size_t allocationCount, + VmaAllocation* pAllocations, + VmaAllocationInfo* pAllocationInfo) +{ + if(allocationCount == 0) + { + return VK_SUCCESS; + } + + VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations); + + VMA_DEBUG_LOG("vmaAllocateMemoryPages"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult result = allocator->AllocateMemory( + *pVkMemoryRequirements, + false, // requiresDedicatedAllocation + false, // prefersDedicatedAllocation + VK_NULL_HANDLE, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_UNKNOWN, + allocationCount, + pAllocations); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordAllocateMemoryPages( + allocator->GetCurrentFrameIndex(), + *pVkMemoryRequirements, + *pCreateInfo, + (uint64_t)allocationCount, + pAllocations); + } +#endif + + if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) + { + for(size_t i = 0; i < allocationCount; ++i) + { + allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i); + } + } + + return result; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( + VmaAllocator allocator, + VkBuffer buffer, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(buffer, vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation); + + VkResult result = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + buffer, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordAllocateMemoryForBuffer( + allocator->GetCurrentFrameIndex(), + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pCreateInfo, + *pAllocation); + } +#endif + + if(pAllocationInfo && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( + VmaAllocator allocator, + VkImage image, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemoryForImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetImageMemoryRequirements(image, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + VkResult result = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + VK_NULL_HANDLE, // dedicatedBuffer + image, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN, + 1, // allocationCount + pAllocation); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordAllocateMemoryForImage( + allocator->GetCurrentFrameIndex(), + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pCreateInfo, + *pAllocation); + } +#endif + + if(pAllocationInfo && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( + VmaAllocator allocator, + VmaAllocation allocation) +{ + VMA_ASSERT(allocator); + + if(allocation == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaFreeMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordFreeMemory( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + allocator->FreeMemory( + 1, // allocationCount + &allocation); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( + VmaAllocator allocator, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + if(allocationCount == 0) + { + return; + } + + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaFreeMemoryPages"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordFreeMemoryPages( + allocator->GetCurrentFrameIndex(), + (uint64_t)allocationCount, + pAllocations); + } +#endif + + allocator->FreeMemory(allocationCount, pAllocations); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize newSize) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_LOG("vmaResizeAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->ResizeAllocation(allocation, newSize); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( + VmaAllocator allocator, + VmaAllocation allocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && allocation && pAllocationInfo); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordGetAllocationInfo( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + allocator->GetAllocationInfo(allocation, pAllocationInfo); +} + +VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation( + VmaAllocator allocator, + VmaAllocation allocation) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordTouchAllocation( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + return allocator->TouchAllocation(allocation); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( + VmaAllocator allocator, + VmaAllocation allocation, + void* pUserData) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocation->SetUserData(allocator, pUserData); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordSetAllocationUserData( + allocator->GetCurrentFrameIndex(), + allocation, + pUserData); + } +#endif +} + +VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation( + VmaAllocator allocator, + VmaAllocation* pAllocation) +{ + VMA_ASSERT(allocator && pAllocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + + allocator->CreateLostAllocation(pAllocation); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordCreateLostAllocation( + allocator->GetCurrentFrameIndex(), + *pAllocation); + } +#endif +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( + VmaAllocator allocator, + VmaAllocation allocation, + void** ppData) +{ + VMA_ASSERT(allocator && allocation && ppData); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult res = allocator->Map(allocation, ppData); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordMapMemory( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + return res; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( + VmaAllocator allocator, + VmaAllocation allocation) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordUnmapMemory( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + allocator->Unmap(allocation); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) +{ + VMA_ASSERT(allocator && allocation); + + // VMA_DEBUG_LOG("vmaFlushAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordFlushAllocation( + allocator->GetCurrentFrameIndex(), + allocation, offset, size); + } +#endif +} + +VMA_CALL_PRE void VMA_CALL_POST vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) +{ + VMA_ASSERT(allocator && allocation); + + // VMA_DEBUG_LOG("vmaInvalidateAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordInvalidateAllocation( + allocator->GetCurrentFrameIndex(), + allocation, offset, size); + } +#endif +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits) +{ + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaCheckCorruption"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->CheckCorruption(memoryTypeBits); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( + VmaAllocator allocator, + VmaAllocation* pAllocations, + size_t allocationCount, + VkBool32* pAllocationsChanged, + const VmaDefragmentationInfo *pDefragmentationInfo, + VmaDefragmentationStats* pDefragmentationStats) +{ + // Deprecated interface, reimplemented using new one. + + VmaDefragmentationInfo2 info2 = {}; + info2.allocationCount = (uint32_t)allocationCount; + info2.pAllocations = pAllocations; + info2.pAllocationsChanged = pAllocationsChanged; + if(pDefragmentationInfo != VMA_NULL) + { + info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove; + info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove; + } + else + { + info2.maxCpuAllocationsToMove = UINT32_MAX; + info2.maxCpuBytesToMove = VK_WHOLE_SIZE; + } + // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero. + + VmaDefragmentationContext ctx; + VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx); + if(res == VK_NOT_READY) + { + res = vmaDefragmentationEnd( allocator, ctx); + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( + VmaAllocator allocator, + const VmaDefragmentationInfo2* pInfo, + VmaDefragmentationStats* pStats, + VmaDefragmentationContext *pContext) +{ + VMA_ASSERT(allocator && pInfo && pContext); + + // Degenerate case: Nothing to defragment. + if(pInfo->allocationCount == 0 && pInfo->poolCount == 0) + { + return VK_SUCCESS; + } + + VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL); + VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL); +#if VMA_HEAVY_ASSERT + VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations)); + VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools)); +#endif + VMA_DEBUG_LOG("vmaDefragmentationBegin"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordDefragmentationBegin( + allocator->GetCurrentFrameIndex(), *pInfo, *pContext); + } +#endif + + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( + VmaAllocator allocator, + VmaDefragmentationContext context) +{ + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaDefragmentationEnd"); + + if(context != VK_NULL_HANDLE) + { + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordDefragmentationEnd( + allocator->GetCurrentFrameIndex(), context); + } +#endif + + return allocator->DefragmentationEnd(context); + } + else + { + return VK_SUCCESS; + } +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( + VmaAllocator allocator, + VmaDefragmentationContext context, + VmaDefragmentationPassInfo* pInfo + ) +{ + VMA_ASSERT(allocator); + VMA_ASSERT(pInfo); +#if VMA_HEAVY_ASSERT + VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->moveCount, pInfo->pMoves)); +#endif + VMA_DEBUG_LOG("vmaBeginDefragmentationPass"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + if(context == VK_NULL_HANDLE) + { + pInfo->moveCount = 0; + return VK_SUCCESS; + } + + return allocator->DefragmentationPassBegin(pInfo, context); +} +VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( + VmaAllocator allocator, + VmaDefragmentationContext context) +{ + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaEndDefragmentationPass"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + if(context == VK_NULL_HANDLE) + return VK_SUCCESS; + + return allocator->DefragmentationPassEnd(context); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkBuffer buffer) +{ + VMA_ASSERT(allocator && allocation && buffer); + + VMA_DEBUG_LOG("vmaBindBufferMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize allocationLocalOffset, + VkBuffer buffer, + const void* pNext) +{ + VMA_ASSERT(allocator && allocation && buffer); + + VMA_DEBUG_LOG("vmaBindBufferMemory2"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkImage image) +{ + VMA_ASSERT(allocator && allocation && image); + + VMA_DEBUG_LOG("vmaBindImageMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindImageMemory(allocation, 0, image, VMA_NULL); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize allocationLocalOffset, + VkImage image, + const void* pNext) +{ + VMA_ASSERT(allocator && allocation && image); + + VMA_DEBUG_LOG("vmaBindImageMemory2"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkBuffer* pBuffer, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation); + + if(pBufferCreateInfo->size == 0) + { + return VK_ERROR_VALIDATION_FAILED_EXT; + } + + VMA_DEBUG_LOG("vmaCreateBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pBuffer = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkBuffer. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( + allocator->m_hDevice, + pBufferCreateInfo, + allocator->GetAllocationCallbacks(), + pBuffer); + if(res >= 0) + { + // 2. vkGetBufferMemoryRequirements. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + // Make sure alignment requirements for specific buffer usages reported + // in Physical Device Properties are included in alignment reported by memory requirements. + if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) != 0) + { + VMA_ASSERT(vkMemReq.alignment % + allocator->m_PhysicalDeviceProperties.limits.minTexelBufferOffsetAlignment == 0); + } + if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) != 0) + { + VMA_ASSERT(vkMemReq.alignment % + allocator->m_PhysicalDeviceProperties.limits.minUniformBufferOffsetAlignment == 0); + } + if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT) != 0) + { + VMA_ASSERT(vkMemReq.alignment % + allocator->m_PhysicalDeviceProperties.limits.minStorageBufferOffsetAlignment == 0); + } + + // 3. Allocate memory using allocator. + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pBuffer, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + *pAllocationCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordCreateBuffer( + allocator->GetCurrentFrameIndex(), + *pBufferCreateInfo, + *pAllocationCreateInfo, + *pAllocation); + } +#endif + + if(res >= 0) + { + // 3. Bind buffer with memory. + if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) + { + res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); + } + if(res >= 0) + { + // All steps succeeded. + #if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); + #endif + if(pAllocationInfo != VMA_NULL) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + return res; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( + VmaAllocator allocator, + VkBuffer buffer, + VmaAllocation allocation) +{ + VMA_ASSERT(allocator); + + if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaDestroyBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordDestroyBuffer( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + if(buffer != VK_NULL_HANDLE) + { + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks()); + } + + if(allocation != VK_NULL_HANDLE) + { + allocator->FreeMemory( + 1, // allocationCount + &allocation); + } +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( + VmaAllocator allocator, + const VkImageCreateInfo* pImageCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkImage* pImage, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation); + + if(pImageCreateInfo->extent.width == 0 || + pImageCreateInfo->extent.height == 0 || + pImageCreateInfo->extent.depth == 0 || + pImageCreateInfo->mipLevels == 0 || + pImageCreateInfo->arrayLayers == 0) + { + return VK_ERROR_VALIDATION_FAILED_EXT; + } + + VMA_DEBUG_LOG("vmaCreateImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pImage = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkImage. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( + allocator->m_hDevice, + pImageCreateInfo, + allocator->GetAllocationCallbacks(), + pImage); + if(res >= 0) + { + VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ? + VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL : + VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR; + + // 2. Allocate memory using allocator. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetImageMemoryRequirements(*pImage, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + VK_NULL_HANDLE, // dedicatedBuffer + *pImage, // dedicatedImage + *pAllocationCreateInfo, + suballocType, + 1, // allocationCount + pAllocation); + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordCreateImage( + allocator->GetCurrentFrameIndex(), + *pImageCreateInfo, + *pAllocationCreateInfo, + *pAllocation); + } +#endif + + if(res >= 0) + { + // 3. Bind image with memory. + if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) + { + res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL); + } + if(res >= 0) + { + // All steps succeeded. + #if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage); + #endif + if(pAllocationInfo != VMA_NULL) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + *pImage = VK_NULL_HANDLE; + return res; + } + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + *pImage = VK_NULL_HANDLE; + return res; + } + return res; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( + VmaAllocator allocator, + VkImage image, + VmaAllocation allocation) +{ + VMA_ASSERT(allocator); + + if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaDestroyImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if(allocator->GetRecorder() != VMA_NULL) + { + allocator->GetRecorder()->RecordDestroyImage( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + if(image != VK_NULL_HANDLE) + { + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks()); + } + if(allocation != VK_NULL_HANDLE) + { + allocator->FreeMemory( + 1, // allocationCount + &allocation); + } +} + +#endif // #ifdef VMA_IMPLEMENTATION diff --git a/include/vku/volk/volk.Last.c b/include/vku/volk/volk.Last.c new file mode 100644 index 0000000..ac6e581 --- /dev/null +++ b/include/vku/volk/volk.Last.c @@ -0,0 +1,2278 @@ +/* This file is part of volk library; see volk.h for version/license details */ +/* clang-format off */ +#include "volk.h" + +#ifdef _WIN32 + typedef const char* LPCSTR; + typedef struct HINSTANCE__* HINSTANCE; + typedef HINSTANCE HMODULE; + #ifdef _WIN64 + typedef __int64 (__stdcall* FARPROC)(void); + #else + typedef int (__stdcall* FARPROC)(void); + #endif +#else +# include +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#ifdef _WIN32 +__declspec(dllimport) HMODULE __stdcall LoadLibraryA(LPCSTR); +__declspec(dllimport) FARPROC __stdcall GetProcAddress(HMODULE, LPCSTR); +#endif + +static VkInstance loadedInstance = VK_NULL_HANDLE; +static VkDevice loadedDevice = VK_NULL_HANDLE; + +static void volkGenLoadLoader(void* context, PFN_vkVoidFunction (*load)(void*, const char*)); +static void volkGenLoadInstance(void* context, PFN_vkVoidFunction (*load)(void*, const char*)); +static void volkGenLoadDevice(void* context, PFN_vkVoidFunction (*load)(void*, const char*)); +static void volkGenLoadDeviceTable(struct VolkDeviceTable* table, void* context, PFN_vkVoidFunction (*load)(void*, const char*)); + +static PFN_vkVoidFunction vkGetInstanceProcAddrStub(void* context, const char* name) +{ + return vkGetInstanceProcAddr((VkInstance)context, name); +} + +static PFN_vkVoidFunction vkGetDeviceProcAddrStub(void* context, const char* name) +{ + return vkGetDeviceProcAddr((VkDevice)context, name); +} + +VkResult volkInitialize(void) +{ +#if defined(_WIN32) + HMODULE module = LoadLibraryA("vulkan-1.dll"); + if (!module) + return VK_ERROR_INITIALIZATION_FAILED; + + // note: function pointer is cast through void function pointer to silence cast-function-type warning on gcc8 + vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)(void(*)(void))GetProcAddress(module, "vkGetInstanceProcAddr"); +#elif defined(__APPLE__) + void* module = dlopen("libVulkan->dylib", RTLD_NOW | RTLD_LOCAL); + if (!module) + module = dlopen("libVulkan->1.dylib", RTLD_NOW | RTLD_LOCAL); + if (!module) + module = dlopen("libMoltenVK.dylib", RTLD_NOW | RTLD_LOCAL); + if (!module) + return VK_ERROR_INITIALIZATION_FAILED; + + vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)dlsym(module, "vkGetInstanceProcAddr"); +#else + void* module = dlopen("libVulkan->so.1", RTLD_NOW | RTLD_LOCAL); + if (!module) + module = dlopen("libVulkan->so", RTLD_NOW | RTLD_LOCAL); + if (!module) + return VK_ERROR_INITIALIZATION_FAILED; + + vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)dlsym(module, "vkGetInstanceProcAddr"); +#endif + + volkGenLoadLoader(NULL, vkGetInstanceProcAddrStub); + + return VK_SUCCESS; +} + +void volkInitializeCustom(PFN_vkGetInstanceProcAddr handler) +{ + vkGetInstanceProcAddr = handler; + + volkGenLoadLoader(NULL, vkGetInstanceProcAddrStub); +} + +uint32_t volkGetInstanceVersion(void) +{ +#if defined(VK_VERSION_1_1) + uint32_t apiVersion = 0; + if (vkEnumerateInstanceVersion && vkEnumerateInstanceVersion(&apiVersion) == VK_SUCCESS) + return apiVersion; +#endif + + if (vkCreateInstance) + return VK_API_VERSION_1_0; + + return 0; +} + +void volkLoadInstance(VkInstance instance) +{ + loadedInstance = instance; + volkGenLoadInstance(instance, vkGetInstanceProcAddrStub); + volkGenLoadDevice(instance, vkGetInstanceProcAddrStub); +} + +void volkLoadInstanceOnly(VkInstance instance) +{ + loadedInstance = instance; + volkGenLoadInstance(instance, vkGetInstanceProcAddrStub); +} + +VkInstance volkGetLoadedInstance() +{ + return loadedInstance; +} + +void volkLoadDevice(VkDevice device) +{ + loadedDevice = device; + volkGenLoadDevice(device, vkGetDeviceProcAddrStub); +} + +VkDevice volkGetLoadedDevice() +{ + return loadedDevice; +} + +void volkLoadDeviceTable(struct VolkDeviceTable* table, VkDevice device) +{ + volkGenLoadDeviceTable(table, device, vkGetDeviceProcAddrStub); +} + +static void volkGenLoadLoader(void* context, PFN_vkVoidFunction (*load)(void*, const char*)) +{ + /* VOLK_GENERATE_LOAD_LOADER */ +#if defined(VK_VERSION_1_0) + vkCreateInstance = (PFN_vkCreateInstance)load(context, "vkCreateInstance"); + vkEnumerateInstanceExtensionProperties = (PFN_vkEnumerateInstanceExtensionProperties)load(context, "vkEnumerateInstanceExtensionProperties"); + vkEnumerateInstanceLayerProperties = (PFN_vkEnumerateInstanceLayerProperties)load(context, "vkEnumerateInstanceLayerProperties"); +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) + vkEnumerateInstanceVersion = (PFN_vkEnumerateInstanceVersion)load(context, "vkEnumerateInstanceVersion"); +#endif /* defined(VK_VERSION_1_1) */ + /* VOLK_GENERATE_LOAD_LOADER */ +} + +static void volkGenLoadInstance(void* context, PFN_vkVoidFunction (*load)(void*, const char*)) +{ + /* VOLK_GENERATE_LOAD_INSTANCE */ +#if defined(VK_VERSION_1_0) + vkCreateDevice = (PFN_vkCreateDevice)load(context, "vkCreateDevice"); + vkDestroyInstance = (PFN_vkDestroyInstance)load(context, "vkDestroyInstance"); + vkEnumerateDeviceExtensionProperties = (PFN_vkEnumerateDeviceExtensionProperties)load(context, "vkEnumerateDeviceExtensionProperties"); + vkEnumerateDeviceLayerProperties = (PFN_vkEnumerateDeviceLayerProperties)load(context, "vkEnumerateDeviceLayerProperties"); + vkEnumeratePhysicalDevices = (PFN_vkEnumeratePhysicalDevices)load(context, "vkEnumeratePhysicalDevices"); + vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)load(context, "vkGetDeviceProcAddr"); + vkGetPhysicalDeviceFeatures = (PFN_vkGetPhysicalDeviceFeatures)load(context, "vkGetPhysicalDeviceFeatures"); + vkGetPhysicalDeviceFormatProperties = (PFN_vkGetPhysicalDeviceFormatProperties)load(context, "vkGetPhysicalDeviceFormatProperties"); + vkGetPhysicalDeviceImageFormatProperties = (PFN_vkGetPhysicalDeviceImageFormatProperties)load(context, "vkGetPhysicalDeviceImageFormatProperties"); + vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)load(context, "vkGetPhysicalDeviceMemoryProperties"); + vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)load(context, "vkGetPhysicalDeviceProperties"); + vkGetPhysicalDeviceQueueFamilyProperties = (PFN_vkGetPhysicalDeviceQueueFamilyProperties)load(context, "vkGetPhysicalDeviceQueueFamilyProperties"); + vkGetPhysicalDeviceSparseImageFormatProperties = (PFN_vkGetPhysicalDeviceSparseImageFormatProperties)load(context, "vkGetPhysicalDeviceSparseImageFormatProperties"); +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) + vkEnumeratePhysicalDeviceGroups = (PFN_vkEnumeratePhysicalDeviceGroups)load(context, "vkEnumeratePhysicalDeviceGroups"); + vkGetPhysicalDeviceExternalBufferProperties = (PFN_vkGetPhysicalDeviceExternalBufferProperties)load(context, "vkGetPhysicalDeviceExternalBufferProperties"); + vkGetPhysicalDeviceExternalFenceProperties = (PFN_vkGetPhysicalDeviceExternalFenceProperties)load(context, "vkGetPhysicalDeviceExternalFenceProperties"); + vkGetPhysicalDeviceExternalSemaphoreProperties = (PFN_vkGetPhysicalDeviceExternalSemaphoreProperties)load(context, "vkGetPhysicalDeviceExternalSemaphoreProperties"); + vkGetPhysicalDeviceFeatures2 = (PFN_vkGetPhysicalDeviceFeatures2)load(context, "vkGetPhysicalDeviceFeatures2"); + vkGetPhysicalDeviceFormatProperties2 = (PFN_vkGetPhysicalDeviceFormatProperties2)load(context, "vkGetPhysicalDeviceFormatProperties2"); + vkGetPhysicalDeviceImageFormatProperties2 = (PFN_vkGetPhysicalDeviceImageFormatProperties2)load(context, "vkGetPhysicalDeviceImageFormatProperties2"); + vkGetPhysicalDeviceMemoryProperties2 = (PFN_vkGetPhysicalDeviceMemoryProperties2)load(context, "vkGetPhysicalDeviceMemoryProperties2"); + vkGetPhysicalDeviceProperties2 = (PFN_vkGetPhysicalDeviceProperties2)load(context, "vkGetPhysicalDeviceProperties2"); + vkGetPhysicalDeviceQueueFamilyProperties2 = (PFN_vkGetPhysicalDeviceQueueFamilyProperties2)load(context, "vkGetPhysicalDeviceQueueFamilyProperties2"); + vkGetPhysicalDeviceSparseImageFormatProperties2 = (PFN_vkGetPhysicalDeviceSparseImageFormatProperties2)load(context, "vkGetPhysicalDeviceSparseImageFormatProperties2"); +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_EXT_acquire_drm_display) + vkAcquireDrmDisplayEXT = (PFN_vkAcquireDrmDisplayEXT)load(context, "vkAcquireDrmDisplayEXT"); + vkGetDrmDisplayEXT = (PFN_vkGetDrmDisplayEXT)load(context, "vkGetDrmDisplayEXT"); +#endif /* defined(VK_EXT_acquire_drm_display) */ +#if defined(VK_EXT_acquire_xlib_display) + vkAcquireXlibDisplayEXT = (PFN_vkAcquireXlibDisplayEXT)load(context, "vkAcquireXlibDisplayEXT"); + vkGetRandROutputDisplayEXT = (PFN_vkGetRandROutputDisplayEXT)load(context, "vkGetRandROutputDisplayEXT"); +#endif /* defined(VK_EXT_acquire_xlib_display) */ +#if defined(VK_EXT_calibrated_timestamps) + vkGetPhysicalDeviceCalibrateableTimeDomainsEXT = (PFN_vkGetPhysicalDeviceCalibrateableTimeDomainsEXT)load(context, "vkGetPhysicalDeviceCalibrateableTimeDomainsEXT"); +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_debug_report) + vkCreateDebugReportCallbackEXT = (PFN_vkCreateDebugReportCallbackEXT)load(context, "vkCreateDebugReportCallbackEXT"); + vkDebugReportMessageEXT = (PFN_vkDebugReportMessageEXT)load(context, "vkDebugReportMessageEXT"); + vkDestroyDebugReportCallbackEXT = (PFN_vkDestroyDebugReportCallbackEXT)load(context, "vkDestroyDebugReportCallbackEXT"); +#endif /* defined(VK_EXT_debug_report) */ +#if defined(VK_EXT_debug_utils) + vkCmdBeginDebugUtilsLabelEXT = (PFN_vkCmdBeginDebugUtilsLabelEXT)load(context, "vkCmdBeginDebugUtilsLabelEXT"); + vkCmdEndDebugUtilsLabelEXT = (PFN_vkCmdEndDebugUtilsLabelEXT)load(context, "vkCmdEndDebugUtilsLabelEXT"); + vkCmdInsertDebugUtilsLabelEXT = (PFN_vkCmdInsertDebugUtilsLabelEXT)load(context, "vkCmdInsertDebugUtilsLabelEXT"); + vkCreateDebugUtilsMessengerEXT = (PFN_vkCreateDebugUtilsMessengerEXT)load(context, "vkCreateDebugUtilsMessengerEXT"); + vkDestroyDebugUtilsMessengerEXT = (PFN_vkDestroyDebugUtilsMessengerEXT)load(context, "vkDestroyDebugUtilsMessengerEXT"); + vkQueueBeginDebugUtilsLabelEXT = (PFN_vkQueueBeginDebugUtilsLabelEXT)load(context, "vkQueueBeginDebugUtilsLabelEXT"); + vkQueueEndDebugUtilsLabelEXT = (PFN_vkQueueEndDebugUtilsLabelEXT)load(context, "vkQueueEndDebugUtilsLabelEXT"); + vkQueueInsertDebugUtilsLabelEXT = (PFN_vkQueueInsertDebugUtilsLabelEXT)load(context, "vkQueueInsertDebugUtilsLabelEXT"); + vkSetDebugUtilsObjectNameEXT = (PFN_vkSetDebugUtilsObjectNameEXT)load(context, "vkSetDebugUtilsObjectNameEXT"); + vkSetDebugUtilsObjectTagEXT = (PFN_vkSetDebugUtilsObjectTagEXT)load(context, "vkSetDebugUtilsObjectTagEXT"); + vkSubmitDebugUtilsMessageEXT = (PFN_vkSubmitDebugUtilsMessageEXT)load(context, "vkSubmitDebugUtilsMessageEXT"); +#endif /* defined(VK_EXT_debug_utils) */ +#if defined(VK_EXT_direct_mode_display) + vkReleaseDisplayEXT = (PFN_vkReleaseDisplayEXT)load(context, "vkReleaseDisplayEXT"); +#endif /* defined(VK_EXT_direct_mode_display) */ +#if defined(VK_EXT_directfb_surface) + vkCreateDirectFBSurfaceEXT = (PFN_vkCreateDirectFBSurfaceEXT)load(context, "vkCreateDirectFBSurfaceEXT"); + vkGetPhysicalDeviceDirectFBPresentationSupportEXT = (PFN_vkGetPhysicalDeviceDirectFBPresentationSupportEXT)load(context, "vkGetPhysicalDeviceDirectFBPresentationSupportEXT"); +#endif /* defined(VK_EXT_directfb_surface) */ +#if defined(VK_EXT_display_surface_counter) + vkGetPhysicalDeviceSurfaceCapabilities2EXT = (PFN_vkGetPhysicalDeviceSurfaceCapabilities2EXT)load(context, "vkGetPhysicalDeviceSurfaceCapabilities2EXT"); +#endif /* defined(VK_EXT_display_surface_counter) */ +#if defined(VK_EXT_full_screen_exclusive) + vkGetPhysicalDeviceSurfacePresentModes2EXT = (PFN_vkGetPhysicalDeviceSurfacePresentModes2EXT)load(context, "vkGetPhysicalDeviceSurfacePresentModes2EXT"); +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_headless_surface) + vkCreateHeadlessSurfaceEXT = (PFN_vkCreateHeadlessSurfaceEXT)load(context, "vkCreateHeadlessSurfaceEXT"); +#endif /* defined(VK_EXT_headless_surface) */ +#if defined(VK_EXT_metal_surface) + vkCreateMetalSurfaceEXT = (PFN_vkCreateMetalSurfaceEXT)load(context, "vkCreateMetalSurfaceEXT"); +#endif /* defined(VK_EXT_metal_surface) */ +#if defined(VK_EXT_sample_locations) + vkGetPhysicalDeviceMultisamplePropertiesEXT = (PFN_vkGetPhysicalDeviceMultisamplePropertiesEXT)load(context, "vkGetPhysicalDeviceMultisamplePropertiesEXT"); +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_tooling_info) + vkGetPhysicalDeviceToolPropertiesEXT = (PFN_vkGetPhysicalDeviceToolPropertiesEXT)load(context, "vkGetPhysicalDeviceToolPropertiesEXT"); +#endif /* defined(VK_EXT_tooling_info) */ +#if defined(VK_FUCHSIA_imagepipe_surface) + vkCreateImagePipeSurfaceFUCHSIA = (PFN_vkCreateImagePipeSurfaceFUCHSIA)load(context, "vkCreateImagePipeSurfaceFUCHSIA"); +#endif /* defined(VK_FUCHSIA_imagepipe_surface) */ +#if defined(VK_GGP_stream_descriptor_surface) + vkCreateStreamDescriptorSurfaceGGP = (PFN_vkCreateStreamDescriptorSurfaceGGP)load(context, "vkCreateStreamDescriptorSurfaceGGP"); +#endif /* defined(VK_GGP_stream_descriptor_surface) */ +#if defined(VK_KHR_android_surface) + vkCreateAndroidSurfaceKHR = (PFN_vkCreateAndroidSurfaceKHR)load(context, "vkCreateAndroidSurfaceKHR"); +#endif /* defined(VK_KHR_android_surface) */ +#if defined(VK_KHR_device_group_creation) + vkEnumeratePhysicalDeviceGroupsKHR = (PFN_vkEnumeratePhysicalDeviceGroupsKHR)load(context, "vkEnumeratePhysicalDeviceGroupsKHR"); +#endif /* defined(VK_KHR_device_group_creation) */ +#if defined(VK_KHR_display) + vkCreateDisplayModeKHR = (PFN_vkCreateDisplayModeKHR)load(context, "vkCreateDisplayModeKHR"); + vkCreateDisplayPlaneSurfaceKHR = (PFN_vkCreateDisplayPlaneSurfaceKHR)load(context, "vkCreateDisplayPlaneSurfaceKHR"); + vkGetDisplayModePropertiesKHR = (PFN_vkGetDisplayModePropertiesKHR)load(context, "vkGetDisplayModePropertiesKHR"); + vkGetDisplayPlaneCapabilitiesKHR = (PFN_vkGetDisplayPlaneCapabilitiesKHR)load(context, "vkGetDisplayPlaneCapabilitiesKHR"); + vkGetDisplayPlaneSupportedDisplaysKHR = (PFN_vkGetDisplayPlaneSupportedDisplaysKHR)load(context, "vkGetDisplayPlaneSupportedDisplaysKHR"); + vkGetPhysicalDeviceDisplayPlanePropertiesKHR = (PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR)load(context, "vkGetPhysicalDeviceDisplayPlanePropertiesKHR"); + vkGetPhysicalDeviceDisplayPropertiesKHR = (PFN_vkGetPhysicalDeviceDisplayPropertiesKHR)load(context, "vkGetPhysicalDeviceDisplayPropertiesKHR"); +#endif /* defined(VK_KHR_display) */ +#if defined(VK_KHR_external_fence_capabilities) + vkGetPhysicalDeviceExternalFencePropertiesKHR = (PFN_vkGetPhysicalDeviceExternalFencePropertiesKHR)load(context, "vkGetPhysicalDeviceExternalFencePropertiesKHR"); +#endif /* defined(VK_KHR_external_fence_capabilities) */ +#if defined(VK_KHR_external_memory_capabilities) + vkGetPhysicalDeviceExternalBufferPropertiesKHR = (PFN_vkGetPhysicalDeviceExternalBufferPropertiesKHR)load(context, "vkGetPhysicalDeviceExternalBufferPropertiesKHR"); +#endif /* defined(VK_KHR_external_memory_capabilities) */ +#if defined(VK_KHR_external_semaphore_capabilities) + vkGetPhysicalDeviceExternalSemaphorePropertiesKHR = (PFN_vkGetPhysicalDeviceExternalSemaphorePropertiesKHR)load(context, "vkGetPhysicalDeviceExternalSemaphorePropertiesKHR"); +#endif /* defined(VK_KHR_external_semaphore_capabilities) */ +#if defined(VK_KHR_fragment_shading_rate) + vkGetPhysicalDeviceFragmentShadingRatesKHR = (PFN_vkGetPhysicalDeviceFragmentShadingRatesKHR)load(context, "vkGetPhysicalDeviceFragmentShadingRatesKHR"); +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_display_properties2) + vkGetDisplayModeProperties2KHR = (PFN_vkGetDisplayModeProperties2KHR)load(context, "vkGetDisplayModeProperties2KHR"); + vkGetDisplayPlaneCapabilities2KHR = (PFN_vkGetDisplayPlaneCapabilities2KHR)load(context, "vkGetDisplayPlaneCapabilities2KHR"); + vkGetPhysicalDeviceDisplayPlaneProperties2KHR = (PFN_vkGetPhysicalDeviceDisplayPlaneProperties2KHR)load(context, "vkGetPhysicalDeviceDisplayPlaneProperties2KHR"); + vkGetPhysicalDeviceDisplayProperties2KHR = (PFN_vkGetPhysicalDeviceDisplayProperties2KHR)load(context, "vkGetPhysicalDeviceDisplayProperties2KHR"); +#endif /* defined(VK_KHR_get_display_properties2) */ +#if defined(VK_KHR_get_physical_device_properties2) + vkGetPhysicalDeviceFeatures2KHR = (PFN_vkGetPhysicalDeviceFeatures2KHR)load(context, "vkGetPhysicalDeviceFeatures2KHR"); + vkGetPhysicalDeviceFormatProperties2KHR = (PFN_vkGetPhysicalDeviceFormatProperties2KHR)load(context, "vkGetPhysicalDeviceFormatProperties2KHR"); + vkGetPhysicalDeviceImageFormatProperties2KHR = (PFN_vkGetPhysicalDeviceImageFormatProperties2KHR)load(context, "vkGetPhysicalDeviceImageFormatProperties2KHR"); + vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2KHR)load(context, "vkGetPhysicalDeviceMemoryProperties2KHR"); + vkGetPhysicalDeviceProperties2KHR = (PFN_vkGetPhysicalDeviceProperties2KHR)load(context, "vkGetPhysicalDeviceProperties2KHR"); + vkGetPhysicalDeviceQueueFamilyProperties2KHR = (PFN_vkGetPhysicalDeviceQueueFamilyProperties2KHR)load(context, "vkGetPhysicalDeviceQueueFamilyProperties2KHR"); + vkGetPhysicalDeviceSparseImageFormatProperties2KHR = (PFN_vkGetPhysicalDeviceSparseImageFormatProperties2KHR)load(context, "vkGetPhysicalDeviceSparseImageFormatProperties2KHR"); +#endif /* defined(VK_KHR_get_physical_device_properties2) */ +#if defined(VK_KHR_get_surface_capabilities2) + vkGetPhysicalDeviceSurfaceCapabilities2KHR = (PFN_vkGetPhysicalDeviceSurfaceCapabilities2KHR)load(context, "vkGetPhysicalDeviceSurfaceCapabilities2KHR"); + vkGetPhysicalDeviceSurfaceFormats2KHR = (PFN_vkGetPhysicalDeviceSurfaceFormats2KHR)load(context, "vkGetPhysicalDeviceSurfaceFormats2KHR"); +#endif /* defined(VK_KHR_get_surface_capabilities2) */ +#if defined(VK_KHR_performance_query) + vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR = (PFN_vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR)load(context, "vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR"); + vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR = (PFN_vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR)load(context, "vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR"); +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_surface) + vkDestroySurfaceKHR = (PFN_vkDestroySurfaceKHR)load(context, "vkDestroySurfaceKHR"); + vkGetPhysicalDeviceSurfaceCapabilitiesKHR = (PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR)load(context, "vkGetPhysicalDeviceSurfaceCapabilitiesKHR"); + vkGetPhysicalDeviceSurfaceFormatsKHR = (PFN_vkGetPhysicalDeviceSurfaceFormatsKHR)load(context, "vkGetPhysicalDeviceSurfaceFormatsKHR"); + vkGetPhysicalDeviceSurfacePresentModesKHR = (PFN_vkGetPhysicalDeviceSurfacePresentModesKHR)load(context, "vkGetPhysicalDeviceSurfacePresentModesKHR"); + vkGetPhysicalDeviceSurfaceSupportKHR = (PFN_vkGetPhysicalDeviceSurfaceSupportKHR)load(context, "vkGetPhysicalDeviceSurfaceSupportKHR"); +#endif /* defined(VK_KHR_surface) */ +#if defined(VK_KHR_video_queue) + vkGetPhysicalDeviceVideoCapabilitiesKHR = (PFN_vkGetPhysicalDeviceVideoCapabilitiesKHR)load(context, "vkGetPhysicalDeviceVideoCapabilitiesKHR"); + vkGetPhysicalDeviceVideoFormatPropertiesKHR = (PFN_vkGetPhysicalDeviceVideoFormatPropertiesKHR)load(context, "vkGetPhysicalDeviceVideoFormatPropertiesKHR"); +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_KHR_wayland_surface) + vkCreateWaylandSurfaceKHR = (PFN_vkCreateWaylandSurfaceKHR)load(context, "vkCreateWaylandSurfaceKHR"); + vkGetPhysicalDeviceWaylandPresentationSupportKHR = (PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR)load(context, "vkGetPhysicalDeviceWaylandPresentationSupportKHR"); +#endif /* defined(VK_KHR_wayland_surface) */ +#if defined(VK_KHR_win32_surface) + vkCreateWin32SurfaceKHR = (PFN_vkCreateWin32SurfaceKHR)load(context, "vkCreateWin32SurfaceKHR"); + vkGetPhysicalDeviceWin32PresentationSupportKHR = (PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR)load(context, "vkGetPhysicalDeviceWin32PresentationSupportKHR"); +#endif /* defined(VK_KHR_win32_surface) */ +#if defined(VK_KHR_xcb_surface) + vkCreateXcbSurfaceKHR = (PFN_vkCreateXcbSurfaceKHR)load(context, "vkCreateXcbSurfaceKHR"); + vkGetPhysicalDeviceXcbPresentationSupportKHR = (PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR)load(context, "vkGetPhysicalDeviceXcbPresentationSupportKHR"); +#endif /* defined(VK_KHR_xcb_surface) */ +#if defined(VK_KHR_xlib_surface) + vkCreateXlibSurfaceKHR = (PFN_vkCreateXlibSurfaceKHR)load(context, "vkCreateXlibSurfaceKHR"); + vkGetPhysicalDeviceXlibPresentationSupportKHR = (PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR)load(context, "vkGetPhysicalDeviceXlibPresentationSupportKHR"); +#endif /* defined(VK_KHR_xlib_surface) */ +#if defined(VK_MVK_ios_surface) + vkCreateIOSSurfaceMVK = (PFN_vkCreateIOSSurfaceMVK)load(context, "vkCreateIOSSurfaceMVK"); +#endif /* defined(VK_MVK_ios_surface) */ +#if defined(VK_MVK_macos_surface) + vkCreateMacOSSurfaceMVK = (PFN_vkCreateMacOSSurfaceMVK)load(context, "vkCreateMacOSSurfaceMVK"); +#endif /* defined(VK_MVK_macos_surface) */ +#if defined(VK_NN_vi_surface) + vkCreateViSurfaceNN = (PFN_vkCreateViSurfaceNN)load(context, "vkCreateViSurfaceNN"); +#endif /* defined(VK_NN_vi_surface) */ +#if defined(VK_NV_acquire_winrt_display) + vkAcquireWinrtDisplayNV = (PFN_vkAcquireWinrtDisplayNV)load(context, "vkAcquireWinrtDisplayNV"); + vkGetWinrtDisplayNV = (PFN_vkGetWinrtDisplayNV)load(context, "vkGetWinrtDisplayNV"); +#endif /* defined(VK_NV_acquire_winrt_display) */ +#if defined(VK_NV_cooperative_matrix) + vkGetPhysicalDeviceCooperativeMatrixPropertiesNV = (PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesNV)load(context, "vkGetPhysicalDeviceCooperativeMatrixPropertiesNV"); +#endif /* defined(VK_NV_cooperative_matrix) */ +#if defined(VK_NV_coverage_reduction_mode) + vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV = (PFN_vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV)load(context, "vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV"); +#endif /* defined(VK_NV_coverage_reduction_mode) */ +#if defined(VK_NV_external_memory_capabilities) + vkGetPhysicalDeviceExternalImageFormatPropertiesNV = (PFN_vkGetPhysicalDeviceExternalImageFormatPropertiesNV)load(context, "vkGetPhysicalDeviceExternalImageFormatPropertiesNV"); +#endif /* defined(VK_NV_external_memory_capabilities) */ +#if defined(VK_QNX_screen_surface) + vkCreateScreenSurfaceQNX = (PFN_vkCreateScreenSurfaceQNX)load(context, "vkCreateScreenSurfaceQNX"); + vkGetPhysicalDeviceScreenPresentationSupportQNX = (PFN_vkGetPhysicalDeviceScreenPresentationSupportQNX)load(context, "vkGetPhysicalDeviceScreenPresentationSupportQNX"); +#endif /* defined(VK_QNX_screen_surface) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + vkGetPhysicalDevicePresentRectanglesKHR = (PFN_vkGetPhysicalDevicePresentRectanglesKHR)load(context, "vkGetPhysicalDevicePresentRectanglesKHR"); +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ + /* VOLK_GENERATE_LOAD_INSTANCE */ +} + +static void volkGenLoadDevice(void* context, PFN_vkVoidFunction (*load)(void*, const char*)) +{ + /* VOLK_GENERATE_LOAD_DEVICE */ +#if defined(VK_VERSION_1_0) + vkAllocateCommandBuffers = (PFN_vkAllocateCommandBuffers)load(context, "vkAllocateCommandBuffers"); + vkAllocateDescriptorSets = (PFN_vkAllocateDescriptorSets)load(context, "vkAllocateDescriptorSets"); + vkAllocateMemory = (PFN_vkAllocateMemory)load(context, "vkAllocateMemory"); + vkBeginCommandBuffer = (PFN_vkBeginCommandBuffer)load(context, "vkBeginCommandBuffer"); + vkBindBufferMemory = (PFN_vkBindBufferMemory)load(context, "vkBindBufferMemory"); + vkBindImageMemory = (PFN_vkBindImageMemory)load(context, "vkBindImageMemory"); + vkCmdBeginQuery = (PFN_vkCmdBeginQuery)load(context, "vkCmdBeginQuery"); + vkCmdBeginRenderPass = (PFN_vkCmdBeginRenderPass)load(context, "vkCmdBeginRenderPass"); + vkCmdBindDescriptorSets = (PFN_vkCmdBindDescriptorSets)load(context, "vkCmdBindDescriptorSets"); + vkCmdBindIndexBuffer = (PFN_vkCmdBindIndexBuffer)load(context, "vkCmdBindIndexBuffer"); + vkCmdBindPipeline = (PFN_vkCmdBindPipeline)load(context, "vkCmdBindPipeline"); + vkCmdBindVertexBuffers = (PFN_vkCmdBindVertexBuffers)load(context, "vkCmdBindVertexBuffers"); + vkCmdBlitImage = (PFN_vkCmdBlitImage)load(context, "vkCmdBlitImage"); + vkCmdClearAttachments = (PFN_vkCmdClearAttachments)load(context, "vkCmdClearAttachments"); + vkCmdClearColorImage = (PFN_vkCmdClearColorImage)load(context, "vkCmdClearColorImage"); + vkCmdClearDepthStencilImage = (PFN_vkCmdClearDepthStencilImage)load(context, "vkCmdClearDepthStencilImage"); + vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)load(context, "vkCmdCopyBuffer"); + vkCmdCopyBufferToImage = (PFN_vkCmdCopyBufferToImage)load(context, "vkCmdCopyBufferToImage"); + vkCmdCopyImage = (PFN_vkCmdCopyImage)load(context, "vkCmdCopyImage"); + vkCmdCopyImageToBuffer = (PFN_vkCmdCopyImageToBuffer)load(context, "vkCmdCopyImageToBuffer"); + vkCmdCopyQueryPoolResults = (PFN_vkCmdCopyQueryPoolResults)load(context, "vkCmdCopyQueryPoolResults"); + vkCmdDispatch = (PFN_vkCmdDispatch)load(context, "vkCmdDispatch"); + vkCmdDispatchIndirect = (PFN_vkCmdDispatchIndirect)load(context, "vkCmdDispatchIndirect"); + vkCmdDraw = (PFN_vkCmdDraw)load(context, "vkCmdDraw"); + vkCmdDrawIndexed = (PFN_vkCmdDrawIndexed)load(context, "vkCmdDrawIndexed"); + vkCmdDrawIndexedIndirect = (PFN_vkCmdDrawIndexedIndirect)load(context, "vkCmdDrawIndexedIndirect"); + vkCmdDrawIndirect = (PFN_vkCmdDrawIndirect)load(context, "vkCmdDrawIndirect"); + vkCmdEndQuery = (PFN_vkCmdEndQuery)load(context, "vkCmdEndQuery"); + vkCmdEndRenderPass = (PFN_vkCmdEndRenderPass)load(context, "vkCmdEndRenderPass"); + vkCmdExecuteCommands = (PFN_vkCmdExecuteCommands)load(context, "vkCmdExecuteCommands"); + vkCmdFillBuffer = (PFN_vkCmdFillBuffer)load(context, "vkCmdFillBuffer"); + vkCmdNextSubpass = (PFN_vkCmdNextSubpass)load(context, "vkCmdNextSubpass"); + vkCmdPipelineBarrier = (PFN_vkCmdPipelineBarrier)load(context, "vkCmdPipelineBarrier"); + vkCmdPushConstants = (PFN_vkCmdPushConstants)load(context, "vkCmdPushConstants"); + vkCmdResetEvent = (PFN_vkCmdResetEvent)load(context, "vkCmdResetEvent"); + vkCmdResetQueryPool = (PFN_vkCmdResetQueryPool)load(context, "vkCmdResetQueryPool"); + vkCmdResolveImage = (PFN_vkCmdResolveImage)load(context, "vkCmdResolveImage"); + vkCmdSetBlendConstants = (PFN_vkCmdSetBlendConstants)load(context, "vkCmdSetBlendConstants"); + vkCmdSetDepthBias = (PFN_vkCmdSetDepthBias)load(context, "vkCmdSetDepthBias"); + vkCmdSetDepthBounds = (PFN_vkCmdSetDepthBounds)load(context, "vkCmdSetDepthBounds"); + vkCmdSetEvent = (PFN_vkCmdSetEvent)load(context, "vkCmdSetEvent"); + vkCmdSetLineWidth = (PFN_vkCmdSetLineWidth)load(context, "vkCmdSetLineWidth"); + vkCmdSetScissor = (PFN_vkCmdSetScissor)load(context, "vkCmdSetScissor"); + vkCmdSetStencilCompareMask = (PFN_vkCmdSetStencilCompareMask)load(context, "vkCmdSetStencilCompareMask"); + vkCmdSetStencilReference = (PFN_vkCmdSetStencilReference)load(context, "vkCmdSetStencilReference"); + vkCmdSetStencilWriteMask = (PFN_vkCmdSetStencilWriteMask)load(context, "vkCmdSetStencilWriteMask"); + vkCmdSetViewport = (PFN_vkCmdSetViewport)load(context, "vkCmdSetViewport"); + vkCmdUpdateBuffer = (PFN_vkCmdUpdateBuffer)load(context, "vkCmdUpdateBuffer"); + vkCmdWaitEvents = (PFN_vkCmdWaitEvents)load(context, "vkCmdWaitEvents"); + vkCmdWriteTimestamp = (PFN_vkCmdWriteTimestamp)load(context, "vkCmdWriteTimestamp"); + vkCreateBuffer = (PFN_vkCreateBuffer)load(context, "vkCreateBuffer"); + vkCreateBufferView = (PFN_vkCreateBufferView)load(context, "vkCreateBufferView"); + vkCreateCommandPool = (PFN_vkCreateCommandPool)load(context, "vkCreateCommandPool"); + vkCreateComputePipelines = (PFN_vkCreateComputePipelines)load(context, "vkCreateComputePipelines"); + vkCreateDescriptorPool = (PFN_vkCreateDescriptorPool)load(context, "vkCreateDescriptorPool"); + vkCreateDescriptorSetLayout = (PFN_vkCreateDescriptorSetLayout)load(context, "vkCreateDescriptorSetLayout"); + vkCreateEvent = (PFN_vkCreateEvent)load(context, "vkCreateEvent"); + vkCreateFence = (PFN_vkCreateFence)load(context, "vkCreateFence"); + vkCreateFramebuffer = (PFN_vkCreateFramebuffer)load(context, "vkCreateFramebuffer"); + vkCreateGraphicsPipelines = (PFN_vkCreateGraphicsPipelines)load(context, "vkCreateGraphicsPipelines"); + vkCreateImage = (PFN_vkCreateImage)load(context, "vkCreateImage"); + vkCreateImageView = (PFN_vkCreateImageView)load(context, "vkCreateImageView"); + vkCreatePipelineCache = (PFN_vkCreatePipelineCache)load(context, "vkCreatePipelineCache"); + vkCreatePipelineLayout = (PFN_vkCreatePipelineLayout)load(context, "vkCreatePipelineLayout"); + vkCreateQueryPool = (PFN_vkCreateQueryPool)load(context, "vkCreateQueryPool"); + vkCreateRenderPass = (PFN_vkCreateRenderPass)load(context, "vkCreateRenderPass"); + vkCreateSampler = (PFN_vkCreateSampler)load(context, "vkCreateSampler"); + vkCreateSemaphore = (PFN_vkCreateSemaphore)load(context, "vkCreateSemaphore"); + vkCreateShaderModule = (PFN_vkCreateShaderModule)load(context, "vkCreateShaderModule"); + vkDestroyBuffer = (PFN_vkDestroyBuffer)load(context, "vkDestroyBuffer"); + vkDestroyBufferView = (PFN_vkDestroyBufferView)load(context, "vkDestroyBufferView"); + vkDestroyCommandPool = (PFN_vkDestroyCommandPool)load(context, "vkDestroyCommandPool"); + vkDestroyDescriptorPool = (PFN_vkDestroyDescriptorPool)load(context, "vkDestroyDescriptorPool"); + vkDestroyDescriptorSetLayout = (PFN_vkDestroyDescriptorSetLayout)load(context, "vkDestroyDescriptorSetLayout"); + vkDestroyDevice = (PFN_vkDestroyDevice)load(context, "vkDestroyDevice"); + vkDestroyEvent = (PFN_vkDestroyEvent)load(context, "vkDestroyEvent"); + vkDestroyFence = (PFN_vkDestroyFence)load(context, "vkDestroyFence"); + vkDestroyFramebuffer = (PFN_vkDestroyFramebuffer)load(context, "vkDestroyFramebuffer"); + vkDestroyImage = (PFN_vkDestroyImage)load(context, "vkDestroyImage"); + vkDestroyImageView = (PFN_vkDestroyImageView)load(context, "vkDestroyImageView"); + vkDestroyPipeline = (PFN_vkDestroyPipeline)load(context, "vkDestroyPipeline"); + vkDestroyPipelineCache = (PFN_vkDestroyPipelineCache)load(context, "vkDestroyPipelineCache"); + vkDestroyPipelineLayout = (PFN_vkDestroyPipelineLayout)load(context, "vkDestroyPipelineLayout"); + vkDestroyQueryPool = (PFN_vkDestroyQueryPool)load(context, "vkDestroyQueryPool"); + vkDestroyRenderPass = (PFN_vkDestroyRenderPass)load(context, "vkDestroyRenderPass"); + vkDestroySampler = (PFN_vkDestroySampler)load(context, "vkDestroySampler"); + vkDestroySemaphore = (PFN_vkDestroySemaphore)load(context, "vkDestroySemaphore"); + vkDestroyShaderModule = (PFN_vkDestroyShaderModule)load(context, "vkDestroyShaderModule"); + vkDeviceWaitIdle = (PFN_vkDeviceWaitIdle)load(context, "vkDeviceWaitIdle"); + vkEndCommandBuffer = (PFN_vkEndCommandBuffer)load(context, "vkEndCommandBuffer"); + vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)load(context, "vkFlushMappedMemoryRanges"); + vkFreeCommandBuffers = (PFN_vkFreeCommandBuffers)load(context, "vkFreeCommandBuffers"); + vkFreeDescriptorSets = (PFN_vkFreeDescriptorSets)load(context, "vkFreeDescriptorSets"); + vkFreeMemory = (PFN_vkFreeMemory)load(context, "vkFreeMemory"); + vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)load(context, "vkGetBufferMemoryRequirements"); + vkGetDeviceMemoryCommitment = (PFN_vkGetDeviceMemoryCommitment)load(context, "vkGetDeviceMemoryCommitment"); + vkGetDeviceQueue = (PFN_vkGetDeviceQueue)load(context, "vkGetDeviceQueue"); + vkGetEventStatus = (PFN_vkGetEventStatus)load(context, "vkGetEventStatus"); + vkGetFenceStatus = (PFN_vkGetFenceStatus)load(context, "vkGetFenceStatus"); + vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)load(context, "vkGetImageMemoryRequirements"); + vkGetImageSparseMemoryRequirements = (PFN_vkGetImageSparseMemoryRequirements)load(context, "vkGetImageSparseMemoryRequirements"); + vkGetImageSubresourceLayout = (PFN_vkGetImageSubresourceLayout)load(context, "vkGetImageSubresourceLayout"); + vkGetPipelineCacheData = (PFN_vkGetPipelineCacheData)load(context, "vkGetPipelineCacheData"); + vkGetQueryPoolResults = (PFN_vkGetQueryPoolResults)load(context, "vkGetQueryPoolResults"); + vkGetRenderAreaGranularity = (PFN_vkGetRenderAreaGranularity)load(context, "vkGetRenderAreaGranularity"); + vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)load(context, "vkInvalidateMappedMemoryRanges"); + vkMapMemory = (PFN_vkMapMemory)load(context, "vkMapMemory"); + vkMergePipelineCaches = (PFN_vkMergePipelineCaches)load(context, "vkMergePipelineCaches"); + vkQueueBindSparse = (PFN_vkQueueBindSparse)load(context, "vkQueueBindSparse"); + vkQueueSubmit = (PFN_vkQueueSubmit)load(context, "vkQueueSubmit"); + vkQueueWaitIdle = (PFN_vkQueueWaitIdle)load(context, "vkQueueWaitIdle"); + vkResetCommandBuffer = (PFN_vkResetCommandBuffer)load(context, "vkResetCommandBuffer"); + vkResetCommandPool = (PFN_vkResetCommandPool)load(context, "vkResetCommandPool"); + vkResetDescriptorPool = (PFN_vkResetDescriptorPool)load(context, "vkResetDescriptorPool"); + vkResetEvent = (PFN_vkResetEvent)load(context, "vkResetEvent"); + vkResetFences = (PFN_vkResetFences)load(context, "vkResetFences"); + vkSetEvent = (PFN_vkSetEvent)load(context, "vkSetEvent"); + vkUnmapMemory = (PFN_vkUnmapMemory)load(context, "vkUnmapMemory"); + vkUpdateDescriptorSets = (PFN_vkUpdateDescriptorSets)load(context, "vkUpdateDescriptorSets"); + vkWaitForFences = (PFN_vkWaitForFences)load(context, "vkWaitForFences"); +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) + vkBindBufferMemory2 = (PFN_vkBindBufferMemory2)load(context, "vkBindBufferMemory2"); + vkBindImageMemory2 = (PFN_vkBindImageMemory2)load(context, "vkBindImageMemory2"); + vkCmdDispatchBase = (PFN_vkCmdDispatchBase)load(context, "vkCmdDispatchBase"); + vkCmdSetDeviceMask = (PFN_vkCmdSetDeviceMask)load(context, "vkCmdSetDeviceMask"); + vkCreateDescriptorUpdateTemplate = (PFN_vkCreateDescriptorUpdateTemplate)load(context, "vkCreateDescriptorUpdateTemplate"); + vkCreateSamplerYcbcrConversion = (PFN_vkCreateSamplerYcbcrConversion)load(context, "vkCreateSamplerYcbcrConversion"); + vkDestroyDescriptorUpdateTemplate = (PFN_vkDestroyDescriptorUpdateTemplate)load(context, "vkDestroyDescriptorUpdateTemplate"); + vkDestroySamplerYcbcrConversion = (PFN_vkDestroySamplerYcbcrConversion)load(context, "vkDestroySamplerYcbcrConversion"); + vkGetBufferMemoryRequirements2 = (PFN_vkGetBufferMemoryRequirements2)load(context, "vkGetBufferMemoryRequirements2"); + vkGetDescriptorSetLayoutSupport = (PFN_vkGetDescriptorSetLayoutSupport)load(context, "vkGetDescriptorSetLayoutSupport"); + vkGetDeviceGroupPeerMemoryFeatures = (PFN_vkGetDeviceGroupPeerMemoryFeatures)load(context, "vkGetDeviceGroupPeerMemoryFeatures"); + vkGetDeviceQueue2 = (PFN_vkGetDeviceQueue2)load(context, "vkGetDeviceQueue2"); + vkGetImageMemoryRequirements2 = (PFN_vkGetImageMemoryRequirements2)load(context, "vkGetImageMemoryRequirements2"); + vkGetImageSparseMemoryRequirements2 = (PFN_vkGetImageSparseMemoryRequirements2)load(context, "vkGetImageSparseMemoryRequirements2"); + vkTrimCommandPool = (PFN_vkTrimCommandPool)load(context, "vkTrimCommandPool"); + vkUpdateDescriptorSetWithTemplate = (PFN_vkUpdateDescriptorSetWithTemplate)load(context, "vkUpdateDescriptorSetWithTemplate"); +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_VERSION_1_2) + vkCmdBeginRenderPass2 = (PFN_vkCmdBeginRenderPass2)load(context, "vkCmdBeginRenderPass2"); + vkCmdDrawIndexedIndirectCount = (PFN_vkCmdDrawIndexedIndirectCount)load(context, "vkCmdDrawIndexedIndirectCount"); + vkCmdDrawIndirectCount = (PFN_vkCmdDrawIndirectCount)load(context, "vkCmdDrawIndirectCount"); + vkCmdEndRenderPass2 = (PFN_vkCmdEndRenderPass2)load(context, "vkCmdEndRenderPass2"); + vkCmdNextSubpass2 = (PFN_vkCmdNextSubpass2)load(context, "vkCmdNextSubpass2"); + vkCreateRenderPass2 = (PFN_vkCreateRenderPass2)load(context, "vkCreateRenderPass2"); + vkGetBufferDeviceAddress = (PFN_vkGetBufferDeviceAddress)load(context, "vkGetBufferDeviceAddress"); + vkGetBufferOpaqueCaptureAddress = (PFN_vkGetBufferOpaqueCaptureAddress)load(context, "vkGetBufferOpaqueCaptureAddress"); + vkGetDeviceMemoryOpaqueCaptureAddress = (PFN_vkGetDeviceMemoryOpaqueCaptureAddress)load(context, "vkGetDeviceMemoryOpaqueCaptureAddress"); + vkGetSemaphoreCounterValue = (PFN_vkGetSemaphoreCounterValue)load(context, "vkGetSemaphoreCounterValue"); + vkResetQueryPool = (PFN_vkResetQueryPool)load(context, "vkResetQueryPool"); + vkSignalSemaphore = (PFN_vkSignalSemaphore)load(context, "vkSignalSemaphore"); + vkWaitSemaphores = (PFN_vkWaitSemaphores)load(context, "vkWaitSemaphores"); +#endif /* defined(VK_VERSION_1_2) */ +#if defined(VK_AMD_buffer_marker) + vkCmdWriteBufferMarkerAMD = (PFN_vkCmdWriteBufferMarkerAMD)load(context, "vkCmdWriteBufferMarkerAMD"); +#endif /* defined(VK_AMD_buffer_marker) */ +#if defined(VK_AMD_display_native_hdr) + vkSetLocalDimmingAMD = (PFN_vkSetLocalDimmingAMD)load(context, "vkSetLocalDimmingAMD"); +#endif /* defined(VK_AMD_display_native_hdr) */ +#if defined(VK_AMD_draw_indirect_count) + vkCmdDrawIndexedIndirectCountAMD = (PFN_vkCmdDrawIndexedIndirectCountAMD)load(context, "vkCmdDrawIndexedIndirectCountAMD"); + vkCmdDrawIndirectCountAMD = (PFN_vkCmdDrawIndirectCountAMD)load(context, "vkCmdDrawIndirectCountAMD"); +#endif /* defined(VK_AMD_draw_indirect_count) */ +#if defined(VK_AMD_shader_info) + vkGetShaderInfoAMD = (PFN_vkGetShaderInfoAMD)load(context, "vkGetShaderInfoAMD"); +#endif /* defined(VK_AMD_shader_info) */ +#if defined(VK_ANDROID_external_memory_android_hardware_buffer) + vkGetAndroidHardwareBufferPropertiesANDROID = (PFN_vkGetAndroidHardwareBufferPropertiesANDROID)load(context, "vkGetAndroidHardwareBufferPropertiesANDROID"); + vkGetMemoryAndroidHardwareBufferANDROID = (PFN_vkGetMemoryAndroidHardwareBufferANDROID)load(context, "vkGetMemoryAndroidHardwareBufferANDROID"); +#endif /* defined(VK_ANDROID_external_memory_android_hardware_buffer) */ +#if defined(VK_EXT_buffer_device_address) + vkGetBufferDeviceAddressEXT = (PFN_vkGetBufferDeviceAddressEXT)load(context, "vkGetBufferDeviceAddressEXT"); +#endif /* defined(VK_EXT_buffer_device_address) */ +#if defined(VK_EXT_calibrated_timestamps) + vkGetCalibratedTimestampsEXT = (PFN_vkGetCalibratedTimestampsEXT)load(context, "vkGetCalibratedTimestampsEXT"); +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_color_write_enable) + vkCmdSetColorWriteEnableEXT = (PFN_vkCmdSetColorWriteEnableEXT)load(context, "vkCmdSetColorWriteEnableEXT"); +#endif /* defined(VK_EXT_color_write_enable) */ +#if defined(VK_EXT_conditional_rendering) + vkCmdBeginConditionalRenderingEXT = (PFN_vkCmdBeginConditionalRenderingEXT)load(context, "vkCmdBeginConditionalRenderingEXT"); + vkCmdEndConditionalRenderingEXT = (PFN_vkCmdEndConditionalRenderingEXT)load(context, "vkCmdEndConditionalRenderingEXT"); +#endif /* defined(VK_EXT_conditional_rendering) */ +#if defined(VK_EXT_debug_marker) + vkCmdDebugMarkerBeginEXT = (PFN_vkCmdDebugMarkerBeginEXT)load(context, "vkCmdDebugMarkerBeginEXT"); + vkCmdDebugMarkerEndEXT = (PFN_vkCmdDebugMarkerEndEXT)load(context, "vkCmdDebugMarkerEndEXT"); + vkCmdDebugMarkerInsertEXT = (PFN_vkCmdDebugMarkerInsertEXT)load(context, "vkCmdDebugMarkerInsertEXT"); + vkDebugMarkerSetObjectNameEXT = (PFN_vkDebugMarkerSetObjectNameEXT)load(context, "vkDebugMarkerSetObjectNameEXT"); + vkDebugMarkerSetObjectTagEXT = (PFN_vkDebugMarkerSetObjectTagEXT)load(context, "vkDebugMarkerSetObjectTagEXT"); +#endif /* defined(VK_EXT_debug_marker) */ +#if defined(VK_EXT_discard_rectangles) + vkCmdSetDiscardRectangleEXT = (PFN_vkCmdSetDiscardRectangleEXT)load(context, "vkCmdSetDiscardRectangleEXT"); +#endif /* defined(VK_EXT_discard_rectangles) */ +#if defined(VK_EXT_display_control) + vkDisplayPowerControlEXT = (PFN_vkDisplayPowerControlEXT)load(context, "vkDisplayPowerControlEXT"); + vkGetSwapchainCounterEXT = (PFN_vkGetSwapchainCounterEXT)load(context, "vkGetSwapchainCounterEXT"); + vkRegisterDeviceEventEXT = (PFN_vkRegisterDeviceEventEXT)load(context, "vkRegisterDeviceEventEXT"); + vkRegisterDisplayEventEXT = (PFN_vkRegisterDisplayEventEXT)load(context, "vkRegisterDisplayEventEXT"); +#endif /* defined(VK_EXT_display_control) */ +#if defined(VK_EXT_extended_dynamic_state) + vkCmdBindVertexBuffers2EXT = (PFN_vkCmdBindVertexBuffers2EXT)load(context, "vkCmdBindVertexBuffers2EXT"); + vkCmdSetCullModeEXT = (PFN_vkCmdSetCullModeEXT)load(context, "vkCmdSetCullModeEXT"); + vkCmdSetDepthBoundsTestEnableEXT = (PFN_vkCmdSetDepthBoundsTestEnableEXT)load(context, "vkCmdSetDepthBoundsTestEnableEXT"); + vkCmdSetDepthCompareOpEXT = (PFN_vkCmdSetDepthCompareOpEXT)load(context, "vkCmdSetDepthCompareOpEXT"); + vkCmdSetDepthTestEnableEXT = (PFN_vkCmdSetDepthTestEnableEXT)load(context, "vkCmdSetDepthTestEnableEXT"); + vkCmdSetDepthWriteEnableEXT = (PFN_vkCmdSetDepthWriteEnableEXT)load(context, "vkCmdSetDepthWriteEnableEXT"); + vkCmdSetFrontFaceEXT = (PFN_vkCmdSetFrontFaceEXT)load(context, "vkCmdSetFrontFaceEXT"); + vkCmdSetPrimitiveTopologyEXT = (PFN_vkCmdSetPrimitiveTopologyEXT)load(context, "vkCmdSetPrimitiveTopologyEXT"); + vkCmdSetScissorWithCountEXT = (PFN_vkCmdSetScissorWithCountEXT)load(context, "vkCmdSetScissorWithCountEXT"); + vkCmdSetStencilOpEXT = (PFN_vkCmdSetStencilOpEXT)load(context, "vkCmdSetStencilOpEXT"); + vkCmdSetStencilTestEnableEXT = (PFN_vkCmdSetStencilTestEnableEXT)load(context, "vkCmdSetStencilTestEnableEXT"); + vkCmdSetViewportWithCountEXT = (PFN_vkCmdSetViewportWithCountEXT)load(context, "vkCmdSetViewportWithCountEXT"); +#endif /* defined(VK_EXT_extended_dynamic_state) */ +#if defined(VK_EXT_extended_dynamic_state2) + vkCmdSetDepthBiasEnableEXT = (PFN_vkCmdSetDepthBiasEnableEXT)load(context, "vkCmdSetDepthBiasEnableEXT"); + vkCmdSetLogicOpEXT = (PFN_vkCmdSetLogicOpEXT)load(context, "vkCmdSetLogicOpEXT"); + vkCmdSetPatchControlPointsEXT = (PFN_vkCmdSetPatchControlPointsEXT)load(context, "vkCmdSetPatchControlPointsEXT"); + vkCmdSetPrimitiveRestartEnableEXT = (PFN_vkCmdSetPrimitiveRestartEnableEXT)load(context, "vkCmdSetPrimitiveRestartEnableEXT"); + vkCmdSetRasterizerDiscardEnableEXT = (PFN_vkCmdSetRasterizerDiscardEnableEXT)load(context, "vkCmdSetRasterizerDiscardEnableEXT"); +#endif /* defined(VK_EXT_extended_dynamic_state2) */ +#if defined(VK_EXT_external_memory_host) + vkGetMemoryHostPointerPropertiesEXT = (PFN_vkGetMemoryHostPointerPropertiesEXT)load(context, "vkGetMemoryHostPointerPropertiesEXT"); +#endif /* defined(VK_EXT_external_memory_host) */ +#if defined(VK_EXT_full_screen_exclusive) + vkAcquireFullScreenExclusiveModeEXT = (PFN_vkAcquireFullScreenExclusiveModeEXT)load(context, "vkAcquireFullScreenExclusiveModeEXT"); + vkReleaseFullScreenExclusiveModeEXT = (PFN_vkReleaseFullScreenExclusiveModeEXT)load(context, "vkReleaseFullScreenExclusiveModeEXT"); +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_hdr_metadata) + vkSetHdrMetadataEXT = (PFN_vkSetHdrMetadataEXT)load(context, "vkSetHdrMetadataEXT"); +#endif /* defined(VK_EXT_hdr_metadata) */ +#if defined(VK_EXT_host_query_reset) + vkResetQueryPoolEXT = (PFN_vkResetQueryPoolEXT)load(context, "vkResetQueryPoolEXT"); +#endif /* defined(VK_EXT_host_query_reset) */ +#if defined(VK_EXT_image_drm_format_modifier) + vkGetImageDrmFormatModifierPropertiesEXT = (PFN_vkGetImageDrmFormatModifierPropertiesEXT)load(context, "vkGetImageDrmFormatModifierPropertiesEXT"); +#endif /* defined(VK_EXT_image_drm_format_modifier) */ +#if defined(VK_EXT_line_rasterization) + vkCmdSetLineStippleEXT = (PFN_vkCmdSetLineStippleEXT)load(context, "vkCmdSetLineStippleEXT"); +#endif /* defined(VK_EXT_line_rasterization) */ +#if defined(VK_EXT_multi_draw) + vkCmdDrawMultiEXT = (PFN_vkCmdDrawMultiEXT)load(context, "vkCmdDrawMultiEXT"); + vkCmdDrawMultiIndexedEXT = (PFN_vkCmdDrawMultiIndexedEXT)load(context, "vkCmdDrawMultiIndexedEXT"); +#endif /* defined(VK_EXT_multi_draw) */ +#if defined(VK_EXT_pageable_device_local_memory) + vkSetDeviceMemoryPriorityEXT = (PFN_vkSetDeviceMemoryPriorityEXT)load(context, "vkSetDeviceMemoryPriorityEXT"); +#endif /* defined(VK_EXT_pageable_device_local_memory) */ +#if defined(VK_EXT_private_data) + vkCreatePrivateDataSlotEXT = (PFN_vkCreatePrivateDataSlotEXT)load(context, "vkCreatePrivateDataSlotEXT"); + vkDestroyPrivateDataSlotEXT = (PFN_vkDestroyPrivateDataSlotEXT)load(context, "vkDestroyPrivateDataSlotEXT"); + vkGetPrivateDataEXT = (PFN_vkGetPrivateDataEXT)load(context, "vkGetPrivateDataEXT"); + vkSetPrivateDataEXT = (PFN_vkSetPrivateDataEXT)load(context, "vkSetPrivateDataEXT"); +#endif /* defined(VK_EXT_private_data) */ +#if defined(VK_EXT_sample_locations) + vkCmdSetSampleLocationsEXT = (PFN_vkCmdSetSampleLocationsEXT)load(context, "vkCmdSetSampleLocationsEXT"); +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_transform_feedback) + vkCmdBeginQueryIndexedEXT = (PFN_vkCmdBeginQueryIndexedEXT)load(context, "vkCmdBeginQueryIndexedEXT"); + vkCmdBeginTransformFeedbackEXT = (PFN_vkCmdBeginTransformFeedbackEXT)load(context, "vkCmdBeginTransformFeedbackEXT"); + vkCmdBindTransformFeedbackBuffersEXT = (PFN_vkCmdBindTransformFeedbackBuffersEXT)load(context, "vkCmdBindTransformFeedbackBuffersEXT"); + vkCmdDrawIndirectByteCountEXT = (PFN_vkCmdDrawIndirectByteCountEXT)load(context, "vkCmdDrawIndirectByteCountEXT"); + vkCmdEndQueryIndexedEXT = (PFN_vkCmdEndQueryIndexedEXT)load(context, "vkCmdEndQueryIndexedEXT"); + vkCmdEndTransformFeedbackEXT = (PFN_vkCmdEndTransformFeedbackEXT)load(context, "vkCmdEndTransformFeedbackEXT"); +#endif /* defined(VK_EXT_transform_feedback) */ +#if defined(VK_EXT_validation_cache) + vkCreateValidationCacheEXT = (PFN_vkCreateValidationCacheEXT)load(context, "vkCreateValidationCacheEXT"); + vkDestroyValidationCacheEXT = (PFN_vkDestroyValidationCacheEXT)load(context, "vkDestroyValidationCacheEXT"); + vkGetValidationCacheDataEXT = (PFN_vkGetValidationCacheDataEXT)load(context, "vkGetValidationCacheDataEXT"); + vkMergeValidationCachesEXT = (PFN_vkMergeValidationCachesEXT)load(context, "vkMergeValidationCachesEXT"); +#endif /* defined(VK_EXT_validation_cache) */ +#if defined(VK_EXT_vertex_input_dynamic_state) + vkCmdSetVertexInputEXT = (PFN_vkCmdSetVertexInputEXT)load(context, "vkCmdSetVertexInputEXT"); +#endif /* defined(VK_EXT_vertex_input_dynamic_state) */ +#if defined(VK_FUCHSIA_buffer_collection) + vkCreateBufferCollectionFUCHSIA = (PFN_vkCreateBufferCollectionFUCHSIA)load(context, "vkCreateBufferCollectionFUCHSIA"); + vkDestroyBufferCollectionFUCHSIA = (PFN_vkDestroyBufferCollectionFUCHSIA)load(context, "vkDestroyBufferCollectionFUCHSIA"); + vkGetBufferCollectionPropertiesFUCHSIA = (PFN_vkGetBufferCollectionPropertiesFUCHSIA)load(context, "vkGetBufferCollectionPropertiesFUCHSIA"); + vkSetBufferCollectionBufferConstraintsFUCHSIA = (PFN_vkSetBufferCollectionBufferConstraintsFUCHSIA)load(context, "vkSetBufferCollectionBufferConstraintsFUCHSIA"); + vkSetBufferCollectionImageConstraintsFUCHSIA = (PFN_vkSetBufferCollectionImageConstraintsFUCHSIA)load(context, "vkSetBufferCollectionImageConstraintsFUCHSIA"); +#endif /* defined(VK_FUCHSIA_buffer_collection) */ +#if defined(VK_FUCHSIA_external_memory) + vkGetMemoryZirconHandleFUCHSIA = (PFN_vkGetMemoryZirconHandleFUCHSIA)load(context, "vkGetMemoryZirconHandleFUCHSIA"); + vkGetMemoryZirconHandlePropertiesFUCHSIA = (PFN_vkGetMemoryZirconHandlePropertiesFUCHSIA)load(context, "vkGetMemoryZirconHandlePropertiesFUCHSIA"); +#endif /* defined(VK_FUCHSIA_external_memory) */ +#if defined(VK_FUCHSIA_external_semaphore) + vkGetSemaphoreZirconHandleFUCHSIA = (PFN_vkGetSemaphoreZirconHandleFUCHSIA)load(context, "vkGetSemaphoreZirconHandleFUCHSIA"); + vkImportSemaphoreZirconHandleFUCHSIA = (PFN_vkImportSemaphoreZirconHandleFUCHSIA)load(context, "vkImportSemaphoreZirconHandleFUCHSIA"); +#endif /* defined(VK_FUCHSIA_external_semaphore) */ +#if defined(VK_GOOGLE_display_timing) + vkGetPastPresentationTimingGOOGLE = (PFN_vkGetPastPresentationTimingGOOGLE)load(context, "vkGetPastPresentationTimingGOOGLE"); + vkGetRefreshCycleDurationGOOGLE = (PFN_vkGetRefreshCycleDurationGOOGLE)load(context, "vkGetRefreshCycleDurationGOOGLE"); +#endif /* defined(VK_GOOGLE_display_timing) */ +#if defined(VK_HUAWEI_invocation_mask) + vkCmdBindInvocationMaskHUAWEI = (PFN_vkCmdBindInvocationMaskHUAWEI)load(context, "vkCmdBindInvocationMaskHUAWEI"); +#endif /* defined(VK_HUAWEI_invocation_mask) */ +#if defined(VK_HUAWEI_subpass_shading) + vkCmdSubpassShadingHUAWEI = (PFN_vkCmdSubpassShadingHUAWEI)load(context, "vkCmdSubpassShadingHUAWEI"); + vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI = (PFN_vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI)load(context, "vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI"); +#endif /* defined(VK_HUAWEI_subpass_shading) */ +#if defined(VK_INTEL_performance_query) + vkAcquirePerformanceConfigurationINTEL = (PFN_vkAcquirePerformanceConfigurationINTEL)load(context, "vkAcquirePerformanceConfigurationINTEL"); + vkCmdSetPerformanceMarkerINTEL = (PFN_vkCmdSetPerformanceMarkerINTEL)load(context, "vkCmdSetPerformanceMarkerINTEL"); + vkCmdSetPerformanceOverrideINTEL = (PFN_vkCmdSetPerformanceOverrideINTEL)load(context, "vkCmdSetPerformanceOverrideINTEL"); + vkCmdSetPerformanceStreamMarkerINTEL = (PFN_vkCmdSetPerformanceStreamMarkerINTEL)load(context, "vkCmdSetPerformanceStreamMarkerINTEL"); + vkGetPerformanceParameterINTEL = (PFN_vkGetPerformanceParameterINTEL)load(context, "vkGetPerformanceParameterINTEL"); + vkInitializePerformanceApiINTEL = (PFN_vkInitializePerformanceApiINTEL)load(context, "vkInitializePerformanceApiINTEL"); + vkQueueSetPerformanceConfigurationINTEL = (PFN_vkQueueSetPerformanceConfigurationINTEL)load(context, "vkQueueSetPerformanceConfigurationINTEL"); + vkReleasePerformanceConfigurationINTEL = (PFN_vkReleasePerformanceConfigurationINTEL)load(context, "vkReleasePerformanceConfigurationINTEL"); + vkUninitializePerformanceApiINTEL = (PFN_vkUninitializePerformanceApiINTEL)load(context, "vkUninitializePerformanceApiINTEL"); +#endif /* defined(VK_INTEL_performance_query) */ +#if defined(VK_KHR_acceleration_structure) + vkBuildAccelerationStructuresKHR = (PFN_vkBuildAccelerationStructuresKHR)load(context, "vkBuildAccelerationStructuresKHR"); + vkCmdBuildAccelerationStructuresIndirectKHR = (PFN_vkCmdBuildAccelerationStructuresIndirectKHR)load(context, "vkCmdBuildAccelerationStructuresIndirectKHR"); + vkCmdBuildAccelerationStructuresKHR = (PFN_vkCmdBuildAccelerationStructuresKHR)load(context, "vkCmdBuildAccelerationStructuresKHR"); + vkCmdCopyAccelerationStructureKHR = (PFN_vkCmdCopyAccelerationStructureKHR)load(context, "vkCmdCopyAccelerationStructureKHR"); + vkCmdCopyAccelerationStructureToMemoryKHR = (PFN_vkCmdCopyAccelerationStructureToMemoryKHR)load(context, "vkCmdCopyAccelerationStructureToMemoryKHR"); + vkCmdCopyMemoryToAccelerationStructureKHR = (PFN_vkCmdCopyMemoryToAccelerationStructureKHR)load(context, "vkCmdCopyMemoryToAccelerationStructureKHR"); + vkCmdWriteAccelerationStructuresPropertiesKHR = (PFN_vkCmdWriteAccelerationStructuresPropertiesKHR)load(context, "vkCmdWriteAccelerationStructuresPropertiesKHR"); + vkCopyAccelerationStructureKHR = (PFN_vkCopyAccelerationStructureKHR)load(context, "vkCopyAccelerationStructureKHR"); + vkCopyAccelerationStructureToMemoryKHR = (PFN_vkCopyAccelerationStructureToMemoryKHR)load(context, "vkCopyAccelerationStructureToMemoryKHR"); + vkCopyMemoryToAccelerationStructureKHR = (PFN_vkCopyMemoryToAccelerationStructureKHR)load(context, "vkCopyMemoryToAccelerationStructureKHR"); + vkCreateAccelerationStructureKHR = (PFN_vkCreateAccelerationStructureKHR)load(context, "vkCreateAccelerationStructureKHR"); + vkDestroyAccelerationStructureKHR = (PFN_vkDestroyAccelerationStructureKHR)load(context, "vkDestroyAccelerationStructureKHR"); + vkGetAccelerationStructureBuildSizesKHR = (PFN_vkGetAccelerationStructureBuildSizesKHR)load(context, "vkGetAccelerationStructureBuildSizesKHR"); + vkGetAccelerationStructureDeviceAddressKHR = (PFN_vkGetAccelerationStructureDeviceAddressKHR)load(context, "vkGetAccelerationStructureDeviceAddressKHR"); + vkGetDeviceAccelerationStructureCompatibilityKHR = (PFN_vkGetDeviceAccelerationStructureCompatibilityKHR)load(context, "vkGetDeviceAccelerationStructureCompatibilityKHR"); + vkWriteAccelerationStructuresPropertiesKHR = (PFN_vkWriteAccelerationStructuresPropertiesKHR)load(context, "vkWriteAccelerationStructuresPropertiesKHR"); +#endif /* defined(VK_KHR_acceleration_structure) */ +#if defined(VK_KHR_bind_memory2) + vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2KHR)load(context, "vkBindBufferMemory2KHR"); + vkBindImageMemory2KHR = (PFN_vkBindImageMemory2KHR)load(context, "vkBindImageMemory2KHR"); +#endif /* defined(VK_KHR_bind_memory2) */ +#if defined(VK_KHR_buffer_device_address) + vkGetBufferDeviceAddressKHR = (PFN_vkGetBufferDeviceAddressKHR)load(context, "vkGetBufferDeviceAddressKHR"); + vkGetBufferOpaqueCaptureAddressKHR = (PFN_vkGetBufferOpaqueCaptureAddressKHR)load(context, "vkGetBufferOpaqueCaptureAddressKHR"); + vkGetDeviceMemoryOpaqueCaptureAddressKHR = (PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR)load(context, "vkGetDeviceMemoryOpaqueCaptureAddressKHR"); +#endif /* defined(VK_KHR_buffer_device_address) */ +#if defined(VK_KHR_copy_commands2) + vkCmdBlitImage2KHR = (PFN_vkCmdBlitImage2KHR)load(context, "vkCmdBlitImage2KHR"); + vkCmdCopyBuffer2KHR = (PFN_vkCmdCopyBuffer2KHR)load(context, "vkCmdCopyBuffer2KHR"); + vkCmdCopyBufferToImage2KHR = (PFN_vkCmdCopyBufferToImage2KHR)load(context, "vkCmdCopyBufferToImage2KHR"); + vkCmdCopyImage2KHR = (PFN_vkCmdCopyImage2KHR)load(context, "vkCmdCopyImage2KHR"); + vkCmdCopyImageToBuffer2KHR = (PFN_vkCmdCopyImageToBuffer2KHR)load(context, "vkCmdCopyImageToBuffer2KHR"); + vkCmdResolveImage2KHR = (PFN_vkCmdResolveImage2KHR)load(context, "vkCmdResolveImage2KHR"); +#endif /* defined(VK_KHR_copy_commands2) */ +#if defined(VK_KHR_create_renderpass2) + vkCmdBeginRenderPass2KHR = (PFN_vkCmdBeginRenderPass2KHR)load(context, "vkCmdBeginRenderPass2KHR"); + vkCmdEndRenderPass2KHR = (PFN_vkCmdEndRenderPass2KHR)load(context, "vkCmdEndRenderPass2KHR"); + vkCmdNextSubpass2KHR = (PFN_vkCmdNextSubpass2KHR)load(context, "vkCmdNextSubpass2KHR"); + vkCreateRenderPass2KHR = (PFN_vkCreateRenderPass2KHR)load(context, "vkCreateRenderPass2KHR"); +#endif /* defined(VK_KHR_create_renderpass2) */ +#if defined(VK_KHR_deferred_host_operations) + vkCreateDeferredOperationKHR = (PFN_vkCreateDeferredOperationKHR)load(context, "vkCreateDeferredOperationKHR"); + vkDeferredOperationJoinKHR = (PFN_vkDeferredOperationJoinKHR)load(context, "vkDeferredOperationJoinKHR"); + vkDestroyDeferredOperationKHR = (PFN_vkDestroyDeferredOperationKHR)load(context, "vkDestroyDeferredOperationKHR"); + vkGetDeferredOperationMaxConcurrencyKHR = (PFN_vkGetDeferredOperationMaxConcurrencyKHR)load(context, "vkGetDeferredOperationMaxConcurrencyKHR"); + vkGetDeferredOperationResultKHR = (PFN_vkGetDeferredOperationResultKHR)load(context, "vkGetDeferredOperationResultKHR"); +#endif /* defined(VK_KHR_deferred_host_operations) */ +#if defined(VK_KHR_descriptor_update_template) + vkCreateDescriptorUpdateTemplateKHR = (PFN_vkCreateDescriptorUpdateTemplateKHR)load(context, "vkCreateDescriptorUpdateTemplateKHR"); + vkDestroyDescriptorUpdateTemplateKHR = (PFN_vkDestroyDescriptorUpdateTemplateKHR)load(context, "vkDestroyDescriptorUpdateTemplateKHR"); + vkUpdateDescriptorSetWithTemplateKHR = (PFN_vkUpdateDescriptorSetWithTemplateKHR)load(context, "vkUpdateDescriptorSetWithTemplateKHR"); +#endif /* defined(VK_KHR_descriptor_update_template) */ +#if defined(VK_KHR_device_group) + vkCmdDispatchBaseKHR = (PFN_vkCmdDispatchBaseKHR)load(context, "vkCmdDispatchBaseKHR"); + vkCmdSetDeviceMaskKHR = (PFN_vkCmdSetDeviceMaskKHR)load(context, "vkCmdSetDeviceMaskKHR"); + vkGetDeviceGroupPeerMemoryFeaturesKHR = (PFN_vkGetDeviceGroupPeerMemoryFeaturesKHR)load(context, "vkGetDeviceGroupPeerMemoryFeaturesKHR"); +#endif /* defined(VK_KHR_device_group) */ +#if defined(VK_KHR_display_swapchain) + vkCreateSharedSwapchainsKHR = (PFN_vkCreateSharedSwapchainsKHR)load(context, "vkCreateSharedSwapchainsKHR"); +#endif /* defined(VK_KHR_display_swapchain) */ +#if defined(VK_KHR_draw_indirect_count) + vkCmdDrawIndexedIndirectCountKHR = (PFN_vkCmdDrawIndexedIndirectCountKHR)load(context, "vkCmdDrawIndexedIndirectCountKHR"); + vkCmdDrawIndirectCountKHR = (PFN_vkCmdDrawIndirectCountKHR)load(context, "vkCmdDrawIndirectCountKHR"); +#endif /* defined(VK_KHR_draw_indirect_count) */ +#if defined(VK_KHR_dynamic_rendering) + vkCmdBeginRenderingKHR = (PFN_vkCmdBeginRenderingKHR)load(context, "vkCmdBeginRenderingKHR"); + vkCmdEndRenderingKHR = (PFN_vkCmdEndRenderingKHR)load(context, "vkCmdEndRenderingKHR"); +#endif /* defined(VK_KHR_dynamic_rendering) */ +#if defined(VK_KHR_external_fence_fd) + vkGetFenceFdKHR = (PFN_vkGetFenceFdKHR)load(context, "vkGetFenceFdKHR"); + vkImportFenceFdKHR = (PFN_vkImportFenceFdKHR)load(context, "vkImportFenceFdKHR"); +#endif /* defined(VK_KHR_external_fence_fd) */ +#if defined(VK_KHR_external_fence_win32) + vkGetFenceWin32HandleKHR = (PFN_vkGetFenceWin32HandleKHR)load(context, "vkGetFenceWin32HandleKHR"); + vkImportFenceWin32HandleKHR = (PFN_vkImportFenceWin32HandleKHR)load(context, "vkImportFenceWin32HandleKHR"); +#endif /* defined(VK_KHR_external_fence_win32) */ +#if defined(VK_KHR_external_memory_fd) + vkGetMemoryFdKHR = (PFN_vkGetMemoryFdKHR)load(context, "vkGetMemoryFdKHR"); + vkGetMemoryFdPropertiesKHR = (PFN_vkGetMemoryFdPropertiesKHR)load(context, "vkGetMemoryFdPropertiesKHR"); +#endif /* defined(VK_KHR_external_memory_fd) */ +#if defined(VK_KHR_external_memory_win32) + vkGetMemoryWin32HandleKHR = (PFN_vkGetMemoryWin32HandleKHR)load(context, "vkGetMemoryWin32HandleKHR"); + vkGetMemoryWin32HandlePropertiesKHR = (PFN_vkGetMemoryWin32HandlePropertiesKHR)load(context, "vkGetMemoryWin32HandlePropertiesKHR"); +#endif /* defined(VK_KHR_external_memory_win32) */ +#if defined(VK_KHR_external_semaphore_fd) + vkGetSemaphoreFdKHR = (PFN_vkGetSemaphoreFdKHR)load(context, "vkGetSemaphoreFdKHR"); + vkImportSemaphoreFdKHR = (PFN_vkImportSemaphoreFdKHR)load(context, "vkImportSemaphoreFdKHR"); +#endif /* defined(VK_KHR_external_semaphore_fd) */ +#if defined(VK_KHR_external_semaphore_win32) + vkGetSemaphoreWin32HandleKHR = (PFN_vkGetSemaphoreWin32HandleKHR)load(context, "vkGetSemaphoreWin32HandleKHR"); + vkImportSemaphoreWin32HandleKHR = (PFN_vkImportSemaphoreWin32HandleKHR)load(context, "vkImportSemaphoreWin32HandleKHR"); +#endif /* defined(VK_KHR_external_semaphore_win32) */ +#if defined(VK_KHR_fragment_shading_rate) + vkCmdSetFragmentShadingRateKHR = (PFN_vkCmdSetFragmentShadingRateKHR)load(context, "vkCmdSetFragmentShadingRateKHR"); +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_memory_requirements2) + vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2KHR)load(context, "vkGetBufferMemoryRequirements2KHR"); + vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2KHR)load(context, "vkGetImageMemoryRequirements2KHR"); + vkGetImageSparseMemoryRequirements2KHR = (PFN_vkGetImageSparseMemoryRequirements2KHR)load(context, "vkGetImageSparseMemoryRequirements2KHR"); +#endif /* defined(VK_KHR_get_memory_requirements2) */ +#if defined(VK_KHR_maintenance1) + vkTrimCommandPoolKHR = (PFN_vkTrimCommandPoolKHR)load(context, "vkTrimCommandPoolKHR"); +#endif /* defined(VK_KHR_maintenance1) */ +#if defined(VK_KHR_maintenance3) + vkGetDescriptorSetLayoutSupportKHR = (PFN_vkGetDescriptorSetLayoutSupportKHR)load(context, "vkGetDescriptorSetLayoutSupportKHR"); +#endif /* defined(VK_KHR_maintenance3) */ +#if defined(VK_KHR_maintenance4) + vkGetDeviceBufferMemoryRequirementsKHR = (PFN_vkGetDeviceBufferMemoryRequirementsKHR)load(context, "vkGetDeviceBufferMemoryRequirementsKHR"); + vkGetDeviceImageMemoryRequirementsKHR = (PFN_vkGetDeviceImageMemoryRequirementsKHR)load(context, "vkGetDeviceImageMemoryRequirementsKHR"); + vkGetDeviceImageSparseMemoryRequirementsKHR = (PFN_vkGetDeviceImageSparseMemoryRequirementsKHR)load(context, "vkGetDeviceImageSparseMemoryRequirementsKHR"); +#endif /* defined(VK_KHR_maintenance4) */ +#if defined(VK_KHR_performance_query) + vkAcquireProfilingLockKHR = (PFN_vkAcquireProfilingLockKHR)load(context, "vkAcquireProfilingLockKHR"); + vkReleaseProfilingLockKHR = (PFN_vkReleaseProfilingLockKHR)load(context, "vkReleaseProfilingLockKHR"); +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_pipeline_executable_properties) + vkGetPipelineExecutableInternalRepresentationsKHR = (PFN_vkGetPipelineExecutableInternalRepresentationsKHR)load(context, "vkGetPipelineExecutableInternalRepresentationsKHR"); + vkGetPipelineExecutablePropertiesKHR = (PFN_vkGetPipelineExecutablePropertiesKHR)load(context, "vkGetPipelineExecutablePropertiesKHR"); + vkGetPipelineExecutableStatisticsKHR = (PFN_vkGetPipelineExecutableStatisticsKHR)load(context, "vkGetPipelineExecutableStatisticsKHR"); +#endif /* defined(VK_KHR_pipeline_executable_properties) */ +#if defined(VK_KHR_present_wait) + vkWaitForPresentKHR = (PFN_vkWaitForPresentKHR)load(context, "vkWaitForPresentKHR"); +#endif /* defined(VK_KHR_present_wait) */ +#if defined(VK_KHR_push_descriptor) + vkCmdPushDescriptorSetKHR = (PFN_vkCmdPushDescriptorSetKHR)load(context, "vkCmdPushDescriptorSetKHR"); +#endif /* defined(VK_KHR_push_descriptor) */ +#if defined(VK_KHR_ray_tracing_pipeline) + vkCmdSetRayTracingPipelineStackSizeKHR = (PFN_vkCmdSetRayTracingPipelineStackSizeKHR)load(context, "vkCmdSetRayTracingPipelineStackSizeKHR"); + vkCmdTraceRaysIndirectKHR = (PFN_vkCmdTraceRaysIndirectKHR)load(context, "vkCmdTraceRaysIndirectKHR"); + vkCmdTraceRaysKHR = (PFN_vkCmdTraceRaysKHR)load(context, "vkCmdTraceRaysKHR"); + vkCreateRayTracingPipelinesKHR = (PFN_vkCreateRayTracingPipelinesKHR)load(context, "vkCreateRayTracingPipelinesKHR"); + vkGetRayTracingCaptureReplayShaderGroupHandlesKHR = (PFN_vkGetRayTracingCaptureReplayShaderGroupHandlesKHR)load(context, "vkGetRayTracingCaptureReplayShaderGroupHandlesKHR"); + vkGetRayTracingShaderGroupHandlesKHR = (PFN_vkGetRayTracingShaderGroupHandlesKHR)load(context, "vkGetRayTracingShaderGroupHandlesKHR"); + vkGetRayTracingShaderGroupStackSizeKHR = (PFN_vkGetRayTracingShaderGroupStackSizeKHR)load(context, "vkGetRayTracingShaderGroupStackSizeKHR"); +#endif /* defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_sampler_ycbcr_conversion) + vkCreateSamplerYcbcrConversionKHR = (PFN_vkCreateSamplerYcbcrConversionKHR)load(context, "vkCreateSamplerYcbcrConversionKHR"); + vkDestroySamplerYcbcrConversionKHR = (PFN_vkDestroySamplerYcbcrConversionKHR)load(context, "vkDestroySamplerYcbcrConversionKHR"); +#endif /* defined(VK_KHR_sampler_ycbcr_conversion) */ +#if defined(VK_KHR_shared_presentable_image) + vkGetSwapchainStatusKHR = (PFN_vkGetSwapchainStatusKHR)load(context, "vkGetSwapchainStatusKHR"); +#endif /* defined(VK_KHR_shared_presentable_image) */ +#if defined(VK_KHR_swapchain) + vkAcquireNextImageKHR = (PFN_vkAcquireNextImageKHR)load(context, "vkAcquireNextImageKHR"); + vkCreateSwapchainKHR = (PFN_vkCreateSwapchainKHR)load(context, "vkCreateSwapchainKHR"); + vkDestroySwapchainKHR = (PFN_vkDestroySwapchainKHR)load(context, "vkDestroySwapchainKHR"); + vkGetSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR)load(context, "vkGetSwapchainImagesKHR"); + vkQueuePresentKHR = (PFN_vkQueuePresentKHR)load(context, "vkQueuePresentKHR"); +#endif /* defined(VK_KHR_swapchain) */ +#if defined(VK_KHR_synchronization2) + vkCmdPipelineBarrier2KHR = (PFN_vkCmdPipelineBarrier2KHR)load(context, "vkCmdPipelineBarrier2KHR"); + vkCmdResetEvent2KHR = (PFN_vkCmdResetEvent2KHR)load(context, "vkCmdResetEvent2KHR"); + vkCmdSetEvent2KHR = (PFN_vkCmdSetEvent2KHR)load(context, "vkCmdSetEvent2KHR"); + vkCmdWaitEvents2KHR = (PFN_vkCmdWaitEvents2KHR)load(context, "vkCmdWaitEvents2KHR"); + vkCmdWriteTimestamp2KHR = (PFN_vkCmdWriteTimestamp2KHR)load(context, "vkCmdWriteTimestamp2KHR"); + vkQueueSubmit2KHR = (PFN_vkQueueSubmit2KHR)load(context, "vkQueueSubmit2KHR"); +#endif /* defined(VK_KHR_synchronization2) */ +#if defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) + vkCmdWriteBufferMarker2AMD = (PFN_vkCmdWriteBufferMarker2AMD)load(context, "vkCmdWriteBufferMarker2AMD"); +#endif /* defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) */ +#if defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) + vkGetQueueCheckpointData2NV = (PFN_vkGetQueueCheckpointData2NV)load(context, "vkGetQueueCheckpointData2NV"); +#endif /* defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_KHR_timeline_semaphore) + vkGetSemaphoreCounterValueKHR = (PFN_vkGetSemaphoreCounterValueKHR)load(context, "vkGetSemaphoreCounterValueKHR"); + vkSignalSemaphoreKHR = (PFN_vkSignalSemaphoreKHR)load(context, "vkSignalSemaphoreKHR"); + vkWaitSemaphoresKHR = (PFN_vkWaitSemaphoresKHR)load(context, "vkWaitSemaphoresKHR"); +#endif /* defined(VK_KHR_timeline_semaphore) */ +#if defined(VK_KHR_video_decode_queue) + vkCmdDecodeVideoKHR = (PFN_vkCmdDecodeVideoKHR)load(context, "vkCmdDecodeVideoKHR"); +#endif /* defined(VK_KHR_video_decode_queue) */ +#if defined(VK_KHR_video_encode_queue) + vkCmdEncodeVideoKHR = (PFN_vkCmdEncodeVideoKHR)load(context, "vkCmdEncodeVideoKHR"); +#endif /* defined(VK_KHR_video_encode_queue) */ +#if defined(VK_KHR_video_queue) + vkBindVideoSessionMemoryKHR = (PFN_vkBindVideoSessionMemoryKHR)load(context, "vkBindVideoSessionMemoryKHR"); + vkCmdBeginVideoCodingKHR = (PFN_vkCmdBeginVideoCodingKHR)load(context, "vkCmdBeginVideoCodingKHR"); + vkCmdControlVideoCodingKHR = (PFN_vkCmdControlVideoCodingKHR)load(context, "vkCmdControlVideoCodingKHR"); + vkCmdEndVideoCodingKHR = (PFN_vkCmdEndVideoCodingKHR)load(context, "vkCmdEndVideoCodingKHR"); + vkCreateVideoSessionKHR = (PFN_vkCreateVideoSessionKHR)load(context, "vkCreateVideoSessionKHR"); + vkCreateVideoSessionParametersKHR = (PFN_vkCreateVideoSessionParametersKHR)load(context, "vkCreateVideoSessionParametersKHR"); + vkDestroyVideoSessionKHR = (PFN_vkDestroyVideoSessionKHR)load(context, "vkDestroyVideoSessionKHR"); + vkDestroyVideoSessionParametersKHR = (PFN_vkDestroyVideoSessionParametersKHR)load(context, "vkDestroyVideoSessionParametersKHR"); + vkGetVideoSessionMemoryRequirementsKHR = (PFN_vkGetVideoSessionMemoryRequirementsKHR)load(context, "vkGetVideoSessionMemoryRequirementsKHR"); + vkUpdateVideoSessionParametersKHR = (PFN_vkUpdateVideoSessionParametersKHR)load(context, "vkUpdateVideoSessionParametersKHR"); +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_NVX_binary_import) + vkCmdCuLaunchKernelNVX = (PFN_vkCmdCuLaunchKernelNVX)load(context, "vkCmdCuLaunchKernelNVX"); + vkCreateCuFunctionNVX = (PFN_vkCreateCuFunctionNVX)load(context, "vkCreateCuFunctionNVX"); + vkCreateCuModuleNVX = (PFN_vkCreateCuModuleNVX)load(context, "vkCreateCuModuleNVX"); + vkDestroyCuFunctionNVX = (PFN_vkDestroyCuFunctionNVX)load(context, "vkDestroyCuFunctionNVX"); + vkDestroyCuModuleNVX = (PFN_vkDestroyCuModuleNVX)load(context, "vkDestroyCuModuleNVX"); +#endif /* defined(VK_NVX_binary_import) */ +#if defined(VK_NVX_image_view_handle) + vkGetImageViewAddressNVX = (PFN_vkGetImageViewAddressNVX)load(context, "vkGetImageViewAddressNVX"); + vkGetImageViewHandleNVX = (PFN_vkGetImageViewHandleNVX)load(context, "vkGetImageViewHandleNVX"); +#endif /* defined(VK_NVX_image_view_handle) */ +#if defined(VK_NV_clip_space_w_scaling) + vkCmdSetViewportWScalingNV = (PFN_vkCmdSetViewportWScalingNV)load(context, "vkCmdSetViewportWScalingNV"); +#endif /* defined(VK_NV_clip_space_w_scaling) */ +#if defined(VK_NV_device_diagnostic_checkpoints) + vkCmdSetCheckpointNV = (PFN_vkCmdSetCheckpointNV)load(context, "vkCmdSetCheckpointNV"); + vkGetQueueCheckpointDataNV = (PFN_vkGetQueueCheckpointDataNV)load(context, "vkGetQueueCheckpointDataNV"); +#endif /* defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_NV_device_generated_commands) + vkCmdBindPipelineShaderGroupNV = (PFN_vkCmdBindPipelineShaderGroupNV)load(context, "vkCmdBindPipelineShaderGroupNV"); + vkCmdExecuteGeneratedCommandsNV = (PFN_vkCmdExecuteGeneratedCommandsNV)load(context, "vkCmdExecuteGeneratedCommandsNV"); + vkCmdPreprocessGeneratedCommandsNV = (PFN_vkCmdPreprocessGeneratedCommandsNV)load(context, "vkCmdPreprocessGeneratedCommandsNV"); + vkCreateIndirectCommandsLayoutNV = (PFN_vkCreateIndirectCommandsLayoutNV)load(context, "vkCreateIndirectCommandsLayoutNV"); + vkDestroyIndirectCommandsLayoutNV = (PFN_vkDestroyIndirectCommandsLayoutNV)load(context, "vkDestroyIndirectCommandsLayoutNV"); + vkGetGeneratedCommandsMemoryRequirementsNV = (PFN_vkGetGeneratedCommandsMemoryRequirementsNV)load(context, "vkGetGeneratedCommandsMemoryRequirementsNV"); +#endif /* defined(VK_NV_device_generated_commands) */ +#if defined(VK_NV_external_memory_rdma) + vkGetMemoryRemoteAddressNV = (PFN_vkGetMemoryRemoteAddressNV)load(context, "vkGetMemoryRemoteAddressNV"); +#endif /* defined(VK_NV_external_memory_rdma) */ +#if defined(VK_NV_external_memory_win32) + vkGetMemoryWin32HandleNV = (PFN_vkGetMemoryWin32HandleNV)load(context, "vkGetMemoryWin32HandleNV"); +#endif /* defined(VK_NV_external_memory_win32) */ +#if defined(VK_NV_fragment_shading_rate_enums) + vkCmdSetFragmentShadingRateEnumNV = (PFN_vkCmdSetFragmentShadingRateEnumNV)load(context, "vkCmdSetFragmentShadingRateEnumNV"); +#endif /* defined(VK_NV_fragment_shading_rate_enums) */ +#if defined(VK_NV_mesh_shader) + vkCmdDrawMeshTasksIndirectCountNV = (PFN_vkCmdDrawMeshTasksIndirectCountNV)load(context, "vkCmdDrawMeshTasksIndirectCountNV"); + vkCmdDrawMeshTasksIndirectNV = (PFN_vkCmdDrawMeshTasksIndirectNV)load(context, "vkCmdDrawMeshTasksIndirectNV"); + vkCmdDrawMeshTasksNV = (PFN_vkCmdDrawMeshTasksNV)load(context, "vkCmdDrawMeshTasksNV"); +#endif /* defined(VK_NV_mesh_shader) */ +#if defined(VK_NV_ray_tracing) + vkBindAccelerationStructureMemoryNV = (PFN_vkBindAccelerationStructureMemoryNV)load(context, "vkBindAccelerationStructureMemoryNV"); + vkCmdBuildAccelerationStructureNV = (PFN_vkCmdBuildAccelerationStructureNV)load(context, "vkCmdBuildAccelerationStructureNV"); + vkCmdCopyAccelerationStructureNV = (PFN_vkCmdCopyAccelerationStructureNV)load(context, "vkCmdCopyAccelerationStructureNV"); + vkCmdTraceRaysNV = (PFN_vkCmdTraceRaysNV)load(context, "vkCmdTraceRaysNV"); + vkCmdWriteAccelerationStructuresPropertiesNV = (PFN_vkCmdWriteAccelerationStructuresPropertiesNV)load(context, "vkCmdWriteAccelerationStructuresPropertiesNV"); + vkCompileDeferredNV = (PFN_vkCompileDeferredNV)load(context, "vkCompileDeferredNV"); + vkCreateAccelerationStructureNV = (PFN_vkCreateAccelerationStructureNV)load(context, "vkCreateAccelerationStructureNV"); + vkCreateRayTracingPipelinesNV = (PFN_vkCreateRayTracingPipelinesNV)load(context, "vkCreateRayTracingPipelinesNV"); + vkDestroyAccelerationStructureNV = (PFN_vkDestroyAccelerationStructureNV)load(context, "vkDestroyAccelerationStructureNV"); + vkGetAccelerationStructureHandleNV = (PFN_vkGetAccelerationStructureHandleNV)load(context, "vkGetAccelerationStructureHandleNV"); + vkGetAccelerationStructureMemoryRequirementsNV = (PFN_vkGetAccelerationStructureMemoryRequirementsNV)load(context, "vkGetAccelerationStructureMemoryRequirementsNV"); + vkGetRayTracingShaderGroupHandlesNV = (PFN_vkGetRayTracingShaderGroupHandlesNV)load(context, "vkGetRayTracingShaderGroupHandlesNV"); +#endif /* defined(VK_NV_ray_tracing) */ +#if defined(VK_NV_scissor_exclusive) + vkCmdSetExclusiveScissorNV = (PFN_vkCmdSetExclusiveScissorNV)load(context, "vkCmdSetExclusiveScissorNV"); +#endif /* defined(VK_NV_scissor_exclusive) */ +#if defined(VK_NV_shading_rate_image) + vkCmdBindShadingRateImageNV = (PFN_vkCmdBindShadingRateImageNV)load(context, "vkCmdBindShadingRateImageNV"); + vkCmdSetCoarseSampleOrderNV = (PFN_vkCmdSetCoarseSampleOrderNV)load(context, "vkCmdSetCoarseSampleOrderNV"); + vkCmdSetViewportShadingRatePaletteNV = (PFN_vkCmdSetViewportShadingRatePaletteNV)load(context, "vkCmdSetViewportShadingRatePaletteNV"); +#endif /* defined(VK_NV_shading_rate_image) */ +#if (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) + vkGetDeviceGroupSurfacePresentModes2EXT = (PFN_vkGetDeviceGroupSurfacePresentModes2EXT)load(context, "vkGetDeviceGroupSurfacePresentModes2EXT"); +#endif /* (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) + vkCmdPushDescriptorSetWithTemplateKHR = (PFN_vkCmdPushDescriptorSetWithTemplateKHR)load(context, "vkCmdPushDescriptorSetWithTemplateKHR"); +#endif /* (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + vkGetDeviceGroupPresentCapabilitiesKHR = (PFN_vkGetDeviceGroupPresentCapabilitiesKHR)load(context, "vkGetDeviceGroupPresentCapabilitiesKHR"); + vkGetDeviceGroupSurfacePresentModesKHR = (PFN_vkGetDeviceGroupSurfacePresentModesKHR)load(context, "vkGetDeviceGroupSurfacePresentModesKHR"); +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + vkAcquireNextImage2KHR = (PFN_vkAcquireNextImage2KHR)load(context, "vkAcquireNextImage2KHR"); +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ + /* VOLK_GENERATE_LOAD_DEVICE */ +} + +static void volkGenLoadDeviceTable(struct VolkDeviceTable* table, void* context, PFN_vkVoidFunction (*load)(void*, const char*)) +{ + /* VOLK_GENERATE_LOAD_DEVICE_TABLE */ +#if defined(VK_VERSION_1_0) + table->vkAllocateCommandBuffers = (PFN_vkAllocateCommandBuffers)load(context, "vkAllocateCommandBuffers"); + table->vkAllocateDescriptorSets = (PFN_vkAllocateDescriptorSets)load(context, "vkAllocateDescriptorSets"); + table->vkAllocateMemory = (PFN_vkAllocateMemory)load(context, "vkAllocateMemory"); + table->vkBeginCommandBuffer = (PFN_vkBeginCommandBuffer)load(context, "vkBeginCommandBuffer"); + table->vkBindBufferMemory = (PFN_vkBindBufferMemory)load(context, "vkBindBufferMemory"); + table->vkBindImageMemory = (PFN_vkBindImageMemory)load(context, "vkBindImageMemory"); + table->vkCmdBeginQuery = (PFN_vkCmdBeginQuery)load(context, "vkCmdBeginQuery"); + table->vkCmdBeginRenderPass = (PFN_vkCmdBeginRenderPass)load(context, "vkCmdBeginRenderPass"); + table->vkCmdBindDescriptorSets = (PFN_vkCmdBindDescriptorSets)load(context, "vkCmdBindDescriptorSets"); + table->vkCmdBindIndexBuffer = (PFN_vkCmdBindIndexBuffer)load(context, "vkCmdBindIndexBuffer"); + table->vkCmdBindPipeline = (PFN_vkCmdBindPipeline)load(context, "vkCmdBindPipeline"); + table->vkCmdBindVertexBuffers = (PFN_vkCmdBindVertexBuffers)load(context, "vkCmdBindVertexBuffers"); + table->vkCmdBlitImage = (PFN_vkCmdBlitImage)load(context, "vkCmdBlitImage"); + table->vkCmdClearAttachments = (PFN_vkCmdClearAttachments)load(context, "vkCmdClearAttachments"); + table->vkCmdClearColorImage = (PFN_vkCmdClearColorImage)load(context, "vkCmdClearColorImage"); + table->vkCmdClearDepthStencilImage = (PFN_vkCmdClearDepthStencilImage)load(context, "vkCmdClearDepthStencilImage"); + table->vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)load(context, "vkCmdCopyBuffer"); + table->vkCmdCopyBufferToImage = (PFN_vkCmdCopyBufferToImage)load(context, "vkCmdCopyBufferToImage"); + table->vkCmdCopyImage = (PFN_vkCmdCopyImage)load(context, "vkCmdCopyImage"); + table->vkCmdCopyImageToBuffer = (PFN_vkCmdCopyImageToBuffer)load(context, "vkCmdCopyImageToBuffer"); + table->vkCmdCopyQueryPoolResults = (PFN_vkCmdCopyQueryPoolResults)load(context, "vkCmdCopyQueryPoolResults"); + table->vkCmdDispatch = (PFN_vkCmdDispatch)load(context, "vkCmdDispatch"); + table->vkCmdDispatchIndirect = (PFN_vkCmdDispatchIndirect)load(context, "vkCmdDispatchIndirect"); + table->vkCmdDraw = (PFN_vkCmdDraw)load(context, "vkCmdDraw"); + table->vkCmdDrawIndexed = (PFN_vkCmdDrawIndexed)load(context, "vkCmdDrawIndexed"); + table->vkCmdDrawIndexedIndirect = (PFN_vkCmdDrawIndexedIndirect)load(context, "vkCmdDrawIndexedIndirect"); + table->vkCmdDrawIndirect = (PFN_vkCmdDrawIndirect)load(context, "vkCmdDrawIndirect"); + table->vkCmdEndQuery = (PFN_vkCmdEndQuery)load(context, "vkCmdEndQuery"); + table->vkCmdEndRenderPass = (PFN_vkCmdEndRenderPass)load(context, "vkCmdEndRenderPass"); + table->vkCmdExecuteCommands = (PFN_vkCmdExecuteCommands)load(context, "vkCmdExecuteCommands"); + table->vkCmdFillBuffer = (PFN_vkCmdFillBuffer)load(context, "vkCmdFillBuffer"); + table->vkCmdNextSubpass = (PFN_vkCmdNextSubpass)load(context, "vkCmdNextSubpass"); + table->vkCmdPipelineBarrier = (PFN_vkCmdPipelineBarrier)load(context, "vkCmdPipelineBarrier"); + table->vkCmdPushConstants = (PFN_vkCmdPushConstants)load(context, "vkCmdPushConstants"); + table->vkCmdResetEvent = (PFN_vkCmdResetEvent)load(context, "vkCmdResetEvent"); + table->vkCmdResetQueryPool = (PFN_vkCmdResetQueryPool)load(context, "vkCmdResetQueryPool"); + table->vkCmdResolveImage = (PFN_vkCmdResolveImage)load(context, "vkCmdResolveImage"); + table->vkCmdSetBlendConstants = (PFN_vkCmdSetBlendConstants)load(context, "vkCmdSetBlendConstants"); + table->vkCmdSetDepthBias = (PFN_vkCmdSetDepthBias)load(context, "vkCmdSetDepthBias"); + table->vkCmdSetDepthBounds = (PFN_vkCmdSetDepthBounds)load(context, "vkCmdSetDepthBounds"); + table->vkCmdSetEvent = (PFN_vkCmdSetEvent)load(context, "vkCmdSetEvent"); + table->vkCmdSetLineWidth = (PFN_vkCmdSetLineWidth)load(context, "vkCmdSetLineWidth"); + table->vkCmdSetScissor = (PFN_vkCmdSetScissor)load(context, "vkCmdSetScissor"); + table->vkCmdSetStencilCompareMask = (PFN_vkCmdSetStencilCompareMask)load(context, "vkCmdSetStencilCompareMask"); + table->vkCmdSetStencilReference = (PFN_vkCmdSetStencilReference)load(context, "vkCmdSetStencilReference"); + table->vkCmdSetStencilWriteMask = (PFN_vkCmdSetStencilWriteMask)load(context, "vkCmdSetStencilWriteMask"); + table->vkCmdSetViewport = (PFN_vkCmdSetViewport)load(context, "vkCmdSetViewport"); + table->vkCmdUpdateBuffer = (PFN_vkCmdUpdateBuffer)load(context, "vkCmdUpdateBuffer"); + table->vkCmdWaitEvents = (PFN_vkCmdWaitEvents)load(context, "vkCmdWaitEvents"); + table->vkCmdWriteTimestamp = (PFN_vkCmdWriteTimestamp)load(context, "vkCmdWriteTimestamp"); + table->vkCreateBuffer = (PFN_vkCreateBuffer)load(context, "vkCreateBuffer"); + table->vkCreateBufferView = (PFN_vkCreateBufferView)load(context, "vkCreateBufferView"); + table->vkCreateCommandPool = (PFN_vkCreateCommandPool)load(context, "vkCreateCommandPool"); + table->vkCreateComputePipelines = (PFN_vkCreateComputePipelines)load(context, "vkCreateComputePipelines"); + table->vkCreateDescriptorPool = (PFN_vkCreateDescriptorPool)load(context, "vkCreateDescriptorPool"); + table->vkCreateDescriptorSetLayout = (PFN_vkCreateDescriptorSetLayout)load(context, "vkCreateDescriptorSetLayout"); + table->vkCreateEvent = (PFN_vkCreateEvent)load(context, "vkCreateEvent"); + table->vkCreateFence = (PFN_vkCreateFence)load(context, "vkCreateFence"); + table->vkCreateFramebuffer = (PFN_vkCreateFramebuffer)load(context, "vkCreateFramebuffer"); + table->vkCreateGraphicsPipelines = (PFN_vkCreateGraphicsPipelines)load(context, "vkCreateGraphicsPipelines"); + table->vkCreateImage = (PFN_vkCreateImage)load(context, "vkCreateImage"); + table->vkCreateImageView = (PFN_vkCreateImageView)load(context, "vkCreateImageView"); + table->vkCreatePipelineCache = (PFN_vkCreatePipelineCache)load(context, "vkCreatePipelineCache"); + table->vkCreatePipelineLayout = (PFN_vkCreatePipelineLayout)load(context, "vkCreatePipelineLayout"); + table->vkCreateQueryPool = (PFN_vkCreateQueryPool)load(context, "vkCreateQueryPool"); + table->vkCreateRenderPass = (PFN_vkCreateRenderPass)load(context, "vkCreateRenderPass"); + table->vkCreateSampler = (PFN_vkCreateSampler)load(context, "vkCreateSampler"); + table->vkCreateSemaphore = (PFN_vkCreateSemaphore)load(context, "vkCreateSemaphore"); + table->vkCreateShaderModule = (PFN_vkCreateShaderModule)load(context, "vkCreateShaderModule"); + table->vkDestroyBuffer = (PFN_vkDestroyBuffer)load(context, "vkDestroyBuffer"); + table->vkDestroyBufferView = (PFN_vkDestroyBufferView)load(context, "vkDestroyBufferView"); + table->vkDestroyCommandPool = (PFN_vkDestroyCommandPool)load(context, "vkDestroyCommandPool"); + table->vkDestroyDescriptorPool = (PFN_vkDestroyDescriptorPool)load(context, "vkDestroyDescriptorPool"); + table->vkDestroyDescriptorSetLayout = (PFN_vkDestroyDescriptorSetLayout)load(context, "vkDestroyDescriptorSetLayout"); + table->vkDestroyDevice = (PFN_vkDestroyDevice)load(context, "vkDestroyDevice"); + table->vkDestroyEvent = (PFN_vkDestroyEvent)load(context, "vkDestroyEvent"); + table->vkDestroyFence = (PFN_vkDestroyFence)load(context, "vkDestroyFence"); + table->vkDestroyFramebuffer = (PFN_vkDestroyFramebuffer)load(context, "vkDestroyFramebuffer"); + table->vkDestroyImage = (PFN_vkDestroyImage)load(context, "vkDestroyImage"); + table->vkDestroyImageView = (PFN_vkDestroyImageView)load(context, "vkDestroyImageView"); + table->vkDestroyPipeline = (PFN_vkDestroyPipeline)load(context, "vkDestroyPipeline"); + table->vkDestroyPipelineCache = (PFN_vkDestroyPipelineCache)load(context, "vkDestroyPipelineCache"); + table->vkDestroyPipelineLayout = (PFN_vkDestroyPipelineLayout)load(context, "vkDestroyPipelineLayout"); + table->vkDestroyQueryPool = (PFN_vkDestroyQueryPool)load(context, "vkDestroyQueryPool"); + table->vkDestroyRenderPass = (PFN_vkDestroyRenderPass)load(context, "vkDestroyRenderPass"); + table->vkDestroySampler = (PFN_vkDestroySampler)load(context, "vkDestroySampler"); + table->vkDestroySemaphore = (PFN_vkDestroySemaphore)load(context, "vkDestroySemaphore"); + table->vkDestroyShaderModule = (PFN_vkDestroyShaderModule)load(context, "vkDestroyShaderModule"); + table->vkDeviceWaitIdle = (PFN_vkDeviceWaitIdle)load(context, "vkDeviceWaitIdle"); + table->vkEndCommandBuffer = (PFN_vkEndCommandBuffer)load(context, "vkEndCommandBuffer"); + table->vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)load(context, "vkFlushMappedMemoryRanges"); + table->vkFreeCommandBuffers = (PFN_vkFreeCommandBuffers)load(context, "vkFreeCommandBuffers"); + table->vkFreeDescriptorSets = (PFN_vkFreeDescriptorSets)load(context, "vkFreeDescriptorSets"); + table->vkFreeMemory = (PFN_vkFreeMemory)load(context, "vkFreeMemory"); + table->vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)load(context, "vkGetBufferMemoryRequirements"); + table->vkGetDeviceMemoryCommitment = (PFN_vkGetDeviceMemoryCommitment)load(context, "vkGetDeviceMemoryCommitment"); + table->vkGetDeviceQueue = (PFN_vkGetDeviceQueue)load(context, "vkGetDeviceQueue"); + table->vkGetEventStatus = (PFN_vkGetEventStatus)load(context, "vkGetEventStatus"); + table->vkGetFenceStatus = (PFN_vkGetFenceStatus)load(context, "vkGetFenceStatus"); + table->vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)load(context, "vkGetImageMemoryRequirements"); + table->vkGetImageSparseMemoryRequirements = (PFN_vkGetImageSparseMemoryRequirements)load(context, "vkGetImageSparseMemoryRequirements"); + table->vkGetImageSubresourceLayout = (PFN_vkGetImageSubresourceLayout)load(context, "vkGetImageSubresourceLayout"); + table->vkGetPipelineCacheData = (PFN_vkGetPipelineCacheData)load(context, "vkGetPipelineCacheData"); + table->vkGetQueryPoolResults = (PFN_vkGetQueryPoolResults)load(context, "vkGetQueryPoolResults"); + table->vkGetRenderAreaGranularity = (PFN_vkGetRenderAreaGranularity)load(context, "vkGetRenderAreaGranularity"); + table->vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)load(context, "vkInvalidateMappedMemoryRanges"); + table->vkMapMemory = (PFN_vkMapMemory)load(context, "vkMapMemory"); + table->vkMergePipelineCaches = (PFN_vkMergePipelineCaches)load(context, "vkMergePipelineCaches"); + table->vkQueueBindSparse = (PFN_vkQueueBindSparse)load(context, "vkQueueBindSparse"); + table->vkQueueSubmit = (PFN_vkQueueSubmit)load(context, "vkQueueSubmit"); + table->vkQueueWaitIdle = (PFN_vkQueueWaitIdle)load(context, "vkQueueWaitIdle"); + table->vkResetCommandBuffer = (PFN_vkResetCommandBuffer)load(context, "vkResetCommandBuffer"); + table->vkResetCommandPool = (PFN_vkResetCommandPool)load(context, "vkResetCommandPool"); + table->vkResetDescriptorPool = (PFN_vkResetDescriptorPool)load(context, "vkResetDescriptorPool"); + table->vkResetEvent = (PFN_vkResetEvent)load(context, "vkResetEvent"); + table->vkResetFences = (PFN_vkResetFences)load(context, "vkResetFences"); + table->vkSetEvent = (PFN_vkSetEvent)load(context, "vkSetEvent"); + table->vkUnmapMemory = (PFN_vkUnmapMemory)load(context, "vkUnmapMemory"); + table->vkUpdateDescriptorSets = (PFN_vkUpdateDescriptorSets)load(context, "vkUpdateDescriptorSets"); + table->vkWaitForFences = (PFN_vkWaitForFences)load(context, "vkWaitForFences"); +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) + table->vkBindBufferMemory2 = (PFN_vkBindBufferMemory2)load(context, "vkBindBufferMemory2"); + table->vkBindImageMemory2 = (PFN_vkBindImageMemory2)load(context, "vkBindImageMemory2"); + table->vkCmdDispatchBase = (PFN_vkCmdDispatchBase)load(context, "vkCmdDispatchBase"); + table->vkCmdSetDeviceMask = (PFN_vkCmdSetDeviceMask)load(context, "vkCmdSetDeviceMask"); + table->vkCreateDescriptorUpdateTemplate = (PFN_vkCreateDescriptorUpdateTemplate)load(context, "vkCreateDescriptorUpdateTemplate"); + table->vkCreateSamplerYcbcrConversion = (PFN_vkCreateSamplerYcbcrConversion)load(context, "vkCreateSamplerYcbcrConversion"); + table->vkDestroyDescriptorUpdateTemplate = (PFN_vkDestroyDescriptorUpdateTemplate)load(context, "vkDestroyDescriptorUpdateTemplate"); + table->vkDestroySamplerYcbcrConversion = (PFN_vkDestroySamplerYcbcrConversion)load(context, "vkDestroySamplerYcbcrConversion"); + table->vkGetBufferMemoryRequirements2 = (PFN_vkGetBufferMemoryRequirements2)load(context, "vkGetBufferMemoryRequirements2"); + table->vkGetDescriptorSetLayoutSupport = (PFN_vkGetDescriptorSetLayoutSupport)load(context, "vkGetDescriptorSetLayoutSupport"); + table->vkGetDeviceGroupPeerMemoryFeatures = (PFN_vkGetDeviceGroupPeerMemoryFeatures)load(context, "vkGetDeviceGroupPeerMemoryFeatures"); + table->vkGetDeviceQueue2 = (PFN_vkGetDeviceQueue2)load(context, "vkGetDeviceQueue2"); + table->vkGetImageMemoryRequirements2 = (PFN_vkGetImageMemoryRequirements2)load(context, "vkGetImageMemoryRequirements2"); + table->vkGetImageSparseMemoryRequirements2 = (PFN_vkGetImageSparseMemoryRequirements2)load(context, "vkGetImageSparseMemoryRequirements2"); + table->vkTrimCommandPool = (PFN_vkTrimCommandPool)load(context, "vkTrimCommandPool"); + table->vkUpdateDescriptorSetWithTemplate = (PFN_vkUpdateDescriptorSetWithTemplate)load(context, "vkUpdateDescriptorSetWithTemplate"); +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_VERSION_1_2) + table->vkCmdBeginRenderPass2 = (PFN_vkCmdBeginRenderPass2)load(context, "vkCmdBeginRenderPass2"); + table->vkCmdDrawIndexedIndirectCount = (PFN_vkCmdDrawIndexedIndirectCount)load(context, "vkCmdDrawIndexedIndirectCount"); + table->vkCmdDrawIndirectCount = (PFN_vkCmdDrawIndirectCount)load(context, "vkCmdDrawIndirectCount"); + table->vkCmdEndRenderPass2 = (PFN_vkCmdEndRenderPass2)load(context, "vkCmdEndRenderPass2"); + table->vkCmdNextSubpass2 = (PFN_vkCmdNextSubpass2)load(context, "vkCmdNextSubpass2"); + table->vkCreateRenderPass2 = (PFN_vkCreateRenderPass2)load(context, "vkCreateRenderPass2"); + table->vkGetBufferDeviceAddress = (PFN_vkGetBufferDeviceAddress)load(context, "vkGetBufferDeviceAddress"); + table->vkGetBufferOpaqueCaptureAddress = (PFN_vkGetBufferOpaqueCaptureAddress)load(context, "vkGetBufferOpaqueCaptureAddress"); + table->vkGetDeviceMemoryOpaqueCaptureAddress = (PFN_vkGetDeviceMemoryOpaqueCaptureAddress)load(context, "vkGetDeviceMemoryOpaqueCaptureAddress"); + table->vkGetSemaphoreCounterValue = (PFN_vkGetSemaphoreCounterValue)load(context, "vkGetSemaphoreCounterValue"); + table->vkResetQueryPool = (PFN_vkResetQueryPool)load(context, "vkResetQueryPool"); + table->vkSignalSemaphore = (PFN_vkSignalSemaphore)load(context, "vkSignalSemaphore"); + table->vkWaitSemaphores = (PFN_vkWaitSemaphores)load(context, "vkWaitSemaphores"); +#endif /* defined(VK_VERSION_1_2) */ +#if defined(VK_AMD_buffer_marker) + table->vkCmdWriteBufferMarkerAMD = (PFN_vkCmdWriteBufferMarkerAMD)load(context, "vkCmdWriteBufferMarkerAMD"); +#endif /* defined(VK_AMD_buffer_marker) */ +#if defined(VK_AMD_display_native_hdr) + table->vkSetLocalDimmingAMD = (PFN_vkSetLocalDimmingAMD)load(context, "vkSetLocalDimmingAMD"); +#endif /* defined(VK_AMD_display_native_hdr) */ +#if defined(VK_AMD_draw_indirect_count) + table->vkCmdDrawIndexedIndirectCountAMD = (PFN_vkCmdDrawIndexedIndirectCountAMD)load(context, "vkCmdDrawIndexedIndirectCountAMD"); + table->vkCmdDrawIndirectCountAMD = (PFN_vkCmdDrawIndirectCountAMD)load(context, "vkCmdDrawIndirectCountAMD"); +#endif /* defined(VK_AMD_draw_indirect_count) */ +#if defined(VK_AMD_shader_info) + table->vkGetShaderInfoAMD = (PFN_vkGetShaderInfoAMD)load(context, "vkGetShaderInfoAMD"); +#endif /* defined(VK_AMD_shader_info) */ +#if defined(VK_ANDROID_external_memory_android_hardware_buffer) + table->vkGetAndroidHardwareBufferPropertiesANDROID = (PFN_vkGetAndroidHardwareBufferPropertiesANDROID)load(context, "vkGetAndroidHardwareBufferPropertiesANDROID"); + table->vkGetMemoryAndroidHardwareBufferANDROID = (PFN_vkGetMemoryAndroidHardwareBufferANDROID)load(context, "vkGetMemoryAndroidHardwareBufferANDROID"); +#endif /* defined(VK_ANDROID_external_memory_android_hardware_buffer) */ +#if defined(VK_EXT_buffer_device_address) + table->vkGetBufferDeviceAddressEXT = (PFN_vkGetBufferDeviceAddressEXT)load(context, "vkGetBufferDeviceAddressEXT"); +#endif /* defined(VK_EXT_buffer_device_address) */ +#if defined(VK_EXT_calibrated_timestamps) + table->vkGetCalibratedTimestampsEXT = (PFN_vkGetCalibratedTimestampsEXT)load(context, "vkGetCalibratedTimestampsEXT"); +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_color_write_enable) + table->vkCmdSetColorWriteEnableEXT = (PFN_vkCmdSetColorWriteEnableEXT)load(context, "vkCmdSetColorWriteEnableEXT"); +#endif /* defined(VK_EXT_color_write_enable) */ +#if defined(VK_EXT_conditional_rendering) + table->vkCmdBeginConditionalRenderingEXT = (PFN_vkCmdBeginConditionalRenderingEXT)load(context, "vkCmdBeginConditionalRenderingEXT"); + table->vkCmdEndConditionalRenderingEXT = (PFN_vkCmdEndConditionalRenderingEXT)load(context, "vkCmdEndConditionalRenderingEXT"); +#endif /* defined(VK_EXT_conditional_rendering) */ +#if defined(VK_EXT_debug_marker) + table->vkCmdDebugMarkerBeginEXT = (PFN_vkCmdDebugMarkerBeginEXT)load(context, "vkCmdDebugMarkerBeginEXT"); + table->vkCmdDebugMarkerEndEXT = (PFN_vkCmdDebugMarkerEndEXT)load(context, "vkCmdDebugMarkerEndEXT"); + table->vkCmdDebugMarkerInsertEXT = (PFN_vkCmdDebugMarkerInsertEXT)load(context, "vkCmdDebugMarkerInsertEXT"); + table->vkDebugMarkerSetObjectNameEXT = (PFN_vkDebugMarkerSetObjectNameEXT)load(context, "vkDebugMarkerSetObjectNameEXT"); + table->vkDebugMarkerSetObjectTagEXT = (PFN_vkDebugMarkerSetObjectTagEXT)load(context, "vkDebugMarkerSetObjectTagEXT"); +#endif /* defined(VK_EXT_debug_marker) */ +#if defined(VK_EXT_discard_rectangles) + table->vkCmdSetDiscardRectangleEXT = (PFN_vkCmdSetDiscardRectangleEXT)load(context, "vkCmdSetDiscardRectangleEXT"); +#endif /* defined(VK_EXT_discard_rectangles) */ +#if defined(VK_EXT_display_control) + table->vkDisplayPowerControlEXT = (PFN_vkDisplayPowerControlEXT)load(context, "vkDisplayPowerControlEXT"); + table->vkGetSwapchainCounterEXT = (PFN_vkGetSwapchainCounterEXT)load(context, "vkGetSwapchainCounterEXT"); + table->vkRegisterDeviceEventEXT = (PFN_vkRegisterDeviceEventEXT)load(context, "vkRegisterDeviceEventEXT"); + table->vkRegisterDisplayEventEXT = (PFN_vkRegisterDisplayEventEXT)load(context, "vkRegisterDisplayEventEXT"); +#endif /* defined(VK_EXT_display_control) */ +#if defined(VK_EXT_extended_dynamic_state) + table->vkCmdBindVertexBuffers2EXT = (PFN_vkCmdBindVertexBuffers2EXT)load(context, "vkCmdBindVertexBuffers2EXT"); + table->vkCmdSetCullModeEXT = (PFN_vkCmdSetCullModeEXT)load(context, "vkCmdSetCullModeEXT"); + table->vkCmdSetDepthBoundsTestEnableEXT = (PFN_vkCmdSetDepthBoundsTestEnableEXT)load(context, "vkCmdSetDepthBoundsTestEnableEXT"); + table->vkCmdSetDepthCompareOpEXT = (PFN_vkCmdSetDepthCompareOpEXT)load(context, "vkCmdSetDepthCompareOpEXT"); + table->vkCmdSetDepthTestEnableEXT = (PFN_vkCmdSetDepthTestEnableEXT)load(context, "vkCmdSetDepthTestEnableEXT"); + table->vkCmdSetDepthWriteEnableEXT = (PFN_vkCmdSetDepthWriteEnableEXT)load(context, "vkCmdSetDepthWriteEnableEXT"); + table->vkCmdSetFrontFaceEXT = (PFN_vkCmdSetFrontFaceEXT)load(context, "vkCmdSetFrontFaceEXT"); + table->vkCmdSetPrimitiveTopologyEXT = (PFN_vkCmdSetPrimitiveTopologyEXT)load(context, "vkCmdSetPrimitiveTopologyEXT"); + table->vkCmdSetScissorWithCountEXT = (PFN_vkCmdSetScissorWithCountEXT)load(context, "vkCmdSetScissorWithCountEXT"); + table->vkCmdSetStencilOpEXT = (PFN_vkCmdSetStencilOpEXT)load(context, "vkCmdSetStencilOpEXT"); + table->vkCmdSetStencilTestEnableEXT = (PFN_vkCmdSetStencilTestEnableEXT)load(context, "vkCmdSetStencilTestEnableEXT"); + table->vkCmdSetViewportWithCountEXT = (PFN_vkCmdSetViewportWithCountEXT)load(context, "vkCmdSetViewportWithCountEXT"); +#endif /* defined(VK_EXT_extended_dynamic_state) */ +#if defined(VK_EXT_extended_dynamic_state2) + table->vkCmdSetDepthBiasEnableEXT = (PFN_vkCmdSetDepthBiasEnableEXT)load(context, "vkCmdSetDepthBiasEnableEXT"); + table->vkCmdSetLogicOpEXT = (PFN_vkCmdSetLogicOpEXT)load(context, "vkCmdSetLogicOpEXT"); + table->vkCmdSetPatchControlPointsEXT = (PFN_vkCmdSetPatchControlPointsEXT)load(context, "vkCmdSetPatchControlPointsEXT"); + table->vkCmdSetPrimitiveRestartEnableEXT = (PFN_vkCmdSetPrimitiveRestartEnableEXT)load(context, "vkCmdSetPrimitiveRestartEnableEXT"); + table->vkCmdSetRasterizerDiscardEnableEXT = (PFN_vkCmdSetRasterizerDiscardEnableEXT)load(context, "vkCmdSetRasterizerDiscardEnableEXT"); +#endif /* defined(VK_EXT_extended_dynamic_state2) */ +#if defined(VK_EXT_external_memory_host) + table->vkGetMemoryHostPointerPropertiesEXT = (PFN_vkGetMemoryHostPointerPropertiesEXT)load(context, "vkGetMemoryHostPointerPropertiesEXT"); +#endif /* defined(VK_EXT_external_memory_host) */ +#if defined(VK_EXT_full_screen_exclusive) + table->vkAcquireFullScreenExclusiveModeEXT = (PFN_vkAcquireFullScreenExclusiveModeEXT)load(context, "vkAcquireFullScreenExclusiveModeEXT"); + table->vkReleaseFullScreenExclusiveModeEXT = (PFN_vkReleaseFullScreenExclusiveModeEXT)load(context, "vkReleaseFullScreenExclusiveModeEXT"); +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_hdr_metadata) + table->vkSetHdrMetadataEXT = (PFN_vkSetHdrMetadataEXT)load(context, "vkSetHdrMetadataEXT"); +#endif /* defined(VK_EXT_hdr_metadata) */ +#if defined(VK_EXT_host_query_reset) + table->vkResetQueryPoolEXT = (PFN_vkResetQueryPoolEXT)load(context, "vkResetQueryPoolEXT"); +#endif /* defined(VK_EXT_host_query_reset) */ +#if defined(VK_EXT_image_drm_format_modifier) + table->vkGetImageDrmFormatModifierPropertiesEXT = (PFN_vkGetImageDrmFormatModifierPropertiesEXT)load(context, "vkGetImageDrmFormatModifierPropertiesEXT"); +#endif /* defined(VK_EXT_image_drm_format_modifier) */ +#if defined(VK_EXT_line_rasterization) + table->vkCmdSetLineStippleEXT = (PFN_vkCmdSetLineStippleEXT)load(context, "vkCmdSetLineStippleEXT"); +#endif /* defined(VK_EXT_line_rasterization) */ +#if defined(VK_EXT_multi_draw) + table->vkCmdDrawMultiEXT = (PFN_vkCmdDrawMultiEXT)load(context, "vkCmdDrawMultiEXT"); + table->vkCmdDrawMultiIndexedEXT = (PFN_vkCmdDrawMultiIndexedEXT)load(context, "vkCmdDrawMultiIndexedEXT"); +#endif /* defined(VK_EXT_multi_draw) */ +#if defined(VK_EXT_pageable_device_local_memory) + table->vkSetDeviceMemoryPriorityEXT = (PFN_vkSetDeviceMemoryPriorityEXT)load(context, "vkSetDeviceMemoryPriorityEXT"); +#endif /* defined(VK_EXT_pageable_device_local_memory) */ +#if defined(VK_EXT_private_data) + table->vkCreatePrivateDataSlotEXT = (PFN_vkCreatePrivateDataSlotEXT)load(context, "vkCreatePrivateDataSlotEXT"); + table->vkDestroyPrivateDataSlotEXT = (PFN_vkDestroyPrivateDataSlotEXT)load(context, "vkDestroyPrivateDataSlotEXT"); + table->vkGetPrivateDataEXT = (PFN_vkGetPrivateDataEXT)load(context, "vkGetPrivateDataEXT"); + table->vkSetPrivateDataEXT = (PFN_vkSetPrivateDataEXT)load(context, "vkSetPrivateDataEXT"); +#endif /* defined(VK_EXT_private_data) */ +#if defined(VK_EXT_sample_locations) + table->vkCmdSetSampleLocationsEXT = (PFN_vkCmdSetSampleLocationsEXT)load(context, "vkCmdSetSampleLocationsEXT"); +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_transform_feedback) + table->vkCmdBeginQueryIndexedEXT = (PFN_vkCmdBeginQueryIndexedEXT)load(context, "vkCmdBeginQueryIndexedEXT"); + table->vkCmdBeginTransformFeedbackEXT = (PFN_vkCmdBeginTransformFeedbackEXT)load(context, "vkCmdBeginTransformFeedbackEXT"); + table->vkCmdBindTransformFeedbackBuffersEXT = (PFN_vkCmdBindTransformFeedbackBuffersEXT)load(context, "vkCmdBindTransformFeedbackBuffersEXT"); + table->vkCmdDrawIndirectByteCountEXT = (PFN_vkCmdDrawIndirectByteCountEXT)load(context, "vkCmdDrawIndirectByteCountEXT"); + table->vkCmdEndQueryIndexedEXT = (PFN_vkCmdEndQueryIndexedEXT)load(context, "vkCmdEndQueryIndexedEXT"); + table->vkCmdEndTransformFeedbackEXT = (PFN_vkCmdEndTransformFeedbackEXT)load(context, "vkCmdEndTransformFeedbackEXT"); +#endif /* defined(VK_EXT_transform_feedback) */ +#if defined(VK_EXT_validation_cache) + table->vkCreateValidationCacheEXT = (PFN_vkCreateValidationCacheEXT)load(context, "vkCreateValidationCacheEXT"); + table->vkDestroyValidationCacheEXT = (PFN_vkDestroyValidationCacheEXT)load(context, "vkDestroyValidationCacheEXT"); + table->vkGetValidationCacheDataEXT = (PFN_vkGetValidationCacheDataEXT)load(context, "vkGetValidationCacheDataEXT"); + table->vkMergeValidationCachesEXT = (PFN_vkMergeValidationCachesEXT)load(context, "vkMergeValidationCachesEXT"); +#endif /* defined(VK_EXT_validation_cache) */ +#if defined(VK_EXT_vertex_input_dynamic_state) + table->vkCmdSetVertexInputEXT = (PFN_vkCmdSetVertexInputEXT)load(context, "vkCmdSetVertexInputEXT"); +#endif /* defined(VK_EXT_vertex_input_dynamic_state) */ +#if defined(VK_FUCHSIA_buffer_collection) + table->vkCreateBufferCollectionFUCHSIA = (PFN_vkCreateBufferCollectionFUCHSIA)load(context, "vkCreateBufferCollectionFUCHSIA"); + table->vkDestroyBufferCollectionFUCHSIA = (PFN_vkDestroyBufferCollectionFUCHSIA)load(context, "vkDestroyBufferCollectionFUCHSIA"); + table->vkGetBufferCollectionPropertiesFUCHSIA = (PFN_vkGetBufferCollectionPropertiesFUCHSIA)load(context, "vkGetBufferCollectionPropertiesFUCHSIA"); + table->vkSetBufferCollectionBufferConstraintsFUCHSIA = (PFN_vkSetBufferCollectionBufferConstraintsFUCHSIA)load(context, "vkSetBufferCollectionBufferConstraintsFUCHSIA"); + table->vkSetBufferCollectionImageConstraintsFUCHSIA = (PFN_vkSetBufferCollectionImageConstraintsFUCHSIA)load(context, "vkSetBufferCollectionImageConstraintsFUCHSIA"); +#endif /* defined(VK_FUCHSIA_buffer_collection) */ +#if defined(VK_FUCHSIA_external_memory) + table->vkGetMemoryZirconHandleFUCHSIA = (PFN_vkGetMemoryZirconHandleFUCHSIA)load(context, "vkGetMemoryZirconHandleFUCHSIA"); + table->vkGetMemoryZirconHandlePropertiesFUCHSIA = (PFN_vkGetMemoryZirconHandlePropertiesFUCHSIA)load(context, "vkGetMemoryZirconHandlePropertiesFUCHSIA"); +#endif /* defined(VK_FUCHSIA_external_memory) */ +#if defined(VK_FUCHSIA_external_semaphore) + table->vkGetSemaphoreZirconHandleFUCHSIA = (PFN_vkGetSemaphoreZirconHandleFUCHSIA)load(context, "vkGetSemaphoreZirconHandleFUCHSIA"); + table->vkImportSemaphoreZirconHandleFUCHSIA = (PFN_vkImportSemaphoreZirconHandleFUCHSIA)load(context, "vkImportSemaphoreZirconHandleFUCHSIA"); +#endif /* defined(VK_FUCHSIA_external_semaphore) */ +#if defined(VK_GOOGLE_display_timing) + table->vkGetPastPresentationTimingGOOGLE = (PFN_vkGetPastPresentationTimingGOOGLE)load(context, "vkGetPastPresentationTimingGOOGLE"); + table->vkGetRefreshCycleDurationGOOGLE = (PFN_vkGetRefreshCycleDurationGOOGLE)load(context, "vkGetRefreshCycleDurationGOOGLE"); +#endif /* defined(VK_GOOGLE_display_timing) */ +#if defined(VK_HUAWEI_invocation_mask) + table->vkCmdBindInvocationMaskHUAWEI = (PFN_vkCmdBindInvocationMaskHUAWEI)load(context, "vkCmdBindInvocationMaskHUAWEI"); +#endif /* defined(VK_HUAWEI_invocation_mask) */ +#if defined(VK_HUAWEI_subpass_shading) + table->vkCmdSubpassShadingHUAWEI = (PFN_vkCmdSubpassShadingHUAWEI)load(context, "vkCmdSubpassShadingHUAWEI"); + table->vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI = (PFN_vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI)load(context, "vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI"); +#endif /* defined(VK_HUAWEI_subpass_shading) */ +#if defined(VK_INTEL_performance_query) + table->vkAcquirePerformanceConfigurationINTEL = (PFN_vkAcquirePerformanceConfigurationINTEL)load(context, "vkAcquirePerformanceConfigurationINTEL"); + table->vkCmdSetPerformanceMarkerINTEL = (PFN_vkCmdSetPerformanceMarkerINTEL)load(context, "vkCmdSetPerformanceMarkerINTEL"); + table->vkCmdSetPerformanceOverrideINTEL = (PFN_vkCmdSetPerformanceOverrideINTEL)load(context, "vkCmdSetPerformanceOverrideINTEL"); + table->vkCmdSetPerformanceStreamMarkerINTEL = (PFN_vkCmdSetPerformanceStreamMarkerINTEL)load(context, "vkCmdSetPerformanceStreamMarkerINTEL"); + table->vkGetPerformanceParameterINTEL = (PFN_vkGetPerformanceParameterINTEL)load(context, "vkGetPerformanceParameterINTEL"); + table->vkInitializePerformanceApiINTEL = (PFN_vkInitializePerformanceApiINTEL)load(context, "vkInitializePerformanceApiINTEL"); + table->vkQueueSetPerformanceConfigurationINTEL = (PFN_vkQueueSetPerformanceConfigurationINTEL)load(context, "vkQueueSetPerformanceConfigurationINTEL"); + table->vkReleasePerformanceConfigurationINTEL = (PFN_vkReleasePerformanceConfigurationINTEL)load(context, "vkReleasePerformanceConfigurationINTEL"); + table->vkUninitializePerformanceApiINTEL = (PFN_vkUninitializePerformanceApiINTEL)load(context, "vkUninitializePerformanceApiINTEL"); +#endif /* defined(VK_INTEL_performance_query) */ +#if defined(VK_KHR_acceleration_structure) + table->vkBuildAccelerationStructuresKHR = (PFN_vkBuildAccelerationStructuresKHR)load(context, "vkBuildAccelerationStructuresKHR"); + table->vkCmdBuildAccelerationStructuresIndirectKHR = (PFN_vkCmdBuildAccelerationStructuresIndirectKHR)load(context, "vkCmdBuildAccelerationStructuresIndirectKHR"); + table->vkCmdBuildAccelerationStructuresKHR = (PFN_vkCmdBuildAccelerationStructuresKHR)load(context, "vkCmdBuildAccelerationStructuresKHR"); + table->vkCmdCopyAccelerationStructureKHR = (PFN_vkCmdCopyAccelerationStructureKHR)load(context, "vkCmdCopyAccelerationStructureKHR"); + table->vkCmdCopyAccelerationStructureToMemoryKHR = (PFN_vkCmdCopyAccelerationStructureToMemoryKHR)load(context, "vkCmdCopyAccelerationStructureToMemoryKHR"); + table->vkCmdCopyMemoryToAccelerationStructureKHR = (PFN_vkCmdCopyMemoryToAccelerationStructureKHR)load(context, "vkCmdCopyMemoryToAccelerationStructureKHR"); + table->vkCmdWriteAccelerationStructuresPropertiesKHR = (PFN_vkCmdWriteAccelerationStructuresPropertiesKHR)load(context, "vkCmdWriteAccelerationStructuresPropertiesKHR"); + table->vkCopyAccelerationStructureKHR = (PFN_vkCopyAccelerationStructureKHR)load(context, "vkCopyAccelerationStructureKHR"); + table->vkCopyAccelerationStructureToMemoryKHR = (PFN_vkCopyAccelerationStructureToMemoryKHR)load(context, "vkCopyAccelerationStructureToMemoryKHR"); + table->vkCopyMemoryToAccelerationStructureKHR = (PFN_vkCopyMemoryToAccelerationStructureKHR)load(context, "vkCopyMemoryToAccelerationStructureKHR"); + table->vkCreateAccelerationStructureKHR = (PFN_vkCreateAccelerationStructureKHR)load(context, "vkCreateAccelerationStructureKHR"); + table->vkDestroyAccelerationStructureKHR = (PFN_vkDestroyAccelerationStructureKHR)load(context, "vkDestroyAccelerationStructureKHR"); + table->vkGetAccelerationStructureBuildSizesKHR = (PFN_vkGetAccelerationStructureBuildSizesKHR)load(context, "vkGetAccelerationStructureBuildSizesKHR"); + table->vkGetAccelerationStructureDeviceAddressKHR = (PFN_vkGetAccelerationStructureDeviceAddressKHR)load(context, "vkGetAccelerationStructureDeviceAddressKHR"); + table->vkGetDeviceAccelerationStructureCompatibilityKHR = (PFN_vkGetDeviceAccelerationStructureCompatibilityKHR)load(context, "vkGetDeviceAccelerationStructureCompatibilityKHR"); + table->vkWriteAccelerationStructuresPropertiesKHR = (PFN_vkWriteAccelerationStructuresPropertiesKHR)load(context, "vkWriteAccelerationStructuresPropertiesKHR"); +#endif /* defined(VK_KHR_acceleration_structure) */ +#if defined(VK_KHR_bind_memory2) + table->vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2KHR)load(context, "vkBindBufferMemory2KHR"); + table->vkBindImageMemory2KHR = (PFN_vkBindImageMemory2KHR)load(context, "vkBindImageMemory2KHR"); +#endif /* defined(VK_KHR_bind_memory2) */ +#if defined(VK_KHR_buffer_device_address) + table->vkGetBufferDeviceAddressKHR = (PFN_vkGetBufferDeviceAddressKHR)load(context, "vkGetBufferDeviceAddressKHR"); + table->vkGetBufferOpaqueCaptureAddressKHR = (PFN_vkGetBufferOpaqueCaptureAddressKHR)load(context, "vkGetBufferOpaqueCaptureAddressKHR"); + table->vkGetDeviceMemoryOpaqueCaptureAddressKHR = (PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR)load(context, "vkGetDeviceMemoryOpaqueCaptureAddressKHR"); +#endif /* defined(VK_KHR_buffer_device_address) */ +#if defined(VK_KHR_copy_commands2) + table->vkCmdBlitImage2KHR = (PFN_vkCmdBlitImage2KHR)load(context, "vkCmdBlitImage2KHR"); + table->vkCmdCopyBuffer2KHR = (PFN_vkCmdCopyBuffer2KHR)load(context, "vkCmdCopyBuffer2KHR"); + table->vkCmdCopyBufferToImage2KHR = (PFN_vkCmdCopyBufferToImage2KHR)load(context, "vkCmdCopyBufferToImage2KHR"); + table->vkCmdCopyImage2KHR = (PFN_vkCmdCopyImage2KHR)load(context, "vkCmdCopyImage2KHR"); + table->vkCmdCopyImageToBuffer2KHR = (PFN_vkCmdCopyImageToBuffer2KHR)load(context, "vkCmdCopyImageToBuffer2KHR"); + table->vkCmdResolveImage2KHR = (PFN_vkCmdResolveImage2KHR)load(context, "vkCmdResolveImage2KHR"); +#endif /* defined(VK_KHR_copy_commands2) */ +#if defined(VK_KHR_create_renderpass2) + table->vkCmdBeginRenderPass2KHR = (PFN_vkCmdBeginRenderPass2KHR)load(context, "vkCmdBeginRenderPass2KHR"); + table->vkCmdEndRenderPass2KHR = (PFN_vkCmdEndRenderPass2KHR)load(context, "vkCmdEndRenderPass2KHR"); + table->vkCmdNextSubpass2KHR = (PFN_vkCmdNextSubpass2KHR)load(context, "vkCmdNextSubpass2KHR"); + table->vkCreateRenderPass2KHR = (PFN_vkCreateRenderPass2KHR)load(context, "vkCreateRenderPass2KHR"); +#endif /* defined(VK_KHR_create_renderpass2) */ +#if defined(VK_KHR_deferred_host_operations) + table->vkCreateDeferredOperationKHR = (PFN_vkCreateDeferredOperationKHR)load(context, "vkCreateDeferredOperationKHR"); + table->vkDeferredOperationJoinKHR = (PFN_vkDeferredOperationJoinKHR)load(context, "vkDeferredOperationJoinKHR"); + table->vkDestroyDeferredOperationKHR = (PFN_vkDestroyDeferredOperationKHR)load(context, "vkDestroyDeferredOperationKHR"); + table->vkGetDeferredOperationMaxConcurrencyKHR = (PFN_vkGetDeferredOperationMaxConcurrencyKHR)load(context, "vkGetDeferredOperationMaxConcurrencyKHR"); + table->vkGetDeferredOperationResultKHR = (PFN_vkGetDeferredOperationResultKHR)load(context, "vkGetDeferredOperationResultKHR"); +#endif /* defined(VK_KHR_deferred_host_operations) */ +#if defined(VK_KHR_descriptor_update_template) + table->vkCreateDescriptorUpdateTemplateKHR = (PFN_vkCreateDescriptorUpdateTemplateKHR)load(context, "vkCreateDescriptorUpdateTemplateKHR"); + table->vkDestroyDescriptorUpdateTemplateKHR = (PFN_vkDestroyDescriptorUpdateTemplateKHR)load(context, "vkDestroyDescriptorUpdateTemplateKHR"); + table->vkUpdateDescriptorSetWithTemplateKHR = (PFN_vkUpdateDescriptorSetWithTemplateKHR)load(context, "vkUpdateDescriptorSetWithTemplateKHR"); +#endif /* defined(VK_KHR_descriptor_update_template) */ +#if defined(VK_KHR_device_group) + table->vkCmdDispatchBaseKHR = (PFN_vkCmdDispatchBaseKHR)load(context, "vkCmdDispatchBaseKHR"); + table->vkCmdSetDeviceMaskKHR = (PFN_vkCmdSetDeviceMaskKHR)load(context, "vkCmdSetDeviceMaskKHR"); + table->vkGetDeviceGroupPeerMemoryFeaturesKHR = (PFN_vkGetDeviceGroupPeerMemoryFeaturesKHR)load(context, "vkGetDeviceGroupPeerMemoryFeaturesKHR"); +#endif /* defined(VK_KHR_device_group) */ +#if defined(VK_KHR_display_swapchain) + table->vkCreateSharedSwapchainsKHR = (PFN_vkCreateSharedSwapchainsKHR)load(context, "vkCreateSharedSwapchainsKHR"); +#endif /* defined(VK_KHR_display_swapchain) */ +#if defined(VK_KHR_draw_indirect_count) + table->vkCmdDrawIndexedIndirectCountKHR = (PFN_vkCmdDrawIndexedIndirectCountKHR)load(context, "vkCmdDrawIndexedIndirectCountKHR"); + table->vkCmdDrawIndirectCountKHR = (PFN_vkCmdDrawIndirectCountKHR)load(context, "vkCmdDrawIndirectCountKHR"); +#endif /* defined(VK_KHR_draw_indirect_count) */ +#if defined(VK_KHR_dynamic_rendering) + table->vkCmdBeginRenderingKHR = (PFN_vkCmdBeginRenderingKHR)load(context, "vkCmdBeginRenderingKHR"); + table->vkCmdEndRenderingKHR = (PFN_vkCmdEndRenderingKHR)load(context, "vkCmdEndRenderingKHR"); +#endif /* defined(VK_KHR_dynamic_rendering) */ +#if defined(VK_KHR_external_fence_fd) + table->vkGetFenceFdKHR = (PFN_vkGetFenceFdKHR)load(context, "vkGetFenceFdKHR"); + table->vkImportFenceFdKHR = (PFN_vkImportFenceFdKHR)load(context, "vkImportFenceFdKHR"); +#endif /* defined(VK_KHR_external_fence_fd) */ +#if defined(VK_KHR_external_fence_win32) + table->vkGetFenceWin32HandleKHR = (PFN_vkGetFenceWin32HandleKHR)load(context, "vkGetFenceWin32HandleKHR"); + table->vkImportFenceWin32HandleKHR = (PFN_vkImportFenceWin32HandleKHR)load(context, "vkImportFenceWin32HandleKHR"); +#endif /* defined(VK_KHR_external_fence_win32) */ +#if defined(VK_KHR_external_memory_fd) + table->vkGetMemoryFdKHR = (PFN_vkGetMemoryFdKHR)load(context, "vkGetMemoryFdKHR"); + table->vkGetMemoryFdPropertiesKHR = (PFN_vkGetMemoryFdPropertiesKHR)load(context, "vkGetMemoryFdPropertiesKHR"); +#endif /* defined(VK_KHR_external_memory_fd) */ +#if defined(VK_KHR_external_memory_win32) + table->vkGetMemoryWin32HandleKHR = (PFN_vkGetMemoryWin32HandleKHR)load(context, "vkGetMemoryWin32HandleKHR"); + table->vkGetMemoryWin32HandlePropertiesKHR = (PFN_vkGetMemoryWin32HandlePropertiesKHR)load(context, "vkGetMemoryWin32HandlePropertiesKHR"); +#endif /* defined(VK_KHR_external_memory_win32) */ +#if defined(VK_KHR_external_semaphore_fd) + table->vkGetSemaphoreFdKHR = (PFN_vkGetSemaphoreFdKHR)load(context, "vkGetSemaphoreFdKHR"); + table->vkImportSemaphoreFdKHR = (PFN_vkImportSemaphoreFdKHR)load(context, "vkImportSemaphoreFdKHR"); +#endif /* defined(VK_KHR_external_semaphore_fd) */ +#if defined(VK_KHR_external_semaphore_win32) + table->vkGetSemaphoreWin32HandleKHR = (PFN_vkGetSemaphoreWin32HandleKHR)load(context, "vkGetSemaphoreWin32HandleKHR"); + table->vkImportSemaphoreWin32HandleKHR = (PFN_vkImportSemaphoreWin32HandleKHR)load(context, "vkImportSemaphoreWin32HandleKHR"); +#endif /* defined(VK_KHR_external_semaphore_win32) */ +#if defined(VK_KHR_fragment_shading_rate) + table->vkCmdSetFragmentShadingRateKHR = (PFN_vkCmdSetFragmentShadingRateKHR)load(context, "vkCmdSetFragmentShadingRateKHR"); +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_memory_requirements2) + table->vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2KHR)load(context, "vkGetBufferMemoryRequirements2KHR"); + table->vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2KHR)load(context, "vkGetImageMemoryRequirements2KHR"); + table->vkGetImageSparseMemoryRequirements2KHR = (PFN_vkGetImageSparseMemoryRequirements2KHR)load(context, "vkGetImageSparseMemoryRequirements2KHR"); +#endif /* defined(VK_KHR_get_memory_requirements2) */ +#if defined(VK_KHR_maintenance1) + table->vkTrimCommandPoolKHR = (PFN_vkTrimCommandPoolKHR)load(context, "vkTrimCommandPoolKHR"); +#endif /* defined(VK_KHR_maintenance1) */ +#if defined(VK_KHR_maintenance3) + table->vkGetDescriptorSetLayoutSupportKHR = (PFN_vkGetDescriptorSetLayoutSupportKHR)load(context, "vkGetDescriptorSetLayoutSupportKHR"); +#endif /* defined(VK_KHR_maintenance3) */ +#if defined(VK_KHR_maintenance4) + table->vkGetDeviceBufferMemoryRequirementsKHR = (PFN_vkGetDeviceBufferMemoryRequirementsKHR)load(context, "vkGetDeviceBufferMemoryRequirementsKHR"); + table->vkGetDeviceImageMemoryRequirementsKHR = (PFN_vkGetDeviceImageMemoryRequirementsKHR)load(context, "vkGetDeviceImageMemoryRequirementsKHR"); + table->vkGetDeviceImageSparseMemoryRequirementsKHR = (PFN_vkGetDeviceImageSparseMemoryRequirementsKHR)load(context, "vkGetDeviceImageSparseMemoryRequirementsKHR"); +#endif /* defined(VK_KHR_maintenance4) */ +#if defined(VK_KHR_performance_query) + table->vkAcquireProfilingLockKHR = (PFN_vkAcquireProfilingLockKHR)load(context, "vkAcquireProfilingLockKHR"); + table->vkReleaseProfilingLockKHR = (PFN_vkReleaseProfilingLockKHR)load(context, "vkReleaseProfilingLockKHR"); +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_pipeline_executable_properties) + table->vkGetPipelineExecutableInternalRepresentationsKHR = (PFN_vkGetPipelineExecutableInternalRepresentationsKHR)load(context, "vkGetPipelineExecutableInternalRepresentationsKHR"); + table->vkGetPipelineExecutablePropertiesKHR = (PFN_vkGetPipelineExecutablePropertiesKHR)load(context, "vkGetPipelineExecutablePropertiesKHR"); + table->vkGetPipelineExecutableStatisticsKHR = (PFN_vkGetPipelineExecutableStatisticsKHR)load(context, "vkGetPipelineExecutableStatisticsKHR"); +#endif /* defined(VK_KHR_pipeline_executable_properties) */ +#if defined(VK_KHR_present_wait) + table->vkWaitForPresentKHR = (PFN_vkWaitForPresentKHR)load(context, "vkWaitForPresentKHR"); +#endif /* defined(VK_KHR_present_wait) */ +#if defined(VK_KHR_push_descriptor) + table->vkCmdPushDescriptorSetKHR = (PFN_vkCmdPushDescriptorSetKHR)load(context, "vkCmdPushDescriptorSetKHR"); +#endif /* defined(VK_KHR_push_descriptor) */ +#if defined(VK_KHR_ray_tracing_pipeline) + table->vkCmdSetRayTracingPipelineStackSizeKHR = (PFN_vkCmdSetRayTracingPipelineStackSizeKHR)load(context, "vkCmdSetRayTracingPipelineStackSizeKHR"); + table->vkCmdTraceRaysIndirectKHR = (PFN_vkCmdTraceRaysIndirectKHR)load(context, "vkCmdTraceRaysIndirectKHR"); + table->vkCmdTraceRaysKHR = (PFN_vkCmdTraceRaysKHR)load(context, "vkCmdTraceRaysKHR"); + table->vkCreateRayTracingPipelinesKHR = (PFN_vkCreateRayTracingPipelinesKHR)load(context, "vkCreateRayTracingPipelinesKHR"); + table->vkGetRayTracingCaptureReplayShaderGroupHandlesKHR = (PFN_vkGetRayTracingCaptureReplayShaderGroupHandlesKHR)load(context, "vkGetRayTracingCaptureReplayShaderGroupHandlesKHR"); + table->vkGetRayTracingShaderGroupHandlesKHR = (PFN_vkGetRayTracingShaderGroupHandlesKHR)load(context, "vkGetRayTracingShaderGroupHandlesKHR"); + table->vkGetRayTracingShaderGroupStackSizeKHR = (PFN_vkGetRayTracingShaderGroupStackSizeKHR)load(context, "vkGetRayTracingShaderGroupStackSizeKHR"); +#endif /* defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_sampler_ycbcr_conversion) + table->vkCreateSamplerYcbcrConversionKHR = (PFN_vkCreateSamplerYcbcrConversionKHR)load(context, "vkCreateSamplerYcbcrConversionKHR"); + table->vkDestroySamplerYcbcrConversionKHR = (PFN_vkDestroySamplerYcbcrConversionKHR)load(context, "vkDestroySamplerYcbcrConversionKHR"); +#endif /* defined(VK_KHR_sampler_ycbcr_conversion) */ +#if defined(VK_KHR_shared_presentable_image) + table->vkGetSwapchainStatusKHR = (PFN_vkGetSwapchainStatusKHR)load(context, "vkGetSwapchainStatusKHR"); +#endif /* defined(VK_KHR_shared_presentable_image) */ +#if defined(VK_KHR_swapchain) + table->vkAcquireNextImageKHR = (PFN_vkAcquireNextImageKHR)load(context, "vkAcquireNextImageKHR"); + table->vkCreateSwapchainKHR = (PFN_vkCreateSwapchainKHR)load(context, "vkCreateSwapchainKHR"); + table->vkDestroySwapchainKHR = (PFN_vkDestroySwapchainKHR)load(context, "vkDestroySwapchainKHR"); + table->vkGetSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR)load(context, "vkGetSwapchainImagesKHR"); + table->vkQueuePresentKHR = (PFN_vkQueuePresentKHR)load(context, "vkQueuePresentKHR"); +#endif /* defined(VK_KHR_swapchain) */ +#if defined(VK_KHR_synchronization2) + table->vkCmdPipelineBarrier2KHR = (PFN_vkCmdPipelineBarrier2KHR)load(context, "vkCmdPipelineBarrier2KHR"); + table->vkCmdResetEvent2KHR = (PFN_vkCmdResetEvent2KHR)load(context, "vkCmdResetEvent2KHR"); + table->vkCmdSetEvent2KHR = (PFN_vkCmdSetEvent2KHR)load(context, "vkCmdSetEvent2KHR"); + table->vkCmdWaitEvents2KHR = (PFN_vkCmdWaitEvents2KHR)load(context, "vkCmdWaitEvents2KHR"); + table->vkCmdWriteTimestamp2KHR = (PFN_vkCmdWriteTimestamp2KHR)load(context, "vkCmdWriteTimestamp2KHR"); + table->vkQueueSubmit2KHR = (PFN_vkQueueSubmit2KHR)load(context, "vkQueueSubmit2KHR"); +#endif /* defined(VK_KHR_synchronization2) */ +#if defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) + table->vkCmdWriteBufferMarker2AMD = (PFN_vkCmdWriteBufferMarker2AMD)load(context, "vkCmdWriteBufferMarker2AMD"); +#endif /* defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) */ +#if defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) + table->vkGetQueueCheckpointData2NV = (PFN_vkGetQueueCheckpointData2NV)load(context, "vkGetQueueCheckpointData2NV"); +#endif /* defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_KHR_timeline_semaphore) + table->vkGetSemaphoreCounterValueKHR = (PFN_vkGetSemaphoreCounterValueKHR)load(context, "vkGetSemaphoreCounterValueKHR"); + table->vkSignalSemaphoreKHR = (PFN_vkSignalSemaphoreKHR)load(context, "vkSignalSemaphoreKHR"); + table->vkWaitSemaphoresKHR = (PFN_vkWaitSemaphoresKHR)load(context, "vkWaitSemaphoresKHR"); +#endif /* defined(VK_KHR_timeline_semaphore) */ +#if defined(VK_KHR_video_decode_queue) + table->vkCmdDecodeVideoKHR = (PFN_vkCmdDecodeVideoKHR)load(context, "vkCmdDecodeVideoKHR"); +#endif /* defined(VK_KHR_video_decode_queue) */ +#if defined(VK_KHR_video_encode_queue) + table->vkCmdEncodeVideoKHR = (PFN_vkCmdEncodeVideoKHR)load(context, "vkCmdEncodeVideoKHR"); +#endif /* defined(VK_KHR_video_encode_queue) */ +#if defined(VK_KHR_video_queue) + table->vkBindVideoSessionMemoryKHR = (PFN_vkBindVideoSessionMemoryKHR)load(context, "vkBindVideoSessionMemoryKHR"); + table->vkCmdBeginVideoCodingKHR = (PFN_vkCmdBeginVideoCodingKHR)load(context, "vkCmdBeginVideoCodingKHR"); + table->vkCmdControlVideoCodingKHR = (PFN_vkCmdControlVideoCodingKHR)load(context, "vkCmdControlVideoCodingKHR"); + table->vkCmdEndVideoCodingKHR = (PFN_vkCmdEndVideoCodingKHR)load(context, "vkCmdEndVideoCodingKHR"); + table->vkCreateVideoSessionKHR = (PFN_vkCreateVideoSessionKHR)load(context, "vkCreateVideoSessionKHR"); + table->vkCreateVideoSessionParametersKHR = (PFN_vkCreateVideoSessionParametersKHR)load(context, "vkCreateVideoSessionParametersKHR"); + table->vkDestroyVideoSessionKHR = (PFN_vkDestroyVideoSessionKHR)load(context, "vkDestroyVideoSessionKHR"); + table->vkDestroyVideoSessionParametersKHR = (PFN_vkDestroyVideoSessionParametersKHR)load(context, "vkDestroyVideoSessionParametersKHR"); + table->vkGetVideoSessionMemoryRequirementsKHR = (PFN_vkGetVideoSessionMemoryRequirementsKHR)load(context, "vkGetVideoSessionMemoryRequirementsKHR"); + table->vkUpdateVideoSessionParametersKHR = (PFN_vkUpdateVideoSessionParametersKHR)load(context, "vkUpdateVideoSessionParametersKHR"); +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_NVX_binary_import) + table->vkCmdCuLaunchKernelNVX = (PFN_vkCmdCuLaunchKernelNVX)load(context, "vkCmdCuLaunchKernelNVX"); + table->vkCreateCuFunctionNVX = (PFN_vkCreateCuFunctionNVX)load(context, "vkCreateCuFunctionNVX"); + table->vkCreateCuModuleNVX = (PFN_vkCreateCuModuleNVX)load(context, "vkCreateCuModuleNVX"); + table->vkDestroyCuFunctionNVX = (PFN_vkDestroyCuFunctionNVX)load(context, "vkDestroyCuFunctionNVX"); + table->vkDestroyCuModuleNVX = (PFN_vkDestroyCuModuleNVX)load(context, "vkDestroyCuModuleNVX"); +#endif /* defined(VK_NVX_binary_import) */ +#if defined(VK_NVX_image_view_handle) + table->vkGetImageViewAddressNVX = (PFN_vkGetImageViewAddressNVX)load(context, "vkGetImageViewAddressNVX"); + table->vkGetImageViewHandleNVX = (PFN_vkGetImageViewHandleNVX)load(context, "vkGetImageViewHandleNVX"); +#endif /* defined(VK_NVX_image_view_handle) */ +#if defined(VK_NV_clip_space_w_scaling) + table->vkCmdSetViewportWScalingNV = (PFN_vkCmdSetViewportWScalingNV)load(context, "vkCmdSetViewportWScalingNV"); +#endif /* defined(VK_NV_clip_space_w_scaling) */ +#if defined(VK_NV_device_diagnostic_checkpoints) + table->vkCmdSetCheckpointNV = (PFN_vkCmdSetCheckpointNV)load(context, "vkCmdSetCheckpointNV"); + table->vkGetQueueCheckpointDataNV = (PFN_vkGetQueueCheckpointDataNV)load(context, "vkGetQueueCheckpointDataNV"); +#endif /* defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_NV_device_generated_commands) + table->vkCmdBindPipelineShaderGroupNV = (PFN_vkCmdBindPipelineShaderGroupNV)load(context, "vkCmdBindPipelineShaderGroupNV"); + table->vkCmdExecuteGeneratedCommandsNV = (PFN_vkCmdExecuteGeneratedCommandsNV)load(context, "vkCmdExecuteGeneratedCommandsNV"); + table->vkCmdPreprocessGeneratedCommandsNV = (PFN_vkCmdPreprocessGeneratedCommandsNV)load(context, "vkCmdPreprocessGeneratedCommandsNV"); + table->vkCreateIndirectCommandsLayoutNV = (PFN_vkCreateIndirectCommandsLayoutNV)load(context, "vkCreateIndirectCommandsLayoutNV"); + table->vkDestroyIndirectCommandsLayoutNV = (PFN_vkDestroyIndirectCommandsLayoutNV)load(context, "vkDestroyIndirectCommandsLayoutNV"); + table->vkGetGeneratedCommandsMemoryRequirementsNV = (PFN_vkGetGeneratedCommandsMemoryRequirementsNV)load(context, "vkGetGeneratedCommandsMemoryRequirementsNV"); +#endif /* defined(VK_NV_device_generated_commands) */ +#if defined(VK_NV_external_memory_rdma) + table->vkGetMemoryRemoteAddressNV = (PFN_vkGetMemoryRemoteAddressNV)load(context, "vkGetMemoryRemoteAddressNV"); +#endif /* defined(VK_NV_external_memory_rdma) */ +#if defined(VK_NV_external_memory_win32) + table->vkGetMemoryWin32HandleNV = (PFN_vkGetMemoryWin32HandleNV)load(context, "vkGetMemoryWin32HandleNV"); +#endif /* defined(VK_NV_external_memory_win32) */ +#if defined(VK_NV_fragment_shading_rate_enums) + table->vkCmdSetFragmentShadingRateEnumNV = (PFN_vkCmdSetFragmentShadingRateEnumNV)load(context, "vkCmdSetFragmentShadingRateEnumNV"); +#endif /* defined(VK_NV_fragment_shading_rate_enums) */ +#if defined(VK_NV_mesh_shader) + table->vkCmdDrawMeshTasksIndirectCountNV = (PFN_vkCmdDrawMeshTasksIndirectCountNV)load(context, "vkCmdDrawMeshTasksIndirectCountNV"); + table->vkCmdDrawMeshTasksIndirectNV = (PFN_vkCmdDrawMeshTasksIndirectNV)load(context, "vkCmdDrawMeshTasksIndirectNV"); + table->vkCmdDrawMeshTasksNV = (PFN_vkCmdDrawMeshTasksNV)load(context, "vkCmdDrawMeshTasksNV"); +#endif /* defined(VK_NV_mesh_shader) */ +#if defined(VK_NV_ray_tracing) + table->vkBindAccelerationStructureMemoryNV = (PFN_vkBindAccelerationStructureMemoryNV)load(context, "vkBindAccelerationStructureMemoryNV"); + table->vkCmdBuildAccelerationStructureNV = (PFN_vkCmdBuildAccelerationStructureNV)load(context, "vkCmdBuildAccelerationStructureNV"); + table->vkCmdCopyAccelerationStructureNV = (PFN_vkCmdCopyAccelerationStructureNV)load(context, "vkCmdCopyAccelerationStructureNV"); + table->vkCmdTraceRaysNV = (PFN_vkCmdTraceRaysNV)load(context, "vkCmdTraceRaysNV"); + table->vkCmdWriteAccelerationStructuresPropertiesNV = (PFN_vkCmdWriteAccelerationStructuresPropertiesNV)load(context, "vkCmdWriteAccelerationStructuresPropertiesNV"); + table->vkCompileDeferredNV = (PFN_vkCompileDeferredNV)load(context, "vkCompileDeferredNV"); + table->vkCreateAccelerationStructureNV = (PFN_vkCreateAccelerationStructureNV)load(context, "vkCreateAccelerationStructureNV"); + table->vkCreateRayTracingPipelinesNV = (PFN_vkCreateRayTracingPipelinesNV)load(context, "vkCreateRayTracingPipelinesNV"); + table->vkDestroyAccelerationStructureNV = (PFN_vkDestroyAccelerationStructureNV)load(context, "vkDestroyAccelerationStructureNV"); + table->vkGetAccelerationStructureHandleNV = (PFN_vkGetAccelerationStructureHandleNV)load(context, "vkGetAccelerationStructureHandleNV"); + table->vkGetAccelerationStructureMemoryRequirementsNV = (PFN_vkGetAccelerationStructureMemoryRequirementsNV)load(context, "vkGetAccelerationStructureMemoryRequirementsNV"); + table->vkGetRayTracingShaderGroupHandlesNV = (PFN_vkGetRayTracingShaderGroupHandlesNV)load(context, "vkGetRayTracingShaderGroupHandlesNV"); +#endif /* defined(VK_NV_ray_tracing) */ +#if defined(VK_NV_scissor_exclusive) + table->vkCmdSetExclusiveScissorNV = (PFN_vkCmdSetExclusiveScissorNV)load(context, "vkCmdSetExclusiveScissorNV"); +#endif /* defined(VK_NV_scissor_exclusive) */ +#if defined(VK_NV_shading_rate_image) + table->vkCmdBindShadingRateImageNV = (PFN_vkCmdBindShadingRateImageNV)load(context, "vkCmdBindShadingRateImageNV"); + table->vkCmdSetCoarseSampleOrderNV = (PFN_vkCmdSetCoarseSampleOrderNV)load(context, "vkCmdSetCoarseSampleOrderNV"); + table->vkCmdSetViewportShadingRatePaletteNV = (PFN_vkCmdSetViewportShadingRatePaletteNV)load(context, "vkCmdSetViewportShadingRatePaletteNV"); +#endif /* defined(VK_NV_shading_rate_image) */ +#if (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) + table->vkGetDeviceGroupSurfacePresentModes2EXT = (PFN_vkGetDeviceGroupSurfacePresentModes2EXT)load(context, "vkGetDeviceGroupSurfacePresentModes2EXT"); +#endif /* (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) + table->vkCmdPushDescriptorSetWithTemplateKHR = (PFN_vkCmdPushDescriptorSetWithTemplateKHR)load(context, "vkCmdPushDescriptorSetWithTemplateKHR"); +#endif /* (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + table->vkGetDeviceGroupPresentCapabilitiesKHR = (PFN_vkGetDeviceGroupPresentCapabilitiesKHR)load(context, "vkGetDeviceGroupPresentCapabilitiesKHR"); + table->vkGetDeviceGroupSurfacePresentModesKHR = (PFN_vkGetDeviceGroupSurfacePresentModesKHR)load(context, "vkGetDeviceGroupSurfacePresentModesKHR"); +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + table->vkAcquireNextImage2KHR = (PFN_vkAcquireNextImage2KHR)load(context, "vkAcquireNextImage2KHR"); +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ + /* VOLK_GENERATE_LOAD_DEVICE_TABLE */ +} + +#ifdef __GNUC__ +#ifdef VOLK_DEFAULT_VISIBILITY +# pragma GCC visibility push(default) +#else +# pragma GCC visibility push(hidden) +#endif +#endif + +/* VOLK_GENERATE_PROTOTYPES_C */ +#if defined(VK_VERSION_1_0) +PFN_vkAllocateCommandBuffers vkAllocateCommandBuffers; +PFN_vkAllocateDescriptorSets vkAllocateDescriptorSets; +PFN_vkAllocateMemory vkAllocateMemory; +PFN_vkBeginCommandBuffer vkBeginCommandBuffer; +PFN_vkBindBufferMemory vkBindBufferMemory; +PFN_vkBindImageMemory vkBindImageMemory; +PFN_vkCmdBeginQuery vkCmdBeginQuery; +PFN_vkCmdBeginRenderPass vkCmdBeginRenderPass; +PFN_vkCmdBindDescriptorSets vkCmdBindDescriptorSets; +PFN_vkCmdBindIndexBuffer vkCmdBindIndexBuffer; +PFN_vkCmdBindPipeline vkCmdBindPipeline; +PFN_vkCmdBindVertexBuffers vkCmdBindVertexBuffers; +PFN_vkCmdBlitImage vkCmdBlitImage; +PFN_vkCmdClearAttachments vkCmdClearAttachments; +PFN_vkCmdClearColorImage vkCmdClearColorImage; +PFN_vkCmdClearDepthStencilImage vkCmdClearDepthStencilImage; +PFN_vkCmdCopyBuffer vkCmdCopyBuffer; +PFN_vkCmdCopyBufferToImage vkCmdCopyBufferToImage; +PFN_vkCmdCopyImage vkCmdCopyImage; +PFN_vkCmdCopyImageToBuffer vkCmdCopyImageToBuffer; +PFN_vkCmdCopyQueryPoolResults vkCmdCopyQueryPoolResults; +PFN_vkCmdDispatch vkCmdDispatch; +PFN_vkCmdDispatchIndirect vkCmdDispatchIndirect; +PFN_vkCmdDraw vkCmdDraw; +PFN_vkCmdDrawIndexed vkCmdDrawIndexed; +PFN_vkCmdDrawIndexedIndirect vkCmdDrawIndexedIndirect; +PFN_vkCmdDrawIndirect vkCmdDrawIndirect; +PFN_vkCmdEndQuery vkCmdEndQuery; +PFN_vkCmdEndRenderPass vkCmdEndRenderPass; +PFN_vkCmdExecuteCommands vkCmdExecuteCommands; +PFN_vkCmdFillBuffer vkCmdFillBuffer; +PFN_vkCmdNextSubpass vkCmdNextSubpass; +PFN_vkCmdPipelineBarrier vkCmdPipelineBarrier; +PFN_vkCmdPushConstants vkCmdPushConstants; +PFN_vkCmdResetEvent vkCmdResetEvent; +PFN_vkCmdResetQueryPool vkCmdResetQueryPool; +PFN_vkCmdResolveImage vkCmdResolveImage; +PFN_vkCmdSetBlendConstants vkCmdSetBlendConstants; +PFN_vkCmdSetDepthBias vkCmdSetDepthBias; +PFN_vkCmdSetDepthBounds vkCmdSetDepthBounds; +PFN_vkCmdSetEvent vkCmdSetEvent; +PFN_vkCmdSetLineWidth vkCmdSetLineWidth; +PFN_vkCmdSetScissor vkCmdSetScissor; +PFN_vkCmdSetStencilCompareMask vkCmdSetStencilCompareMask; +PFN_vkCmdSetStencilReference vkCmdSetStencilReference; +PFN_vkCmdSetStencilWriteMask vkCmdSetStencilWriteMask; +PFN_vkCmdSetViewport vkCmdSetViewport; +PFN_vkCmdUpdateBuffer vkCmdUpdateBuffer; +PFN_vkCmdWaitEvents vkCmdWaitEvents; +PFN_vkCmdWriteTimestamp vkCmdWriteTimestamp; +PFN_vkCreateBuffer vkCreateBuffer; +PFN_vkCreateBufferView vkCreateBufferView; +PFN_vkCreateCommandPool vkCreateCommandPool; +PFN_vkCreateComputePipelines vkCreateComputePipelines; +PFN_vkCreateDescriptorPool vkCreateDescriptorPool; +PFN_vkCreateDescriptorSetLayout vkCreateDescriptorSetLayout; +PFN_vkCreateDevice vkCreateDevice; +PFN_vkCreateEvent vkCreateEvent; +PFN_vkCreateFence vkCreateFence; +PFN_vkCreateFramebuffer vkCreateFramebuffer; +PFN_vkCreateGraphicsPipelines vkCreateGraphicsPipelines; +PFN_vkCreateImage vkCreateImage; +PFN_vkCreateImageView vkCreateImageView; +PFN_vkCreateInstance vkCreateInstance; +PFN_vkCreatePipelineCache vkCreatePipelineCache; +PFN_vkCreatePipelineLayout vkCreatePipelineLayout; +PFN_vkCreateQueryPool vkCreateQueryPool; +PFN_vkCreateRenderPass vkCreateRenderPass; +PFN_vkCreateSampler vkCreateSampler; +PFN_vkCreateSemaphore vkCreateSemaphore; +PFN_vkCreateShaderModule vkCreateShaderModule; +PFN_vkDestroyBuffer vkDestroyBuffer; +PFN_vkDestroyBufferView vkDestroyBufferView; +PFN_vkDestroyCommandPool vkDestroyCommandPool; +PFN_vkDestroyDescriptorPool vkDestroyDescriptorPool; +PFN_vkDestroyDescriptorSetLayout vkDestroyDescriptorSetLayout; +PFN_vkDestroyDevice vkDestroyDevice; +PFN_vkDestroyEvent vkDestroyEvent; +PFN_vkDestroyFence vkDestroyFence; +PFN_vkDestroyFramebuffer vkDestroyFramebuffer; +PFN_vkDestroyImage vkDestroyImage; +PFN_vkDestroyImageView vkDestroyImageView; +PFN_vkDestroyInstance vkDestroyInstance; +PFN_vkDestroyPipeline vkDestroyPipeline; +PFN_vkDestroyPipelineCache vkDestroyPipelineCache; +PFN_vkDestroyPipelineLayout vkDestroyPipelineLayout; +PFN_vkDestroyQueryPool vkDestroyQueryPool; +PFN_vkDestroyRenderPass vkDestroyRenderPass; +PFN_vkDestroySampler vkDestroySampler; +PFN_vkDestroySemaphore vkDestroySemaphore; +PFN_vkDestroyShaderModule vkDestroyShaderModule; +PFN_vkDeviceWaitIdle vkDeviceWaitIdle; +PFN_vkEndCommandBuffer vkEndCommandBuffer; +PFN_vkEnumerateDeviceExtensionProperties vkEnumerateDeviceExtensionProperties; +PFN_vkEnumerateDeviceLayerProperties vkEnumerateDeviceLayerProperties; +PFN_vkEnumerateInstanceExtensionProperties vkEnumerateInstanceExtensionProperties; +PFN_vkEnumerateInstanceLayerProperties vkEnumerateInstanceLayerProperties; +PFN_vkEnumeratePhysicalDevices vkEnumeratePhysicalDevices; +PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; +PFN_vkFreeCommandBuffers vkFreeCommandBuffers; +PFN_vkFreeDescriptorSets vkFreeDescriptorSets; +PFN_vkFreeMemory vkFreeMemory; +PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; +PFN_vkGetDeviceMemoryCommitment vkGetDeviceMemoryCommitment; +PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; +PFN_vkGetDeviceQueue vkGetDeviceQueue; +PFN_vkGetEventStatus vkGetEventStatus; +PFN_vkGetFenceStatus vkGetFenceStatus; +PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; +PFN_vkGetImageSparseMemoryRequirements vkGetImageSparseMemoryRequirements; +PFN_vkGetImageSubresourceLayout vkGetImageSubresourceLayout; +PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; +PFN_vkGetPhysicalDeviceFeatures vkGetPhysicalDeviceFeatures; +PFN_vkGetPhysicalDeviceFormatProperties vkGetPhysicalDeviceFormatProperties; +PFN_vkGetPhysicalDeviceImageFormatProperties vkGetPhysicalDeviceImageFormatProperties; +PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; +PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; +PFN_vkGetPhysicalDeviceQueueFamilyProperties vkGetPhysicalDeviceQueueFamilyProperties; +PFN_vkGetPhysicalDeviceSparseImageFormatProperties vkGetPhysicalDeviceSparseImageFormatProperties; +PFN_vkGetPipelineCacheData vkGetPipelineCacheData; +PFN_vkGetQueryPoolResults vkGetQueryPoolResults; +PFN_vkGetRenderAreaGranularity vkGetRenderAreaGranularity; +PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; +PFN_vkMapMemory vkMapMemory; +PFN_vkMergePipelineCaches vkMergePipelineCaches; +PFN_vkQueueBindSparse vkQueueBindSparse; +PFN_vkQueueSubmit vkQueueSubmit; +PFN_vkQueueWaitIdle vkQueueWaitIdle; +PFN_vkResetCommandBuffer vkResetCommandBuffer; +PFN_vkResetCommandPool vkResetCommandPool; +PFN_vkResetDescriptorPool vkResetDescriptorPool; +PFN_vkResetEvent vkResetEvent; +PFN_vkResetFences vkResetFences; +PFN_vkSetEvent vkSetEvent; +PFN_vkUnmapMemory vkUnmapMemory; +PFN_vkUpdateDescriptorSets vkUpdateDescriptorSets; +PFN_vkWaitForFences vkWaitForFences; +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) +PFN_vkBindBufferMemory2 vkBindBufferMemory2; +PFN_vkBindImageMemory2 vkBindImageMemory2; +PFN_vkCmdDispatchBase vkCmdDispatchBase; +PFN_vkCmdSetDeviceMask vkCmdSetDeviceMask; +PFN_vkCreateDescriptorUpdateTemplate vkCreateDescriptorUpdateTemplate; +PFN_vkCreateSamplerYcbcrConversion vkCreateSamplerYcbcrConversion; +PFN_vkDestroyDescriptorUpdateTemplate vkDestroyDescriptorUpdateTemplate; +PFN_vkDestroySamplerYcbcrConversion vkDestroySamplerYcbcrConversion; +PFN_vkEnumerateInstanceVersion vkEnumerateInstanceVersion; +PFN_vkEnumeratePhysicalDeviceGroups vkEnumeratePhysicalDeviceGroups; +PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; +PFN_vkGetDescriptorSetLayoutSupport vkGetDescriptorSetLayoutSupport; +PFN_vkGetDeviceGroupPeerMemoryFeatures vkGetDeviceGroupPeerMemoryFeatures; +PFN_vkGetDeviceQueue2 vkGetDeviceQueue2; +PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; +PFN_vkGetImageSparseMemoryRequirements2 vkGetImageSparseMemoryRequirements2; +PFN_vkGetPhysicalDeviceExternalBufferProperties vkGetPhysicalDeviceExternalBufferProperties; +PFN_vkGetPhysicalDeviceExternalFenceProperties vkGetPhysicalDeviceExternalFenceProperties; +PFN_vkGetPhysicalDeviceExternalSemaphoreProperties vkGetPhysicalDeviceExternalSemaphoreProperties; +PFN_vkGetPhysicalDeviceFeatures2 vkGetPhysicalDeviceFeatures2; +PFN_vkGetPhysicalDeviceFormatProperties2 vkGetPhysicalDeviceFormatProperties2; +PFN_vkGetPhysicalDeviceImageFormatProperties2 vkGetPhysicalDeviceImageFormatProperties2; +PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2; +PFN_vkGetPhysicalDeviceProperties2 vkGetPhysicalDeviceProperties2; +PFN_vkGetPhysicalDeviceQueueFamilyProperties2 vkGetPhysicalDeviceQueueFamilyProperties2; +PFN_vkGetPhysicalDeviceSparseImageFormatProperties2 vkGetPhysicalDeviceSparseImageFormatProperties2; +PFN_vkTrimCommandPool vkTrimCommandPool; +PFN_vkUpdateDescriptorSetWithTemplate vkUpdateDescriptorSetWithTemplate; +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_VERSION_1_2) +PFN_vkCmdBeginRenderPass2 vkCmdBeginRenderPass2; +PFN_vkCmdDrawIndexedIndirectCount vkCmdDrawIndexedIndirectCount; +PFN_vkCmdDrawIndirectCount vkCmdDrawIndirectCount; +PFN_vkCmdEndRenderPass2 vkCmdEndRenderPass2; +PFN_vkCmdNextSubpass2 vkCmdNextSubpass2; +PFN_vkCreateRenderPass2 vkCreateRenderPass2; +PFN_vkGetBufferDeviceAddress vkGetBufferDeviceAddress; +PFN_vkGetBufferOpaqueCaptureAddress vkGetBufferOpaqueCaptureAddress; +PFN_vkGetDeviceMemoryOpaqueCaptureAddress vkGetDeviceMemoryOpaqueCaptureAddress; +PFN_vkGetSemaphoreCounterValue vkGetSemaphoreCounterValue; +PFN_vkResetQueryPool vkResetQueryPool; +PFN_vkSignalSemaphore vkSignalSemaphore; +PFN_vkWaitSemaphores vkWaitSemaphores; +#endif /* defined(VK_VERSION_1_2) */ +#if defined(VK_AMD_buffer_marker) +PFN_vkCmdWriteBufferMarkerAMD vkCmdWriteBufferMarkerAMD; +#endif /* defined(VK_AMD_buffer_marker) */ +#if defined(VK_AMD_display_native_hdr) +PFN_vkSetLocalDimmingAMD vkSetLocalDimmingAMD; +#endif /* defined(VK_AMD_display_native_hdr) */ +#if defined(VK_AMD_draw_indirect_count) +PFN_vkCmdDrawIndexedIndirectCountAMD vkCmdDrawIndexedIndirectCountAMD; +PFN_vkCmdDrawIndirectCountAMD vkCmdDrawIndirectCountAMD; +#endif /* defined(VK_AMD_draw_indirect_count) */ +#if defined(VK_AMD_shader_info) +PFN_vkGetShaderInfoAMD vkGetShaderInfoAMD; +#endif /* defined(VK_AMD_shader_info) */ +#if defined(VK_ANDROID_external_memory_android_hardware_buffer) +PFN_vkGetAndroidHardwareBufferPropertiesANDROID vkGetAndroidHardwareBufferPropertiesANDROID; +PFN_vkGetMemoryAndroidHardwareBufferANDROID vkGetMemoryAndroidHardwareBufferANDROID; +#endif /* defined(VK_ANDROID_external_memory_android_hardware_buffer) */ +#if defined(VK_EXT_acquire_drm_display) +PFN_vkAcquireDrmDisplayEXT vkAcquireDrmDisplayEXT; +PFN_vkGetDrmDisplayEXT vkGetDrmDisplayEXT; +#endif /* defined(VK_EXT_acquire_drm_display) */ +#if defined(VK_EXT_acquire_xlib_display) +PFN_vkAcquireXlibDisplayEXT vkAcquireXlibDisplayEXT; +PFN_vkGetRandROutputDisplayEXT vkGetRandROutputDisplayEXT; +#endif /* defined(VK_EXT_acquire_xlib_display) */ +#if defined(VK_EXT_buffer_device_address) +PFN_vkGetBufferDeviceAddressEXT vkGetBufferDeviceAddressEXT; +#endif /* defined(VK_EXT_buffer_device_address) */ +#if defined(VK_EXT_calibrated_timestamps) +PFN_vkGetCalibratedTimestampsEXT vkGetCalibratedTimestampsEXT; +PFN_vkGetPhysicalDeviceCalibrateableTimeDomainsEXT vkGetPhysicalDeviceCalibrateableTimeDomainsEXT; +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_color_write_enable) +PFN_vkCmdSetColorWriteEnableEXT vkCmdSetColorWriteEnableEXT; +#endif /* defined(VK_EXT_color_write_enable) */ +#if defined(VK_EXT_conditional_rendering) +PFN_vkCmdBeginConditionalRenderingEXT vkCmdBeginConditionalRenderingEXT; +PFN_vkCmdEndConditionalRenderingEXT vkCmdEndConditionalRenderingEXT; +#endif /* defined(VK_EXT_conditional_rendering) */ +#if defined(VK_EXT_debug_marker) +PFN_vkCmdDebugMarkerBeginEXT vkCmdDebugMarkerBeginEXT; +PFN_vkCmdDebugMarkerEndEXT vkCmdDebugMarkerEndEXT; +PFN_vkCmdDebugMarkerInsertEXT vkCmdDebugMarkerInsertEXT; +PFN_vkDebugMarkerSetObjectNameEXT vkDebugMarkerSetObjectNameEXT; +PFN_vkDebugMarkerSetObjectTagEXT vkDebugMarkerSetObjectTagEXT; +#endif /* defined(VK_EXT_debug_marker) */ +#if defined(VK_EXT_debug_report) +PFN_vkCreateDebugReportCallbackEXT vkCreateDebugReportCallbackEXT; +PFN_vkDebugReportMessageEXT vkDebugReportMessageEXT; +PFN_vkDestroyDebugReportCallbackEXT vkDestroyDebugReportCallbackEXT; +#endif /* defined(VK_EXT_debug_report) */ +#if defined(VK_EXT_debug_utils) +PFN_vkCmdBeginDebugUtilsLabelEXT vkCmdBeginDebugUtilsLabelEXT; +PFN_vkCmdEndDebugUtilsLabelEXT vkCmdEndDebugUtilsLabelEXT; +PFN_vkCmdInsertDebugUtilsLabelEXT vkCmdInsertDebugUtilsLabelEXT; +PFN_vkCreateDebugUtilsMessengerEXT vkCreateDebugUtilsMessengerEXT; +PFN_vkDestroyDebugUtilsMessengerEXT vkDestroyDebugUtilsMessengerEXT; +PFN_vkQueueBeginDebugUtilsLabelEXT vkQueueBeginDebugUtilsLabelEXT; +PFN_vkQueueEndDebugUtilsLabelEXT vkQueueEndDebugUtilsLabelEXT; +PFN_vkQueueInsertDebugUtilsLabelEXT vkQueueInsertDebugUtilsLabelEXT; +PFN_vkSetDebugUtilsObjectNameEXT vkSetDebugUtilsObjectNameEXT; +PFN_vkSetDebugUtilsObjectTagEXT vkSetDebugUtilsObjectTagEXT; +PFN_vkSubmitDebugUtilsMessageEXT vkSubmitDebugUtilsMessageEXT; +#endif /* defined(VK_EXT_debug_utils) */ +#if defined(VK_EXT_direct_mode_display) +PFN_vkReleaseDisplayEXT vkReleaseDisplayEXT; +#endif /* defined(VK_EXT_direct_mode_display) */ +#if defined(VK_EXT_directfb_surface) +PFN_vkCreateDirectFBSurfaceEXT vkCreateDirectFBSurfaceEXT; +PFN_vkGetPhysicalDeviceDirectFBPresentationSupportEXT vkGetPhysicalDeviceDirectFBPresentationSupportEXT; +#endif /* defined(VK_EXT_directfb_surface) */ +#if defined(VK_EXT_discard_rectangles) +PFN_vkCmdSetDiscardRectangleEXT vkCmdSetDiscardRectangleEXT; +#endif /* defined(VK_EXT_discard_rectangles) */ +#if defined(VK_EXT_display_control) +PFN_vkDisplayPowerControlEXT vkDisplayPowerControlEXT; +PFN_vkGetSwapchainCounterEXT vkGetSwapchainCounterEXT; +PFN_vkRegisterDeviceEventEXT vkRegisterDeviceEventEXT; +PFN_vkRegisterDisplayEventEXT vkRegisterDisplayEventEXT; +#endif /* defined(VK_EXT_display_control) */ +#if defined(VK_EXT_display_surface_counter) +PFN_vkGetPhysicalDeviceSurfaceCapabilities2EXT vkGetPhysicalDeviceSurfaceCapabilities2EXT; +#endif /* defined(VK_EXT_display_surface_counter) */ +#if defined(VK_EXT_extended_dynamic_state) +PFN_vkCmdBindVertexBuffers2EXT vkCmdBindVertexBuffers2EXT; +PFN_vkCmdSetCullModeEXT vkCmdSetCullModeEXT; +PFN_vkCmdSetDepthBoundsTestEnableEXT vkCmdSetDepthBoundsTestEnableEXT; +PFN_vkCmdSetDepthCompareOpEXT vkCmdSetDepthCompareOpEXT; +PFN_vkCmdSetDepthTestEnableEXT vkCmdSetDepthTestEnableEXT; +PFN_vkCmdSetDepthWriteEnableEXT vkCmdSetDepthWriteEnableEXT; +PFN_vkCmdSetFrontFaceEXT vkCmdSetFrontFaceEXT; +PFN_vkCmdSetPrimitiveTopologyEXT vkCmdSetPrimitiveTopologyEXT; +PFN_vkCmdSetScissorWithCountEXT vkCmdSetScissorWithCountEXT; +PFN_vkCmdSetStencilOpEXT vkCmdSetStencilOpEXT; +PFN_vkCmdSetStencilTestEnableEXT vkCmdSetStencilTestEnableEXT; +PFN_vkCmdSetViewportWithCountEXT vkCmdSetViewportWithCountEXT; +#endif /* defined(VK_EXT_extended_dynamic_state) */ +#if defined(VK_EXT_extended_dynamic_state2) +PFN_vkCmdSetDepthBiasEnableEXT vkCmdSetDepthBiasEnableEXT; +PFN_vkCmdSetLogicOpEXT vkCmdSetLogicOpEXT; +PFN_vkCmdSetPatchControlPointsEXT vkCmdSetPatchControlPointsEXT; +PFN_vkCmdSetPrimitiveRestartEnableEXT vkCmdSetPrimitiveRestartEnableEXT; +PFN_vkCmdSetRasterizerDiscardEnableEXT vkCmdSetRasterizerDiscardEnableEXT; +#endif /* defined(VK_EXT_extended_dynamic_state2) */ +#if defined(VK_EXT_external_memory_host) +PFN_vkGetMemoryHostPointerPropertiesEXT vkGetMemoryHostPointerPropertiesEXT; +#endif /* defined(VK_EXT_external_memory_host) */ +#if defined(VK_EXT_full_screen_exclusive) +PFN_vkAcquireFullScreenExclusiveModeEXT vkAcquireFullScreenExclusiveModeEXT; +PFN_vkGetPhysicalDeviceSurfacePresentModes2EXT vkGetPhysicalDeviceSurfacePresentModes2EXT; +PFN_vkReleaseFullScreenExclusiveModeEXT vkReleaseFullScreenExclusiveModeEXT; +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_hdr_metadata) +PFN_vkSetHdrMetadataEXT vkSetHdrMetadataEXT; +#endif /* defined(VK_EXT_hdr_metadata) */ +#if defined(VK_EXT_headless_surface) +PFN_vkCreateHeadlessSurfaceEXT vkCreateHeadlessSurfaceEXT; +#endif /* defined(VK_EXT_headless_surface) */ +#if defined(VK_EXT_host_query_reset) +PFN_vkResetQueryPoolEXT vkResetQueryPoolEXT; +#endif /* defined(VK_EXT_host_query_reset) */ +#if defined(VK_EXT_image_drm_format_modifier) +PFN_vkGetImageDrmFormatModifierPropertiesEXT vkGetImageDrmFormatModifierPropertiesEXT; +#endif /* defined(VK_EXT_image_drm_format_modifier) */ +#if defined(VK_EXT_line_rasterization) +PFN_vkCmdSetLineStippleEXT vkCmdSetLineStippleEXT; +#endif /* defined(VK_EXT_line_rasterization) */ +#if defined(VK_EXT_metal_surface) +PFN_vkCreateMetalSurfaceEXT vkCreateMetalSurfaceEXT; +#endif /* defined(VK_EXT_metal_surface) */ +#if defined(VK_EXT_multi_draw) +PFN_vkCmdDrawMultiEXT vkCmdDrawMultiEXT; +PFN_vkCmdDrawMultiIndexedEXT vkCmdDrawMultiIndexedEXT; +#endif /* defined(VK_EXT_multi_draw) */ +#if defined(VK_EXT_pageable_device_local_memory) +PFN_vkSetDeviceMemoryPriorityEXT vkSetDeviceMemoryPriorityEXT; +#endif /* defined(VK_EXT_pageable_device_local_memory) */ +#if defined(VK_EXT_private_data) +PFN_vkCreatePrivateDataSlotEXT vkCreatePrivateDataSlotEXT; +PFN_vkDestroyPrivateDataSlotEXT vkDestroyPrivateDataSlotEXT; +PFN_vkGetPrivateDataEXT vkGetPrivateDataEXT; +PFN_vkSetPrivateDataEXT vkSetPrivateDataEXT; +#endif /* defined(VK_EXT_private_data) */ +#if defined(VK_EXT_sample_locations) +PFN_vkCmdSetSampleLocationsEXT vkCmdSetSampleLocationsEXT; +PFN_vkGetPhysicalDeviceMultisamplePropertiesEXT vkGetPhysicalDeviceMultisamplePropertiesEXT; +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_tooling_info) +PFN_vkGetPhysicalDeviceToolPropertiesEXT vkGetPhysicalDeviceToolPropertiesEXT; +#endif /* defined(VK_EXT_tooling_info) */ +#if defined(VK_EXT_transform_feedback) +PFN_vkCmdBeginQueryIndexedEXT vkCmdBeginQueryIndexedEXT; +PFN_vkCmdBeginTransformFeedbackEXT vkCmdBeginTransformFeedbackEXT; +PFN_vkCmdBindTransformFeedbackBuffersEXT vkCmdBindTransformFeedbackBuffersEXT; +PFN_vkCmdDrawIndirectByteCountEXT vkCmdDrawIndirectByteCountEXT; +PFN_vkCmdEndQueryIndexedEXT vkCmdEndQueryIndexedEXT; +PFN_vkCmdEndTransformFeedbackEXT vkCmdEndTransformFeedbackEXT; +#endif /* defined(VK_EXT_transform_feedback) */ +#if defined(VK_EXT_validation_cache) +PFN_vkCreateValidationCacheEXT vkCreateValidationCacheEXT; +PFN_vkDestroyValidationCacheEXT vkDestroyValidationCacheEXT; +PFN_vkGetValidationCacheDataEXT vkGetValidationCacheDataEXT; +PFN_vkMergeValidationCachesEXT vkMergeValidationCachesEXT; +#endif /* defined(VK_EXT_validation_cache) */ +#if defined(VK_EXT_vertex_input_dynamic_state) +PFN_vkCmdSetVertexInputEXT vkCmdSetVertexInputEXT; +#endif /* defined(VK_EXT_vertex_input_dynamic_state) */ +#if defined(VK_FUCHSIA_buffer_collection) +PFN_vkCreateBufferCollectionFUCHSIA vkCreateBufferCollectionFUCHSIA; +PFN_vkDestroyBufferCollectionFUCHSIA vkDestroyBufferCollectionFUCHSIA; +PFN_vkGetBufferCollectionPropertiesFUCHSIA vkGetBufferCollectionPropertiesFUCHSIA; +PFN_vkSetBufferCollectionBufferConstraintsFUCHSIA vkSetBufferCollectionBufferConstraintsFUCHSIA; +PFN_vkSetBufferCollectionImageConstraintsFUCHSIA vkSetBufferCollectionImageConstraintsFUCHSIA; +#endif /* defined(VK_FUCHSIA_buffer_collection) */ +#if defined(VK_FUCHSIA_external_memory) +PFN_vkGetMemoryZirconHandleFUCHSIA vkGetMemoryZirconHandleFUCHSIA; +PFN_vkGetMemoryZirconHandlePropertiesFUCHSIA vkGetMemoryZirconHandlePropertiesFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_memory) */ +#if defined(VK_FUCHSIA_external_semaphore) +PFN_vkGetSemaphoreZirconHandleFUCHSIA vkGetSemaphoreZirconHandleFUCHSIA; +PFN_vkImportSemaphoreZirconHandleFUCHSIA vkImportSemaphoreZirconHandleFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_semaphore) */ +#if defined(VK_FUCHSIA_imagepipe_surface) +PFN_vkCreateImagePipeSurfaceFUCHSIA vkCreateImagePipeSurfaceFUCHSIA; +#endif /* defined(VK_FUCHSIA_imagepipe_surface) */ +#if defined(VK_GGP_stream_descriptor_surface) +PFN_vkCreateStreamDescriptorSurfaceGGP vkCreateStreamDescriptorSurfaceGGP; +#endif /* defined(VK_GGP_stream_descriptor_surface) */ +#if defined(VK_GOOGLE_display_timing) +PFN_vkGetPastPresentationTimingGOOGLE vkGetPastPresentationTimingGOOGLE; +PFN_vkGetRefreshCycleDurationGOOGLE vkGetRefreshCycleDurationGOOGLE; +#endif /* defined(VK_GOOGLE_display_timing) */ +#if defined(VK_HUAWEI_invocation_mask) +PFN_vkCmdBindInvocationMaskHUAWEI vkCmdBindInvocationMaskHUAWEI; +#endif /* defined(VK_HUAWEI_invocation_mask) */ +#if defined(VK_HUAWEI_subpass_shading) +PFN_vkCmdSubpassShadingHUAWEI vkCmdSubpassShadingHUAWEI; +PFN_vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI; +#endif /* defined(VK_HUAWEI_subpass_shading) */ +#if defined(VK_INTEL_performance_query) +PFN_vkAcquirePerformanceConfigurationINTEL vkAcquirePerformanceConfigurationINTEL; +PFN_vkCmdSetPerformanceMarkerINTEL vkCmdSetPerformanceMarkerINTEL; +PFN_vkCmdSetPerformanceOverrideINTEL vkCmdSetPerformanceOverrideINTEL; +PFN_vkCmdSetPerformanceStreamMarkerINTEL vkCmdSetPerformanceStreamMarkerINTEL; +PFN_vkGetPerformanceParameterINTEL vkGetPerformanceParameterINTEL; +PFN_vkInitializePerformanceApiINTEL vkInitializePerformanceApiINTEL; +PFN_vkQueueSetPerformanceConfigurationINTEL vkQueueSetPerformanceConfigurationINTEL; +PFN_vkReleasePerformanceConfigurationINTEL vkReleasePerformanceConfigurationINTEL; +PFN_vkUninitializePerformanceApiINTEL vkUninitializePerformanceApiINTEL; +#endif /* defined(VK_INTEL_performance_query) */ +#if defined(VK_KHR_acceleration_structure) +PFN_vkBuildAccelerationStructuresKHR vkBuildAccelerationStructuresKHR; +PFN_vkCmdBuildAccelerationStructuresIndirectKHR vkCmdBuildAccelerationStructuresIndirectKHR; +PFN_vkCmdBuildAccelerationStructuresKHR vkCmdBuildAccelerationStructuresKHR; +PFN_vkCmdCopyAccelerationStructureKHR vkCmdCopyAccelerationStructureKHR; +PFN_vkCmdCopyAccelerationStructureToMemoryKHR vkCmdCopyAccelerationStructureToMemoryKHR; +PFN_vkCmdCopyMemoryToAccelerationStructureKHR vkCmdCopyMemoryToAccelerationStructureKHR; +PFN_vkCmdWriteAccelerationStructuresPropertiesKHR vkCmdWriteAccelerationStructuresPropertiesKHR; +PFN_vkCopyAccelerationStructureKHR vkCopyAccelerationStructureKHR; +PFN_vkCopyAccelerationStructureToMemoryKHR vkCopyAccelerationStructureToMemoryKHR; +PFN_vkCopyMemoryToAccelerationStructureKHR vkCopyMemoryToAccelerationStructureKHR; +PFN_vkCreateAccelerationStructureKHR vkCreateAccelerationStructureKHR; +PFN_vkDestroyAccelerationStructureKHR vkDestroyAccelerationStructureKHR; +PFN_vkGetAccelerationStructureBuildSizesKHR vkGetAccelerationStructureBuildSizesKHR; +PFN_vkGetAccelerationStructureDeviceAddressKHR vkGetAccelerationStructureDeviceAddressKHR; +PFN_vkGetDeviceAccelerationStructureCompatibilityKHR vkGetDeviceAccelerationStructureCompatibilityKHR; +PFN_vkWriteAccelerationStructuresPropertiesKHR vkWriteAccelerationStructuresPropertiesKHR; +#endif /* defined(VK_KHR_acceleration_structure) */ +#if defined(VK_KHR_android_surface) +PFN_vkCreateAndroidSurfaceKHR vkCreateAndroidSurfaceKHR; +#endif /* defined(VK_KHR_android_surface) */ +#if defined(VK_KHR_bind_memory2) +PFN_vkBindBufferMemory2KHR vkBindBufferMemory2KHR; +PFN_vkBindImageMemory2KHR vkBindImageMemory2KHR; +#endif /* defined(VK_KHR_bind_memory2) */ +#if defined(VK_KHR_buffer_device_address) +PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR; +PFN_vkGetBufferOpaqueCaptureAddressKHR vkGetBufferOpaqueCaptureAddressKHR; +PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR vkGetDeviceMemoryOpaqueCaptureAddressKHR; +#endif /* defined(VK_KHR_buffer_device_address) */ +#if defined(VK_KHR_copy_commands2) +PFN_vkCmdBlitImage2KHR vkCmdBlitImage2KHR; +PFN_vkCmdCopyBuffer2KHR vkCmdCopyBuffer2KHR; +PFN_vkCmdCopyBufferToImage2KHR vkCmdCopyBufferToImage2KHR; +PFN_vkCmdCopyImage2KHR vkCmdCopyImage2KHR; +PFN_vkCmdCopyImageToBuffer2KHR vkCmdCopyImageToBuffer2KHR; +PFN_vkCmdResolveImage2KHR vkCmdResolveImage2KHR; +#endif /* defined(VK_KHR_copy_commands2) */ +#if defined(VK_KHR_create_renderpass2) +PFN_vkCmdBeginRenderPass2KHR vkCmdBeginRenderPass2KHR; +PFN_vkCmdEndRenderPass2KHR vkCmdEndRenderPass2KHR; +PFN_vkCmdNextSubpass2KHR vkCmdNextSubpass2KHR; +PFN_vkCreateRenderPass2KHR vkCreateRenderPass2KHR; +#endif /* defined(VK_KHR_create_renderpass2) */ +#if defined(VK_KHR_deferred_host_operations) +PFN_vkCreateDeferredOperationKHR vkCreateDeferredOperationKHR; +PFN_vkDeferredOperationJoinKHR vkDeferredOperationJoinKHR; +PFN_vkDestroyDeferredOperationKHR vkDestroyDeferredOperationKHR; +PFN_vkGetDeferredOperationMaxConcurrencyKHR vkGetDeferredOperationMaxConcurrencyKHR; +PFN_vkGetDeferredOperationResultKHR vkGetDeferredOperationResultKHR; +#endif /* defined(VK_KHR_deferred_host_operations) */ +#if defined(VK_KHR_descriptor_update_template) +PFN_vkCreateDescriptorUpdateTemplateKHR vkCreateDescriptorUpdateTemplateKHR; +PFN_vkDestroyDescriptorUpdateTemplateKHR vkDestroyDescriptorUpdateTemplateKHR; +PFN_vkUpdateDescriptorSetWithTemplateKHR vkUpdateDescriptorSetWithTemplateKHR; +#endif /* defined(VK_KHR_descriptor_update_template) */ +#if defined(VK_KHR_device_group) +PFN_vkCmdDispatchBaseKHR vkCmdDispatchBaseKHR; +PFN_vkCmdSetDeviceMaskKHR vkCmdSetDeviceMaskKHR; +PFN_vkGetDeviceGroupPeerMemoryFeaturesKHR vkGetDeviceGroupPeerMemoryFeaturesKHR; +#endif /* defined(VK_KHR_device_group) */ +#if defined(VK_KHR_device_group_creation) +PFN_vkEnumeratePhysicalDeviceGroupsKHR vkEnumeratePhysicalDeviceGroupsKHR; +#endif /* defined(VK_KHR_device_group_creation) */ +#if defined(VK_KHR_display) +PFN_vkCreateDisplayModeKHR vkCreateDisplayModeKHR; +PFN_vkCreateDisplayPlaneSurfaceKHR vkCreateDisplayPlaneSurfaceKHR; +PFN_vkGetDisplayModePropertiesKHR vkGetDisplayModePropertiesKHR; +PFN_vkGetDisplayPlaneCapabilitiesKHR vkGetDisplayPlaneCapabilitiesKHR; +PFN_vkGetDisplayPlaneSupportedDisplaysKHR vkGetDisplayPlaneSupportedDisplaysKHR; +PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR vkGetPhysicalDeviceDisplayPlanePropertiesKHR; +PFN_vkGetPhysicalDeviceDisplayPropertiesKHR vkGetPhysicalDeviceDisplayPropertiesKHR; +#endif /* defined(VK_KHR_display) */ +#if defined(VK_KHR_display_swapchain) +PFN_vkCreateSharedSwapchainsKHR vkCreateSharedSwapchainsKHR; +#endif /* defined(VK_KHR_display_swapchain) */ +#if defined(VK_KHR_draw_indirect_count) +PFN_vkCmdDrawIndexedIndirectCountKHR vkCmdDrawIndexedIndirectCountKHR; +PFN_vkCmdDrawIndirectCountKHR vkCmdDrawIndirectCountKHR; +#endif /* defined(VK_KHR_draw_indirect_count) */ +#if defined(VK_KHR_dynamic_rendering) +PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR; +PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR; +#endif /* defined(VK_KHR_dynamic_rendering) */ +#if defined(VK_KHR_external_fence_capabilities) +PFN_vkGetPhysicalDeviceExternalFencePropertiesKHR vkGetPhysicalDeviceExternalFencePropertiesKHR; +#endif /* defined(VK_KHR_external_fence_capabilities) */ +#if defined(VK_KHR_external_fence_fd) +PFN_vkGetFenceFdKHR vkGetFenceFdKHR; +PFN_vkImportFenceFdKHR vkImportFenceFdKHR; +#endif /* defined(VK_KHR_external_fence_fd) */ +#if defined(VK_KHR_external_fence_win32) +PFN_vkGetFenceWin32HandleKHR vkGetFenceWin32HandleKHR; +PFN_vkImportFenceWin32HandleKHR vkImportFenceWin32HandleKHR; +#endif /* defined(VK_KHR_external_fence_win32) */ +#if defined(VK_KHR_external_memory_capabilities) +PFN_vkGetPhysicalDeviceExternalBufferPropertiesKHR vkGetPhysicalDeviceExternalBufferPropertiesKHR; +#endif /* defined(VK_KHR_external_memory_capabilities) */ +#if defined(VK_KHR_external_memory_fd) +PFN_vkGetMemoryFdKHR vkGetMemoryFdKHR; +PFN_vkGetMemoryFdPropertiesKHR vkGetMemoryFdPropertiesKHR; +#endif /* defined(VK_KHR_external_memory_fd) */ +#if defined(VK_KHR_external_memory_win32) +PFN_vkGetMemoryWin32HandleKHR vkGetMemoryWin32HandleKHR; +PFN_vkGetMemoryWin32HandlePropertiesKHR vkGetMemoryWin32HandlePropertiesKHR; +#endif /* defined(VK_KHR_external_memory_win32) */ +#if defined(VK_KHR_external_semaphore_capabilities) +PFN_vkGetPhysicalDeviceExternalSemaphorePropertiesKHR vkGetPhysicalDeviceExternalSemaphorePropertiesKHR; +#endif /* defined(VK_KHR_external_semaphore_capabilities) */ +#if defined(VK_KHR_external_semaphore_fd) +PFN_vkGetSemaphoreFdKHR vkGetSemaphoreFdKHR; +PFN_vkImportSemaphoreFdKHR vkImportSemaphoreFdKHR; +#endif /* defined(VK_KHR_external_semaphore_fd) */ +#if defined(VK_KHR_external_semaphore_win32) +PFN_vkGetSemaphoreWin32HandleKHR vkGetSemaphoreWin32HandleKHR; +PFN_vkImportSemaphoreWin32HandleKHR vkImportSemaphoreWin32HandleKHR; +#endif /* defined(VK_KHR_external_semaphore_win32) */ +#if defined(VK_KHR_fragment_shading_rate) +PFN_vkCmdSetFragmentShadingRateKHR vkCmdSetFragmentShadingRateKHR; +PFN_vkGetPhysicalDeviceFragmentShadingRatesKHR vkGetPhysicalDeviceFragmentShadingRatesKHR; +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_display_properties2) +PFN_vkGetDisplayModeProperties2KHR vkGetDisplayModeProperties2KHR; +PFN_vkGetDisplayPlaneCapabilities2KHR vkGetDisplayPlaneCapabilities2KHR; +PFN_vkGetPhysicalDeviceDisplayPlaneProperties2KHR vkGetPhysicalDeviceDisplayPlaneProperties2KHR; +PFN_vkGetPhysicalDeviceDisplayProperties2KHR vkGetPhysicalDeviceDisplayProperties2KHR; +#endif /* defined(VK_KHR_get_display_properties2) */ +#if defined(VK_KHR_get_memory_requirements2) +PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR; +PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR; +PFN_vkGetImageSparseMemoryRequirements2KHR vkGetImageSparseMemoryRequirements2KHR; +#endif /* defined(VK_KHR_get_memory_requirements2) */ +#if defined(VK_KHR_get_physical_device_properties2) +PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR; +PFN_vkGetPhysicalDeviceFormatProperties2KHR vkGetPhysicalDeviceFormatProperties2KHR; +PFN_vkGetPhysicalDeviceImageFormatProperties2KHR vkGetPhysicalDeviceImageFormatProperties2KHR; +PFN_vkGetPhysicalDeviceMemoryProperties2KHR vkGetPhysicalDeviceMemoryProperties2KHR; +PFN_vkGetPhysicalDeviceProperties2KHR vkGetPhysicalDeviceProperties2KHR; +PFN_vkGetPhysicalDeviceQueueFamilyProperties2KHR vkGetPhysicalDeviceQueueFamilyProperties2KHR; +PFN_vkGetPhysicalDeviceSparseImageFormatProperties2KHR vkGetPhysicalDeviceSparseImageFormatProperties2KHR; +#endif /* defined(VK_KHR_get_physical_device_properties2) */ +#if defined(VK_KHR_get_surface_capabilities2) +PFN_vkGetPhysicalDeviceSurfaceCapabilities2KHR vkGetPhysicalDeviceSurfaceCapabilities2KHR; +PFN_vkGetPhysicalDeviceSurfaceFormats2KHR vkGetPhysicalDeviceSurfaceFormats2KHR; +#endif /* defined(VK_KHR_get_surface_capabilities2) */ +#if defined(VK_KHR_maintenance1) +PFN_vkTrimCommandPoolKHR vkTrimCommandPoolKHR; +#endif /* defined(VK_KHR_maintenance1) */ +#if defined(VK_KHR_maintenance3) +PFN_vkGetDescriptorSetLayoutSupportKHR vkGetDescriptorSetLayoutSupportKHR; +#endif /* defined(VK_KHR_maintenance3) */ +#if defined(VK_KHR_maintenance4) +PFN_vkGetDeviceBufferMemoryRequirementsKHR vkGetDeviceBufferMemoryRequirementsKHR; +PFN_vkGetDeviceImageMemoryRequirementsKHR vkGetDeviceImageMemoryRequirementsKHR; +PFN_vkGetDeviceImageSparseMemoryRequirementsKHR vkGetDeviceImageSparseMemoryRequirementsKHR; +#endif /* defined(VK_KHR_maintenance4) */ +#if defined(VK_KHR_performance_query) +PFN_vkAcquireProfilingLockKHR vkAcquireProfilingLockKHR; +PFN_vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR; +PFN_vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR; +PFN_vkReleaseProfilingLockKHR vkReleaseProfilingLockKHR; +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_pipeline_executable_properties) +PFN_vkGetPipelineExecutableInternalRepresentationsKHR vkGetPipelineExecutableInternalRepresentationsKHR; +PFN_vkGetPipelineExecutablePropertiesKHR vkGetPipelineExecutablePropertiesKHR; +PFN_vkGetPipelineExecutableStatisticsKHR vkGetPipelineExecutableStatisticsKHR; +#endif /* defined(VK_KHR_pipeline_executable_properties) */ +#if defined(VK_KHR_present_wait) +PFN_vkWaitForPresentKHR vkWaitForPresentKHR; +#endif /* defined(VK_KHR_present_wait) */ +#if defined(VK_KHR_push_descriptor) +PFN_vkCmdPushDescriptorSetKHR vkCmdPushDescriptorSetKHR; +#endif /* defined(VK_KHR_push_descriptor) */ +#if defined(VK_KHR_ray_tracing_pipeline) +PFN_vkCmdSetRayTracingPipelineStackSizeKHR vkCmdSetRayTracingPipelineStackSizeKHR; +PFN_vkCmdTraceRaysIndirectKHR vkCmdTraceRaysIndirectKHR; +PFN_vkCmdTraceRaysKHR vkCmdTraceRaysKHR; +PFN_vkCreateRayTracingPipelinesKHR vkCreateRayTracingPipelinesKHR; +PFN_vkGetRayTracingCaptureReplayShaderGroupHandlesKHR vkGetRayTracingCaptureReplayShaderGroupHandlesKHR; +PFN_vkGetRayTracingShaderGroupHandlesKHR vkGetRayTracingShaderGroupHandlesKHR; +PFN_vkGetRayTracingShaderGroupStackSizeKHR vkGetRayTracingShaderGroupStackSizeKHR; +#endif /* defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_sampler_ycbcr_conversion) +PFN_vkCreateSamplerYcbcrConversionKHR vkCreateSamplerYcbcrConversionKHR; +PFN_vkDestroySamplerYcbcrConversionKHR vkDestroySamplerYcbcrConversionKHR; +#endif /* defined(VK_KHR_sampler_ycbcr_conversion) */ +#if defined(VK_KHR_shared_presentable_image) +PFN_vkGetSwapchainStatusKHR vkGetSwapchainStatusKHR; +#endif /* defined(VK_KHR_shared_presentable_image) */ +#if defined(VK_KHR_surface) +PFN_vkDestroySurfaceKHR vkDestroySurfaceKHR; +PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR vkGetPhysicalDeviceSurfaceCapabilitiesKHR; +PFN_vkGetPhysicalDeviceSurfaceFormatsKHR vkGetPhysicalDeviceSurfaceFormatsKHR; +PFN_vkGetPhysicalDeviceSurfacePresentModesKHR vkGetPhysicalDeviceSurfacePresentModesKHR; +PFN_vkGetPhysicalDeviceSurfaceSupportKHR vkGetPhysicalDeviceSurfaceSupportKHR; +#endif /* defined(VK_KHR_surface) */ +#if defined(VK_KHR_swapchain) +PFN_vkAcquireNextImageKHR vkAcquireNextImageKHR; +PFN_vkCreateSwapchainKHR vkCreateSwapchainKHR; +PFN_vkDestroySwapchainKHR vkDestroySwapchainKHR; +PFN_vkGetSwapchainImagesKHR vkGetSwapchainImagesKHR; +PFN_vkQueuePresentKHR vkQueuePresentKHR; +#endif /* defined(VK_KHR_swapchain) */ +#if defined(VK_KHR_synchronization2) +PFN_vkCmdPipelineBarrier2KHR vkCmdPipelineBarrier2KHR; +PFN_vkCmdResetEvent2KHR vkCmdResetEvent2KHR; +PFN_vkCmdSetEvent2KHR vkCmdSetEvent2KHR; +PFN_vkCmdWaitEvents2KHR vkCmdWaitEvents2KHR; +PFN_vkCmdWriteTimestamp2KHR vkCmdWriteTimestamp2KHR; +PFN_vkQueueSubmit2KHR vkQueueSubmit2KHR; +#endif /* defined(VK_KHR_synchronization2) */ +#if defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) +PFN_vkCmdWriteBufferMarker2AMD vkCmdWriteBufferMarker2AMD; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) */ +#if defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) +PFN_vkGetQueueCheckpointData2NV vkGetQueueCheckpointData2NV; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_KHR_timeline_semaphore) +PFN_vkGetSemaphoreCounterValueKHR vkGetSemaphoreCounterValueKHR; +PFN_vkSignalSemaphoreKHR vkSignalSemaphoreKHR; +PFN_vkWaitSemaphoresKHR vkWaitSemaphoresKHR; +#endif /* defined(VK_KHR_timeline_semaphore) */ +#if defined(VK_KHR_video_decode_queue) +PFN_vkCmdDecodeVideoKHR vkCmdDecodeVideoKHR; +#endif /* defined(VK_KHR_video_decode_queue) */ +#if defined(VK_KHR_video_encode_queue) +PFN_vkCmdEncodeVideoKHR vkCmdEncodeVideoKHR; +#endif /* defined(VK_KHR_video_encode_queue) */ +#if defined(VK_KHR_video_queue) +PFN_vkBindVideoSessionMemoryKHR vkBindVideoSessionMemoryKHR; +PFN_vkCmdBeginVideoCodingKHR vkCmdBeginVideoCodingKHR; +PFN_vkCmdControlVideoCodingKHR vkCmdControlVideoCodingKHR; +PFN_vkCmdEndVideoCodingKHR vkCmdEndVideoCodingKHR; +PFN_vkCreateVideoSessionKHR vkCreateVideoSessionKHR; +PFN_vkCreateVideoSessionParametersKHR vkCreateVideoSessionParametersKHR; +PFN_vkDestroyVideoSessionKHR vkDestroyVideoSessionKHR; +PFN_vkDestroyVideoSessionParametersKHR vkDestroyVideoSessionParametersKHR; +PFN_vkGetPhysicalDeviceVideoCapabilitiesKHR vkGetPhysicalDeviceVideoCapabilitiesKHR; +PFN_vkGetPhysicalDeviceVideoFormatPropertiesKHR vkGetPhysicalDeviceVideoFormatPropertiesKHR; +PFN_vkGetVideoSessionMemoryRequirementsKHR vkGetVideoSessionMemoryRequirementsKHR; +PFN_vkUpdateVideoSessionParametersKHR vkUpdateVideoSessionParametersKHR; +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_KHR_wayland_surface) +PFN_vkCreateWaylandSurfaceKHR vkCreateWaylandSurfaceKHR; +PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR vkGetPhysicalDeviceWaylandPresentationSupportKHR; +#endif /* defined(VK_KHR_wayland_surface) */ +#if defined(VK_KHR_win32_surface) +PFN_vkCreateWin32SurfaceKHR vkCreateWin32SurfaceKHR; +PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR vkGetPhysicalDeviceWin32PresentationSupportKHR; +#endif /* defined(VK_KHR_win32_surface) */ +#if defined(VK_KHR_xcb_surface) +PFN_vkCreateXcbSurfaceKHR vkCreateXcbSurfaceKHR; +PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR vkGetPhysicalDeviceXcbPresentationSupportKHR; +#endif /* defined(VK_KHR_xcb_surface) */ +#if defined(VK_KHR_xlib_surface) +PFN_vkCreateXlibSurfaceKHR vkCreateXlibSurfaceKHR; +PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR vkGetPhysicalDeviceXlibPresentationSupportKHR; +#endif /* defined(VK_KHR_xlib_surface) */ +#if defined(VK_MVK_ios_surface) +PFN_vkCreateIOSSurfaceMVK vkCreateIOSSurfaceMVK; +#endif /* defined(VK_MVK_ios_surface) */ +#if defined(VK_MVK_macos_surface) +PFN_vkCreateMacOSSurfaceMVK vkCreateMacOSSurfaceMVK; +#endif /* defined(VK_MVK_macos_surface) */ +#if defined(VK_NN_vi_surface) +PFN_vkCreateViSurfaceNN vkCreateViSurfaceNN; +#endif /* defined(VK_NN_vi_surface) */ +#if defined(VK_NVX_binary_import) +PFN_vkCmdCuLaunchKernelNVX vkCmdCuLaunchKernelNVX; +PFN_vkCreateCuFunctionNVX vkCreateCuFunctionNVX; +PFN_vkCreateCuModuleNVX vkCreateCuModuleNVX; +PFN_vkDestroyCuFunctionNVX vkDestroyCuFunctionNVX; +PFN_vkDestroyCuModuleNVX vkDestroyCuModuleNVX; +#endif /* defined(VK_NVX_binary_import) */ +#if defined(VK_NVX_image_view_handle) +PFN_vkGetImageViewAddressNVX vkGetImageViewAddressNVX; +PFN_vkGetImageViewHandleNVX vkGetImageViewHandleNVX; +#endif /* defined(VK_NVX_image_view_handle) */ +#if defined(VK_NV_acquire_winrt_display) +PFN_vkAcquireWinrtDisplayNV vkAcquireWinrtDisplayNV; +PFN_vkGetWinrtDisplayNV vkGetWinrtDisplayNV; +#endif /* defined(VK_NV_acquire_winrt_display) */ +#if defined(VK_NV_clip_space_w_scaling) +PFN_vkCmdSetViewportWScalingNV vkCmdSetViewportWScalingNV; +#endif /* defined(VK_NV_clip_space_w_scaling) */ +#if defined(VK_NV_cooperative_matrix) +PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesNV vkGetPhysicalDeviceCooperativeMatrixPropertiesNV; +#endif /* defined(VK_NV_cooperative_matrix) */ +#if defined(VK_NV_coverage_reduction_mode) +PFN_vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV; +#endif /* defined(VK_NV_coverage_reduction_mode) */ +#if defined(VK_NV_device_diagnostic_checkpoints) +PFN_vkCmdSetCheckpointNV vkCmdSetCheckpointNV; +PFN_vkGetQueueCheckpointDataNV vkGetQueueCheckpointDataNV; +#endif /* defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_NV_device_generated_commands) +PFN_vkCmdBindPipelineShaderGroupNV vkCmdBindPipelineShaderGroupNV; +PFN_vkCmdExecuteGeneratedCommandsNV vkCmdExecuteGeneratedCommandsNV; +PFN_vkCmdPreprocessGeneratedCommandsNV vkCmdPreprocessGeneratedCommandsNV; +PFN_vkCreateIndirectCommandsLayoutNV vkCreateIndirectCommandsLayoutNV; +PFN_vkDestroyIndirectCommandsLayoutNV vkDestroyIndirectCommandsLayoutNV; +PFN_vkGetGeneratedCommandsMemoryRequirementsNV vkGetGeneratedCommandsMemoryRequirementsNV; +#endif /* defined(VK_NV_device_generated_commands) */ +#if defined(VK_NV_external_memory_capabilities) +PFN_vkGetPhysicalDeviceExternalImageFormatPropertiesNV vkGetPhysicalDeviceExternalImageFormatPropertiesNV; +#endif /* defined(VK_NV_external_memory_capabilities) */ +#if defined(VK_NV_external_memory_rdma) +PFN_vkGetMemoryRemoteAddressNV vkGetMemoryRemoteAddressNV; +#endif /* defined(VK_NV_external_memory_rdma) */ +#if defined(VK_NV_external_memory_win32) +PFN_vkGetMemoryWin32HandleNV vkGetMemoryWin32HandleNV; +#endif /* defined(VK_NV_external_memory_win32) */ +#if defined(VK_NV_fragment_shading_rate_enums) +PFN_vkCmdSetFragmentShadingRateEnumNV vkCmdSetFragmentShadingRateEnumNV; +#endif /* defined(VK_NV_fragment_shading_rate_enums) */ +#if defined(VK_NV_mesh_shader) +PFN_vkCmdDrawMeshTasksIndirectCountNV vkCmdDrawMeshTasksIndirectCountNV; +PFN_vkCmdDrawMeshTasksIndirectNV vkCmdDrawMeshTasksIndirectNV; +PFN_vkCmdDrawMeshTasksNV vkCmdDrawMeshTasksNV; +#endif /* defined(VK_NV_mesh_shader) */ +#if defined(VK_NV_ray_tracing) +PFN_vkBindAccelerationStructureMemoryNV vkBindAccelerationStructureMemoryNV; +PFN_vkCmdBuildAccelerationStructureNV vkCmdBuildAccelerationStructureNV; +PFN_vkCmdCopyAccelerationStructureNV vkCmdCopyAccelerationStructureNV; +PFN_vkCmdTraceRaysNV vkCmdTraceRaysNV; +PFN_vkCmdWriteAccelerationStructuresPropertiesNV vkCmdWriteAccelerationStructuresPropertiesNV; +PFN_vkCompileDeferredNV vkCompileDeferredNV; +PFN_vkCreateAccelerationStructureNV vkCreateAccelerationStructureNV; +PFN_vkCreateRayTracingPipelinesNV vkCreateRayTracingPipelinesNV; +PFN_vkDestroyAccelerationStructureNV vkDestroyAccelerationStructureNV; +PFN_vkGetAccelerationStructureHandleNV vkGetAccelerationStructureHandleNV; +PFN_vkGetAccelerationStructureMemoryRequirementsNV vkGetAccelerationStructureMemoryRequirementsNV; +PFN_vkGetRayTracingShaderGroupHandlesNV vkGetRayTracingShaderGroupHandlesNV; +#endif /* defined(VK_NV_ray_tracing) */ +#if defined(VK_NV_scissor_exclusive) +PFN_vkCmdSetExclusiveScissorNV vkCmdSetExclusiveScissorNV; +#endif /* defined(VK_NV_scissor_exclusive) */ +#if defined(VK_NV_shading_rate_image) +PFN_vkCmdBindShadingRateImageNV vkCmdBindShadingRateImageNV; +PFN_vkCmdSetCoarseSampleOrderNV vkCmdSetCoarseSampleOrderNV; +PFN_vkCmdSetViewportShadingRatePaletteNV vkCmdSetViewportShadingRatePaletteNV; +#endif /* defined(VK_NV_shading_rate_image) */ +#if defined(VK_QNX_screen_surface) +PFN_vkCreateScreenSurfaceQNX vkCreateScreenSurfaceQNX; +PFN_vkGetPhysicalDeviceScreenPresentationSupportQNX vkGetPhysicalDeviceScreenPresentationSupportQNX; +#endif /* defined(VK_QNX_screen_surface) */ +#if (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) +PFN_vkGetDeviceGroupSurfacePresentModes2EXT vkGetDeviceGroupSurfacePresentModes2EXT; +#endif /* (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) +PFN_vkCmdPushDescriptorSetWithTemplateKHR vkCmdPushDescriptorSetWithTemplateKHR; +#endif /* (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) +PFN_vkGetDeviceGroupPresentCapabilitiesKHR vkGetDeviceGroupPresentCapabilitiesKHR; +PFN_vkGetDeviceGroupSurfacePresentModesKHR vkGetDeviceGroupSurfacePresentModesKHR; +PFN_vkGetPhysicalDevicePresentRectanglesKHR vkGetPhysicalDevicePresentRectanglesKHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) +PFN_vkAcquireNextImage2KHR vkAcquireNextImage2KHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +/* VOLK_GENERATE_PROTOTYPES_C */ + +#ifdef __GNUC__ +# pragma GCC visibility pop +#endif + +#ifdef __cplusplus +} +#endif +/* clang-format on */ diff --git a/include/vku/volk/volk.Last.h b/include/vku/volk/volk.Last.h new file mode 100644 index 0000000..80a87dd --- /dev/null +++ b/include/vku/volk/volk.Last.h @@ -0,0 +1,1501 @@ +/** + * volk + * + * Copyright (C) 2018-2019, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com) + * Report bugs and download new versions at https://github.com/zeux/volk + * + * This library is distributed under the MIT License. See notice at the end of this file. + */ +/* clang-format off */ +#ifndef VOLK_H_ +#define VOLK_H_ + +#if defined(VULKAN_H_) && !defined(VK_NO_PROTOTYPES) +# error To use volk, you need to define VK_NO_PROTOTYPES before including vulkan.h +#endif + +/* VOLK_GENERATE_VERSION_DEFINE */ +#define VOLK_HEADER_VERSION 198 +/* VOLK_GENERATE_VERSION_DEFINE */ + +#ifndef VK_NO_PROTOTYPES +# define VK_NO_PROTOTYPES +#endif + +#ifndef VULKAN_H_ +# ifdef VOLK_VULKAN_H_PATH +# include VOLK_VULKAN_H_PATH +# elif defined(VK_USE_PLATFORM_WIN32_KHR) +# include +# include + + /* When VK_USE_PLATFORM_WIN32_KHR is defined, instead of including vulkan.h directly, we include individual parts of the SDK + * This is necessary to avoid including which is very heavy - it takes 200ms to parse without WIN32_LEAN_AND_MEAN + * and 100ms to parse with it. vulkan_win32.h only needs a few symbols that are easy to redefine ourselves. + */ + typedef unsigned long DWORD; + typedef const wchar_t* LPCWSTR; + typedef void* HANDLE; + typedef struct HINSTANCE__* HINSTANCE; + typedef struct HWND__* HWND; + typedef struct HMONITOR__* HMONITOR; + typedef struct _SECURITY_ATTRIBUTES SECURITY_ATTRIBUTES; + +# include + +# ifdef VK_ENABLE_BETA_EXTENSIONS +# include +# endif +# else +# include +# endif +#endif + +/* Disable several extensions on earlier SDKs because later SDKs introduce a backwards incompatible change to function signatures */ +#if VK_HEADER_VERSION < 140 +# undef VK_NVX_image_view_handle +#endif +#if VK_HEADER_VERSION < 184 +# undef VK_HUAWEI_subpass_shading +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +struct VolkDeviceTable; + +/** + * Initialize library by loading Vulkan loader; call this function before creating the Vulkan instance. + * + * Returns VK_SUCCESS on success and VK_ERROR_INITIALIZATION_FAILED otherwise. + */ +VkResult volkInitialize(void); + +/** + * Initialize library by providing a custom handler to load global symbols. + * + * This function can be used instead of volkInitialize. + * The handler function pointer will be asked to load global Vulkan symbols which require no instance + * (such as vkCreateInstance, vkEnumerateInstance* and vkEnumerateInstanceVersion if available). + */ +void volkInitializeCustom(PFN_vkGetInstanceProcAddr handler); + +/** + * Get Vulkan instance version supported by the Vulkan loader, or 0 if Vulkan isn't supported + * + * Returns 0 if volkInitialize wasn't called or failed. + */ +uint32_t volkGetInstanceVersion(void); + +/** + * Load global function pointers using application-created VkInstance; call this function after creating the Vulkan instance. + */ +void volkLoadInstance(VkInstance instance); + +/** + * Load global function pointers using application-created VkInstance; call this function after creating the Vulkan instance. + * Skips loading device-based function pointers, requires usage of volkLoadDevice afterwards. + */ +void volkLoadInstanceOnly(VkInstance instance); + +/** + * Load global function pointers using application-created VkDevice; call this function after creating the Vulkan device. + * + * Note: this is not suitable for applications that want to use multiple VkDevice objects concurrently. + */ +void volkLoadDevice(VkDevice device); + +/** + * Return last VkInstance for which global function pointers have been loaded via volkLoadInstance(), + * or VK_NULL_HANDLE if volkLoadInstance() has not been called. + */ +VkInstance volkGetLoadedInstance(void); + +/** + * Return last VkDevice for which global function pointers have been loaded via volkLoadDevice(), + * or VK_NULL_HANDLE if volkLoadDevice() has not been called. + */ +VkDevice volkGetLoadedDevice(void); + +/** + * Load function pointers using application-created VkDevice into a table. + * Application should use function pointers from that table instead of using global function pointers. + */ +void volkLoadDeviceTable(struct VolkDeviceTable* table, VkDevice device); + +/** + * Device-specific function pointer table + */ +struct VolkDeviceTable +{ + /* VOLK_GENERATE_DEVICE_TABLE */ +#if defined(VK_VERSION_1_0) + PFN_vkAllocateCommandBuffers vkAllocateCommandBuffers; + PFN_vkAllocateDescriptorSets vkAllocateDescriptorSets; + PFN_vkAllocateMemory vkAllocateMemory; + PFN_vkBeginCommandBuffer vkBeginCommandBuffer; + PFN_vkBindBufferMemory vkBindBufferMemory; + PFN_vkBindImageMemory vkBindImageMemory; + PFN_vkCmdBeginQuery vkCmdBeginQuery; + PFN_vkCmdBeginRenderPass vkCmdBeginRenderPass; + PFN_vkCmdBindDescriptorSets vkCmdBindDescriptorSets; + PFN_vkCmdBindIndexBuffer vkCmdBindIndexBuffer; + PFN_vkCmdBindPipeline vkCmdBindPipeline; + PFN_vkCmdBindVertexBuffers vkCmdBindVertexBuffers; + PFN_vkCmdBlitImage vkCmdBlitImage; + PFN_vkCmdClearAttachments vkCmdClearAttachments; + PFN_vkCmdClearColorImage vkCmdClearColorImage; + PFN_vkCmdClearDepthStencilImage vkCmdClearDepthStencilImage; + PFN_vkCmdCopyBuffer vkCmdCopyBuffer; + PFN_vkCmdCopyBufferToImage vkCmdCopyBufferToImage; + PFN_vkCmdCopyImage vkCmdCopyImage; + PFN_vkCmdCopyImageToBuffer vkCmdCopyImageToBuffer; + PFN_vkCmdCopyQueryPoolResults vkCmdCopyQueryPoolResults; + PFN_vkCmdDispatch vkCmdDispatch; + PFN_vkCmdDispatchIndirect vkCmdDispatchIndirect; + PFN_vkCmdDraw vkCmdDraw; + PFN_vkCmdDrawIndexed vkCmdDrawIndexed; + PFN_vkCmdDrawIndexedIndirect vkCmdDrawIndexedIndirect; + PFN_vkCmdDrawIndirect vkCmdDrawIndirect; + PFN_vkCmdEndQuery vkCmdEndQuery; + PFN_vkCmdEndRenderPass vkCmdEndRenderPass; + PFN_vkCmdExecuteCommands vkCmdExecuteCommands; + PFN_vkCmdFillBuffer vkCmdFillBuffer; + PFN_vkCmdNextSubpass vkCmdNextSubpass; + PFN_vkCmdPipelineBarrier vkCmdPipelineBarrier; + PFN_vkCmdPushConstants vkCmdPushConstants; + PFN_vkCmdResetEvent vkCmdResetEvent; + PFN_vkCmdResetQueryPool vkCmdResetQueryPool; + PFN_vkCmdResolveImage vkCmdResolveImage; + PFN_vkCmdSetBlendConstants vkCmdSetBlendConstants; + PFN_vkCmdSetDepthBias vkCmdSetDepthBias; + PFN_vkCmdSetDepthBounds vkCmdSetDepthBounds; + PFN_vkCmdSetEvent vkCmdSetEvent; + PFN_vkCmdSetLineWidth vkCmdSetLineWidth; + PFN_vkCmdSetScissor vkCmdSetScissor; + PFN_vkCmdSetStencilCompareMask vkCmdSetStencilCompareMask; + PFN_vkCmdSetStencilReference vkCmdSetStencilReference; + PFN_vkCmdSetStencilWriteMask vkCmdSetStencilWriteMask; + PFN_vkCmdSetViewport vkCmdSetViewport; + PFN_vkCmdUpdateBuffer vkCmdUpdateBuffer; + PFN_vkCmdWaitEvents vkCmdWaitEvents; + PFN_vkCmdWriteTimestamp vkCmdWriteTimestamp; + PFN_vkCreateBuffer vkCreateBuffer; + PFN_vkCreateBufferView vkCreateBufferView; + PFN_vkCreateCommandPool vkCreateCommandPool; + PFN_vkCreateComputePipelines vkCreateComputePipelines; + PFN_vkCreateDescriptorPool vkCreateDescriptorPool; + PFN_vkCreateDescriptorSetLayout vkCreateDescriptorSetLayout; + PFN_vkCreateEvent vkCreateEvent; + PFN_vkCreateFence vkCreateFence; + PFN_vkCreateFramebuffer vkCreateFramebuffer; + PFN_vkCreateGraphicsPipelines vkCreateGraphicsPipelines; + PFN_vkCreateImage vkCreateImage; + PFN_vkCreateImageView vkCreateImageView; + PFN_vkCreatePipelineCache vkCreatePipelineCache; + PFN_vkCreatePipelineLayout vkCreatePipelineLayout; + PFN_vkCreateQueryPool vkCreateQueryPool; + PFN_vkCreateRenderPass vkCreateRenderPass; + PFN_vkCreateSampler vkCreateSampler; + PFN_vkCreateSemaphore vkCreateSemaphore; + PFN_vkCreateShaderModule vkCreateShaderModule; + PFN_vkDestroyBuffer vkDestroyBuffer; + PFN_vkDestroyBufferView vkDestroyBufferView; + PFN_vkDestroyCommandPool vkDestroyCommandPool; + PFN_vkDestroyDescriptorPool vkDestroyDescriptorPool; + PFN_vkDestroyDescriptorSetLayout vkDestroyDescriptorSetLayout; + PFN_vkDestroyDevice vkDestroyDevice; + PFN_vkDestroyEvent vkDestroyEvent; + PFN_vkDestroyFence vkDestroyFence; + PFN_vkDestroyFramebuffer vkDestroyFramebuffer; + PFN_vkDestroyImage vkDestroyImage; + PFN_vkDestroyImageView vkDestroyImageView; + PFN_vkDestroyPipeline vkDestroyPipeline; + PFN_vkDestroyPipelineCache vkDestroyPipelineCache; + PFN_vkDestroyPipelineLayout vkDestroyPipelineLayout; + PFN_vkDestroyQueryPool vkDestroyQueryPool; + PFN_vkDestroyRenderPass vkDestroyRenderPass; + PFN_vkDestroySampler vkDestroySampler; + PFN_vkDestroySemaphore vkDestroySemaphore; + PFN_vkDestroyShaderModule vkDestroyShaderModule; + PFN_vkDeviceWaitIdle vkDeviceWaitIdle; + PFN_vkEndCommandBuffer vkEndCommandBuffer; + PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; + PFN_vkFreeCommandBuffers vkFreeCommandBuffers; + PFN_vkFreeDescriptorSets vkFreeDescriptorSets; + PFN_vkFreeMemory vkFreeMemory; + PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; + PFN_vkGetDeviceMemoryCommitment vkGetDeviceMemoryCommitment; + PFN_vkGetDeviceQueue vkGetDeviceQueue; + PFN_vkGetEventStatus vkGetEventStatus; + PFN_vkGetFenceStatus vkGetFenceStatus; + PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; + PFN_vkGetImageSparseMemoryRequirements vkGetImageSparseMemoryRequirements; + PFN_vkGetImageSubresourceLayout vkGetImageSubresourceLayout; + PFN_vkGetPipelineCacheData vkGetPipelineCacheData; + PFN_vkGetQueryPoolResults vkGetQueryPoolResults; + PFN_vkGetRenderAreaGranularity vkGetRenderAreaGranularity; + PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; + PFN_vkMapMemory vkMapMemory; + PFN_vkMergePipelineCaches vkMergePipelineCaches; + PFN_vkQueueBindSparse vkQueueBindSparse; + PFN_vkQueueSubmit vkQueueSubmit; + PFN_vkQueueWaitIdle vkQueueWaitIdle; + PFN_vkResetCommandBuffer vkResetCommandBuffer; + PFN_vkResetCommandPool vkResetCommandPool; + PFN_vkResetDescriptorPool vkResetDescriptorPool; + PFN_vkResetEvent vkResetEvent; + PFN_vkResetFences vkResetFences; + PFN_vkSetEvent vkSetEvent; + PFN_vkUnmapMemory vkUnmapMemory; + PFN_vkUpdateDescriptorSets vkUpdateDescriptorSets; + PFN_vkWaitForFences vkWaitForFences; +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) + PFN_vkBindBufferMemory2 vkBindBufferMemory2; + PFN_vkBindImageMemory2 vkBindImageMemory2; + PFN_vkCmdDispatchBase vkCmdDispatchBase; + PFN_vkCmdSetDeviceMask vkCmdSetDeviceMask; + PFN_vkCreateDescriptorUpdateTemplate vkCreateDescriptorUpdateTemplate; + PFN_vkCreateSamplerYcbcrConversion vkCreateSamplerYcbcrConversion; + PFN_vkDestroyDescriptorUpdateTemplate vkDestroyDescriptorUpdateTemplate; + PFN_vkDestroySamplerYcbcrConversion vkDestroySamplerYcbcrConversion; + PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; + PFN_vkGetDescriptorSetLayoutSupport vkGetDescriptorSetLayoutSupport; + PFN_vkGetDeviceGroupPeerMemoryFeatures vkGetDeviceGroupPeerMemoryFeatures; + PFN_vkGetDeviceQueue2 vkGetDeviceQueue2; + PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; + PFN_vkGetImageSparseMemoryRequirements2 vkGetImageSparseMemoryRequirements2; + PFN_vkTrimCommandPool vkTrimCommandPool; + PFN_vkUpdateDescriptorSetWithTemplate vkUpdateDescriptorSetWithTemplate; +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_VERSION_1_2) + PFN_vkCmdBeginRenderPass2 vkCmdBeginRenderPass2; + PFN_vkCmdDrawIndexedIndirectCount vkCmdDrawIndexedIndirectCount; + PFN_vkCmdDrawIndirectCount vkCmdDrawIndirectCount; + PFN_vkCmdEndRenderPass2 vkCmdEndRenderPass2; + PFN_vkCmdNextSubpass2 vkCmdNextSubpass2; + PFN_vkCreateRenderPass2 vkCreateRenderPass2; + PFN_vkGetBufferDeviceAddress vkGetBufferDeviceAddress; + PFN_vkGetBufferOpaqueCaptureAddress vkGetBufferOpaqueCaptureAddress; + PFN_vkGetDeviceMemoryOpaqueCaptureAddress vkGetDeviceMemoryOpaqueCaptureAddress; + PFN_vkGetSemaphoreCounterValue vkGetSemaphoreCounterValue; + PFN_vkResetQueryPool vkResetQueryPool; + PFN_vkSignalSemaphore vkSignalSemaphore; + PFN_vkWaitSemaphores vkWaitSemaphores; +#endif /* defined(VK_VERSION_1_2) */ +#if defined(VK_AMD_buffer_marker) + PFN_vkCmdWriteBufferMarkerAMD vkCmdWriteBufferMarkerAMD; +#endif /* defined(VK_AMD_buffer_marker) */ +#if defined(VK_AMD_display_native_hdr) + PFN_vkSetLocalDimmingAMD vkSetLocalDimmingAMD; +#endif /* defined(VK_AMD_display_native_hdr) */ +#if defined(VK_AMD_draw_indirect_count) + PFN_vkCmdDrawIndexedIndirectCountAMD vkCmdDrawIndexedIndirectCountAMD; + PFN_vkCmdDrawIndirectCountAMD vkCmdDrawIndirectCountAMD; +#endif /* defined(VK_AMD_draw_indirect_count) */ +#if defined(VK_AMD_shader_info) + PFN_vkGetShaderInfoAMD vkGetShaderInfoAMD; +#endif /* defined(VK_AMD_shader_info) */ +#if defined(VK_ANDROID_external_memory_android_hardware_buffer) + PFN_vkGetAndroidHardwareBufferPropertiesANDROID vkGetAndroidHardwareBufferPropertiesANDROID; + PFN_vkGetMemoryAndroidHardwareBufferANDROID vkGetMemoryAndroidHardwareBufferANDROID; +#endif /* defined(VK_ANDROID_external_memory_android_hardware_buffer) */ +#if defined(VK_EXT_buffer_device_address) + PFN_vkGetBufferDeviceAddressEXT vkGetBufferDeviceAddressEXT; +#endif /* defined(VK_EXT_buffer_device_address) */ +#if defined(VK_EXT_calibrated_timestamps) + PFN_vkGetCalibratedTimestampsEXT vkGetCalibratedTimestampsEXT; +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_color_write_enable) + PFN_vkCmdSetColorWriteEnableEXT vkCmdSetColorWriteEnableEXT; +#endif /* defined(VK_EXT_color_write_enable) */ +#if defined(VK_EXT_conditional_rendering) + PFN_vkCmdBeginConditionalRenderingEXT vkCmdBeginConditionalRenderingEXT; + PFN_vkCmdEndConditionalRenderingEXT vkCmdEndConditionalRenderingEXT; +#endif /* defined(VK_EXT_conditional_rendering) */ +#if defined(VK_EXT_debug_marker) + PFN_vkCmdDebugMarkerBeginEXT vkCmdDebugMarkerBeginEXT; + PFN_vkCmdDebugMarkerEndEXT vkCmdDebugMarkerEndEXT; + PFN_vkCmdDebugMarkerInsertEXT vkCmdDebugMarkerInsertEXT; + PFN_vkDebugMarkerSetObjectNameEXT vkDebugMarkerSetObjectNameEXT; + PFN_vkDebugMarkerSetObjectTagEXT vkDebugMarkerSetObjectTagEXT; +#endif /* defined(VK_EXT_debug_marker) */ +#if defined(VK_EXT_discard_rectangles) + PFN_vkCmdSetDiscardRectangleEXT vkCmdSetDiscardRectangleEXT; +#endif /* defined(VK_EXT_discard_rectangles) */ +#if defined(VK_EXT_display_control) + PFN_vkDisplayPowerControlEXT vkDisplayPowerControlEXT; + PFN_vkGetSwapchainCounterEXT vkGetSwapchainCounterEXT; + PFN_vkRegisterDeviceEventEXT vkRegisterDeviceEventEXT; + PFN_vkRegisterDisplayEventEXT vkRegisterDisplayEventEXT; +#endif /* defined(VK_EXT_display_control) */ +#if defined(VK_EXT_extended_dynamic_state) + PFN_vkCmdBindVertexBuffers2EXT vkCmdBindVertexBuffers2EXT; + PFN_vkCmdSetCullModeEXT vkCmdSetCullModeEXT; + PFN_vkCmdSetDepthBoundsTestEnableEXT vkCmdSetDepthBoundsTestEnableEXT; + PFN_vkCmdSetDepthCompareOpEXT vkCmdSetDepthCompareOpEXT; + PFN_vkCmdSetDepthTestEnableEXT vkCmdSetDepthTestEnableEXT; + PFN_vkCmdSetDepthWriteEnableEXT vkCmdSetDepthWriteEnableEXT; + PFN_vkCmdSetFrontFaceEXT vkCmdSetFrontFaceEXT; + PFN_vkCmdSetPrimitiveTopologyEXT vkCmdSetPrimitiveTopologyEXT; + PFN_vkCmdSetScissorWithCountEXT vkCmdSetScissorWithCountEXT; + PFN_vkCmdSetStencilOpEXT vkCmdSetStencilOpEXT; + PFN_vkCmdSetStencilTestEnableEXT vkCmdSetStencilTestEnableEXT; + PFN_vkCmdSetViewportWithCountEXT vkCmdSetViewportWithCountEXT; +#endif /* defined(VK_EXT_extended_dynamic_state) */ +#if defined(VK_EXT_extended_dynamic_state2) + PFN_vkCmdSetDepthBiasEnableEXT vkCmdSetDepthBiasEnableEXT; + PFN_vkCmdSetLogicOpEXT vkCmdSetLogicOpEXT; + PFN_vkCmdSetPatchControlPointsEXT vkCmdSetPatchControlPointsEXT; + PFN_vkCmdSetPrimitiveRestartEnableEXT vkCmdSetPrimitiveRestartEnableEXT; + PFN_vkCmdSetRasterizerDiscardEnableEXT vkCmdSetRasterizerDiscardEnableEXT; +#endif /* defined(VK_EXT_extended_dynamic_state2) */ +#if defined(VK_EXT_external_memory_host) + PFN_vkGetMemoryHostPointerPropertiesEXT vkGetMemoryHostPointerPropertiesEXT; +#endif /* defined(VK_EXT_external_memory_host) */ +#if defined(VK_EXT_full_screen_exclusive) + PFN_vkAcquireFullScreenExclusiveModeEXT vkAcquireFullScreenExclusiveModeEXT; + PFN_vkReleaseFullScreenExclusiveModeEXT vkReleaseFullScreenExclusiveModeEXT; +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_hdr_metadata) + PFN_vkSetHdrMetadataEXT vkSetHdrMetadataEXT; +#endif /* defined(VK_EXT_hdr_metadata) */ +#if defined(VK_EXT_host_query_reset) + PFN_vkResetQueryPoolEXT vkResetQueryPoolEXT; +#endif /* defined(VK_EXT_host_query_reset) */ +#if defined(VK_EXT_image_drm_format_modifier) + PFN_vkGetImageDrmFormatModifierPropertiesEXT vkGetImageDrmFormatModifierPropertiesEXT; +#endif /* defined(VK_EXT_image_drm_format_modifier) */ +#if defined(VK_EXT_line_rasterization) + PFN_vkCmdSetLineStippleEXT vkCmdSetLineStippleEXT; +#endif /* defined(VK_EXT_line_rasterization) */ +#if defined(VK_EXT_multi_draw) + PFN_vkCmdDrawMultiEXT vkCmdDrawMultiEXT; + PFN_vkCmdDrawMultiIndexedEXT vkCmdDrawMultiIndexedEXT; +#endif /* defined(VK_EXT_multi_draw) */ +#if defined(VK_EXT_pageable_device_local_memory) + PFN_vkSetDeviceMemoryPriorityEXT vkSetDeviceMemoryPriorityEXT; +#endif /* defined(VK_EXT_pageable_device_local_memory) */ +#if defined(VK_EXT_private_data) + PFN_vkCreatePrivateDataSlotEXT vkCreatePrivateDataSlotEXT; + PFN_vkDestroyPrivateDataSlotEXT vkDestroyPrivateDataSlotEXT; + PFN_vkGetPrivateDataEXT vkGetPrivateDataEXT; + PFN_vkSetPrivateDataEXT vkSetPrivateDataEXT; +#endif /* defined(VK_EXT_private_data) */ +#if defined(VK_EXT_sample_locations) + PFN_vkCmdSetSampleLocationsEXT vkCmdSetSampleLocationsEXT; +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_transform_feedback) + PFN_vkCmdBeginQueryIndexedEXT vkCmdBeginQueryIndexedEXT; + PFN_vkCmdBeginTransformFeedbackEXT vkCmdBeginTransformFeedbackEXT; + PFN_vkCmdBindTransformFeedbackBuffersEXT vkCmdBindTransformFeedbackBuffersEXT; + PFN_vkCmdDrawIndirectByteCountEXT vkCmdDrawIndirectByteCountEXT; + PFN_vkCmdEndQueryIndexedEXT vkCmdEndQueryIndexedEXT; + PFN_vkCmdEndTransformFeedbackEXT vkCmdEndTransformFeedbackEXT; +#endif /* defined(VK_EXT_transform_feedback) */ +#if defined(VK_EXT_validation_cache) + PFN_vkCreateValidationCacheEXT vkCreateValidationCacheEXT; + PFN_vkDestroyValidationCacheEXT vkDestroyValidationCacheEXT; + PFN_vkGetValidationCacheDataEXT vkGetValidationCacheDataEXT; + PFN_vkMergeValidationCachesEXT vkMergeValidationCachesEXT; +#endif /* defined(VK_EXT_validation_cache) */ +#if defined(VK_EXT_vertex_input_dynamic_state) + PFN_vkCmdSetVertexInputEXT vkCmdSetVertexInputEXT; +#endif /* defined(VK_EXT_vertex_input_dynamic_state) */ +#if defined(VK_FUCHSIA_buffer_collection) + PFN_vkCreateBufferCollectionFUCHSIA vkCreateBufferCollectionFUCHSIA; + PFN_vkDestroyBufferCollectionFUCHSIA vkDestroyBufferCollectionFUCHSIA; + PFN_vkGetBufferCollectionPropertiesFUCHSIA vkGetBufferCollectionPropertiesFUCHSIA; + PFN_vkSetBufferCollectionBufferConstraintsFUCHSIA vkSetBufferCollectionBufferConstraintsFUCHSIA; + PFN_vkSetBufferCollectionImageConstraintsFUCHSIA vkSetBufferCollectionImageConstraintsFUCHSIA; +#endif /* defined(VK_FUCHSIA_buffer_collection) */ +#if defined(VK_FUCHSIA_external_memory) + PFN_vkGetMemoryZirconHandleFUCHSIA vkGetMemoryZirconHandleFUCHSIA; + PFN_vkGetMemoryZirconHandlePropertiesFUCHSIA vkGetMemoryZirconHandlePropertiesFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_memory) */ +#if defined(VK_FUCHSIA_external_semaphore) + PFN_vkGetSemaphoreZirconHandleFUCHSIA vkGetSemaphoreZirconHandleFUCHSIA; + PFN_vkImportSemaphoreZirconHandleFUCHSIA vkImportSemaphoreZirconHandleFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_semaphore) */ +#if defined(VK_GOOGLE_display_timing) + PFN_vkGetPastPresentationTimingGOOGLE vkGetPastPresentationTimingGOOGLE; + PFN_vkGetRefreshCycleDurationGOOGLE vkGetRefreshCycleDurationGOOGLE; +#endif /* defined(VK_GOOGLE_display_timing) */ +#if defined(VK_HUAWEI_invocation_mask) + PFN_vkCmdBindInvocationMaskHUAWEI vkCmdBindInvocationMaskHUAWEI; +#endif /* defined(VK_HUAWEI_invocation_mask) */ +#if defined(VK_HUAWEI_subpass_shading) + PFN_vkCmdSubpassShadingHUAWEI vkCmdSubpassShadingHUAWEI; + PFN_vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI; +#endif /* defined(VK_HUAWEI_subpass_shading) */ +#if defined(VK_INTEL_performance_query) + PFN_vkAcquirePerformanceConfigurationINTEL vkAcquirePerformanceConfigurationINTEL; + PFN_vkCmdSetPerformanceMarkerINTEL vkCmdSetPerformanceMarkerINTEL; + PFN_vkCmdSetPerformanceOverrideINTEL vkCmdSetPerformanceOverrideINTEL; + PFN_vkCmdSetPerformanceStreamMarkerINTEL vkCmdSetPerformanceStreamMarkerINTEL; + PFN_vkGetPerformanceParameterINTEL vkGetPerformanceParameterINTEL; + PFN_vkInitializePerformanceApiINTEL vkInitializePerformanceApiINTEL; + PFN_vkQueueSetPerformanceConfigurationINTEL vkQueueSetPerformanceConfigurationINTEL; + PFN_vkReleasePerformanceConfigurationINTEL vkReleasePerformanceConfigurationINTEL; + PFN_vkUninitializePerformanceApiINTEL vkUninitializePerformanceApiINTEL; +#endif /* defined(VK_INTEL_performance_query) */ +#if defined(VK_KHR_acceleration_structure) + PFN_vkBuildAccelerationStructuresKHR vkBuildAccelerationStructuresKHR; + PFN_vkCmdBuildAccelerationStructuresIndirectKHR vkCmdBuildAccelerationStructuresIndirectKHR; + PFN_vkCmdBuildAccelerationStructuresKHR vkCmdBuildAccelerationStructuresKHR; + PFN_vkCmdCopyAccelerationStructureKHR vkCmdCopyAccelerationStructureKHR; + PFN_vkCmdCopyAccelerationStructureToMemoryKHR vkCmdCopyAccelerationStructureToMemoryKHR; + PFN_vkCmdCopyMemoryToAccelerationStructureKHR vkCmdCopyMemoryToAccelerationStructureKHR; + PFN_vkCmdWriteAccelerationStructuresPropertiesKHR vkCmdWriteAccelerationStructuresPropertiesKHR; + PFN_vkCopyAccelerationStructureKHR vkCopyAccelerationStructureKHR; + PFN_vkCopyAccelerationStructureToMemoryKHR vkCopyAccelerationStructureToMemoryKHR; + PFN_vkCopyMemoryToAccelerationStructureKHR vkCopyMemoryToAccelerationStructureKHR; + PFN_vkCreateAccelerationStructureKHR vkCreateAccelerationStructureKHR; + PFN_vkDestroyAccelerationStructureKHR vkDestroyAccelerationStructureKHR; + PFN_vkGetAccelerationStructureBuildSizesKHR vkGetAccelerationStructureBuildSizesKHR; + PFN_vkGetAccelerationStructureDeviceAddressKHR vkGetAccelerationStructureDeviceAddressKHR; + PFN_vkGetDeviceAccelerationStructureCompatibilityKHR vkGetDeviceAccelerationStructureCompatibilityKHR; + PFN_vkWriteAccelerationStructuresPropertiesKHR vkWriteAccelerationStructuresPropertiesKHR; +#endif /* defined(VK_KHR_acceleration_structure) */ +#if defined(VK_KHR_bind_memory2) + PFN_vkBindBufferMemory2KHR vkBindBufferMemory2KHR; + PFN_vkBindImageMemory2KHR vkBindImageMemory2KHR; +#endif /* defined(VK_KHR_bind_memory2) */ +#if defined(VK_KHR_buffer_device_address) + PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR; + PFN_vkGetBufferOpaqueCaptureAddressKHR vkGetBufferOpaqueCaptureAddressKHR; + PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR vkGetDeviceMemoryOpaqueCaptureAddressKHR; +#endif /* defined(VK_KHR_buffer_device_address) */ +#if defined(VK_KHR_copy_commands2) + PFN_vkCmdBlitImage2KHR vkCmdBlitImage2KHR; + PFN_vkCmdCopyBuffer2KHR vkCmdCopyBuffer2KHR; + PFN_vkCmdCopyBufferToImage2KHR vkCmdCopyBufferToImage2KHR; + PFN_vkCmdCopyImage2KHR vkCmdCopyImage2KHR; + PFN_vkCmdCopyImageToBuffer2KHR vkCmdCopyImageToBuffer2KHR; + PFN_vkCmdResolveImage2KHR vkCmdResolveImage2KHR; +#endif /* defined(VK_KHR_copy_commands2) */ +#if defined(VK_KHR_create_renderpass2) + PFN_vkCmdBeginRenderPass2KHR vkCmdBeginRenderPass2KHR; + PFN_vkCmdEndRenderPass2KHR vkCmdEndRenderPass2KHR; + PFN_vkCmdNextSubpass2KHR vkCmdNextSubpass2KHR; + PFN_vkCreateRenderPass2KHR vkCreateRenderPass2KHR; +#endif /* defined(VK_KHR_create_renderpass2) */ +#if defined(VK_KHR_deferred_host_operations) + PFN_vkCreateDeferredOperationKHR vkCreateDeferredOperationKHR; + PFN_vkDeferredOperationJoinKHR vkDeferredOperationJoinKHR; + PFN_vkDestroyDeferredOperationKHR vkDestroyDeferredOperationKHR; + PFN_vkGetDeferredOperationMaxConcurrencyKHR vkGetDeferredOperationMaxConcurrencyKHR; + PFN_vkGetDeferredOperationResultKHR vkGetDeferredOperationResultKHR; +#endif /* defined(VK_KHR_deferred_host_operations) */ +#if defined(VK_KHR_descriptor_update_template) + PFN_vkCreateDescriptorUpdateTemplateKHR vkCreateDescriptorUpdateTemplateKHR; + PFN_vkDestroyDescriptorUpdateTemplateKHR vkDestroyDescriptorUpdateTemplateKHR; + PFN_vkUpdateDescriptorSetWithTemplateKHR vkUpdateDescriptorSetWithTemplateKHR; +#endif /* defined(VK_KHR_descriptor_update_template) */ +#if defined(VK_KHR_device_group) + PFN_vkCmdDispatchBaseKHR vkCmdDispatchBaseKHR; + PFN_vkCmdSetDeviceMaskKHR vkCmdSetDeviceMaskKHR; + PFN_vkGetDeviceGroupPeerMemoryFeaturesKHR vkGetDeviceGroupPeerMemoryFeaturesKHR; +#endif /* defined(VK_KHR_device_group) */ +#if defined(VK_KHR_display_swapchain) + PFN_vkCreateSharedSwapchainsKHR vkCreateSharedSwapchainsKHR; +#endif /* defined(VK_KHR_display_swapchain) */ +#if defined(VK_KHR_draw_indirect_count) + PFN_vkCmdDrawIndexedIndirectCountKHR vkCmdDrawIndexedIndirectCountKHR; + PFN_vkCmdDrawIndirectCountKHR vkCmdDrawIndirectCountKHR; +#endif /* defined(VK_KHR_draw_indirect_count) */ +#if defined(VK_KHR_dynamic_rendering) + PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR; + PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR; +#endif /* defined(VK_KHR_dynamic_rendering) */ +#if defined(VK_KHR_external_fence_fd) + PFN_vkGetFenceFdKHR vkGetFenceFdKHR; + PFN_vkImportFenceFdKHR vkImportFenceFdKHR; +#endif /* defined(VK_KHR_external_fence_fd) */ +#if defined(VK_KHR_external_fence_win32) + PFN_vkGetFenceWin32HandleKHR vkGetFenceWin32HandleKHR; + PFN_vkImportFenceWin32HandleKHR vkImportFenceWin32HandleKHR; +#endif /* defined(VK_KHR_external_fence_win32) */ +#if defined(VK_KHR_external_memory_fd) + PFN_vkGetMemoryFdKHR vkGetMemoryFdKHR; + PFN_vkGetMemoryFdPropertiesKHR vkGetMemoryFdPropertiesKHR; +#endif /* defined(VK_KHR_external_memory_fd) */ +#if defined(VK_KHR_external_memory_win32) + PFN_vkGetMemoryWin32HandleKHR vkGetMemoryWin32HandleKHR; + PFN_vkGetMemoryWin32HandlePropertiesKHR vkGetMemoryWin32HandlePropertiesKHR; +#endif /* defined(VK_KHR_external_memory_win32) */ +#if defined(VK_KHR_external_semaphore_fd) + PFN_vkGetSemaphoreFdKHR vkGetSemaphoreFdKHR; + PFN_vkImportSemaphoreFdKHR vkImportSemaphoreFdKHR; +#endif /* defined(VK_KHR_external_semaphore_fd) */ +#if defined(VK_KHR_external_semaphore_win32) + PFN_vkGetSemaphoreWin32HandleKHR vkGetSemaphoreWin32HandleKHR; + PFN_vkImportSemaphoreWin32HandleKHR vkImportSemaphoreWin32HandleKHR; +#endif /* defined(VK_KHR_external_semaphore_win32) */ +#if defined(VK_KHR_fragment_shading_rate) + PFN_vkCmdSetFragmentShadingRateKHR vkCmdSetFragmentShadingRateKHR; +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_memory_requirements2) + PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR; + PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR; + PFN_vkGetImageSparseMemoryRequirements2KHR vkGetImageSparseMemoryRequirements2KHR; +#endif /* defined(VK_KHR_get_memory_requirements2) */ +#if defined(VK_KHR_maintenance1) + PFN_vkTrimCommandPoolKHR vkTrimCommandPoolKHR; +#endif /* defined(VK_KHR_maintenance1) */ +#if defined(VK_KHR_maintenance3) + PFN_vkGetDescriptorSetLayoutSupportKHR vkGetDescriptorSetLayoutSupportKHR; +#endif /* defined(VK_KHR_maintenance3) */ +#if defined(VK_KHR_maintenance4) + PFN_vkGetDeviceBufferMemoryRequirementsKHR vkGetDeviceBufferMemoryRequirementsKHR; + PFN_vkGetDeviceImageMemoryRequirementsKHR vkGetDeviceImageMemoryRequirementsKHR; + PFN_vkGetDeviceImageSparseMemoryRequirementsKHR vkGetDeviceImageSparseMemoryRequirementsKHR; +#endif /* defined(VK_KHR_maintenance4) */ +#if defined(VK_KHR_performance_query) + PFN_vkAcquireProfilingLockKHR vkAcquireProfilingLockKHR; + PFN_vkReleaseProfilingLockKHR vkReleaseProfilingLockKHR; +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_pipeline_executable_properties) + PFN_vkGetPipelineExecutableInternalRepresentationsKHR vkGetPipelineExecutableInternalRepresentationsKHR; + PFN_vkGetPipelineExecutablePropertiesKHR vkGetPipelineExecutablePropertiesKHR; + PFN_vkGetPipelineExecutableStatisticsKHR vkGetPipelineExecutableStatisticsKHR; +#endif /* defined(VK_KHR_pipeline_executable_properties) */ +#if defined(VK_KHR_present_wait) + PFN_vkWaitForPresentKHR vkWaitForPresentKHR; +#endif /* defined(VK_KHR_present_wait) */ +#if defined(VK_KHR_push_descriptor) + PFN_vkCmdPushDescriptorSetKHR vkCmdPushDescriptorSetKHR; +#endif /* defined(VK_KHR_push_descriptor) */ +#if defined(VK_KHR_ray_tracing_pipeline) + PFN_vkCmdSetRayTracingPipelineStackSizeKHR vkCmdSetRayTracingPipelineStackSizeKHR; + PFN_vkCmdTraceRaysIndirectKHR vkCmdTraceRaysIndirectKHR; + PFN_vkCmdTraceRaysKHR vkCmdTraceRaysKHR; + PFN_vkCreateRayTracingPipelinesKHR vkCreateRayTracingPipelinesKHR; + PFN_vkGetRayTracingCaptureReplayShaderGroupHandlesKHR vkGetRayTracingCaptureReplayShaderGroupHandlesKHR; + PFN_vkGetRayTracingShaderGroupHandlesKHR vkGetRayTracingShaderGroupHandlesKHR; + PFN_vkGetRayTracingShaderGroupStackSizeKHR vkGetRayTracingShaderGroupStackSizeKHR; +#endif /* defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_sampler_ycbcr_conversion) + PFN_vkCreateSamplerYcbcrConversionKHR vkCreateSamplerYcbcrConversionKHR; + PFN_vkDestroySamplerYcbcrConversionKHR vkDestroySamplerYcbcrConversionKHR; +#endif /* defined(VK_KHR_sampler_ycbcr_conversion) */ +#if defined(VK_KHR_shared_presentable_image) + PFN_vkGetSwapchainStatusKHR vkGetSwapchainStatusKHR; +#endif /* defined(VK_KHR_shared_presentable_image) */ +#if defined(VK_KHR_swapchain) + PFN_vkAcquireNextImageKHR vkAcquireNextImageKHR; + PFN_vkCreateSwapchainKHR vkCreateSwapchainKHR; + PFN_vkDestroySwapchainKHR vkDestroySwapchainKHR; + PFN_vkGetSwapchainImagesKHR vkGetSwapchainImagesKHR; + PFN_vkQueuePresentKHR vkQueuePresentKHR; +#endif /* defined(VK_KHR_swapchain) */ +#if defined(VK_KHR_synchronization2) + PFN_vkCmdPipelineBarrier2KHR vkCmdPipelineBarrier2KHR; + PFN_vkCmdResetEvent2KHR vkCmdResetEvent2KHR; + PFN_vkCmdSetEvent2KHR vkCmdSetEvent2KHR; + PFN_vkCmdWaitEvents2KHR vkCmdWaitEvents2KHR; + PFN_vkCmdWriteTimestamp2KHR vkCmdWriteTimestamp2KHR; + PFN_vkQueueSubmit2KHR vkQueueSubmit2KHR; +#endif /* defined(VK_KHR_synchronization2) */ +#if defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) + PFN_vkCmdWriteBufferMarker2AMD vkCmdWriteBufferMarker2AMD; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) */ +#if defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) + PFN_vkGetQueueCheckpointData2NV vkGetQueueCheckpointData2NV; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_KHR_timeline_semaphore) + PFN_vkGetSemaphoreCounterValueKHR vkGetSemaphoreCounterValueKHR; + PFN_vkSignalSemaphoreKHR vkSignalSemaphoreKHR; + PFN_vkWaitSemaphoresKHR vkWaitSemaphoresKHR; +#endif /* defined(VK_KHR_timeline_semaphore) */ +#if defined(VK_KHR_video_decode_queue) + PFN_vkCmdDecodeVideoKHR vkCmdDecodeVideoKHR; +#endif /* defined(VK_KHR_video_decode_queue) */ +#if defined(VK_KHR_video_encode_queue) + PFN_vkCmdEncodeVideoKHR vkCmdEncodeVideoKHR; +#endif /* defined(VK_KHR_video_encode_queue) */ +#if defined(VK_KHR_video_queue) + PFN_vkBindVideoSessionMemoryKHR vkBindVideoSessionMemoryKHR; + PFN_vkCmdBeginVideoCodingKHR vkCmdBeginVideoCodingKHR; + PFN_vkCmdControlVideoCodingKHR vkCmdControlVideoCodingKHR; + PFN_vkCmdEndVideoCodingKHR vkCmdEndVideoCodingKHR; + PFN_vkCreateVideoSessionKHR vkCreateVideoSessionKHR; + PFN_vkCreateVideoSessionParametersKHR vkCreateVideoSessionParametersKHR; + PFN_vkDestroyVideoSessionKHR vkDestroyVideoSessionKHR; + PFN_vkDestroyVideoSessionParametersKHR vkDestroyVideoSessionParametersKHR; + PFN_vkGetVideoSessionMemoryRequirementsKHR vkGetVideoSessionMemoryRequirementsKHR; + PFN_vkUpdateVideoSessionParametersKHR vkUpdateVideoSessionParametersKHR; +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_NVX_binary_import) + PFN_vkCmdCuLaunchKernelNVX vkCmdCuLaunchKernelNVX; + PFN_vkCreateCuFunctionNVX vkCreateCuFunctionNVX; + PFN_vkCreateCuModuleNVX vkCreateCuModuleNVX; + PFN_vkDestroyCuFunctionNVX vkDestroyCuFunctionNVX; + PFN_vkDestroyCuModuleNVX vkDestroyCuModuleNVX; +#endif /* defined(VK_NVX_binary_import) */ +#if defined(VK_NVX_image_view_handle) + PFN_vkGetImageViewAddressNVX vkGetImageViewAddressNVX; + PFN_vkGetImageViewHandleNVX vkGetImageViewHandleNVX; +#endif /* defined(VK_NVX_image_view_handle) */ +#if defined(VK_NV_clip_space_w_scaling) + PFN_vkCmdSetViewportWScalingNV vkCmdSetViewportWScalingNV; +#endif /* defined(VK_NV_clip_space_w_scaling) */ +#if defined(VK_NV_device_diagnostic_checkpoints) + PFN_vkCmdSetCheckpointNV vkCmdSetCheckpointNV; + PFN_vkGetQueueCheckpointDataNV vkGetQueueCheckpointDataNV; +#endif /* defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_NV_device_generated_commands) + PFN_vkCmdBindPipelineShaderGroupNV vkCmdBindPipelineShaderGroupNV; + PFN_vkCmdExecuteGeneratedCommandsNV vkCmdExecuteGeneratedCommandsNV; + PFN_vkCmdPreprocessGeneratedCommandsNV vkCmdPreprocessGeneratedCommandsNV; + PFN_vkCreateIndirectCommandsLayoutNV vkCreateIndirectCommandsLayoutNV; + PFN_vkDestroyIndirectCommandsLayoutNV vkDestroyIndirectCommandsLayoutNV; + PFN_vkGetGeneratedCommandsMemoryRequirementsNV vkGetGeneratedCommandsMemoryRequirementsNV; +#endif /* defined(VK_NV_device_generated_commands) */ +#if defined(VK_NV_external_memory_rdma) + PFN_vkGetMemoryRemoteAddressNV vkGetMemoryRemoteAddressNV; +#endif /* defined(VK_NV_external_memory_rdma) */ +#if defined(VK_NV_external_memory_win32) + PFN_vkGetMemoryWin32HandleNV vkGetMemoryWin32HandleNV; +#endif /* defined(VK_NV_external_memory_win32) */ +#if defined(VK_NV_fragment_shading_rate_enums) + PFN_vkCmdSetFragmentShadingRateEnumNV vkCmdSetFragmentShadingRateEnumNV; +#endif /* defined(VK_NV_fragment_shading_rate_enums) */ +#if defined(VK_NV_mesh_shader) + PFN_vkCmdDrawMeshTasksIndirectCountNV vkCmdDrawMeshTasksIndirectCountNV; + PFN_vkCmdDrawMeshTasksIndirectNV vkCmdDrawMeshTasksIndirectNV; + PFN_vkCmdDrawMeshTasksNV vkCmdDrawMeshTasksNV; +#endif /* defined(VK_NV_mesh_shader) */ +#if defined(VK_NV_ray_tracing) + PFN_vkBindAccelerationStructureMemoryNV vkBindAccelerationStructureMemoryNV; + PFN_vkCmdBuildAccelerationStructureNV vkCmdBuildAccelerationStructureNV; + PFN_vkCmdCopyAccelerationStructureNV vkCmdCopyAccelerationStructureNV; + PFN_vkCmdTraceRaysNV vkCmdTraceRaysNV; + PFN_vkCmdWriteAccelerationStructuresPropertiesNV vkCmdWriteAccelerationStructuresPropertiesNV; + PFN_vkCompileDeferredNV vkCompileDeferredNV; + PFN_vkCreateAccelerationStructureNV vkCreateAccelerationStructureNV; + PFN_vkCreateRayTracingPipelinesNV vkCreateRayTracingPipelinesNV; + PFN_vkDestroyAccelerationStructureNV vkDestroyAccelerationStructureNV; + PFN_vkGetAccelerationStructureHandleNV vkGetAccelerationStructureHandleNV; + PFN_vkGetAccelerationStructureMemoryRequirementsNV vkGetAccelerationStructureMemoryRequirementsNV; + PFN_vkGetRayTracingShaderGroupHandlesNV vkGetRayTracingShaderGroupHandlesNV; +#endif /* defined(VK_NV_ray_tracing) */ +#if defined(VK_NV_scissor_exclusive) + PFN_vkCmdSetExclusiveScissorNV vkCmdSetExclusiveScissorNV; +#endif /* defined(VK_NV_scissor_exclusive) */ +#if defined(VK_NV_shading_rate_image) + PFN_vkCmdBindShadingRateImageNV vkCmdBindShadingRateImageNV; + PFN_vkCmdSetCoarseSampleOrderNV vkCmdSetCoarseSampleOrderNV; + PFN_vkCmdSetViewportShadingRatePaletteNV vkCmdSetViewportShadingRatePaletteNV; +#endif /* defined(VK_NV_shading_rate_image) */ +#if (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) + PFN_vkGetDeviceGroupSurfacePresentModes2EXT vkGetDeviceGroupSurfacePresentModes2EXT; +#endif /* (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) + PFN_vkCmdPushDescriptorSetWithTemplateKHR vkCmdPushDescriptorSetWithTemplateKHR; +#endif /* (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + PFN_vkGetDeviceGroupPresentCapabilitiesKHR vkGetDeviceGroupPresentCapabilitiesKHR; + PFN_vkGetDeviceGroupSurfacePresentModesKHR vkGetDeviceGroupSurfacePresentModesKHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + PFN_vkAcquireNextImage2KHR vkAcquireNextImage2KHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ + /* VOLK_GENERATE_DEVICE_TABLE */ +}; + +/* VOLK_GENERATE_PROTOTYPES_H */ +#if defined(VK_VERSION_1_0) +extern PFN_vkAllocateCommandBuffers vkAllocateCommandBuffers; +extern PFN_vkAllocateDescriptorSets vkAllocateDescriptorSets; +extern PFN_vkAllocateMemory vkAllocateMemory; +extern PFN_vkBeginCommandBuffer vkBeginCommandBuffer; +extern PFN_vkBindBufferMemory vkBindBufferMemory; +extern PFN_vkBindImageMemory vkBindImageMemory; +extern PFN_vkCmdBeginQuery vkCmdBeginQuery; +extern PFN_vkCmdBeginRenderPass vkCmdBeginRenderPass; +extern PFN_vkCmdBindDescriptorSets vkCmdBindDescriptorSets; +extern PFN_vkCmdBindIndexBuffer vkCmdBindIndexBuffer; +extern PFN_vkCmdBindPipeline vkCmdBindPipeline; +extern PFN_vkCmdBindVertexBuffers vkCmdBindVertexBuffers; +extern PFN_vkCmdBlitImage vkCmdBlitImage; +extern PFN_vkCmdClearAttachments vkCmdClearAttachments; +extern PFN_vkCmdClearColorImage vkCmdClearColorImage; +extern PFN_vkCmdClearDepthStencilImage vkCmdClearDepthStencilImage; +extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer; +extern PFN_vkCmdCopyBufferToImage vkCmdCopyBufferToImage; +extern PFN_vkCmdCopyImage vkCmdCopyImage; +extern PFN_vkCmdCopyImageToBuffer vkCmdCopyImageToBuffer; +extern PFN_vkCmdCopyQueryPoolResults vkCmdCopyQueryPoolResults; +extern PFN_vkCmdDispatch vkCmdDispatch; +extern PFN_vkCmdDispatchIndirect vkCmdDispatchIndirect; +extern PFN_vkCmdDraw vkCmdDraw; +extern PFN_vkCmdDrawIndexed vkCmdDrawIndexed; +extern PFN_vkCmdDrawIndexedIndirect vkCmdDrawIndexedIndirect; +extern PFN_vkCmdDrawIndirect vkCmdDrawIndirect; +extern PFN_vkCmdEndQuery vkCmdEndQuery; +extern PFN_vkCmdEndRenderPass vkCmdEndRenderPass; +extern PFN_vkCmdExecuteCommands vkCmdExecuteCommands; +extern PFN_vkCmdFillBuffer vkCmdFillBuffer; +extern PFN_vkCmdNextSubpass vkCmdNextSubpass; +extern PFN_vkCmdPipelineBarrier vkCmdPipelineBarrier; +extern PFN_vkCmdPushConstants vkCmdPushConstants; +extern PFN_vkCmdResetEvent vkCmdResetEvent; +extern PFN_vkCmdResetQueryPool vkCmdResetQueryPool; +extern PFN_vkCmdResolveImage vkCmdResolveImage; +extern PFN_vkCmdSetBlendConstants vkCmdSetBlendConstants; +extern PFN_vkCmdSetDepthBias vkCmdSetDepthBias; +extern PFN_vkCmdSetDepthBounds vkCmdSetDepthBounds; +extern PFN_vkCmdSetEvent vkCmdSetEvent; +extern PFN_vkCmdSetLineWidth vkCmdSetLineWidth; +extern PFN_vkCmdSetScissor vkCmdSetScissor; +extern PFN_vkCmdSetStencilCompareMask vkCmdSetStencilCompareMask; +extern PFN_vkCmdSetStencilReference vkCmdSetStencilReference; +extern PFN_vkCmdSetStencilWriteMask vkCmdSetStencilWriteMask; +extern PFN_vkCmdSetViewport vkCmdSetViewport; +extern PFN_vkCmdUpdateBuffer vkCmdUpdateBuffer; +extern PFN_vkCmdWaitEvents vkCmdWaitEvents; +extern PFN_vkCmdWriteTimestamp vkCmdWriteTimestamp; +extern PFN_vkCreateBuffer vkCreateBuffer; +extern PFN_vkCreateBufferView vkCreateBufferView; +extern PFN_vkCreateCommandPool vkCreateCommandPool; +extern PFN_vkCreateComputePipelines vkCreateComputePipelines; +extern PFN_vkCreateDescriptorPool vkCreateDescriptorPool; +extern PFN_vkCreateDescriptorSetLayout vkCreateDescriptorSetLayout; +extern PFN_vkCreateDevice vkCreateDevice; +extern PFN_vkCreateEvent vkCreateEvent; +extern PFN_vkCreateFence vkCreateFence; +extern PFN_vkCreateFramebuffer vkCreateFramebuffer; +extern PFN_vkCreateGraphicsPipelines vkCreateGraphicsPipelines; +extern PFN_vkCreateImage vkCreateImage; +extern PFN_vkCreateImageView vkCreateImageView; +extern PFN_vkCreateInstance vkCreateInstance; +extern PFN_vkCreatePipelineCache vkCreatePipelineCache; +extern PFN_vkCreatePipelineLayout vkCreatePipelineLayout; +extern PFN_vkCreateQueryPool vkCreateQueryPool; +extern PFN_vkCreateRenderPass vkCreateRenderPass; +extern PFN_vkCreateSampler vkCreateSampler; +extern PFN_vkCreateSemaphore vkCreateSemaphore; +extern PFN_vkCreateShaderModule vkCreateShaderModule; +extern PFN_vkDestroyBuffer vkDestroyBuffer; +extern PFN_vkDestroyBufferView vkDestroyBufferView; +extern PFN_vkDestroyCommandPool vkDestroyCommandPool; +extern PFN_vkDestroyDescriptorPool vkDestroyDescriptorPool; +extern PFN_vkDestroyDescriptorSetLayout vkDestroyDescriptorSetLayout; +extern PFN_vkDestroyDevice vkDestroyDevice; +extern PFN_vkDestroyEvent vkDestroyEvent; +extern PFN_vkDestroyFence vkDestroyFence; +extern PFN_vkDestroyFramebuffer vkDestroyFramebuffer; +extern PFN_vkDestroyImage vkDestroyImage; +extern PFN_vkDestroyImageView vkDestroyImageView; +extern PFN_vkDestroyInstance vkDestroyInstance; +extern PFN_vkDestroyPipeline vkDestroyPipeline; +extern PFN_vkDestroyPipelineCache vkDestroyPipelineCache; +extern PFN_vkDestroyPipelineLayout vkDestroyPipelineLayout; +extern PFN_vkDestroyQueryPool vkDestroyQueryPool; +extern PFN_vkDestroyRenderPass vkDestroyRenderPass; +extern PFN_vkDestroySampler vkDestroySampler; +extern PFN_vkDestroySemaphore vkDestroySemaphore; +extern PFN_vkDestroyShaderModule vkDestroyShaderModule; +extern PFN_vkDeviceWaitIdle vkDeviceWaitIdle; +extern PFN_vkEndCommandBuffer vkEndCommandBuffer; +extern PFN_vkEnumerateDeviceExtensionProperties vkEnumerateDeviceExtensionProperties; +extern PFN_vkEnumerateDeviceLayerProperties vkEnumerateDeviceLayerProperties; +extern PFN_vkEnumerateInstanceExtensionProperties vkEnumerateInstanceExtensionProperties; +extern PFN_vkEnumerateInstanceLayerProperties vkEnumerateInstanceLayerProperties; +extern PFN_vkEnumeratePhysicalDevices vkEnumeratePhysicalDevices; +extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; +extern PFN_vkFreeCommandBuffers vkFreeCommandBuffers; +extern PFN_vkFreeDescriptorSets vkFreeDescriptorSets; +extern PFN_vkFreeMemory vkFreeMemory; +extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; +extern PFN_vkGetDeviceMemoryCommitment vkGetDeviceMemoryCommitment; +extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; +extern PFN_vkGetDeviceQueue vkGetDeviceQueue; +extern PFN_vkGetEventStatus vkGetEventStatus; +extern PFN_vkGetFenceStatus vkGetFenceStatus; +extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; +extern PFN_vkGetImageSparseMemoryRequirements vkGetImageSparseMemoryRequirements; +extern PFN_vkGetImageSubresourceLayout vkGetImageSubresourceLayout; +extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; +extern PFN_vkGetPhysicalDeviceFeatures vkGetPhysicalDeviceFeatures; +extern PFN_vkGetPhysicalDeviceFormatProperties vkGetPhysicalDeviceFormatProperties; +extern PFN_vkGetPhysicalDeviceImageFormatProperties vkGetPhysicalDeviceImageFormatProperties; +extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; +extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; +extern PFN_vkGetPhysicalDeviceQueueFamilyProperties vkGetPhysicalDeviceQueueFamilyProperties; +extern PFN_vkGetPhysicalDeviceSparseImageFormatProperties vkGetPhysicalDeviceSparseImageFormatProperties; +extern PFN_vkGetPipelineCacheData vkGetPipelineCacheData; +extern PFN_vkGetQueryPoolResults vkGetQueryPoolResults; +extern PFN_vkGetRenderAreaGranularity vkGetRenderAreaGranularity; +extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; +extern PFN_vkMapMemory vkMapMemory; +extern PFN_vkMergePipelineCaches vkMergePipelineCaches; +extern PFN_vkQueueBindSparse vkQueueBindSparse; +extern PFN_vkQueueSubmit vkQueueSubmit; +extern PFN_vkQueueWaitIdle vkQueueWaitIdle; +extern PFN_vkResetCommandBuffer vkResetCommandBuffer; +extern PFN_vkResetCommandPool vkResetCommandPool; +extern PFN_vkResetDescriptorPool vkResetDescriptorPool; +extern PFN_vkResetEvent vkResetEvent; +extern PFN_vkResetFences vkResetFences; +extern PFN_vkSetEvent vkSetEvent; +extern PFN_vkUnmapMemory vkUnmapMemory; +extern PFN_vkUpdateDescriptorSets vkUpdateDescriptorSets; +extern PFN_vkWaitForFences vkWaitForFences; +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) +extern PFN_vkBindBufferMemory2 vkBindBufferMemory2; +extern PFN_vkBindImageMemory2 vkBindImageMemory2; +extern PFN_vkCmdDispatchBase vkCmdDispatchBase; +extern PFN_vkCmdSetDeviceMask vkCmdSetDeviceMask; +extern PFN_vkCreateDescriptorUpdateTemplate vkCreateDescriptorUpdateTemplate; +extern PFN_vkCreateSamplerYcbcrConversion vkCreateSamplerYcbcrConversion; +extern PFN_vkDestroyDescriptorUpdateTemplate vkDestroyDescriptorUpdateTemplate; +extern PFN_vkDestroySamplerYcbcrConversion vkDestroySamplerYcbcrConversion; +extern PFN_vkEnumerateInstanceVersion vkEnumerateInstanceVersion; +extern PFN_vkEnumeratePhysicalDeviceGroups vkEnumeratePhysicalDeviceGroups; +extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; +extern PFN_vkGetDescriptorSetLayoutSupport vkGetDescriptorSetLayoutSupport; +extern PFN_vkGetDeviceGroupPeerMemoryFeatures vkGetDeviceGroupPeerMemoryFeatures; +extern PFN_vkGetDeviceQueue2 vkGetDeviceQueue2; +extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; +extern PFN_vkGetImageSparseMemoryRequirements2 vkGetImageSparseMemoryRequirements2; +extern PFN_vkGetPhysicalDeviceExternalBufferProperties vkGetPhysicalDeviceExternalBufferProperties; +extern PFN_vkGetPhysicalDeviceExternalFenceProperties vkGetPhysicalDeviceExternalFenceProperties; +extern PFN_vkGetPhysicalDeviceExternalSemaphoreProperties vkGetPhysicalDeviceExternalSemaphoreProperties; +extern PFN_vkGetPhysicalDeviceFeatures2 vkGetPhysicalDeviceFeatures2; +extern PFN_vkGetPhysicalDeviceFormatProperties2 vkGetPhysicalDeviceFormatProperties2; +extern PFN_vkGetPhysicalDeviceImageFormatProperties2 vkGetPhysicalDeviceImageFormatProperties2; +extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2; +extern PFN_vkGetPhysicalDeviceProperties2 vkGetPhysicalDeviceProperties2; +extern PFN_vkGetPhysicalDeviceQueueFamilyProperties2 vkGetPhysicalDeviceQueueFamilyProperties2; +extern PFN_vkGetPhysicalDeviceSparseImageFormatProperties2 vkGetPhysicalDeviceSparseImageFormatProperties2; +extern PFN_vkTrimCommandPool vkTrimCommandPool; +extern PFN_vkUpdateDescriptorSetWithTemplate vkUpdateDescriptorSetWithTemplate; +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_VERSION_1_2) +extern PFN_vkCmdBeginRenderPass2 vkCmdBeginRenderPass2; +extern PFN_vkCmdDrawIndexedIndirectCount vkCmdDrawIndexedIndirectCount; +extern PFN_vkCmdDrawIndirectCount vkCmdDrawIndirectCount; +extern PFN_vkCmdEndRenderPass2 vkCmdEndRenderPass2; +extern PFN_vkCmdNextSubpass2 vkCmdNextSubpass2; +extern PFN_vkCreateRenderPass2 vkCreateRenderPass2; +extern PFN_vkGetBufferDeviceAddress vkGetBufferDeviceAddress; +extern PFN_vkGetBufferOpaqueCaptureAddress vkGetBufferOpaqueCaptureAddress; +extern PFN_vkGetDeviceMemoryOpaqueCaptureAddress vkGetDeviceMemoryOpaqueCaptureAddress; +extern PFN_vkGetSemaphoreCounterValue vkGetSemaphoreCounterValue; +extern PFN_vkResetQueryPool vkResetQueryPool; +extern PFN_vkSignalSemaphore vkSignalSemaphore; +extern PFN_vkWaitSemaphores vkWaitSemaphores; +#endif /* defined(VK_VERSION_1_2) */ +#if defined(VK_AMD_buffer_marker) +extern PFN_vkCmdWriteBufferMarkerAMD vkCmdWriteBufferMarkerAMD; +#endif /* defined(VK_AMD_buffer_marker) */ +#if defined(VK_AMD_display_native_hdr) +extern PFN_vkSetLocalDimmingAMD vkSetLocalDimmingAMD; +#endif /* defined(VK_AMD_display_native_hdr) */ +#if defined(VK_AMD_draw_indirect_count) +extern PFN_vkCmdDrawIndexedIndirectCountAMD vkCmdDrawIndexedIndirectCountAMD; +extern PFN_vkCmdDrawIndirectCountAMD vkCmdDrawIndirectCountAMD; +#endif /* defined(VK_AMD_draw_indirect_count) */ +#if defined(VK_AMD_shader_info) +extern PFN_vkGetShaderInfoAMD vkGetShaderInfoAMD; +#endif /* defined(VK_AMD_shader_info) */ +#if defined(VK_ANDROID_external_memory_android_hardware_buffer) +extern PFN_vkGetAndroidHardwareBufferPropertiesANDROID vkGetAndroidHardwareBufferPropertiesANDROID; +extern PFN_vkGetMemoryAndroidHardwareBufferANDROID vkGetMemoryAndroidHardwareBufferANDROID; +#endif /* defined(VK_ANDROID_external_memory_android_hardware_buffer) */ +#if defined(VK_EXT_acquire_drm_display) +extern PFN_vkAcquireDrmDisplayEXT vkAcquireDrmDisplayEXT; +extern PFN_vkGetDrmDisplayEXT vkGetDrmDisplayEXT; +#endif /* defined(VK_EXT_acquire_drm_display) */ +#if defined(VK_EXT_acquire_xlib_display) +extern PFN_vkAcquireXlibDisplayEXT vkAcquireXlibDisplayEXT; +extern PFN_vkGetRandROutputDisplayEXT vkGetRandROutputDisplayEXT; +#endif /* defined(VK_EXT_acquire_xlib_display) */ +#if defined(VK_EXT_buffer_device_address) +extern PFN_vkGetBufferDeviceAddressEXT vkGetBufferDeviceAddressEXT; +#endif /* defined(VK_EXT_buffer_device_address) */ +#if defined(VK_EXT_calibrated_timestamps) +extern PFN_vkGetCalibratedTimestampsEXT vkGetCalibratedTimestampsEXT; +extern PFN_vkGetPhysicalDeviceCalibrateableTimeDomainsEXT vkGetPhysicalDeviceCalibrateableTimeDomainsEXT; +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_color_write_enable) +extern PFN_vkCmdSetColorWriteEnableEXT vkCmdSetColorWriteEnableEXT; +#endif /* defined(VK_EXT_color_write_enable) */ +#if defined(VK_EXT_conditional_rendering) +extern PFN_vkCmdBeginConditionalRenderingEXT vkCmdBeginConditionalRenderingEXT; +extern PFN_vkCmdEndConditionalRenderingEXT vkCmdEndConditionalRenderingEXT; +#endif /* defined(VK_EXT_conditional_rendering) */ +#if defined(VK_EXT_debug_marker) +extern PFN_vkCmdDebugMarkerBeginEXT vkCmdDebugMarkerBeginEXT; +extern PFN_vkCmdDebugMarkerEndEXT vkCmdDebugMarkerEndEXT; +extern PFN_vkCmdDebugMarkerInsertEXT vkCmdDebugMarkerInsertEXT; +extern PFN_vkDebugMarkerSetObjectNameEXT vkDebugMarkerSetObjectNameEXT; +extern PFN_vkDebugMarkerSetObjectTagEXT vkDebugMarkerSetObjectTagEXT; +#endif /* defined(VK_EXT_debug_marker) */ +#if defined(VK_EXT_debug_report) +extern PFN_vkCreateDebugReportCallbackEXT vkCreateDebugReportCallbackEXT; +extern PFN_vkDebugReportMessageEXT vkDebugReportMessageEXT; +extern PFN_vkDestroyDebugReportCallbackEXT vkDestroyDebugReportCallbackEXT; +#endif /* defined(VK_EXT_debug_report) */ +#if defined(VK_EXT_debug_utils) +extern PFN_vkCmdBeginDebugUtilsLabelEXT vkCmdBeginDebugUtilsLabelEXT; +extern PFN_vkCmdEndDebugUtilsLabelEXT vkCmdEndDebugUtilsLabelEXT; +extern PFN_vkCmdInsertDebugUtilsLabelEXT vkCmdInsertDebugUtilsLabelEXT; +extern PFN_vkCreateDebugUtilsMessengerEXT vkCreateDebugUtilsMessengerEXT; +extern PFN_vkDestroyDebugUtilsMessengerEXT vkDestroyDebugUtilsMessengerEXT; +extern PFN_vkQueueBeginDebugUtilsLabelEXT vkQueueBeginDebugUtilsLabelEXT; +extern PFN_vkQueueEndDebugUtilsLabelEXT vkQueueEndDebugUtilsLabelEXT; +extern PFN_vkQueueInsertDebugUtilsLabelEXT vkQueueInsertDebugUtilsLabelEXT; +extern PFN_vkSetDebugUtilsObjectNameEXT vkSetDebugUtilsObjectNameEXT; +extern PFN_vkSetDebugUtilsObjectTagEXT vkSetDebugUtilsObjectTagEXT; +extern PFN_vkSubmitDebugUtilsMessageEXT vkSubmitDebugUtilsMessageEXT; +#endif /* defined(VK_EXT_debug_utils) */ +#if defined(VK_EXT_direct_mode_display) +extern PFN_vkReleaseDisplayEXT vkReleaseDisplayEXT; +#endif /* defined(VK_EXT_direct_mode_display) */ +#if defined(VK_EXT_directfb_surface) +extern PFN_vkCreateDirectFBSurfaceEXT vkCreateDirectFBSurfaceEXT; +extern PFN_vkGetPhysicalDeviceDirectFBPresentationSupportEXT vkGetPhysicalDeviceDirectFBPresentationSupportEXT; +#endif /* defined(VK_EXT_directfb_surface) */ +#if defined(VK_EXT_discard_rectangles) +extern PFN_vkCmdSetDiscardRectangleEXT vkCmdSetDiscardRectangleEXT; +#endif /* defined(VK_EXT_discard_rectangles) */ +#if defined(VK_EXT_display_control) +extern PFN_vkDisplayPowerControlEXT vkDisplayPowerControlEXT; +extern PFN_vkGetSwapchainCounterEXT vkGetSwapchainCounterEXT; +extern PFN_vkRegisterDeviceEventEXT vkRegisterDeviceEventEXT; +extern PFN_vkRegisterDisplayEventEXT vkRegisterDisplayEventEXT; +#endif /* defined(VK_EXT_display_control) */ +#if defined(VK_EXT_display_surface_counter) +extern PFN_vkGetPhysicalDeviceSurfaceCapabilities2EXT vkGetPhysicalDeviceSurfaceCapabilities2EXT; +#endif /* defined(VK_EXT_display_surface_counter) */ +#if defined(VK_EXT_extended_dynamic_state) +extern PFN_vkCmdBindVertexBuffers2EXT vkCmdBindVertexBuffers2EXT; +extern PFN_vkCmdSetCullModeEXT vkCmdSetCullModeEXT; +extern PFN_vkCmdSetDepthBoundsTestEnableEXT vkCmdSetDepthBoundsTestEnableEXT; +extern PFN_vkCmdSetDepthCompareOpEXT vkCmdSetDepthCompareOpEXT; +extern PFN_vkCmdSetDepthTestEnableEXT vkCmdSetDepthTestEnableEXT; +extern PFN_vkCmdSetDepthWriteEnableEXT vkCmdSetDepthWriteEnableEXT; +extern PFN_vkCmdSetFrontFaceEXT vkCmdSetFrontFaceEXT; +extern PFN_vkCmdSetPrimitiveTopologyEXT vkCmdSetPrimitiveTopologyEXT; +extern PFN_vkCmdSetScissorWithCountEXT vkCmdSetScissorWithCountEXT; +extern PFN_vkCmdSetStencilOpEXT vkCmdSetStencilOpEXT; +extern PFN_vkCmdSetStencilTestEnableEXT vkCmdSetStencilTestEnableEXT; +extern PFN_vkCmdSetViewportWithCountEXT vkCmdSetViewportWithCountEXT; +#endif /* defined(VK_EXT_extended_dynamic_state) */ +#if defined(VK_EXT_extended_dynamic_state2) +extern PFN_vkCmdSetDepthBiasEnableEXT vkCmdSetDepthBiasEnableEXT; +extern PFN_vkCmdSetLogicOpEXT vkCmdSetLogicOpEXT; +extern PFN_vkCmdSetPatchControlPointsEXT vkCmdSetPatchControlPointsEXT; +extern PFN_vkCmdSetPrimitiveRestartEnableEXT vkCmdSetPrimitiveRestartEnableEXT; +extern PFN_vkCmdSetRasterizerDiscardEnableEXT vkCmdSetRasterizerDiscardEnableEXT; +#endif /* defined(VK_EXT_extended_dynamic_state2) */ +#if defined(VK_EXT_external_memory_host) +extern PFN_vkGetMemoryHostPointerPropertiesEXT vkGetMemoryHostPointerPropertiesEXT; +#endif /* defined(VK_EXT_external_memory_host) */ +#if defined(VK_EXT_full_screen_exclusive) +extern PFN_vkAcquireFullScreenExclusiveModeEXT vkAcquireFullScreenExclusiveModeEXT; +extern PFN_vkGetPhysicalDeviceSurfacePresentModes2EXT vkGetPhysicalDeviceSurfacePresentModes2EXT; +extern PFN_vkReleaseFullScreenExclusiveModeEXT vkReleaseFullScreenExclusiveModeEXT; +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_hdr_metadata) +extern PFN_vkSetHdrMetadataEXT vkSetHdrMetadataEXT; +#endif /* defined(VK_EXT_hdr_metadata) */ +#if defined(VK_EXT_headless_surface) +extern PFN_vkCreateHeadlessSurfaceEXT vkCreateHeadlessSurfaceEXT; +#endif /* defined(VK_EXT_headless_surface) */ +#if defined(VK_EXT_host_query_reset) +extern PFN_vkResetQueryPoolEXT vkResetQueryPoolEXT; +#endif /* defined(VK_EXT_host_query_reset) */ +#if defined(VK_EXT_image_drm_format_modifier) +extern PFN_vkGetImageDrmFormatModifierPropertiesEXT vkGetImageDrmFormatModifierPropertiesEXT; +#endif /* defined(VK_EXT_image_drm_format_modifier) */ +#if defined(VK_EXT_line_rasterization) +extern PFN_vkCmdSetLineStippleEXT vkCmdSetLineStippleEXT; +#endif /* defined(VK_EXT_line_rasterization) */ +#if defined(VK_EXT_metal_surface) +extern PFN_vkCreateMetalSurfaceEXT vkCreateMetalSurfaceEXT; +#endif /* defined(VK_EXT_metal_surface) */ +#if defined(VK_EXT_multi_draw) +extern PFN_vkCmdDrawMultiEXT vkCmdDrawMultiEXT; +extern PFN_vkCmdDrawMultiIndexedEXT vkCmdDrawMultiIndexedEXT; +#endif /* defined(VK_EXT_multi_draw) */ +#if defined(VK_EXT_pageable_device_local_memory) +extern PFN_vkSetDeviceMemoryPriorityEXT vkSetDeviceMemoryPriorityEXT; +#endif /* defined(VK_EXT_pageable_device_local_memory) */ +#if defined(VK_EXT_private_data) +extern PFN_vkCreatePrivateDataSlotEXT vkCreatePrivateDataSlotEXT; +extern PFN_vkDestroyPrivateDataSlotEXT vkDestroyPrivateDataSlotEXT; +extern PFN_vkGetPrivateDataEXT vkGetPrivateDataEXT; +extern PFN_vkSetPrivateDataEXT vkSetPrivateDataEXT; +#endif /* defined(VK_EXT_private_data) */ +#if defined(VK_EXT_sample_locations) +extern PFN_vkCmdSetSampleLocationsEXT vkCmdSetSampleLocationsEXT; +extern PFN_vkGetPhysicalDeviceMultisamplePropertiesEXT vkGetPhysicalDeviceMultisamplePropertiesEXT; +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_tooling_info) +extern PFN_vkGetPhysicalDeviceToolPropertiesEXT vkGetPhysicalDeviceToolPropertiesEXT; +#endif /* defined(VK_EXT_tooling_info) */ +#if defined(VK_EXT_transform_feedback) +extern PFN_vkCmdBeginQueryIndexedEXT vkCmdBeginQueryIndexedEXT; +extern PFN_vkCmdBeginTransformFeedbackEXT vkCmdBeginTransformFeedbackEXT; +extern PFN_vkCmdBindTransformFeedbackBuffersEXT vkCmdBindTransformFeedbackBuffersEXT; +extern PFN_vkCmdDrawIndirectByteCountEXT vkCmdDrawIndirectByteCountEXT; +extern PFN_vkCmdEndQueryIndexedEXT vkCmdEndQueryIndexedEXT; +extern PFN_vkCmdEndTransformFeedbackEXT vkCmdEndTransformFeedbackEXT; +#endif /* defined(VK_EXT_transform_feedback) */ +#if defined(VK_EXT_validation_cache) +extern PFN_vkCreateValidationCacheEXT vkCreateValidationCacheEXT; +extern PFN_vkDestroyValidationCacheEXT vkDestroyValidationCacheEXT; +extern PFN_vkGetValidationCacheDataEXT vkGetValidationCacheDataEXT; +extern PFN_vkMergeValidationCachesEXT vkMergeValidationCachesEXT; +#endif /* defined(VK_EXT_validation_cache) */ +#if defined(VK_EXT_vertex_input_dynamic_state) +extern PFN_vkCmdSetVertexInputEXT vkCmdSetVertexInputEXT; +#endif /* defined(VK_EXT_vertex_input_dynamic_state) */ +#if defined(VK_FUCHSIA_buffer_collection) +extern PFN_vkCreateBufferCollectionFUCHSIA vkCreateBufferCollectionFUCHSIA; +extern PFN_vkDestroyBufferCollectionFUCHSIA vkDestroyBufferCollectionFUCHSIA; +extern PFN_vkGetBufferCollectionPropertiesFUCHSIA vkGetBufferCollectionPropertiesFUCHSIA; +extern PFN_vkSetBufferCollectionBufferConstraintsFUCHSIA vkSetBufferCollectionBufferConstraintsFUCHSIA; +extern PFN_vkSetBufferCollectionImageConstraintsFUCHSIA vkSetBufferCollectionImageConstraintsFUCHSIA; +#endif /* defined(VK_FUCHSIA_buffer_collection) */ +#if defined(VK_FUCHSIA_external_memory) +extern PFN_vkGetMemoryZirconHandleFUCHSIA vkGetMemoryZirconHandleFUCHSIA; +extern PFN_vkGetMemoryZirconHandlePropertiesFUCHSIA vkGetMemoryZirconHandlePropertiesFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_memory) */ +#if defined(VK_FUCHSIA_external_semaphore) +extern PFN_vkGetSemaphoreZirconHandleFUCHSIA vkGetSemaphoreZirconHandleFUCHSIA; +extern PFN_vkImportSemaphoreZirconHandleFUCHSIA vkImportSemaphoreZirconHandleFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_semaphore) */ +#if defined(VK_FUCHSIA_imagepipe_surface) +extern PFN_vkCreateImagePipeSurfaceFUCHSIA vkCreateImagePipeSurfaceFUCHSIA; +#endif /* defined(VK_FUCHSIA_imagepipe_surface) */ +#if defined(VK_GGP_stream_descriptor_surface) +extern PFN_vkCreateStreamDescriptorSurfaceGGP vkCreateStreamDescriptorSurfaceGGP; +#endif /* defined(VK_GGP_stream_descriptor_surface) */ +#if defined(VK_GOOGLE_display_timing) +extern PFN_vkGetPastPresentationTimingGOOGLE vkGetPastPresentationTimingGOOGLE; +extern PFN_vkGetRefreshCycleDurationGOOGLE vkGetRefreshCycleDurationGOOGLE; +#endif /* defined(VK_GOOGLE_display_timing) */ +#if defined(VK_HUAWEI_invocation_mask) +extern PFN_vkCmdBindInvocationMaskHUAWEI vkCmdBindInvocationMaskHUAWEI; +#endif /* defined(VK_HUAWEI_invocation_mask) */ +#if defined(VK_HUAWEI_subpass_shading) +extern PFN_vkCmdSubpassShadingHUAWEI vkCmdSubpassShadingHUAWEI; +extern PFN_vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI; +#endif /* defined(VK_HUAWEI_subpass_shading) */ +#if defined(VK_INTEL_performance_query) +extern PFN_vkAcquirePerformanceConfigurationINTEL vkAcquirePerformanceConfigurationINTEL; +extern PFN_vkCmdSetPerformanceMarkerINTEL vkCmdSetPerformanceMarkerINTEL; +extern PFN_vkCmdSetPerformanceOverrideINTEL vkCmdSetPerformanceOverrideINTEL; +extern PFN_vkCmdSetPerformanceStreamMarkerINTEL vkCmdSetPerformanceStreamMarkerINTEL; +extern PFN_vkGetPerformanceParameterINTEL vkGetPerformanceParameterINTEL; +extern PFN_vkInitializePerformanceApiINTEL vkInitializePerformanceApiINTEL; +extern PFN_vkQueueSetPerformanceConfigurationINTEL vkQueueSetPerformanceConfigurationINTEL; +extern PFN_vkReleasePerformanceConfigurationINTEL vkReleasePerformanceConfigurationINTEL; +extern PFN_vkUninitializePerformanceApiINTEL vkUninitializePerformanceApiINTEL; +#endif /* defined(VK_INTEL_performance_query) */ +#if defined(VK_KHR_acceleration_structure) +extern PFN_vkBuildAccelerationStructuresKHR vkBuildAccelerationStructuresKHR; +extern PFN_vkCmdBuildAccelerationStructuresIndirectKHR vkCmdBuildAccelerationStructuresIndirectKHR; +extern PFN_vkCmdBuildAccelerationStructuresKHR vkCmdBuildAccelerationStructuresKHR; +extern PFN_vkCmdCopyAccelerationStructureKHR vkCmdCopyAccelerationStructureKHR; +extern PFN_vkCmdCopyAccelerationStructureToMemoryKHR vkCmdCopyAccelerationStructureToMemoryKHR; +extern PFN_vkCmdCopyMemoryToAccelerationStructureKHR vkCmdCopyMemoryToAccelerationStructureKHR; +extern PFN_vkCmdWriteAccelerationStructuresPropertiesKHR vkCmdWriteAccelerationStructuresPropertiesKHR; +extern PFN_vkCopyAccelerationStructureKHR vkCopyAccelerationStructureKHR; +extern PFN_vkCopyAccelerationStructureToMemoryKHR vkCopyAccelerationStructureToMemoryKHR; +extern PFN_vkCopyMemoryToAccelerationStructureKHR vkCopyMemoryToAccelerationStructureKHR; +extern PFN_vkCreateAccelerationStructureKHR vkCreateAccelerationStructureKHR; +extern PFN_vkDestroyAccelerationStructureKHR vkDestroyAccelerationStructureKHR; +extern PFN_vkGetAccelerationStructureBuildSizesKHR vkGetAccelerationStructureBuildSizesKHR; +extern PFN_vkGetAccelerationStructureDeviceAddressKHR vkGetAccelerationStructureDeviceAddressKHR; +extern PFN_vkGetDeviceAccelerationStructureCompatibilityKHR vkGetDeviceAccelerationStructureCompatibilityKHR; +extern PFN_vkWriteAccelerationStructuresPropertiesKHR vkWriteAccelerationStructuresPropertiesKHR; +#endif /* defined(VK_KHR_acceleration_structure) */ +#if defined(VK_KHR_android_surface) +extern PFN_vkCreateAndroidSurfaceKHR vkCreateAndroidSurfaceKHR; +#endif /* defined(VK_KHR_android_surface) */ +#if defined(VK_KHR_bind_memory2) +extern PFN_vkBindBufferMemory2KHR vkBindBufferMemory2KHR; +extern PFN_vkBindImageMemory2KHR vkBindImageMemory2KHR; +#endif /* defined(VK_KHR_bind_memory2) */ +#if defined(VK_KHR_buffer_device_address) +extern PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR; +extern PFN_vkGetBufferOpaqueCaptureAddressKHR vkGetBufferOpaqueCaptureAddressKHR; +extern PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR vkGetDeviceMemoryOpaqueCaptureAddressKHR; +#endif /* defined(VK_KHR_buffer_device_address) */ +#if defined(VK_KHR_copy_commands2) +extern PFN_vkCmdBlitImage2KHR vkCmdBlitImage2KHR; +extern PFN_vkCmdCopyBuffer2KHR vkCmdCopyBuffer2KHR; +extern PFN_vkCmdCopyBufferToImage2KHR vkCmdCopyBufferToImage2KHR; +extern PFN_vkCmdCopyImage2KHR vkCmdCopyImage2KHR; +extern PFN_vkCmdCopyImageToBuffer2KHR vkCmdCopyImageToBuffer2KHR; +extern PFN_vkCmdResolveImage2KHR vkCmdResolveImage2KHR; +#endif /* defined(VK_KHR_copy_commands2) */ +#if defined(VK_KHR_create_renderpass2) +extern PFN_vkCmdBeginRenderPass2KHR vkCmdBeginRenderPass2KHR; +extern PFN_vkCmdEndRenderPass2KHR vkCmdEndRenderPass2KHR; +extern PFN_vkCmdNextSubpass2KHR vkCmdNextSubpass2KHR; +extern PFN_vkCreateRenderPass2KHR vkCreateRenderPass2KHR; +#endif /* defined(VK_KHR_create_renderpass2) */ +#if defined(VK_KHR_deferred_host_operations) +extern PFN_vkCreateDeferredOperationKHR vkCreateDeferredOperationKHR; +extern PFN_vkDeferredOperationJoinKHR vkDeferredOperationJoinKHR; +extern PFN_vkDestroyDeferredOperationKHR vkDestroyDeferredOperationKHR; +extern PFN_vkGetDeferredOperationMaxConcurrencyKHR vkGetDeferredOperationMaxConcurrencyKHR; +extern PFN_vkGetDeferredOperationResultKHR vkGetDeferredOperationResultKHR; +#endif /* defined(VK_KHR_deferred_host_operations) */ +#if defined(VK_KHR_descriptor_update_template) +extern PFN_vkCreateDescriptorUpdateTemplateKHR vkCreateDescriptorUpdateTemplateKHR; +extern PFN_vkDestroyDescriptorUpdateTemplateKHR vkDestroyDescriptorUpdateTemplateKHR; +extern PFN_vkUpdateDescriptorSetWithTemplateKHR vkUpdateDescriptorSetWithTemplateKHR; +#endif /* defined(VK_KHR_descriptor_update_template) */ +#if defined(VK_KHR_device_group) +extern PFN_vkCmdDispatchBaseKHR vkCmdDispatchBaseKHR; +extern PFN_vkCmdSetDeviceMaskKHR vkCmdSetDeviceMaskKHR; +extern PFN_vkGetDeviceGroupPeerMemoryFeaturesKHR vkGetDeviceGroupPeerMemoryFeaturesKHR; +#endif /* defined(VK_KHR_device_group) */ +#if defined(VK_KHR_device_group_creation) +extern PFN_vkEnumeratePhysicalDeviceGroupsKHR vkEnumeratePhysicalDeviceGroupsKHR; +#endif /* defined(VK_KHR_device_group_creation) */ +#if defined(VK_KHR_display) +extern PFN_vkCreateDisplayModeKHR vkCreateDisplayModeKHR; +extern PFN_vkCreateDisplayPlaneSurfaceKHR vkCreateDisplayPlaneSurfaceKHR; +extern PFN_vkGetDisplayModePropertiesKHR vkGetDisplayModePropertiesKHR; +extern PFN_vkGetDisplayPlaneCapabilitiesKHR vkGetDisplayPlaneCapabilitiesKHR; +extern PFN_vkGetDisplayPlaneSupportedDisplaysKHR vkGetDisplayPlaneSupportedDisplaysKHR; +extern PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR vkGetPhysicalDeviceDisplayPlanePropertiesKHR; +extern PFN_vkGetPhysicalDeviceDisplayPropertiesKHR vkGetPhysicalDeviceDisplayPropertiesKHR; +#endif /* defined(VK_KHR_display) */ +#if defined(VK_KHR_display_swapchain) +extern PFN_vkCreateSharedSwapchainsKHR vkCreateSharedSwapchainsKHR; +#endif /* defined(VK_KHR_display_swapchain) */ +#if defined(VK_KHR_draw_indirect_count) +extern PFN_vkCmdDrawIndexedIndirectCountKHR vkCmdDrawIndexedIndirectCountKHR; +extern PFN_vkCmdDrawIndirectCountKHR vkCmdDrawIndirectCountKHR; +#endif /* defined(VK_KHR_draw_indirect_count) */ +#if defined(VK_KHR_dynamic_rendering) +extern PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR; +extern PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR; +#endif /* defined(VK_KHR_dynamic_rendering) */ +#if defined(VK_KHR_external_fence_capabilities) +extern PFN_vkGetPhysicalDeviceExternalFencePropertiesKHR vkGetPhysicalDeviceExternalFencePropertiesKHR; +#endif /* defined(VK_KHR_external_fence_capabilities) */ +#if defined(VK_KHR_external_fence_fd) +extern PFN_vkGetFenceFdKHR vkGetFenceFdKHR; +extern PFN_vkImportFenceFdKHR vkImportFenceFdKHR; +#endif /* defined(VK_KHR_external_fence_fd) */ +#if defined(VK_KHR_external_fence_win32) +extern PFN_vkGetFenceWin32HandleKHR vkGetFenceWin32HandleKHR; +extern PFN_vkImportFenceWin32HandleKHR vkImportFenceWin32HandleKHR; +#endif /* defined(VK_KHR_external_fence_win32) */ +#if defined(VK_KHR_external_memory_capabilities) +extern PFN_vkGetPhysicalDeviceExternalBufferPropertiesKHR vkGetPhysicalDeviceExternalBufferPropertiesKHR; +#endif /* defined(VK_KHR_external_memory_capabilities) */ +#if defined(VK_KHR_external_memory_fd) +extern PFN_vkGetMemoryFdKHR vkGetMemoryFdKHR; +extern PFN_vkGetMemoryFdPropertiesKHR vkGetMemoryFdPropertiesKHR; +#endif /* defined(VK_KHR_external_memory_fd) */ +#if defined(VK_KHR_external_memory_win32) +extern PFN_vkGetMemoryWin32HandleKHR vkGetMemoryWin32HandleKHR; +extern PFN_vkGetMemoryWin32HandlePropertiesKHR vkGetMemoryWin32HandlePropertiesKHR; +#endif /* defined(VK_KHR_external_memory_win32) */ +#if defined(VK_KHR_external_semaphore_capabilities) +extern PFN_vkGetPhysicalDeviceExternalSemaphorePropertiesKHR vkGetPhysicalDeviceExternalSemaphorePropertiesKHR; +#endif /* defined(VK_KHR_external_semaphore_capabilities) */ +#if defined(VK_KHR_external_semaphore_fd) +extern PFN_vkGetSemaphoreFdKHR vkGetSemaphoreFdKHR; +extern PFN_vkImportSemaphoreFdKHR vkImportSemaphoreFdKHR; +#endif /* defined(VK_KHR_external_semaphore_fd) */ +#if defined(VK_KHR_external_semaphore_win32) +extern PFN_vkGetSemaphoreWin32HandleKHR vkGetSemaphoreWin32HandleKHR; +extern PFN_vkImportSemaphoreWin32HandleKHR vkImportSemaphoreWin32HandleKHR; +#endif /* defined(VK_KHR_external_semaphore_win32) */ +#if defined(VK_KHR_fragment_shading_rate) +extern PFN_vkCmdSetFragmentShadingRateKHR vkCmdSetFragmentShadingRateKHR; +extern PFN_vkGetPhysicalDeviceFragmentShadingRatesKHR vkGetPhysicalDeviceFragmentShadingRatesKHR; +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_display_properties2) +extern PFN_vkGetDisplayModeProperties2KHR vkGetDisplayModeProperties2KHR; +extern PFN_vkGetDisplayPlaneCapabilities2KHR vkGetDisplayPlaneCapabilities2KHR; +extern PFN_vkGetPhysicalDeviceDisplayPlaneProperties2KHR vkGetPhysicalDeviceDisplayPlaneProperties2KHR; +extern PFN_vkGetPhysicalDeviceDisplayProperties2KHR vkGetPhysicalDeviceDisplayProperties2KHR; +#endif /* defined(VK_KHR_get_display_properties2) */ +#if defined(VK_KHR_get_memory_requirements2) +extern PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR; +extern PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR; +extern PFN_vkGetImageSparseMemoryRequirements2KHR vkGetImageSparseMemoryRequirements2KHR; +#endif /* defined(VK_KHR_get_memory_requirements2) */ +#if defined(VK_KHR_get_physical_device_properties2) +extern PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR; +extern PFN_vkGetPhysicalDeviceFormatProperties2KHR vkGetPhysicalDeviceFormatProperties2KHR; +extern PFN_vkGetPhysicalDeviceImageFormatProperties2KHR vkGetPhysicalDeviceImageFormatProperties2KHR; +extern PFN_vkGetPhysicalDeviceMemoryProperties2KHR vkGetPhysicalDeviceMemoryProperties2KHR; +extern PFN_vkGetPhysicalDeviceProperties2KHR vkGetPhysicalDeviceProperties2KHR; +extern PFN_vkGetPhysicalDeviceQueueFamilyProperties2KHR vkGetPhysicalDeviceQueueFamilyProperties2KHR; +extern PFN_vkGetPhysicalDeviceSparseImageFormatProperties2KHR vkGetPhysicalDeviceSparseImageFormatProperties2KHR; +#endif /* defined(VK_KHR_get_physical_device_properties2) */ +#if defined(VK_KHR_get_surface_capabilities2) +extern PFN_vkGetPhysicalDeviceSurfaceCapabilities2KHR vkGetPhysicalDeviceSurfaceCapabilities2KHR; +extern PFN_vkGetPhysicalDeviceSurfaceFormats2KHR vkGetPhysicalDeviceSurfaceFormats2KHR; +#endif /* defined(VK_KHR_get_surface_capabilities2) */ +#if defined(VK_KHR_maintenance1) +extern PFN_vkTrimCommandPoolKHR vkTrimCommandPoolKHR; +#endif /* defined(VK_KHR_maintenance1) */ +#if defined(VK_KHR_maintenance3) +extern PFN_vkGetDescriptorSetLayoutSupportKHR vkGetDescriptorSetLayoutSupportKHR; +#endif /* defined(VK_KHR_maintenance3) */ +#if defined(VK_KHR_maintenance4) +extern PFN_vkGetDeviceBufferMemoryRequirementsKHR vkGetDeviceBufferMemoryRequirementsKHR; +extern PFN_vkGetDeviceImageMemoryRequirementsKHR vkGetDeviceImageMemoryRequirementsKHR; +extern PFN_vkGetDeviceImageSparseMemoryRequirementsKHR vkGetDeviceImageSparseMemoryRequirementsKHR; +#endif /* defined(VK_KHR_maintenance4) */ +#if defined(VK_KHR_performance_query) +extern PFN_vkAcquireProfilingLockKHR vkAcquireProfilingLockKHR; +extern PFN_vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR; +extern PFN_vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR; +extern PFN_vkReleaseProfilingLockKHR vkReleaseProfilingLockKHR; +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_pipeline_executable_properties) +extern PFN_vkGetPipelineExecutableInternalRepresentationsKHR vkGetPipelineExecutableInternalRepresentationsKHR; +extern PFN_vkGetPipelineExecutablePropertiesKHR vkGetPipelineExecutablePropertiesKHR; +extern PFN_vkGetPipelineExecutableStatisticsKHR vkGetPipelineExecutableStatisticsKHR; +#endif /* defined(VK_KHR_pipeline_executable_properties) */ +#if defined(VK_KHR_present_wait) +extern PFN_vkWaitForPresentKHR vkWaitForPresentKHR; +#endif /* defined(VK_KHR_present_wait) */ +#if defined(VK_KHR_push_descriptor) +extern PFN_vkCmdPushDescriptorSetKHR vkCmdPushDescriptorSetKHR; +#endif /* defined(VK_KHR_push_descriptor) */ +#if defined(VK_KHR_ray_tracing_pipeline) +extern PFN_vkCmdSetRayTracingPipelineStackSizeKHR vkCmdSetRayTracingPipelineStackSizeKHR; +extern PFN_vkCmdTraceRaysIndirectKHR vkCmdTraceRaysIndirectKHR; +extern PFN_vkCmdTraceRaysKHR vkCmdTraceRaysKHR; +extern PFN_vkCreateRayTracingPipelinesKHR vkCreateRayTracingPipelinesKHR; +extern PFN_vkGetRayTracingCaptureReplayShaderGroupHandlesKHR vkGetRayTracingCaptureReplayShaderGroupHandlesKHR; +extern PFN_vkGetRayTracingShaderGroupHandlesKHR vkGetRayTracingShaderGroupHandlesKHR; +extern PFN_vkGetRayTracingShaderGroupStackSizeKHR vkGetRayTracingShaderGroupStackSizeKHR; +#endif /* defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_sampler_ycbcr_conversion) +extern PFN_vkCreateSamplerYcbcrConversionKHR vkCreateSamplerYcbcrConversionKHR; +extern PFN_vkDestroySamplerYcbcrConversionKHR vkDestroySamplerYcbcrConversionKHR; +#endif /* defined(VK_KHR_sampler_ycbcr_conversion) */ +#if defined(VK_KHR_shared_presentable_image) +extern PFN_vkGetSwapchainStatusKHR vkGetSwapchainStatusKHR; +#endif /* defined(VK_KHR_shared_presentable_image) */ +#if defined(VK_KHR_surface) +extern PFN_vkDestroySurfaceKHR vkDestroySurfaceKHR; +extern PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR vkGetPhysicalDeviceSurfaceCapabilitiesKHR; +extern PFN_vkGetPhysicalDeviceSurfaceFormatsKHR vkGetPhysicalDeviceSurfaceFormatsKHR; +extern PFN_vkGetPhysicalDeviceSurfacePresentModesKHR vkGetPhysicalDeviceSurfacePresentModesKHR; +extern PFN_vkGetPhysicalDeviceSurfaceSupportKHR vkGetPhysicalDeviceSurfaceSupportKHR; +#endif /* defined(VK_KHR_surface) */ +#if defined(VK_KHR_swapchain) +extern PFN_vkAcquireNextImageKHR vkAcquireNextImageKHR; +extern PFN_vkCreateSwapchainKHR vkCreateSwapchainKHR; +extern PFN_vkDestroySwapchainKHR vkDestroySwapchainKHR; +extern PFN_vkGetSwapchainImagesKHR vkGetSwapchainImagesKHR; +extern PFN_vkQueuePresentKHR vkQueuePresentKHR; +#endif /* defined(VK_KHR_swapchain) */ +#if defined(VK_KHR_synchronization2) +extern PFN_vkCmdPipelineBarrier2KHR vkCmdPipelineBarrier2KHR; +extern PFN_vkCmdResetEvent2KHR vkCmdResetEvent2KHR; +extern PFN_vkCmdSetEvent2KHR vkCmdSetEvent2KHR; +extern PFN_vkCmdWaitEvents2KHR vkCmdWaitEvents2KHR; +extern PFN_vkCmdWriteTimestamp2KHR vkCmdWriteTimestamp2KHR; +extern PFN_vkQueueSubmit2KHR vkQueueSubmit2KHR; +#endif /* defined(VK_KHR_synchronization2) */ +#if defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) +extern PFN_vkCmdWriteBufferMarker2AMD vkCmdWriteBufferMarker2AMD; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) */ +#if defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) +extern PFN_vkGetQueueCheckpointData2NV vkGetQueueCheckpointData2NV; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_KHR_timeline_semaphore) +extern PFN_vkGetSemaphoreCounterValueKHR vkGetSemaphoreCounterValueKHR; +extern PFN_vkSignalSemaphoreKHR vkSignalSemaphoreKHR; +extern PFN_vkWaitSemaphoresKHR vkWaitSemaphoresKHR; +#endif /* defined(VK_KHR_timeline_semaphore) */ +#if defined(VK_KHR_video_decode_queue) +extern PFN_vkCmdDecodeVideoKHR vkCmdDecodeVideoKHR; +#endif /* defined(VK_KHR_video_decode_queue) */ +#if defined(VK_KHR_video_encode_queue) +extern PFN_vkCmdEncodeVideoKHR vkCmdEncodeVideoKHR; +#endif /* defined(VK_KHR_video_encode_queue) */ +#if defined(VK_KHR_video_queue) +extern PFN_vkBindVideoSessionMemoryKHR vkBindVideoSessionMemoryKHR; +extern PFN_vkCmdBeginVideoCodingKHR vkCmdBeginVideoCodingKHR; +extern PFN_vkCmdControlVideoCodingKHR vkCmdControlVideoCodingKHR; +extern PFN_vkCmdEndVideoCodingKHR vkCmdEndVideoCodingKHR; +extern PFN_vkCreateVideoSessionKHR vkCreateVideoSessionKHR; +extern PFN_vkCreateVideoSessionParametersKHR vkCreateVideoSessionParametersKHR; +extern PFN_vkDestroyVideoSessionKHR vkDestroyVideoSessionKHR; +extern PFN_vkDestroyVideoSessionParametersKHR vkDestroyVideoSessionParametersKHR; +extern PFN_vkGetPhysicalDeviceVideoCapabilitiesKHR vkGetPhysicalDeviceVideoCapabilitiesKHR; +extern PFN_vkGetPhysicalDeviceVideoFormatPropertiesKHR vkGetPhysicalDeviceVideoFormatPropertiesKHR; +extern PFN_vkGetVideoSessionMemoryRequirementsKHR vkGetVideoSessionMemoryRequirementsKHR; +extern PFN_vkUpdateVideoSessionParametersKHR vkUpdateVideoSessionParametersKHR; +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_KHR_wayland_surface) +extern PFN_vkCreateWaylandSurfaceKHR vkCreateWaylandSurfaceKHR; +extern PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR vkGetPhysicalDeviceWaylandPresentationSupportKHR; +#endif /* defined(VK_KHR_wayland_surface) */ +#if defined(VK_KHR_win32_surface) +extern PFN_vkCreateWin32SurfaceKHR vkCreateWin32SurfaceKHR; +extern PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR vkGetPhysicalDeviceWin32PresentationSupportKHR; +#endif /* defined(VK_KHR_win32_surface) */ +#if defined(VK_KHR_xcb_surface) +extern PFN_vkCreateXcbSurfaceKHR vkCreateXcbSurfaceKHR; +extern PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR vkGetPhysicalDeviceXcbPresentationSupportKHR; +#endif /* defined(VK_KHR_xcb_surface) */ +#if defined(VK_KHR_xlib_surface) +extern PFN_vkCreateXlibSurfaceKHR vkCreateXlibSurfaceKHR; +extern PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR vkGetPhysicalDeviceXlibPresentationSupportKHR; +#endif /* defined(VK_KHR_xlib_surface) */ +#if defined(VK_MVK_ios_surface) +extern PFN_vkCreateIOSSurfaceMVK vkCreateIOSSurfaceMVK; +#endif /* defined(VK_MVK_ios_surface) */ +#if defined(VK_MVK_macos_surface) +extern PFN_vkCreateMacOSSurfaceMVK vkCreateMacOSSurfaceMVK; +#endif /* defined(VK_MVK_macos_surface) */ +#if defined(VK_NN_vi_surface) +extern PFN_vkCreateViSurfaceNN vkCreateViSurfaceNN; +#endif /* defined(VK_NN_vi_surface) */ +#if defined(VK_NVX_binary_import) +extern PFN_vkCmdCuLaunchKernelNVX vkCmdCuLaunchKernelNVX; +extern PFN_vkCreateCuFunctionNVX vkCreateCuFunctionNVX; +extern PFN_vkCreateCuModuleNVX vkCreateCuModuleNVX; +extern PFN_vkDestroyCuFunctionNVX vkDestroyCuFunctionNVX; +extern PFN_vkDestroyCuModuleNVX vkDestroyCuModuleNVX; +#endif /* defined(VK_NVX_binary_import) */ +#if defined(VK_NVX_image_view_handle) +extern PFN_vkGetImageViewAddressNVX vkGetImageViewAddressNVX; +extern PFN_vkGetImageViewHandleNVX vkGetImageViewHandleNVX; +#endif /* defined(VK_NVX_image_view_handle) */ +#if defined(VK_NV_acquire_winrt_display) +extern PFN_vkAcquireWinrtDisplayNV vkAcquireWinrtDisplayNV; +extern PFN_vkGetWinrtDisplayNV vkGetWinrtDisplayNV; +#endif /* defined(VK_NV_acquire_winrt_display) */ +#if defined(VK_NV_clip_space_w_scaling) +extern PFN_vkCmdSetViewportWScalingNV vkCmdSetViewportWScalingNV; +#endif /* defined(VK_NV_clip_space_w_scaling) */ +#if defined(VK_NV_cooperative_matrix) +extern PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesNV vkGetPhysicalDeviceCooperativeMatrixPropertiesNV; +#endif /* defined(VK_NV_cooperative_matrix) */ +#if defined(VK_NV_coverage_reduction_mode) +extern PFN_vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV; +#endif /* defined(VK_NV_coverage_reduction_mode) */ +#if defined(VK_NV_device_diagnostic_checkpoints) +extern PFN_vkCmdSetCheckpointNV vkCmdSetCheckpointNV; +extern PFN_vkGetQueueCheckpointDataNV vkGetQueueCheckpointDataNV; +#endif /* defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_NV_device_generated_commands) +extern PFN_vkCmdBindPipelineShaderGroupNV vkCmdBindPipelineShaderGroupNV; +extern PFN_vkCmdExecuteGeneratedCommandsNV vkCmdExecuteGeneratedCommandsNV; +extern PFN_vkCmdPreprocessGeneratedCommandsNV vkCmdPreprocessGeneratedCommandsNV; +extern PFN_vkCreateIndirectCommandsLayoutNV vkCreateIndirectCommandsLayoutNV; +extern PFN_vkDestroyIndirectCommandsLayoutNV vkDestroyIndirectCommandsLayoutNV; +extern PFN_vkGetGeneratedCommandsMemoryRequirementsNV vkGetGeneratedCommandsMemoryRequirementsNV; +#endif /* defined(VK_NV_device_generated_commands) */ +#if defined(VK_NV_external_memory_capabilities) +extern PFN_vkGetPhysicalDeviceExternalImageFormatPropertiesNV vkGetPhysicalDeviceExternalImageFormatPropertiesNV; +#endif /* defined(VK_NV_external_memory_capabilities) */ +#if defined(VK_NV_external_memory_rdma) +extern PFN_vkGetMemoryRemoteAddressNV vkGetMemoryRemoteAddressNV; +#endif /* defined(VK_NV_external_memory_rdma) */ +#if defined(VK_NV_external_memory_win32) +extern PFN_vkGetMemoryWin32HandleNV vkGetMemoryWin32HandleNV; +#endif /* defined(VK_NV_external_memory_win32) */ +#if defined(VK_NV_fragment_shading_rate_enums) +extern PFN_vkCmdSetFragmentShadingRateEnumNV vkCmdSetFragmentShadingRateEnumNV; +#endif /* defined(VK_NV_fragment_shading_rate_enums) */ +#if defined(VK_NV_mesh_shader) +extern PFN_vkCmdDrawMeshTasksIndirectCountNV vkCmdDrawMeshTasksIndirectCountNV; +extern PFN_vkCmdDrawMeshTasksIndirectNV vkCmdDrawMeshTasksIndirectNV; +extern PFN_vkCmdDrawMeshTasksNV vkCmdDrawMeshTasksNV; +#endif /* defined(VK_NV_mesh_shader) */ +#if defined(VK_NV_ray_tracing) +extern PFN_vkBindAccelerationStructureMemoryNV vkBindAccelerationStructureMemoryNV; +extern PFN_vkCmdBuildAccelerationStructureNV vkCmdBuildAccelerationStructureNV; +extern PFN_vkCmdCopyAccelerationStructureNV vkCmdCopyAccelerationStructureNV; +extern PFN_vkCmdTraceRaysNV vkCmdTraceRaysNV; +extern PFN_vkCmdWriteAccelerationStructuresPropertiesNV vkCmdWriteAccelerationStructuresPropertiesNV; +extern PFN_vkCompileDeferredNV vkCompileDeferredNV; +extern PFN_vkCreateAccelerationStructureNV vkCreateAccelerationStructureNV; +extern PFN_vkCreateRayTracingPipelinesNV vkCreateRayTracingPipelinesNV; +extern PFN_vkDestroyAccelerationStructureNV vkDestroyAccelerationStructureNV; +extern PFN_vkGetAccelerationStructureHandleNV vkGetAccelerationStructureHandleNV; +extern PFN_vkGetAccelerationStructureMemoryRequirementsNV vkGetAccelerationStructureMemoryRequirementsNV; +extern PFN_vkGetRayTracingShaderGroupHandlesNV vkGetRayTracingShaderGroupHandlesNV; +#endif /* defined(VK_NV_ray_tracing) */ +#if defined(VK_NV_scissor_exclusive) +extern PFN_vkCmdSetExclusiveScissorNV vkCmdSetExclusiveScissorNV; +#endif /* defined(VK_NV_scissor_exclusive) */ +#if defined(VK_NV_shading_rate_image) +extern PFN_vkCmdBindShadingRateImageNV vkCmdBindShadingRateImageNV; +extern PFN_vkCmdSetCoarseSampleOrderNV vkCmdSetCoarseSampleOrderNV; +extern PFN_vkCmdSetViewportShadingRatePaletteNV vkCmdSetViewportShadingRatePaletteNV; +#endif /* defined(VK_NV_shading_rate_image) */ +#if defined(VK_QNX_screen_surface) +extern PFN_vkCreateScreenSurfaceQNX vkCreateScreenSurfaceQNX; +extern PFN_vkGetPhysicalDeviceScreenPresentationSupportQNX vkGetPhysicalDeviceScreenPresentationSupportQNX; +#endif /* defined(VK_QNX_screen_surface) */ +#if (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) +extern PFN_vkGetDeviceGroupSurfacePresentModes2EXT vkGetDeviceGroupSurfacePresentModes2EXT; +#endif /* (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) +extern PFN_vkCmdPushDescriptorSetWithTemplateKHR vkCmdPushDescriptorSetWithTemplateKHR; +#endif /* (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) +extern PFN_vkGetDeviceGroupPresentCapabilitiesKHR vkGetDeviceGroupPresentCapabilitiesKHR; +extern PFN_vkGetDeviceGroupSurfacePresentModesKHR vkGetDeviceGroupSurfacePresentModesKHR; +extern PFN_vkGetPhysicalDevicePresentRectanglesKHR vkGetPhysicalDevicePresentRectanglesKHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) +extern PFN_vkAcquireNextImage2KHR vkAcquireNextImage2KHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +/* VOLK_GENERATE_PROTOTYPES_H */ + +#ifdef __cplusplus +} +#endif + +#endif + +#ifdef VOLK_IMPLEMENTATION +#undef VOLK_IMPLEMENTATION +// Prevent tools like dependency checkers that don't evaluate +// macros from detecting a cyclic dependency. +#define VOLK_SOURCE "volk.c" +#include VOLK_SOURCE +#endif + +/** + * Copyright (c) 2018-2019 Arseny Kapoulkine + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. +*/ +/* clang-format on */ diff --git a/include/vku/volk/volk.c b/include/vku/volk/volk.c new file mode 100644 index 0000000..8df800a --- /dev/null +++ b/include/vku/volk/volk.c @@ -0,0 +1,2435 @@ +/* This file is part of volk library; see volk.h for version/license details */ +/* clang-format off */ +#include "volk.h" + +#ifdef _WIN32 + typedef const char* LPCSTR; + typedef struct HINSTANCE__* HINSTANCE; + typedef HINSTANCE HMODULE; + #ifdef _WIN64 + typedef __int64 (__stdcall* FARPROC)(void); + #else + typedef int (__stdcall* FARPROC)(void); + #endif +#else +# include +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#ifdef _WIN32 +__declspec(dllimport) HMODULE __stdcall LoadLibraryA(LPCSTR); +__declspec(dllimport) FARPROC __stdcall GetProcAddress(HMODULE, LPCSTR); +#endif + +static VkInstance loadedInstance = VK_NULL_HANDLE; +static VkDevice loadedDevice = VK_NULL_HANDLE; + +static void volkGenLoadLoader(void* context, PFN_vkVoidFunction (*load)(void*, const char*)); +static void volkGenLoadInstance(void* context, PFN_vkVoidFunction (*load)(void*, const char*)); +static void volkGenLoadDevice(void* context, PFN_vkVoidFunction (*load)(void*, const char*)); +static void volkGenLoadDeviceTable(struct VolkDeviceTable* table, void* context, PFN_vkVoidFunction (*load)(void*, const char*)); + +static PFN_vkVoidFunction vkGetInstanceProcAddrStub(void* context, const char* name) +{ + return vkGetInstanceProcAddr((VkInstance)context, name); +} + +static PFN_vkVoidFunction vkGetDeviceProcAddrStub(void* context, const char* name) +{ + return vkGetDeviceProcAddr((VkDevice)context, name); +} + +VkResult volkInitialize(void) +{ +#if defined(_WIN32) + HMODULE module = LoadLibraryA("vulkan-1.dll"); + if (!module) + return VK_ERROR_INITIALIZATION_FAILED; + + // note: function pointer is cast through void function pointer to silence cast-function-type warning on gcc8 + vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)(void(*)(void))GetProcAddress(module, "vkGetInstanceProcAddr"); +#elif defined(__APPLE__) + void* module = dlopen("libvulkan.dylib", RTLD_NOW | RTLD_LOCAL); + if (!module) + module = dlopen("libvulkan.1.dylib", RTLD_NOW | RTLD_LOCAL); + if (!module) + module = dlopen("libMoltenVK.dylib", RTLD_NOW | RTLD_LOCAL); + if (!module) + return VK_ERROR_INITIALIZATION_FAILED; + + vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)dlsym(module, "vkGetInstanceProcAddr"); +#else + void* module = dlopen("libvulkan.so.1", RTLD_NOW | RTLD_LOCAL); + if (!module) + module = dlopen("libvulkan.so", RTLD_NOW | RTLD_LOCAL); + if (!module) + return VK_ERROR_INITIALIZATION_FAILED; + + vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)dlsym(module, "vkGetInstanceProcAddr"); +#endif + + volkGenLoadLoader(NULL, vkGetInstanceProcAddrStub); + + return VK_SUCCESS; +} + +void volkInitializeCustom(PFN_vkGetInstanceProcAddr handler) +{ + vkGetInstanceProcAddr = handler; + + volkGenLoadLoader(NULL, vkGetInstanceProcAddrStub); +} + +uint32_t volkGetInstanceVersion(void) +{ +#if defined(VK_VERSION_1_1) + uint32_t apiVersion = 0; + if (vkEnumerateInstanceVersion && vkEnumerateInstanceVersion(&apiVersion) == VK_SUCCESS) + return apiVersion; +#endif + + if (vkCreateInstance) + return VK_API_VERSION_1_0; + + return 0; +} + +void volkLoadInstance(VkInstance instance) +{ + loadedInstance = instance; + volkGenLoadInstance(instance, vkGetInstanceProcAddrStub); + volkGenLoadDevice(instance, vkGetInstanceProcAddrStub); +} + +void volkLoadInstanceOnly(VkInstance instance) +{ + loadedInstance = instance; + volkGenLoadInstance(instance, vkGetInstanceProcAddrStub); +} + +VkInstance volkGetLoadedInstance() +{ + return loadedInstance; +} + +void volkLoadDevice(VkDevice device) +{ + loadedDevice = device; + volkGenLoadDevice(device, vkGetDeviceProcAddrStub); +} + +VkDevice volkGetLoadedDevice() +{ + return loadedDevice; +} + +void volkLoadDeviceTable(struct VolkDeviceTable* table, VkDevice device) +{ + volkGenLoadDeviceTable(table, device, vkGetDeviceProcAddrStub); +} + +static void volkGenLoadLoader(void* context, PFN_vkVoidFunction (*load)(void*, const char*)) +{ + /* VOLK_GENERATE_LOAD_LOADER */ +#if defined(VK_VERSION_1_0) + vkCreateInstance = (PFN_vkCreateInstance)load(context, "vkCreateInstance"); + vkEnumerateInstanceExtensionProperties = (PFN_vkEnumerateInstanceExtensionProperties)load(context, "vkEnumerateInstanceExtensionProperties"); + vkEnumerateInstanceLayerProperties = (PFN_vkEnumerateInstanceLayerProperties)load(context, "vkEnumerateInstanceLayerProperties"); +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) + vkEnumerateInstanceVersion = (PFN_vkEnumerateInstanceVersion)load(context, "vkEnumerateInstanceVersion"); +#endif /* defined(VK_VERSION_1_1) */ + /* VOLK_GENERATE_LOAD_LOADER */ +} + +static void volkGenLoadInstance(void* context, PFN_vkVoidFunction (*load)(void*, const char*)) +{ + /* VOLK_GENERATE_LOAD_INSTANCE */ +#if defined(VK_VERSION_1_0) + vkCreateDevice = (PFN_vkCreateDevice)load(context, "vkCreateDevice"); + vkDestroyInstance = (PFN_vkDestroyInstance)load(context, "vkDestroyInstance"); + vkEnumerateDeviceExtensionProperties = (PFN_vkEnumerateDeviceExtensionProperties)load(context, "vkEnumerateDeviceExtensionProperties"); + vkEnumerateDeviceLayerProperties = (PFN_vkEnumerateDeviceLayerProperties)load(context, "vkEnumerateDeviceLayerProperties"); + vkEnumeratePhysicalDevices = (PFN_vkEnumeratePhysicalDevices)load(context, "vkEnumeratePhysicalDevices"); + vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)load(context, "vkGetDeviceProcAddr"); + vkGetPhysicalDeviceFeatures = (PFN_vkGetPhysicalDeviceFeatures)load(context, "vkGetPhysicalDeviceFeatures"); + vkGetPhysicalDeviceFormatProperties = (PFN_vkGetPhysicalDeviceFormatProperties)load(context, "vkGetPhysicalDeviceFormatProperties"); + vkGetPhysicalDeviceImageFormatProperties = (PFN_vkGetPhysicalDeviceImageFormatProperties)load(context, "vkGetPhysicalDeviceImageFormatProperties"); + vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)load(context, "vkGetPhysicalDeviceMemoryProperties"); + vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)load(context, "vkGetPhysicalDeviceProperties"); + vkGetPhysicalDeviceQueueFamilyProperties = (PFN_vkGetPhysicalDeviceQueueFamilyProperties)load(context, "vkGetPhysicalDeviceQueueFamilyProperties"); + vkGetPhysicalDeviceSparseImageFormatProperties = (PFN_vkGetPhysicalDeviceSparseImageFormatProperties)load(context, "vkGetPhysicalDeviceSparseImageFormatProperties"); +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) + vkEnumeratePhysicalDeviceGroups = (PFN_vkEnumeratePhysicalDeviceGroups)load(context, "vkEnumeratePhysicalDeviceGroups"); + vkGetPhysicalDeviceExternalBufferProperties = (PFN_vkGetPhysicalDeviceExternalBufferProperties)load(context, "vkGetPhysicalDeviceExternalBufferProperties"); + vkGetPhysicalDeviceExternalFenceProperties = (PFN_vkGetPhysicalDeviceExternalFenceProperties)load(context, "vkGetPhysicalDeviceExternalFenceProperties"); + vkGetPhysicalDeviceExternalSemaphoreProperties = (PFN_vkGetPhysicalDeviceExternalSemaphoreProperties)load(context, "vkGetPhysicalDeviceExternalSemaphoreProperties"); + vkGetPhysicalDeviceFeatures2 = (PFN_vkGetPhysicalDeviceFeatures2)load(context, "vkGetPhysicalDeviceFeatures2"); + vkGetPhysicalDeviceFormatProperties2 = (PFN_vkGetPhysicalDeviceFormatProperties2)load(context, "vkGetPhysicalDeviceFormatProperties2"); + vkGetPhysicalDeviceImageFormatProperties2 = (PFN_vkGetPhysicalDeviceImageFormatProperties2)load(context, "vkGetPhysicalDeviceImageFormatProperties2"); + vkGetPhysicalDeviceMemoryProperties2 = (PFN_vkGetPhysicalDeviceMemoryProperties2)load(context, "vkGetPhysicalDeviceMemoryProperties2"); + vkGetPhysicalDeviceProperties2 = (PFN_vkGetPhysicalDeviceProperties2)load(context, "vkGetPhysicalDeviceProperties2"); + vkGetPhysicalDeviceQueueFamilyProperties2 = (PFN_vkGetPhysicalDeviceQueueFamilyProperties2)load(context, "vkGetPhysicalDeviceQueueFamilyProperties2"); + vkGetPhysicalDeviceSparseImageFormatProperties2 = (PFN_vkGetPhysicalDeviceSparseImageFormatProperties2)load(context, "vkGetPhysicalDeviceSparseImageFormatProperties2"); +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_VERSION_1_3) + vkGetPhysicalDeviceToolProperties = (PFN_vkGetPhysicalDeviceToolProperties)load(context, "vkGetPhysicalDeviceToolProperties"); +#endif /* defined(VK_VERSION_1_3) */ +#if defined(VK_EXT_acquire_drm_display) + vkAcquireDrmDisplayEXT = (PFN_vkAcquireDrmDisplayEXT)load(context, "vkAcquireDrmDisplayEXT"); + vkGetDrmDisplayEXT = (PFN_vkGetDrmDisplayEXT)load(context, "vkGetDrmDisplayEXT"); +#endif /* defined(VK_EXT_acquire_drm_display) */ +#if defined(VK_EXT_acquire_xlib_display) + vkAcquireXlibDisplayEXT = (PFN_vkAcquireXlibDisplayEXT)load(context, "vkAcquireXlibDisplayEXT"); + vkGetRandROutputDisplayEXT = (PFN_vkGetRandROutputDisplayEXT)load(context, "vkGetRandROutputDisplayEXT"); +#endif /* defined(VK_EXT_acquire_xlib_display) */ +#if defined(VK_EXT_calibrated_timestamps) + vkGetPhysicalDeviceCalibrateableTimeDomainsEXT = (PFN_vkGetPhysicalDeviceCalibrateableTimeDomainsEXT)load(context, "vkGetPhysicalDeviceCalibrateableTimeDomainsEXT"); +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_debug_report) + vkCreateDebugReportCallbackEXT = (PFN_vkCreateDebugReportCallbackEXT)load(context, "vkCreateDebugReportCallbackEXT"); + vkDebugReportMessageEXT = (PFN_vkDebugReportMessageEXT)load(context, "vkDebugReportMessageEXT"); + vkDestroyDebugReportCallbackEXT = (PFN_vkDestroyDebugReportCallbackEXT)load(context, "vkDestroyDebugReportCallbackEXT"); +#endif /* defined(VK_EXT_debug_report) */ +#if defined(VK_EXT_debug_utils) + vkCmdBeginDebugUtilsLabelEXT = (PFN_vkCmdBeginDebugUtilsLabelEXT)load(context, "vkCmdBeginDebugUtilsLabelEXT"); + vkCmdEndDebugUtilsLabelEXT = (PFN_vkCmdEndDebugUtilsLabelEXT)load(context, "vkCmdEndDebugUtilsLabelEXT"); + vkCmdInsertDebugUtilsLabelEXT = (PFN_vkCmdInsertDebugUtilsLabelEXT)load(context, "vkCmdInsertDebugUtilsLabelEXT"); + vkCreateDebugUtilsMessengerEXT = (PFN_vkCreateDebugUtilsMessengerEXT)load(context, "vkCreateDebugUtilsMessengerEXT"); + vkDestroyDebugUtilsMessengerEXT = (PFN_vkDestroyDebugUtilsMessengerEXT)load(context, "vkDestroyDebugUtilsMessengerEXT"); + vkQueueBeginDebugUtilsLabelEXT = (PFN_vkQueueBeginDebugUtilsLabelEXT)load(context, "vkQueueBeginDebugUtilsLabelEXT"); + vkQueueEndDebugUtilsLabelEXT = (PFN_vkQueueEndDebugUtilsLabelEXT)load(context, "vkQueueEndDebugUtilsLabelEXT"); + vkQueueInsertDebugUtilsLabelEXT = (PFN_vkQueueInsertDebugUtilsLabelEXT)load(context, "vkQueueInsertDebugUtilsLabelEXT"); + vkSetDebugUtilsObjectNameEXT = (PFN_vkSetDebugUtilsObjectNameEXT)load(context, "vkSetDebugUtilsObjectNameEXT"); + vkSetDebugUtilsObjectTagEXT = (PFN_vkSetDebugUtilsObjectTagEXT)load(context, "vkSetDebugUtilsObjectTagEXT"); + vkSubmitDebugUtilsMessageEXT = (PFN_vkSubmitDebugUtilsMessageEXT)load(context, "vkSubmitDebugUtilsMessageEXT"); +#endif /* defined(VK_EXT_debug_utils) */ +#if defined(VK_EXT_direct_mode_display) + vkReleaseDisplayEXT = (PFN_vkReleaseDisplayEXT)load(context, "vkReleaseDisplayEXT"); +#endif /* defined(VK_EXT_direct_mode_display) */ +#if defined(VK_EXT_directfb_surface) + vkCreateDirectFBSurfaceEXT = (PFN_vkCreateDirectFBSurfaceEXT)load(context, "vkCreateDirectFBSurfaceEXT"); + vkGetPhysicalDeviceDirectFBPresentationSupportEXT = (PFN_vkGetPhysicalDeviceDirectFBPresentationSupportEXT)load(context, "vkGetPhysicalDeviceDirectFBPresentationSupportEXT"); +#endif /* defined(VK_EXT_directfb_surface) */ +#if defined(VK_EXT_display_surface_counter) + vkGetPhysicalDeviceSurfaceCapabilities2EXT = (PFN_vkGetPhysicalDeviceSurfaceCapabilities2EXT)load(context, "vkGetPhysicalDeviceSurfaceCapabilities2EXT"); +#endif /* defined(VK_EXT_display_surface_counter) */ +#if defined(VK_EXT_full_screen_exclusive) + vkGetPhysicalDeviceSurfacePresentModes2EXT = (PFN_vkGetPhysicalDeviceSurfacePresentModes2EXT)load(context, "vkGetPhysicalDeviceSurfacePresentModes2EXT"); +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_headless_surface) + vkCreateHeadlessSurfaceEXT = (PFN_vkCreateHeadlessSurfaceEXT)load(context, "vkCreateHeadlessSurfaceEXT"); +#endif /* defined(VK_EXT_headless_surface) */ +#if defined(VK_EXT_metal_surface) + vkCreateMetalSurfaceEXT = (PFN_vkCreateMetalSurfaceEXT)load(context, "vkCreateMetalSurfaceEXT"); +#endif /* defined(VK_EXT_metal_surface) */ +#if defined(VK_EXT_sample_locations) + vkGetPhysicalDeviceMultisamplePropertiesEXT = (PFN_vkGetPhysicalDeviceMultisamplePropertiesEXT)load(context, "vkGetPhysicalDeviceMultisamplePropertiesEXT"); +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_tooling_info) + vkGetPhysicalDeviceToolPropertiesEXT = (PFN_vkGetPhysicalDeviceToolPropertiesEXT)load(context, "vkGetPhysicalDeviceToolPropertiesEXT"); +#endif /* defined(VK_EXT_tooling_info) */ +#if defined(VK_FUCHSIA_imagepipe_surface) + vkCreateImagePipeSurfaceFUCHSIA = (PFN_vkCreateImagePipeSurfaceFUCHSIA)load(context, "vkCreateImagePipeSurfaceFUCHSIA"); +#endif /* defined(VK_FUCHSIA_imagepipe_surface) */ +#if defined(VK_GGP_stream_descriptor_surface) + vkCreateStreamDescriptorSurfaceGGP = (PFN_vkCreateStreamDescriptorSurfaceGGP)load(context, "vkCreateStreamDescriptorSurfaceGGP"); +#endif /* defined(VK_GGP_stream_descriptor_surface) */ +#if defined(VK_KHR_android_surface) + vkCreateAndroidSurfaceKHR = (PFN_vkCreateAndroidSurfaceKHR)load(context, "vkCreateAndroidSurfaceKHR"); +#endif /* defined(VK_KHR_android_surface) */ +#if defined(VK_KHR_device_group_creation) + vkEnumeratePhysicalDeviceGroupsKHR = (PFN_vkEnumeratePhysicalDeviceGroupsKHR)load(context, "vkEnumeratePhysicalDeviceGroupsKHR"); +#endif /* defined(VK_KHR_device_group_creation) */ +#if defined(VK_KHR_display) + vkCreateDisplayModeKHR = (PFN_vkCreateDisplayModeKHR)load(context, "vkCreateDisplayModeKHR"); + vkCreateDisplayPlaneSurfaceKHR = (PFN_vkCreateDisplayPlaneSurfaceKHR)load(context, "vkCreateDisplayPlaneSurfaceKHR"); + vkGetDisplayModePropertiesKHR = (PFN_vkGetDisplayModePropertiesKHR)load(context, "vkGetDisplayModePropertiesKHR"); + vkGetDisplayPlaneCapabilitiesKHR = (PFN_vkGetDisplayPlaneCapabilitiesKHR)load(context, "vkGetDisplayPlaneCapabilitiesKHR"); + vkGetDisplayPlaneSupportedDisplaysKHR = (PFN_vkGetDisplayPlaneSupportedDisplaysKHR)load(context, "vkGetDisplayPlaneSupportedDisplaysKHR"); + vkGetPhysicalDeviceDisplayPlanePropertiesKHR = (PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR)load(context, "vkGetPhysicalDeviceDisplayPlanePropertiesKHR"); + vkGetPhysicalDeviceDisplayPropertiesKHR = (PFN_vkGetPhysicalDeviceDisplayPropertiesKHR)load(context, "vkGetPhysicalDeviceDisplayPropertiesKHR"); +#endif /* defined(VK_KHR_display) */ +#if defined(VK_KHR_external_fence_capabilities) + vkGetPhysicalDeviceExternalFencePropertiesKHR = (PFN_vkGetPhysicalDeviceExternalFencePropertiesKHR)load(context, "vkGetPhysicalDeviceExternalFencePropertiesKHR"); +#endif /* defined(VK_KHR_external_fence_capabilities) */ +#if defined(VK_KHR_external_memory_capabilities) + vkGetPhysicalDeviceExternalBufferPropertiesKHR = (PFN_vkGetPhysicalDeviceExternalBufferPropertiesKHR)load(context, "vkGetPhysicalDeviceExternalBufferPropertiesKHR"); +#endif /* defined(VK_KHR_external_memory_capabilities) */ +#if defined(VK_KHR_external_semaphore_capabilities) + vkGetPhysicalDeviceExternalSemaphorePropertiesKHR = (PFN_vkGetPhysicalDeviceExternalSemaphorePropertiesKHR)load(context, "vkGetPhysicalDeviceExternalSemaphorePropertiesKHR"); +#endif /* defined(VK_KHR_external_semaphore_capabilities) */ +#if defined(VK_KHR_fragment_shading_rate) + vkGetPhysicalDeviceFragmentShadingRatesKHR = (PFN_vkGetPhysicalDeviceFragmentShadingRatesKHR)load(context, "vkGetPhysicalDeviceFragmentShadingRatesKHR"); +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_display_properties2) + vkGetDisplayModeProperties2KHR = (PFN_vkGetDisplayModeProperties2KHR)load(context, "vkGetDisplayModeProperties2KHR"); + vkGetDisplayPlaneCapabilities2KHR = (PFN_vkGetDisplayPlaneCapabilities2KHR)load(context, "vkGetDisplayPlaneCapabilities2KHR"); + vkGetPhysicalDeviceDisplayPlaneProperties2KHR = (PFN_vkGetPhysicalDeviceDisplayPlaneProperties2KHR)load(context, "vkGetPhysicalDeviceDisplayPlaneProperties2KHR"); + vkGetPhysicalDeviceDisplayProperties2KHR = (PFN_vkGetPhysicalDeviceDisplayProperties2KHR)load(context, "vkGetPhysicalDeviceDisplayProperties2KHR"); +#endif /* defined(VK_KHR_get_display_properties2) */ +#if defined(VK_KHR_get_physical_device_properties2) + vkGetPhysicalDeviceFeatures2KHR = (PFN_vkGetPhysicalDeviceFeatures2KHR)load(context, "vkGetPhysicalDeviceFeatures2KHR"); + vkGetPhysicalDeviceFormatProperties2KHR = (PFN_vkGetPhysicalDeviceFormatProperties2KHR)load(context, "vkGetPhysicalDeviceFormatProperties2KHR"); + vkGetPhysicalDeviceImageFormatProperties2KHR = (PFN_vkGetPhysicalDeviceImageFormatProperties2KHR)load(context, "vkGetPhysicalDeviceImageFormatProperties2KHR"); + vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2KHR)load(context, "vkGetPhysicalDeviceMemoryProperties2KHR"); + vkGetPhysicalDeviceProperties2KHR = (PFN_vkGetPhysicalDeviceProperties2KHR)load(context, "vkGetPhysicalDeviceProperties2KHR"); + vkGetPhysicalDeviceQueueFamilyProperties2KHR = (PFN_vkGetPhysicalDeviceQueueFamilyProperties2KHR)load(context, "vkGetPhysicalDeviceQueueFamilyProperties2KHR"); + vkGetPhysicalDeviceSparseImageFormatProperties2KHR = (PFN_vkGetPhysicalDeviceSparseImageFormatProperties2KHR)load(context, "vkGetPhysicalDeviceSparseImageFormatProperties2KHR"); +#endif /* defined(VK_KHR_get_physical_device_properties2) */ +#if defined(VK_KHR_get_surface_capabilities2) + vkGetPhysicalDeviceSurfaceCapabilities2KHR = (PFN_vkGetPhysicalDeviceSurfaceCapabilities2KHR)load(context, "vkGetPhysicalDeviceSurfaceCapabilities2KHR"); + vkGetPhysicalDeviceSurfaceFormats2KHR = (PFN_vkGetPhysicalDeviceSurfaceFormats2KHR)load(context, "vkGetPhysicalDeviceSurfaceFormats2KHR"); +#endif /* defined(VK_KHR_get_surface_capabilities2) */ +#if defined(VK_KHR_performance_query) + vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR = (PFN_vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR)load(context, "vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR"); + vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR = (PFN_vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR)load(context, "vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR"); +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_surface) + vkDestroySurfaceKHR = (PFN_vkDestroySurfaceKHR)load(context, "vkDestroySurfaceKHR"); + vkGetPhysicalDeviceSurfaceCapabilitiesKHR = (PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR)load(context, "vkGetPhysicalDeviceSurfaceCapabilitiesKHR"); + vkGetPhysicalDeviceSurfaceFormatsKHR = (PFN_vkGetPhysicalDeviceSurfaceFormatsKHR)load(context, "vkGetPhysicalDeviceSurfaceFormatsKHR"); + vkGetPhysicalDeviceSurfacePresentModesKHR = (PFN_vkGetPhysicalDeviceSurfacePresentModesKHR)load(context, "vkGetPhysicalDeviceSurfacePresentModesKHR"); + vkGetPhysicalDeviceSurfaceSupportKHR = (PFN_vkGetPhysicalDeviceSurfaceSupportKHR)load(context, "vkGetPhysicalDeviceSurfaceSupportKHR"); +#endif /* defined(VK_KHR_surface) */ +#if defined(VK_KHR_video_queue) + vkGetPhysicalDeviceVideoCapabilitiesKHR = (PFN_vkGetPhysicalDeviceVideoCapabilitiesKHR)load(context, "vkGetPhysicalDeviceVideoCapabilitiesKHR"); + vkGetPhysicalDeviceVideoFormatPropertiesKHR = (PFN_vkGetPhysicalDeviceVideoFormatPropertiesKHR)load(context, "vkGetPhysicalDeviceVideoFormatPropertiesKHR"); +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_KHR_wayland_surface) + vkCreateWaylandSurfaceKHR = (PFN_vkCreateWaylandSurfaceKHR)load(context, "vkCreateWaylandSurfaceKHR"); + vkGetPhysicalDeviceWaylandPresentationSupportKHR = (PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR)load(context, "vkGetPhysicalDeviceWaylandPresentationSupportKHR"); +#endif /* defined(VK_KHR_wayland_surface) */ +#if defined(VK_KHR_win32_surface) + vkCreateWin32SurfaceKHR = (PFN_vkCreateWin32SurfaceKHR)load(context, "vkCreateWin32SurfaceKHR"); + vkGetPhysicalDeviceWin32PresentationSupportKHR = (PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR)load(context, "vkGetPhysicalDeviceWin32PresentationSupportKHR"); +#endif /* defined(VK_KHR_win32_surface) */ +#if defined(VK_KHR_xcb_surface) + vkCreateXcbSurfaceKHR = (PFN_vkCreateXcbSurfaceKHR)load(context, "vkCreateXcbSurfaceKHR"); + vkGetPhysicalDeviceXcbPresentationSupportKHR = (PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR)load(context, "vkGetPhysicalDeviceXcbPresentationSupportKHR"); +#endif /* defined(VK_KHR_xcb_surface) */ +#if defined(VK_KHR_xlib_surface) + vkCreateXlibSurfaceKHR = (PFN_vkCreateXlibSurfaceKHR)load(context, "vkCreateXlibSurfaceKHR"); + vkGetPhysicalDeviceXlibPresentationSupportKHR = (PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR)load(context, "vkGetPhysicalDeviceXlibPresentationSupportKHR"); +#endif /* defined(VK_KHR_xlib_surface) */ +#if defined(VK_MVK_ios_surface) + vkCreateIOSSurfaceMVK = (PFN_vkCreateIOSSurfaceMVK)load(context, "vkCreateIOSSurfaceMVK"); +#endif /* defined(VK_MVK_ios_surface) */ +#if defined(VK_MVK_macos_surface) + vkCreateMacOSSurfaceMVK = (PFN_vkCreateMacOSSurfaceMVK)load(context, "vkCreateMacOSSurfaceMVK"); +#endif /* defined(VK_MVK_macos_surface) */ +#if defined(VK_NN_vi_surface) + vkCreateViSurfaceNN = (PFN_vkCreateViSurfaceNN)load(context, "vkCreateViSurfaceNN"); +#endif /* defined(VK_NN_vi_surface) */ +#if defined(VK_NV_acquire_winrt_display) + vkAcquireWinrtDisplayNV = (PFN_vkAcquireWinrtDisplayNV)load(context, "vkAcquireWinrtDisplayNV"); + vkGetWinrtDisplayNV = (PFN_vkGetWinrtDisplayNV)load(context, "vkGetWinrtDisplayNV"); +#endif /* defined(VK_NV_acquire_winrt_display) */ +#if defined(VK_NV_cooperative_matrix) + vkGetPhysicalDeviceCooperativeMatrixPropertiesNV = (PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesNV)load(context, "vkGetPhysicalDeviceCooperativeMatrixPropertiesNV"); +#endif /* defined(VK_NV_cooperative_matrix) */ +#if defined(VK_NV_coverage_reduction_mode) + vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV = (PFN_vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV)load(context, "vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV"); +#endif /* defined(VK_NV_coverage_reduction_mode) */ +#if defined(VK_NV_external_memory_capabilities) + vkGetPhysicalDeviceExternalImageFormatPropertiesNV = (PFN_vkGetPhysicalDeviceExternalImageFormatPropertiesNV)load(context, "vkGetPhysicalDeviceExternalImageFormatPropertiesNV"); +#endif /* defined(VK_NV_external_memory_capabilities) */ +#if defined(VK_QNX_screen_surface) + vkCreateScreenSurfaceQNX = (PFN_vkCreateScreenSurfaceQNX)load(context, "vkCreateScreenSurfaceQNX"); + vkGetPhysicalDeviceScreenPresentationSupportQNX = (PFN_vkGetPhysicalDeviceScreenPresentationSupportQNX)load(context, "vkGetPhysicalDeviceScreenPresentationSupportQNX"); +#endif /* defined(VK_QNX_screen_surface) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + vkGetPhysicalDevicePresentRectanglesKHR = (PFN_vkGetPhysicalDevicePresentRectanglesKHR)load(context, "vkGetPhysicalDevicePresentRectanglesKHR"); +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ + /* VOLK_GENERATE_LOAD_INSTANCE */ +} + +static void volkGenLoadDevice(void* context, PFN_vkVoidFunction (*load)(void*, const char*)) +{ + /* VOLK_GENERATE_LOAD_DEVICE */ +#if defined(VK_VERSION_1_0) + vkAllocateCommandBuffers = (PFN_vkAllocateCommandBuffers)load(context, "vkAllocateCommandBuffers"); + vkAllocateDescriptorSets = (PFN_vkAllocateDescriptorSets)load(context, "vkAllocateDescriptorSets"); + vkAllocateMemory = (PFN_vkAllocateMemory)load(context, "vkAllocateMemory"); + vkBeginCommandBuffer = (PFN_vkBeginCommandBuffer)load(context, "vkBeginCommandBuffer"); + vkBindBufferMemory = (PFN_vkBindBufferMemory)load(context, "vkBindBufferMemory"); + vkBindImageMemory = (PFN_vkBindImageMemory)load(context, "vkBindImageMemory"); + vkCmdBeginQuery = (PFN_vkCmdBeginQuery)load(context, "vkCmdBeginQuery"); + vkCmdBeginRenderPass = (PFN_vkCmdBeginRenderPass)load(context, "vkCmdBeginRenderPass"); + vkCmdBindDescriptorSets = (PFN_vkCmdBindDescriptorSets)load(context, "vkCmdBindDescriptorSets"); + vkCmdBindIndexBuffer = (PFN_vkCmdBindIndexBuffer)load(context, "vkCmdBindIndexBuffer"); + vkCmdBindPipeline = (PFN_vkCmdBindPipeline)load(context, "vkCmdBindPipeline"); + vkCmdBindVertexBuffers = (PFN_vkCmdBindVertexBuffers)load(context, "vkCmdBindVertexBuffers"); + vkCmdBlitImage = (PFN_vkCmdBlitImage)load(context, "vkCmdBlitImage"); + vkCmdClearAttachments = (PFN_vkCmdClearAttachments)load(context, "vkCmdClearAttachments"); + vkCmdClearColorImage = (PFN_vkCmdClearColorImage)load(context, "vkCmdClearColorImage"); + vkCmdClearDepthStencilImage = (PFN_vkCmdClearDepthStencilImage)load(context, "vkCmdClearDepthStencilImage"); + vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)load(context, "vkCmdCopyBuffer"); + vkCmdCopyBufferToImage = (PFN_vkCmdCopyBufferToImage)load(context, "vkCmdCopyBufferToImage"); + vkCmdCopyImage = (PFN_vkCmdCopyImage)load(context, "vkCmdCopyImage"); + vkCmdCopyImageToBuffer = (PFN_vkCmdCopyImageToBuffer)load(context, "vkCmdCopyImageToBuffer"); + vkCmdCopyQueryPoolResults = (PFN_vkCmdCopyQueryPoolResults)load(context, "vkCmdCopyQueryPoolResults"); + vkCmdDispatch = (PFN_vkCmdDispatch)load(context, "vkCmdDispatch"); + vkCmdDispatchIndirect = (PFN_vkCmdDispatchIndirect)load(context, "vkCmdDispatchIndirect"); + vkCmdDraw = (PFN_vkCmdDraw)load(context, "vkCmdDraw"); + vkCmdDrawIndexed = (PFN_vkCmdDrawIndexed)load(context, "vkCmdDrawIndexed"); + vkCmdDrawIndexedIndirect = (PFN_vkCmdDrawIndexedIndirect)load(context, "vkCmdDrawIndexedIndirect"); + vkCmdDrawIndirect = (PFN_vkCmdDrawIndirect)load(context, "vkCmdDrawIndirect"); + vkCmdEndQuery = (PFN_vkCmdEndQuery)load(context, "vkCmdEndQuery"); + vkCmdEndRenderPass = (PFN_vkCmdEndRenderPass)load(context, "vkCmdEndRenderPass"); + vkCmdExecuteCommands = (PFN_vkCmdExecuteCommands)load(context, "vkCmdExecuteCommands"); + vkCmdFillBuffer = (PFN_vkCmdFillBuffer)load(context, "vkCmdFillBuffer"); + vkCmdNextSubpass = (PFN_vkCmdNextSubpass)load(context, "vkCmdNextSubpass"); + vkCmdPipelineBarrier = (PFN_vkCmdPipelineBarrier)load(context, "vkCmdPipelineBarrier"); + vkCmdPushConstants = (PFN_vkCmdPushConstants)load(context, "vkCmdPushConstants"); + vkCmdResetEvent = (PFN_vkCmdResetEvent)load(context, "vkCmdResetEvent"); + vkCmdResetQueryPool = (PFN_vkCmdResetQueryPool)load(context, "vkCmdResetQueryPool"); + vkCmdResolveImage = (PFN_vkCmdResolveImage)load(context, "vkCmdResolveImage"); + vkCmdSetBlendConstants = (PFN_vkCmdSetBlendConstants)load(context, "vkCmdSetBlendConstants"); + vkCmdSetDepthBias = (PFN_vkCmdSetDepthBias)load(context, "vkCmdSetDepthBias"); + vkCmdSetDepthBounds = (PFN_vkCmdSetDepthBounds)load(context, "vkCmdSetDepthBounds"); + vkCmdSetEvent = (PFN_vkCmdSetEvent)load(context, "vkCmdSetEvent"); + vkCmdSetLineWidth = (PFN_vkCmdSetLineWidth)load(context, "vkCmdSetLineWidth"); + vkCmdSetScissor = (PFN_vkCmdSetScissor)load(context, "vkCmdSetScissor"); + vkCmdSetStencilCompareMask = (PFN_vkCmdSetStencilCompareMask)load(context, "vkCmdSetStencilCompareMask"); + vkCmdSetStencilReference = (PFN_vkCmdSetStencilReference)load(context, "vkCmdSetStencilReference"); + vkCmdSetStencilWriteMask = (PFN_vkCmdSetStencilWriteMask)load(context, "vkCmdSetStencilWriteMask"); + vkCmdSetViewport = (PFN_vkCmdSetViewport)load(context, "vkCmdSetViewport"); + vkCmdUpdateBuffer = (PFN_vkCmdUpdateBuffer)load(context, "vkCmdUpdateBuffer"); + vkCmdWaitEvents = (PFN_vkCmdWaitEvents)load(context, "vkCmdWaitEvents"); + vkCmdWriteTimestamp = (PFN_vkCmdWriteTimestamp)load(context, "vkCmdWriteTimestamp"); + vkCreateBuffer = (PFN_vkCreateBuffer)load(context, "vkCreateBuffer"); + vkCreateBufferView = (PFN_vkCreateBufferView)load(context, "vkCreateBufferView"); + vkCreateCommandPool = (PFN_vkCreateCommandPool)load(context, "vkCreateCommandPool"); + vkCreateComputePipelines = (PFN_vkCreateComputePipelines)load(context, "vkCreateComputePipelines"); + vkCreateDescriptorPool = (PFN_vkCreateDescriptorPool)load(context, "vkCreateDescriptorPool"); + vkCreateDescriptorSetLayout = (PFN_vkCreateDescriptorSetLayout)load(context, "vkCreateDescriptorSetLayout"); + vkCreateEvent = (PFN_vkCreateEvent)load(context, "vkCreateEvent"); + vkCreateFence = (PFN_vkCreateFence)load(context, "vkCreateFence"); + vkCreateFramebuffer = (PFN_vkCreateFramebuffer)load(context, "vkCreateFramebuffer"); + vkCreateGraphicsPipelines = (PFN_vkCreateGraphicsPipelines)load(context, "vkCreateGraphicsPipelines"); + vkCreateImage = (PFN_vkCreateImage)load(context, "vkCreateImage"); + vkCreateImageView = (PFN_vkCreateImageView)load(context, "vkCreateImageView"); + vkCreatePipelineCache = (PFN_vkCreatePipelineCache)load(context, "vkCreatePipelineCache"); + vkCreatePipelineLayout = (PFN_vkCreatePipelineLayout)load(context, "vkCreatePipelineLayout"); + vkCreateQueryPool = (PFN_vkCreateQueryPool)load(context, "vkCreateQueryPool"); + vkCreateRenderPass = (PFN_vkCreateRenderPass)load(context, "vkCreateRenderPass"); + vkCreateSampler = (PFN_vkCreateSampler)load(context, "vkCreateSampler"); + vkCreateSemaphore = (PFN_vkCreateSemaphore)load(context, "vkCreateSemaphore"); + vkCreateShaderModule = (PFN_vkCreateShaderModule)load(context, "vkCreateShaderModule"); + vkDestroyBuffer = (PFN_vkDestroyBuffer)load(context, "vkDestroyBuffer"); + vkDestroyBufferView = (PFN_vkDestroyBufferView)load(context, "vkDestroyBufferView"); + vkDestroyCommandPool = (PFN_vkDestroyCommandPool)load(context, "vkDestroyCommandPool"); + vkDestroyDescriptorPool = (PFN_vkDestroyDescriptorPool)load(context, "vkDestroyDescriptorPool"); + vkDestroyDescriptorSetLayout = (PFN_vkDestroyDescriptorSetLayout)load(context, "vkDestroyDescriptorSetLayout"); + vkDestroyDevice = (PFN_vkDestroyDevice)load(context, "vkDestroyDevice"); + vkDestroyEvent = (PFN_vkDestroyEvent)load(context, "vkDestroyEvent"); + vkDestroyFence = (PFN_vkDestroyFence)load(context, "vkDestroyFence"); + vkDestroyFramebuffer = (PFN_vkDestroyFramebuffer)load(context, "vkDestroyFramebuffer"); + vkDestroyImage = (PFN_vkDestroyImage)load(context, "vkDestroyImage"); + vkDestroyImageView = (PFN_vkDestroyImageView)load(context, "vkDestroyImageView"); + vkDestroyPipeline = (PFN_vkDestroyPipeline)load(context, "vkDestroyPipeline"); + vkDestroyPipelineCache = (PFN_vkDestroyPipelineCache)load(context, "vkDestroyPipelineCache"); + vkDestroyPipelineLayout = (PFN_vkDestroyPipelineLayout)load(context, "vkDestroyPipelineLayout"); + vkDestroyQueryPool = (PFN_vkDestroyQueryPool)load(context, "vkDestroyQueryPool"); + vkDestroyRenderPass = (PFN_vkDestroyRenderPass)load(context, "vkDestroyRenderPass"); + vkDestroySampler = (PFN_vkDestroySampler)load(context, "vkDestroySampler"); + vkDestroySemaphore = (PFN_vkDestroySemaphore)load(context, "vkDestroySemaphore"); + vkDestroyShaderModule = (PFN_vkDestroyShaderModule)load(context, "vkDestroyShaderModule"); + vkDeviceWaitIdle = (PFN_vkDeviceWaitIdle)load(context, "vkDeviceWaitIdle"); + vkEndCommandBuffer = (PFN_vkEndCommandBuffer)load(context, "vkEndCommandBuffer"); + vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)load(context, "vkFlushMappedMemoryRanges"); + vkFreeCommandBuffers = (PFN_vkFreeCommandBuffers)load(context, "vkFreeCommandBuffers"); + vkFreeDescriptorSets = (PFN_vkFreeDescriptorSets)load(context, "vkFreeDescriptorSets"); + vkFreeMemory = (PFN_vkFreeMemory)load(context, "vkFreeMemory"); + vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)load(context, "vkGetBufferMemoryRequirements"); + vkGetDeviceMemoryCommitment = (PFN_vkGetDeviceMemoryCommitment)load(context, "vkGetDeviceMemoryCommitment"); + vkGetDeviceQueue = (PFN_vkGetDeviceQueue)load(context, "vkGetDeviceQueue"); + vkGetEventStatus = (PFN_vkGetEventStatus)load(context, "vkGetEventStatus"); + vkGetFenceStatus = (PFN_vkGetFenceStatus)load(context, "vkGetFenceStatus"); + vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)load(context, "vkGetImageMemoryRequirements"); + vkGetImageSparseMemoryRequirements = (PFN_vkGetImageSparseMemoryRequirements)load(context, "vkGetImageSparseMemoryRequirements"); + vkGetImageSubresourceLayout = (PFN_vkGetImageSubresourceLayout)load(context, "vkGetImageSubresourceLayout"); + vkGetPipelineCacheData = (PFN_vkGetPipelineCacheData)load(context, "vkGetPipelineCacheData"); + vkGetQueryPoolResults = (PFN_vkGetQueryPoolResults)load(context, "vkGetQueryPoolResults"); + vkGetRenderAreaGranularity = (PFN_vkGetRenderAreaGranularity)load(context, "vkGetRenderAreaGranularity"); + vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)load(context, "vkInvalidateMappedMemoryRanges"); + vkMapMemory = (PFN_vkMapMemory)load(context, "vkMapMemory"); + vkMergePipelineCaches = (PFN_vkMergePipelineCaches)load(context, "vkMergePipelineCaches"); + vkQueueBindSparse = (PFN_vkQueueBindSparse)load(context, "vkQueueBindSparse"); + vkQueueSubmit = (PFN_vkQueueSubmit)load(context, "vkQueueSubmit"); + vkQueueWaitIdle = (PFN_vkQueueWaitIdle)load(context, "vkQueueWaitIdle"); + vkResetCommandBuffer = (PFN_vkResetCommandBuffer)load(context, "vkResetCommandBuffer"); + vkResetCommandPool = (PFN_vkResetCommandPool)load(context, "vkResetCommandPool"); + vkResetDescriptorPool = (PFN_vkResetDescriptorPool)load(context, "vkResetDescriptorPool"); + vkResetEvent = (PFN_vkResetEvent)load(context, "vkResetEvent"); + vkResetFences = (PFN_vkResetFences)load(context, "vkResetFences"); + vkSetEvent = (PFN_vkSetEvent)load(context, "vkSetEvent"); + vkUnmapMemory = (PFN_vkUnmapMemory)load(context, "vkUnmapMemory"); + vkUpdateDescriptorSets = (PFN_vkUpdateDescriptorSets)load(context, "vkUpdateDescriptorSets"); + vkWaitForFences = (PFN_vkWaitForFences)load(context, "vkWaitForFences"); +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) + vkBindBufferMemory2 = (PFN_vkBindBufferMemory2)load(context, "vkBindBufferMemory2"); + vkBindImageMemory2 = (PFN_vkBindImageMemory2)load(context, "vkBindImageMemory2"); + vkCmdDispatchBase = (PFN_vkCmdDispatchBase)load(context, "vkCmdDispatchBase"); + vkCmdSetDeviceMask = (PFN_vkCmdSetDeviceMask)load(context, "vkCmdSetDeviceMask"); + vkCreateDescriptorUpdateTemplate = (PFN_vkCreateDescriptorUpdateTemplate)load(context, "vkCreateDescriptorUpdateTemplate"); + vkCreateSamplerYcbcrConversion = (PFN_vkCreateSamplerYcbcrConversion)load(context, "vkCreateSamplerYcbcrConversion"); + vkDestroyDescriptorUpdateTemplate = (PFN_vkDestroyDescriptorUpdateTemplate)load(context, "vkDestroyDescriptorUpdateTemplate"); + vkDestroySamplerYcbcrConversion = (PFN_vkDestroySamplerYcbcrConversion)load(context, "vkDestroySamplerYcbcrConversion"); + vkGetBufferMemoryRequirements2 = (PFN_vkGetBufferMemoryRequirements2)load(context, "vkGetBufferMemoryRequirements2"); + vkGetDescriptorSetLayoutSupport = (PFN_vkGetDescriptorSetLayoutSupport)load(context, "vkGetDescriptorSetLayoutSupport"); + vkGetDeviceGroupPeerMemoryFeatures = (PFN_vkGetDeviceGroupPeerMemoryFeatures)load(context, "vkGetDeviceGroupPeerMemoryFeatures"); + vkGetDeviceQueue2 = (PFN_vkGetDeviceQueue2)load(context, "vkGetDeviceQueue2"); + vkGetImageMemoryRequirements2 = (PFN_vkGetImageMemoryRequirements2)load(context, "vkGetImageMemoryRequirements2"); + vkGetImageSparseMemoryRequirements2 = (PFN_vkGetImageSparseMemoryRequirements2)load(context, "vkGetImageSparseMemoryRequirements2"); + vkTrimCommandPool = (PFN_vkTrimCommandPool)load(context, "vkTrimCommandPool"); + vkUpdateDescriptorSetWithTemplate = (PFN_vkUpdateDescriptorSetWithTemplate)load(context, "vkUpdateDescriptorSetWithTemplate"); +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_VERSION_1_2) + vkCmdBeginRenderPass2 = (PFN_vkCmdBeginRenderPass2)load(context, "vkCmdBeginRenderPass2"); + vkCmdDrawIndexedIndirectCount = (PFN_vkCmdDrawIndexedIndirectCount)load(context, "vkCmdDrawIndexedIndirectCount"); + vkCmdDrawIndirectCount = (PFN_vkCmdDrawIndirectCount)load(context, "vkCmdDrawIndirectCount"); + vkCmdEndRenderPass2 = (PFN_vkCmdEndRenderPass2)load(context, "vkCmdEndRenderPass2"); + vkCmdNextSubpass2 = (PFN_vkCmdNextSubpass2)load(context, "vkCmdNextSubpass2"); + vkCreateRenderPass2 = (PFN_vkCreateRenderPass2)load(context, "vkCreateRenderPass2"); + vkGetBufferDeviceAddress = (PFN_vkGetBufferDeviceAddress)load(context, "vkGetBufferDeviceAddress"); + vkGetBufferOpaqueCaptureAddress = (PFN_vkGetBufferOpaqueCaptureAddress)load(context, "vkGetBufferOpaqueCaptureAddress"); + vkGetDeviceMemoryOpaqueCaptureAddress = (PFN_vkGetDeviceMemoryOpaqueCaptureAddress)load(context, "vkGetDeviceMemoryOpaqueCaptureAddress"); + vkGetSemaphoreCounterValue = (PFN_vkGetSemaphoreCounterValue)load(context, "vkGetSemaphoreCounterValue"); + vkResetQueryPool = (PFN_vkResetQueryPool)load(context, "vkResetQueryPool"); + vkSignalSemaphore = (PFN_vkSignalSemaphore)load(context, "vkSignalSemaphore"); + vkWaitSemaphores = (PFN_vkWaitSemaphores)load(context, "vkWaitSemaphores"); +#endif /* defined(VK_VERSION_1_2) */ +#if defined(VK_VERSION_1_3) + vkCmdBeginRendering = (PFN_vkCmdBeginRendering)load(context, "vkCmdBeginRendering"); + vkCmdBindVertexBuffers2 = (PFN_vkCmdBindVertexBuffers2)load(context, "vkCmdBindVertexBuffers2"); + vkCmdBlitImage2 = (PFN_vkCmdBlitImage2)load(context, "vkCmdBlitImage2"); + vkCmdCopyBuffer2 = (PFN_vkCmdCopyBuffer2)load(context, "vkCmdCopyBuffer2"); + vkCmdCopyBufferToImage2 = (PFN_vkCmdCopyBufferToImage2)load(context, "vkCmdCopyBufferToImage2"); + vkCmdCopyImage2 = (PFN_vkCmdCopyImage2)load(context, "vkCmdCopyImage2"); + vkCmdCopyImageToBuffer2 = (PFN_vkCmdCopyImageToBuffer2)load(context, "vkCmdCopyImageToBuffer2"); + vkCmdEndRendering = (PFN_vkCmdEndRendering)load(context, "vkCmdEndRendering"); + vkCmdPipelineBarrier2 = (PFN_vkCmdPipelineBarrier2)load(context, "vkCmdPipelineBarrier2"); + vkCmdResetEvent2 = (PFN_vkCmdResetEvent2)load(context, "vkCmdResetEvent2"); + vkCmdResolveImage2 = (PFN_vkCmdResolveImage2)load(context, "vkCmdResolveImage2"); + vkCmdSetCullMode = (PFN_vkCmdSetCullMode)load(context, "vkCmdSetCullMode"); + vkCmdSetDepthBiasEnable = (PFN_vkCmdSetDepthBiasEnable)load(context, "vkCmdSetDepthBiasEnable"); + vkCmdSetDepthBoundsTestEnable = (PFN_vkCmdSetDepthBoundsTestEnable)load(context, "vkCmdSetDepthBoundsTestEnable"); + vkCmdSetDepthCompareOp = (PFN_vkCmdSetDepthCompareOp)load(context, "vkCmdSetDepthCompareOp"); + vkCmdSetDepthTestEnable = (PFN_vkCmdSetDepthTestEnable)load(context, "vkCmdSetDepthTestEnable"); + vkCmdSetDepthWriteEnable = (PFN_vkCmdSetDepthWriteEnable)load(context, "vkCmdSetDepthWriteEnable"); + vkCmdSetEvent2 = (PFN_vkCmdSetEvent2)load(context, "vkCmdSetEvent2"); + vkCmdSetFrontFace = (PFN_vkCmdSetFrontFace)load(context, "vkCmdSetFrontFace"); + vkCmdSetPrimitiveRestartEnable = (PFN_vkCmdSetPrimitiveRestartEnable)load(context, "vkCmdSetPrimitiveRestartEnable"); + vkCmdSetPrimitiveTopology = (PFN_vkCmdSetPrimitiveTopology)load(context, "vkCmdSetPrimitiveTopology"); + vkCmdSetRasterizerDiscardEnable = (PFN_vkCmdSetRasterizerDiscardEnable)load(context, "vkCmdSetRasterizerDiscardEnable"); + vkCmdSetScissorWithCount = (PFN_vkCmdSetScissorWithCount)load(context, "vkCmdSetScissorWithCount"); + vkCmdSetStencilOp = (PFN_vkCmdSetStencilOp)load(context, "vkCmdSetStencilOp"); + vkCmdSetStencilTestEnable = (PFN_vkCmdSetStencilTestEnable)load(context, "vkCmdSetStencilTestEnable"); + vkCmdSetViewportWithCount = (PFN_vkCmdSetViewportWithCount)load(context, "vkCmdSetViewportWithCount"); + vkCmdWaitEvents2 = (PFN_vkCmdWaitEvents2)load(context, "vkCmdWaitEvents2"); + vkCmdWriteTimestamp2 = (PFN_vkCmdWriteTimestamp2)load(context, "vkCmdWriteTimestamp2"); + vkCreatePrivateDataSlot = (PFN_vkCreatePrivateDataSlot)load(context, "vkCreatePrivateDataSlot"); + vkDestroyPrivateDataSlot = (PFN_vkDestroyPrivateDataSlot)load(context, "vkDestroyPrivateDataSlot"); + vkGetDeviceBufferMemoryRequirements = (PFN_vkGetDeviceBufferMemoryRequirements)load(context, "vkGetDeviceBufferMemoryRequirements"); + vkGetDeviceImageMemoryRequirements = (PFN_vkGetDeviceImageMemoryRequirements)load(context, "vkGetDeviceImageMemoryRequirements"); + vkGetDeviceImageSparseMemoryRequirements = (PFN_vkGetDeviceImageSparseMemoryRequirements)load(context, "vkGetDeviceImageSparseMemoryRequirements"); + vkGetPrivateData = (PFN_vkGetPrivateData)load(context, "vkGetPrivateData"); + vkQueueSubmit2 = (PFN_vkQueueSubmit2)load(context, "vkQueueSubmit2"); + vkSetPrivateData = (PFN_vkSetPrivateData)load(context, "vkSetPrivateData"); +#endif /* defined(VK_VERSION_1_3) */ +#if defined(VK_AMD_buffer_marker) + vkCmdWriteBufferMarkerAMD = (PFN_vkCmdWriteBufferMarkerAMD)load(context, "vkCmdWriteBufferMarkerAMD"); +#endif /* defined(VK_AMD_buffer_marker) */ +#if defined(VK_AMD_display_native_hdr) + vkSetLocalDimmingAMD = (PFN_vkSetLocalDimmingAMD)load(context, "vkSetLocalDimmingAMD"); +#endif /* defined(VK_AMD_display_native_hdr) */ +#if defined(VK_AMD_draw_indirect_count) + vkCmdDrawIndexedIndirectCountAMD = (PFN_vkCmdDrawIndexedIndirectCountAMD)load(context, "vkCmdDrawIndexedIndirectCountAMD"); + vkCmdDrawIndirectCountAMD = (PFN_vkCmdDrawIndirectCountAMD)load(context, "vkCmdDrawIndirectCountAMD"); +#endif /* defined(VK_AMD_draw_indirect_count) */ +#if defined(VK_AMD_shader_info) + vkGetShaderInfoAMD = (PFN_vkGetShaderInfoAMD)load(context, "vkGetShaderInfoAMD"); +#endif /* defined(VK_AMD_shader_info) */ +#if defined(VK_ANDROID_external_memory_android_hardware_buffer) + vkGetAndroidHardwareBufferPropertiesANDROID = (PFN_vkGetAndroidHardwareBufferPropertiesANDROID)load(context, "vkGetAndroidHardwareBufferPropertiesANDROID"); + vkGetMemoryAndroidHardwareBufferANDROID = (PFN_vkGetMemoryAndroidHardwareBufferANDROID)load(context, "vkGetMemoryAndroidHardwareBufferANDROID"); +#endif /* defined(VK_ANDROID_external_memory_android_hardware_buffer) */ +#if defined(VK_EXT_buffer_device_address) + vkGetBufferDeviceAddressEXT = (PFN_vkGetBufferDeviceAddressEXT)load(context, "vkGetBufferDeviceAddressEXT"); +#endif /* defined(VK_EXT_buffer_device_address) */ +#if defined(VK_EXT_calibrated_timestamps) + vkGetCalibratedTimestampsEXT = (PFN_vkGetCalibratedTimestampsEXT)load(context, "vkGetCalibratedTimestampsEXT"); +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_color_write_enable) + vkCmdSetColorWriteEnableEXT = (PFN_vkCmdSetColorWriteEnableEXT)load(context, "vkCmdSetColorWriteEnableEXT"); +#endif /* defined(VK_EXT_color_write_enable) */ +#if defined(VK_EXT_conditional_rendering) + vkCmdBeginConditionalRenderingEXT = (PFN_vkCmdBeginConditionalRenderingEXT)load(context, "vkCmdBeginConditionalRenderingEXT"); + vkCmdEndConditionalRenderingEXT = (PFN_vkCmdEndConditionalRenderingEXT)load(context, "vkCmdEndConditionalRenderingEXT"); +#endif /* defined(VK_EXT_conditional_rendering) */ +#if defined(VK_EXT_debug_marker) + vkCmdDebugMarkerBeginEXT = (PFN_vkCmdDebugMarkerBeginEXT)load(context, "vkCmdDebugMarkerBeginEXT"); + vkCmdDebugMarkerEndEXT = (PFN_vkCmdDebugMarkerEndEXT)load(context, "vkCmdDebugMarkerEndEXT"); + vkCmdDebugMarkerInsertEXT = (PFN_vkCmdDebugMarkerInsertEXT)load(context, "vkCmdDebugMarkerInsertEXT"); + vkDebugMarkerSetObjectNameEXT = (PFN_vkDebugMarkerSetObjectNameEXT)load(context, "vkDebugMarkerSetObjectNameEXT"); + vkDebugMarkerSetObjectTagEXT = (PFN_vkDebugMarkerSetObjectTagEXT)load(context, "vkDebugMarkerSetObjectTagEXT"); +#endif /* defined(VK_EXT_debug_marker) */ +#if defined(VK_EXT_discard_rectangles) + vkCmdSetDiscardRectangleEXT = (PFN_vkCmdSetDiscardRectangleEXT)load(context, "vkCmdSetDiscardRectangleEXT"); +#endif /* defined(VK_EXT_discard_rectangles) */ +#if defined(VK_EXT_display_control) + vkDisplayPowerControlEXT = (PFN_vkDisplayPowerControlEXT)load(context, "vkDisplayPowerControlEXT"); + vkGetSwapchainCounterEXT = (PFN_vkGetSwapchainCounterEXT)load(context, "vkGetSwapchainCounterEXT"); + vkRegisterDeviceEventEXT = (PFN_vkRegisterDeviceEventEXT)load(context, "vkRegisterDeviceEventEXT"); + vkRegisterDisplayEventEXT = (PFN_vkRegisterDisplayEventEXT)load(context, "vkRegisterDisplayEventEXT"); +#endif /* defined(VK_EXT_display_control) */ +#if defined(VK_EXT_extended_dynamic_state) + vkCmdBindVertexBuffers2EXT = (PFN_vkCmdBindVertexBuffers2EXT)load(context, "vkCmdBindVertexBuffers2EXT"); + vkCmdSetCullModeEXT = (PFN_vkCmdSetCullModeEXT)load(context, "vkCmdSetCullModeEXT"); + vkCmdSetDepthBoundsTestEnableEXT = (PFN_vkCmdSetDepthBoundsTestEnableEXT)load(context, "vkCmdSetDepthBoundsTestEnableEXT"); + vkCmdSetDepthCompareOpEXT = (PFN_vkCmdSetDepthCompareOpEXT)load(context, "vkCmdSetDepthCompareOpEXT"); + vkCmdSetDepthTestEnableEXT = (PFN_vkCmdSetDepthTestEnableEXT)load(context, "vkCmdSetDepthTestEnableEXT"); + vkCmdSetDepthWriteEnableEXT = (PFN_vkCmdSetDepthWriteEnableEXT)load(context, "vkCmdSetDepthWriteEnableEXT"); + vkCmdSetFrontFaceEXT = (PFN_vkCmdSetFrontFaceEXT)load(context, "vkCmdSetFrontFaceEXT"); + vkCmdSetPrimitiveTopologyEXT = (PFN_vkCmdSetPrimitiveTopologyEXT)load(context, "vkCmdSetPrimitiveTopologyEXT"); + vkCmdSetScissorWithCountEXT = (PFN_vkCmdSetScissorWithCountEXT)load(context, "vkCmdSetScissorWithCountEXT"); + vkCmdSetStencilOpEXT = (PFN_vkCmdSetStencilOpEXT)load(context, "vkCmdSetStencilOpEXT"); + vkCmdSetStencilTestEnableEXT = (PFN_vkCmdSetStencilTestEnableEXT)load(context, "vkCmdSetStencilTestEnableEXT"); + vkCmdSetViewportWithCountEXT = (PFN_vkCmdSetViewportWithCountEXT)load(context, "vkCmdSetViewportWithCountEXT"); +#endif /* defined(VK_EXT_extended_dynamic_state) */ +#if defined(VK_EXT_extended_dynamic_state2) + vkCmdSetDepthBiasEnableEXT = (PFN_vkCmdSetDepthBiasEnableEXT)load(context, "vkCmdSetDepthBiasEnableEXT"); + vkCmdSetLogicOpEXT = (PFN_vkCmdSetLogicOpEXT)load(context, "vkCmdSetLogicOpEXT"); + vkCmdSetPatchControlPointsEXT = (PFN_vkCmdSetPatchControlPointsEXT)load(context, "vkCmdSetPatchControlPointsEXT"); + vkCmdSetPrimitiveRestartEnableEXT = (PFN_vkCmdSetPrimitiveRestartEnableEXT)load(context, "vkCmdSetPrimitiveRestartEnableEXT"); + vkCmdSetRasterizerDiscardEnableEXT = (PFN_vkCmdSetRasterizerDiscardEnableEXT)load(context, "vkCmdSetRasterizerDiscardEnableEXT"); +#endif /* defined(VK_EXT_extended_dynamic_state2) */ +#if defined(VK_EXT_external_memory_host) + vkGetMemoryHostPointerPropertiesEXT = (PFN_vkGetMemoryHostPointerPropertiesEXT)load(context, "vkGetMemoryHostPointerPropertiesEXT"); +#endif /* defined(VK_EXT_external_memory_host) */ +#if defined(VK_EXT_full_screen_exclusive) + vkAcquireFullScreenExclusiveModeEXT = (PFN_vkAcquireFullScreenExclusiveModeEXT)load(context, "vkAcquireFullScreenExclusiveModeEXT"); + vkReleaseFullScreenExclusiveModeEXT = (PFN_vkReleaseFullScreenExclusiveModeEXT)load(context, "vkReleaseFullScreenExclusiveModeEXT"); +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_hdr_metadata) + vkSetHdrMetadataEXT = (PFN_vkSetHdrMetadataEXT)load(context, "vkSetHdrMetadataEXT"); +#endif /* defined(VK_EXT_hdr_metadata) */ +#if defined(VK_EXT_host_query_reset) + vkResetQueryPoolEXT = (PFN_vkResetQueryPoolEXT)load(context, "vkResetQueryPoolEXT"); +#endif /* defined(VK_EXT_host_query_reset) */ +#if defined(VK_EXT_image_compression_control) + vkGetImageSubresourceLayout2EXT = (PFN_vkGetImageSubresourceLayout2EXT)load(context, "vkGetImageSubresourceLayout2EXT"); +#endif /* defined(VK_EXT_image_compression_control) */ +#if defined(VK_EXT_image_drm_format_modifier) + vkGetImageDrmFormatModifierPropertiesEXT = (PFN_vkGetImageDrmFormatModifierPropertiesEXT)load(context, "vkGetImageDrmFormatModifierPropertiesEXT"); +#endif /* defined(VK_EXT_image_drm_format_modifier) */ +#if defined(VK_EXT_line_rasterization) + vkCmdSetLineStippleEXT = (PFN_vkCmdSetLineStippleEXT)load(context, "vkCmdSetLineStippleEXT"); +#endif /* defined(VK_EXT_line_rasterization) */ +#if defined(VK_EXT_multi_draw) + vkCmdDrawMultiEXT = (PFN_vkCmdDrawMultiEXT)load(context, "vkCmdDrawMultiEXT"); + vkCmdDrawMultiIndexedEXT = (PFN_vkCmdDrawMultiIndexedEXT)load(context, "vkCmdDrawMultiIndexedEXT"); +#endif /* defined(VK_EXT_multi_draw) */ +#if defined(VK_EXT_pageable_device_local_memory) + vkSetDeviceMemoryPriorityEXT = (PFN_vkSetDeviceMemoryPriorityEXT)load(context, "vkSetDeviceMemoryPriorityEXT"); +#endif /* defined(VK_EXT_pageable_device_local_memory) */ +#if defined(VK_EXT_pipeline_properties) + vkGetPipelinePropertiesEXT = (PFN_vkGetPipelinePropertiesEXT)load(context, "vkGetPipelinePropertiesEXT"); +#endif /* defined(VK_EXT_pipeline_properties) */ +#if defined(VK_EXT_private_data) + vkCreatePrivateDataSlotEXT = (PFN_vkCreatePrivateDataSlotEXT)load(context, "vkCreatePrivateDataSlotEXT"); + vkDestroyPrivateDataSlotEXT = (PFN_vkDestroyPrivateDataSlotEXT)load(context, "vkDestroyPrivateDataSlotEXT"); + vkGetPrivateDataEXT = (PFN_vkGetPrivateDataEXT)load(context, "vkGetPrivateDataEXT"); + vkSetPrivateDataEXT = (PFN_vkSetPrivateDataEXT)load(context, "vkSetPrivateDataEXT"); +#endif /* defined(VK_EXT_private_data) */ +#if defined(VK_EXT_sample_locations) + vkCmdSetSampleLocationsEXT = (PFN_vkCmdSetSampleLocationsEXT)load(context, "vkCmdSetSampleLocationsEXT"); +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_transform_feedback) + vkCmdBeginQueryIndexedEXT = (PFN_vkCmdBeginQueryIndexedEXT)load(context, "vkCmdBeginQueryIndexedEXT"); + vkCmdBeginTransformFeedbackEXT = (PFN_vkCmdBeginTransformFeedbackEXT)load(context, "vkCmdBeginTransformFeedbackEXT"); + vkCmdBindTransformFeedbackBuffersEXT = (PFN_vkCmdBindTransformFeedbackBuffersEXT)load(context, "vkCmdBindTransformFeedbackBuffersEXT"); + vkCmdDrawIndirectByteCountEXT = (PFN_vkCmdDrawIndirectByteCountEXT)load(context, "vkCmdDrawIndirectByteCountEXT"); + vkCmdEndQueryIndexedEXT = (PFN_vkCmdEndQueryIndexedEXT)load(context, "vkCmdEndQueryIndexedEXT"); + vkCmdEndTransformFeedbackEXT = (PFN_vkCmdEndTransformFeedbackEXT)load(context, "vkCmdEndTransformFeedbackEXT"); +#endif /* defined(VK_EXT_transform_feedback) */ +#if defined(VK_EXT_validation_cache) + vkCreateValidationCacheEXT = (PFN_vkCreateValidationCacheEXT)load(context, "vkCreateValidationCacheEXT"); + vkDestroyValidationCacheEXT = (PFN_vkDestroyValidationCacheEXT)load(context, "vkDestroyValidationCacheEXT"); + vkGetValidationCacheDataEXT = (PFN_vkGetValidationCacheDataEXT)load(context, "vkGetValidationCacheDataEXT"); + vkMergeValidationCachesEXT = (PFN_vkMergeValidationCachesEXT)load(context, "vkMergeValidationCachesEXT"); +#endif /* defined(VK_EXT_validation_cache) */ +#if defined(VK_EXT_vertex_input_dynamic_state) + vkCmdSetVertexInputEXT = (PFN_vkCmdSetVertexInputEXT)load(context, "vkCmdSetVertexInputEXT"); +#endif /* defined(VK_EXT_vertex_input_dynamic_state) */ +#if defined(VK_FUCHSIA_buffer_collection) + vkCreateBufferCollectionFUCHSIA = (PFN_vkCreateBufferCollectionFUCHSIA)load(context, "vkCreateBufferCollectionFUCHSIA"); + vkDestroyBufferCollectionFUCHSIA = (PFN_vkDestroyBufferCollectionFUCHSIA)load(context, "vkDestroyBufferCollectionFUCHSIA"); + vkGetBufferCollectionPropertiesFUCHSIA = (PFN_vkGetBufferCollectionPropertiesFUCHSIA)load(context, "vkGetBufferCollectionPropertiesFUCHSIA"); + vkSetBufferCollectionBufferConstraintsFUCHSIA = (PFN_vkSetBufferCollectionBufferConstraintsFUCHSIA)load(context, "vkSetBufferCollectionBufferConstraintsFUCHSIA"); + vkSetBufferCollectionImageConstraintsFUCHSIA = (PFN_vkSetBufferCollectionImageConstraintsFUCHSIA)load(context, "vkSetBufferCollectionImageConstraintsFUCHSIA"); +#endif /* defined(VK_FUCHSIA_buffer_collection) */ +#if defined(VK_FUCHSIA_external_memory) + vkGetMemoryZirconHandleFUCHSIA = (PFN_vkGetMemoryZirconHandleFUCHSIA)load(context, "vkGetMemoryZirconHandleFUCHSIA"); + vkGetMemoryZirconHandlePropertiesFUCHSIA = (PFN_vkGetMemoryZirconHandlePropertiesFUCHSIA)load(context, "vkGetMemoryZirconHandlePropertiesFUCHSIA"); +#endif /* defined(VK_FUCHSIA_external_memory) */ +#if defined(VK_FUCHSIA_external_semaphore) + vkGetSemaphoreZirconHandleFUCHSIA = (PFN_vkGetSemaphoreZirconHandleFUCHSIA)load(context, "vkGetSemaphoreZirconHandleFUCHSIA"); + vkImportSemaphoreZirconHandleFUCHSIA = (PFN_vkImportSemaphoreZirconHandleFUCHSIA)load(context, "vkImportSemaphoreZirconHandleFUCHSIA"); +#endif /* defined(VK_FUCHSIA_external_semaphore) */ +#if defined(VK_GOOGLE_display_timing) + vkGetPastPresentationTimingGOOGLE = (PFN_vkGetPastPresentationTimingGOOGLE)load(context, "vkGetPastPresentationTimingGOOGLE"); + vkGetRefreshCycleDurationGOOGLE = (PFN_vkGetRefreshCycleDurationGOOGLE)load(context, "vkGetRefreshCycleDurationGOOGLE"); +#endif /* defined(VK_GOOGLE_display_timing) */ +#if defined(VK_HUAWEI_invocation_mask) + vkCmdBindInvocationMaskHUAWEI = (PFN_vkCmdBindInvocationMaskHUAWEI)load(context, "vkCmdBindInvocationMaskHUAWEI"); +#endif /* defined(VK_HUAWEI_invocation_mask) */ +#if defined(VK_HUAWEI_subpass_shading) + vkCmdSubpassShadingHUAWEI = (PFN_vkCmdSubpassShadingHUAWEI)load(context, "vkCmdSubpassShadingHUAWEI"); + vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI = (PFN_vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI)load(context, "vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI"); +#endif /* defined(VK_HUAWEI_subpass_shading) */ +#if defined(VK_INTEL_performance_query) + vkAcquirePerformanceConfigurationINTEL = (PFN_vkAcquirePerformanceConfigurationINTEL)load(context, "vkAcquirePerformanceConfigurationINTEL"); + vkCmdSetPerformanceMarkerINTEL = (PFN_vkCmdSetPerformanceMarkerINTEL)load(context, "vkCmdSetPerformanceMarkerINTEL"); + vkCmdSetPerformanceOverrideINTEL = (PFN_vkCmdSetPerformanceOverrideINTEL)load(context, "vkCmdSetPerformanceOverrideINTEL"); + vkCmdSetPerformanceStreamMarkerINTEL = (PFN_vkCmdSetPerformanceStreamMarkerINTEL)load(context, "vkCmdSetPerformanceStreamMarkerINTEL"); + vkGetPerformanceParameterINTEL = (PFN_vkGetPerformanceParameterINTEL)load(context, "vkGetPerformanceParameterINTEL"); + vkInitializePerformanceApiINTEL = (PFN_vkInitializePerformanceApiINTEL)load(context, "vkInitializePerformanceApiINTEL"); + vkQueueSetPerformanceConfigurationINTEL = (PFN_vkQueueSetPerformanceConfigurationINTEL)load(context, "vkQueueSetPerformanceConfigurationINTEL"); + vkReleasePerformanceConfigurationINTEL = (PFN_vkReleasePerformanceConfigurationINTEL)load(context, "vkReleasePerformanceConfigurationINTEL"); + vkUninitializePerformanceApiINTEL = (PFN_vkUninitializePerformanceApiINTEL)load(context, "vkUninitializePerformanceApiINTEL"); +#endif /* defined(VK_INTEL_performance_query) */ +#if defined(VK_KHR_acceleration_structure) + vkBuildAccelerationStructuresKHR = (PFN_vkBuildAccelerationStructuresKHR)load(context, "vkBuildAccelerationStructuresKHR"); + vkCmdBuildAccelerationStructuresIndirectKHR = (PFN_vkCmdBuildAccelerationStructuresIndirectKHR)load(context, "vkCmdBuildAccelerationStructuresIndirectKHR"); + vkCmdBuildAccelerationStructuresKHR = (PFN_vkCmdBuildAccelerationStructuresKHR)load(context, "vkCmdBuildAccelerationStructuresKHR"); + vkCmdCopyAccelerationStructureKHR = (PFN_vkCmdCopyAccelerationStructureKHR)load(context, "vkCmdCopyAccelerationStructureKHR"); + vkCmdCopyAccelerationStructureToMemoryKHR = (PFN_vkCmdCopyAccelerationStructureToMemoryKHR)load(context, "vkCmdCopyAccelerationStructureToMemoryKHR"); + vkCmdCopyMemoryToAccelerationStructureKHR = (PFN_vkCmdCopyMemoryToAccelerationStructureKHR)load(context, "vkCmdCopyMemoryToAccelerationStructureKHR"); + vkCmdWriteAccelerationStructuresPropertiesKHR = (PFN_vkCmdWriteAccelerationStructuresPropertiesKHR)load(context, "vkCmdWriteAccelerationStructuresPropertiesKHR"); + vkCopyAccelerationStructureKHR = (PFN_vkCopyAccelerationStructureKHR)load(context, "vkCopyAccelerationStructureKHR"); + vkCopyAccelerationStructureToMemoryKHR = (PFN_vkCopyAccelerationStructureToMemoryKHR)load(context, "vkCopyAccelerationStructureToMemoryKHR"); + vkCopyMemoryToAccelerationStructureKHR = (PFN_vkCopyMemoryToAccelerationStructureKHR)load(context, "vkCopyMemoryToAccelerationStructureKHR"); + vkCreateAccelerationStructureKHR = (PFN_vkCreateAccelerationStructureKHR)load(context, "vkCreateAccelerationStructureKHR"); + vkDestroyAccelerationStructureKHR = (PFN_vkDestroyAccelerationStructureKHR)load(context, "vkDestroyAccelerationStructureKHR"); + vkGetAccelerationStructureBuildSizesKHR = (PFN_vkGetAccelerationStructureBuildSizesKHR)load(context, "vkGetAccelerationStructureBuildSizesKHR"); + vkGetAccelerationStructureDeviceAddressKHR = (PFN_vkGetAccelerationStructureDeviceAddressKHR)load(context, "vkGetAccelerationStructureDeviceAddressKHR"); + vkGetDeviceAccelerationStructureCompatibilityKHR = (PFN_vkGetDeviceAccelerationStructureCompatibilityKHR)load(context, "vkGetDeviceAccelerationStructureCompatibilityKHR"); + vkWriteAccelerationStructuresPropertiesKHR = (PFN_vkWriteAccelerationStructuresPropertiesKHR)load(context, "vkWriteAccelerationStructuresPropertiesKHR"); +#endif /* defined(VK_KHR_acceleration_structure) */ +#if defined(VK_KHR_bind_memory2) + vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2KHR)load(context, "vkBindBufferMemory2KHR"); + vkBindImageMemory2KHR = (PFN_vkBindImageMemory2KHR)load(context, "vkBindImageMemory2KHR"); +#endif /* defined(VK_KHR_bind_memory2) */ +#if defined(VK_KHR_buffer_device_address) + vkGetBufferDeviceAddressKHR = (PFN_vkGetBufferDeviceAddressKHR)load(context, "vkGetBufferDeviceAddressKHR"); + vkGetBufferOpaqueCaptureAddressKHR = (PFN_vkGetBufferOpaqueCaptureAddressKHR)load(context, "vkGetBufferOpaqueCaptureAddressKHR"); + vkGetDeviceMemoryOpaqueCaptureAddressKHR = (PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR)load(context, "vkGetDeviceMemoryOpaqueCaptureAddressKHR"); +#endif /* defined(VK_KHR_buffer_device_address) */ +#if defined(VK_KHR_copy_commands2) + vkCmdBlitImage2KHR = (PFN_vkCmdBlitImage2KHR)load(context, "vkCmdBlitImage2KHR"); + vkCmdCopyBuffer2KHR = (PFN_vkCmdCopyBuffer2KHR)load(context, "vkCmdCopyBuffer2KHR"); + vkCmdCopyBufferToImage2KHR = (PFN_vkCmdCopyBufferToImage2KHR)load(context, "vkCmdCopyBufferToImage2KHR"); + vkCmdCopyImage2KHR = (PFN_vkCmdCopyImage2KHR)load(context, "vkCmdCopyImage2KHR"); + vkCmdCopyImageToBuffer2KHR = (PFN_vkCmdCopyImageToBuffer2KHR)load(context, "vkCmdCopyImageToBuffer2KHR"); + vkCmdResolveImage2KHR = (PFN_vkCmdResolveImage2KHR)load(context, "vkCmdResolveImage2KHR"); +#endif /* defined(VK_KHR_copy_commands2) */ +#if defined(VK_KHR_create_renderpass2) + vkCmdBeginRenderPass2KHR = (PFN_vkCmdBeginRenderPass2KHR)load(context, "vkCmdBeginRenderPass2KHR"); + vkCmdEndRenderPass2KHR = (PFN_vkCmdEndRenderPass2KHR)load(context, "vkCmdEndRenderPass2KHR"); + vkCmdNextSubpass2KHR = (PFN_vkCmdNextSubpass2KHR)load(context, "vkCmdNextSubpass2KHR"); + vkCreateRenderPass2KHR = (PFN_vkCreateRenderPass2KHR)load(context, "vkCreateRenderPass2KHR"); +#endif /* defined(VK_KHR_create_renderpass2) */ +#if defined(VK_KHR_deferred_host_operations) + vkCreateDeferredOperationKHR = (PFN_vkCreateDeferredOperationKHR)load(context, "vkCreateDeferredOperationKHR"); + vkDeferredOperationJoinKHR = (PFN_vkDeferredOperationJoinKHR)load(context, "vkDeferredOperationJoinKHR"); + vkDestroyDeferredOperationKHR = (PFN_vkDestroyDeferredOperationKHR)load(context, "vkDestroyDeferredOperationKHR"); + vkGetDeferredOperationMaxConcurrencyKHR = (PFN_vkGetDeferredOperationMaxConcurrencyKHR)load(context, "vkGetDeferredOperationMaxConcurrencyKHR"); + vkGetDeferredOperationResultKHR = (PFN_vkGetDeferredOperationResultKHR)load(context, "vkGetDeferredOperationResultKHR"); +#endif /* defined(VK_KHR_deferred_host_operations) */ +#if defined(VK_KHR_descriptor_update_template) + vkCreateDescriptorUpdateTemplateKHR = (PFN_vkCreateDescriptorUpdateTemplateKHR)load(context, "vkCreateDescriptorUpdateTemplateKHR"); + vkDestroyDescriptorUpdateTemplateKHR = (PFN_vkDestroyDescriptorUpdateTemplateKHR)load(context, "vkDestroyDescriptorUpdateTemplateKHR"); + vkUpdateDescriptorSetWithTemplateKHR = (PFN_vkUpdateDescriptorSetWithTemplateKHR)load(context, "vkUpdateDescriptorSetWithTemplateKHR"); +#endif /* defined(VK_KHR_descriptor_update_template) */ +#if defined(VK_KHR_device_group) + vkCmdDispatchBaseKHR = (PFN_vkCmdDispatchBaseKHR)load(context, "vkCmdDispatchBaseKHR"); + vkCmdSetDeviceMaskKHR = (PFN_vkCmdSetDeviceMaskKHR)load(context, "vkCmdSetDeviceMaskKHR"); + vkGetDeviceGroupPeerMemoryFeaturesKHR = (PFN_vkGetDeviceGroupPeerMemoryFeaturesKHR)load(context, "vkGetDeviceGroupPeerMemoryFeaturesKHR"); +#endif /* defined(VK_KHR_device_group) */ +#if defined(VK_KHR_display_swapchain) + vkCreateSharedSwapchainsKHR = (PFN_vkCreateSharedSwapchainsKHR)load(context, "vkCreateSharedSwapchainsKHR"); +#endif /* defined(VK_KHR_display_swapchain) */ +#if defined(VK_KHR_draw_indirect_count) + vkCmdDrawIndexedIndirectCountKHR = (PFN_vkCmdDrawIndexedIndirectCountKHR)load(context, "vkCmdDrawIndexedIndirectCountKHR"); + vkCmdDrawIndirectCountKHR = (PFN_vkCmdDrawIndirectCountKHR)load(context, "vkCmdDrawIndirectCountKHR"); +#endif /* defined(VK_KHR_draw_indirect_count) */ +#if defined(VK_KHR_dynamic_rendering) + vkCmdBeginRenderingKHR = (PFN_vkCmdBeginRenderingKHR)load(context, "vkCmdBeginRenderingKHR"); + vkCmdEndRenderingKHR = (PFN_vkCmdEndRenderingKHR)load(context, "vkCmdEndRenderingKHR"); +#endif /* defined(VK_KHR_dynamic_rendering) */ +#if defined(VK_KHR_external_fence_fd) + vkGetFenceFdKHR = (PFN_vkGetFenceFdKHR)load(context, "vkGetFenceFdKHR"); + vkImportFenceFdKHR = (PFN_vkImportFenceFdKHR)load(context, "vkImportFenceFdKHR"); +#endif /* defined(VK_KHR_external_fence_fd) */ +#if defined(VK_KHR_external_fence_win32) + vkGetFenceWin32HandleKHR = (PFN_vkGetFenceWin32HandleKHR)load(context, "vkGetFenceWin32HandleKHR"); + vkImportFenceWin32HandleKHR = (PFN_vkImportFenceWin32HandleKHR)load(context, "vkImportFenceWin32HandleKHR"); +#endif /* defined(VK_KHR_external_fence_win32) */ +#if defined(VK_KHR_external_memory_fd) + vkGetMemoryFdKHR = (PFN_vkGetMemoryFdKHR)load(context, "vkGetMemoryFdKHR"); + vkGetMemoryFdPropertiesKHR = (PFN_vkGetMemoryFdPropertiesKHR)load(context, "vkGetMemoryFdPropertiesKHR"); +#endif /* defined(VK_KHR_external_memory_fd) */ +#if defined(VK_KHR_external_memory_win32) + vkGetMemoryWin32HandleKHR = (PFN_vkGetMemoryWin32HandleKHR)load(context, "vkGetMemoryWin32HandleKHR"); + vkGetMemoryWin32HandlePropertiesKHR = (PFN_vkGetMemoryWin32HandlePropertiesKHR)load(context, "vkGetMemoryWin32HandlePropertiesKHR"); +#endif /* defined(VK_KHR_external_memory_win32) */ +#if defined(VK_KHR_external_semaphore_fd) + vkGetSemaphoreFdKHR = (PFN_vkGetSemaphoreFdKHR)load(context, "vkGetSemaphoreFdKHR"); + vkImportSemaphoreFdKHR = (PFN_vkImportSemaphoreFdKHR)load(context, "vkImportSemaphoreFdKHR"); +#endif /* defined(VK_KHR_external_semaphore_fd) */ +#if defined(VK_KHR_external_semaphore_win32) + vkGetSemaphoreWin32HandleKHR = (PFN_vkGetSemaphoreWin32HandleKHR)load(context, "vkGetSemaphoreWin32HandleKHR"); + vkImportSemaphoreWin32HandleKHR = (PFN_vkImportSemaphoreWin32HandleKHR)load(context, "vkImportSemaphoreWin32HandleKHR"); +#endif /* defined(VK_KHR_external_semaphore_win32) */ +#if defined(VK_KHR_fragment_shading_rate) + vkCmdSetFragmentShadingRateKHR = (PFN_vkCmdSetFragmentShadingRateKHR)load(context, "vkCmdSetFragmentShadingRateKHR"); +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_memory_requirements2) + vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2KHR)load(context, "vkGetBufferMemoryRequirements2KHR"); + vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2KHR)load(context, "vkGetImageMemoryRequirements2KHR"); + vkGetImageSparseMemoryRequirements2KHR = (PFN_vkGetImageSparseMemoryRequirements2KHR)load(context, "vkGetImageSparseMemoryRequirements2KHR"); +#endif /* defined(VK_KHR_get_memory_requirements2) */ +#if defined(VK_KHR_maintenance1) + vkTrimCommandPoolKHR = (PFN_vkTrimCommandPoolKHR)load(context, "vkTrimCommandPoolKHR"); +#endif /* defined(VK_KHR_maintenance1) */ +#if defined(VK_KHR_maintenance3) + vkGetDescriptorSetLayoutSupportKHR = (PFN_vkGetDescriptorSetLayoutSupportKHR)load(context, "vkGetDescriptorSetLayoutSupportKHR"); +#endif /* defined(VK_KHR_maintenance3) */ +#if defined(VK_KHR_maintenance4) + vkGetDeviceBufferMemoryRequirementsKHR = (PFN_vkGetDeviceBufferMemoryRequirementsKHR)load(context, "vkGetDeviceBufferMemoryRequirementsKHR"); + vkGetDeviceImageMemoryRequirementsKHR = (PFN_vkGetDeviceImageMemoryRequirementsKHR)load(context, "vkGetDeviceImageMemoryRequirementsKHR"); + vkGetDeviceImageSparseMemoryRequirementsKHR = (PFN_vkGetDeviceImageSparseMemoryRequirementsKHR)load(context, "vkGetDeviceImageSparseMemoryRequirementsKHR"); +#endif /* defined(VK_KHR_maintenance4) */ +#if defined(VK_KHR_performance_query) + vkAcquireProfilingLockKHR = (PFN_vkAcquireProfilingLockKHR)load(context, "vkAcquireProfilingLockKHR"); + vkReleaseProfilingLockKHR = (PFN_vkReleaseProfilingLockKHR)load(context, "vkReleaseProfilingLockKHR"); +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_pipeline_executable_properties) + vkGetPipelineExecutableInternalRepresentationsKHR = (PFN_vkGetPipelineExecutableInternalRepresentationsKHR)load(context, "vkGetPipelineExecutableInternalRepresentationsKHR"); + vkGetPipelineExecutablePropertiesKHR = (PFN_vkGetPipelineExecutablePropertiesKHR)load(context, "vkGetPipelineExecutablePropertiesKHR"); + vkGetPipelineExecutableStatisticsKHR = (PFN_vkGetPipelineExecutableStatisticsKHR)load(context, "vkGetPipelineExecutableStatisticsKHR"); +#endif /* defined(VK_KHR_pipeline_executable_properties) */ +#if defined(VK_KHR_present_wait) + vkWaitForPresentKHR = (PFN_vkWaitForPresentKHR)load(context, "vkWaitForPresentKHR"); +#endif /* defined(VK_KHR_present_wait) */ +#if defined(VK_KHR_push_descriptor) + vkCmdPushDescriptorSetKHR = (PFN_vkCmdPushDescriptorSetKHR)load(context, "vkCmdPushDescriptorSetKHR"); +#endif /* defined(VK_KHR_push_descriptor) */ +#if defined(VK_KHR_ray_tracing_maintenance1) && defined(VK_KHR_ray_tracing_pipeline) + vkCmdTraceRaysIndirect2KHR = (PFN_vkCmdTraceRaysIndirect2KHR)load(context, "vkCmdTraceRaysIndirect2KHR"); +#endif /* defined(VK_KHR_ray_tracing_maintenance1) && defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_ray_tracing_pipeline) + vkCmdSetRayTracingPipelineStackSizeKHR = (PFN_vkCmdSetRayTracingPipelineStackSizeKHR)load(context, "vkCmdSetRayTracingPipelineStackSizeKHR"); + vkCmdTraceRaysIndirectKHR = (PFN_vkCmdTraceRaysIndirectKHR)load(context, "vkCmdTraceRaysIndirectKHR"); + vkCmdTraceRaysKHR = (PFN_vkCmdTraceRaysKHR)load(context, "vkCmdTraceRaysKHR"); + vkCreateRayTracingPipelinesKHR = (PFN_vkCreateRayTracingPipelinesKHR)load(context, "vkCreateRayTracingPipelinesKHR"); + vkGetRayTracingCaptureReplayShaderGroupHandlesKHR = (PFN_vkGetRayTracingCaptureReplayShaderGroupHandlesKHR)load(context, "vkGetRayTracingCaptureReplayShaderGroupHandlesKHR"); + vkGetRayTracingShaderGroupHandlesKHR = (PFN_vkGetRayTracingShaderGroupHandlesKHR)load(context, "vkGetRayTracingShaderGroupHandlesKHR"); + vkGetRayTracingShaderGroupStackSizeKHR = (PFN_vkGetRayTracingShaderGroupStackSizeKHR)load(context, "vkGetRayTracingShaderGroupStackSizeKHR"); +#endif /* defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_sampler_ycbcr_conversion) + vkCreateSamplerYcbcrConversionKHR = (PFN_vkCreateSamplerYcbcrConversionKHR)load(context, "vkCreateSamplerYcbcrConversionKHR"); + vkDestroySamplerYcbcrConversionKHR = (PFN_vkDestroySamplerYcbcrConversionKHR)load(context, "vkDestroySamplerYcbcrConversionKHR"); +#endif /* defined(VK_KHR_sampler_ycbcr_conversion) */ +#if defined(VK_KHR_shared_presentable_image) + vkGetSwapchainStatusKHR = (PFN_vkGetSwapchainStatusKHR)load(context, "vkGetSwapchainStatusKHR"); +#endif /* defined(VK_KHR_shared_presentable_image) */ +#if defined(VK_KHR_swapchain) + vkAcquireNextImageKHR = (PFN_vkAcquireNextImageKHR)load(context, "vkAcquireNextImageKHR"); + vkCreateSwapchainKHR = (PFN_vkCreateSwapchainKHR)load(context, "vkCreateSwapchainKHR"); + vkDestroySwapchainKHR = (PFN_vkDestroySwapchainKHR)load(context, "vkDestroySwapchainKHR"); + vkGetSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR)load(context, "vkGetSwapchainImagesKHR"); + vkQueuePresentKHR = (PFN_vkQueuePresentKHR)load(context, "vkQueuePresentKHR"); +#endif /* defined(VK_KHR_swapchain) */ +#if defined(VK_KHR_synchronization2) + vkCmdPipelineBarrier2KHR = (PFN_vkCmdPipelineBarrier2KHR)load(context, "vkCmdPipelineBarrier2KHR"); + vkCmdResetEvent2KHR = (PFN_vkCmdResetEvent2KHR)load(context, "vkCmdResetEvent2KHR"); + vkCmdSetEvent2KHR = (PFN_vkCmdSetEvent2KHR)load(context, "vkCmdSetEvent2KHR"); + vkCmdWaitEvents2KHR = (PFN_vkCmdWaitEvents2KHR)load(context, "vkCmdWaitEvents2KHR"); + vkCmdWriteTimestamp2KHR = (PFN_vkCmdWriteTimestamp2KHR)load(context, "vkCmdWriteTimestamp2KHR"); + vkQueueSubmit2KHR = (PFN_vkQueueSubmit2KHR)load(context, "vkQueueSubmit2KHR"); +#endif /* defined(VK_KHR_synchronization2) */ +#if defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) + vkCmdWriteBufferMarker2AMD = (PFN_vkCmdWriteBufferMarker2AMD)load(context, "vkCmdWriteBufferMarker2AMD"); +#endif /* defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) */ +#if defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) + vkGetQueueCheckpointData2NV = (PFN_vkGetQueueCheckpointData2NV)load(context, "vkGetQueueCheckpointData2NV"); +#endif /* defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_KHR_timeline_semaphore) + vkGetSemaphoreCounterValueKHR = (PFN_vkGetSemaphoreCounterValueKHR)load(context, "vkGetSemaphoreCounterValueKHR"); + vkSignalSemaphoreKHR = (PFN_vkSignalSemaphoreKHR)load(context, "vkSignalSemaphoreKHR"); + vkWaitSemaphoresKHR = (PFN_vkWaitSemaphoresKHR)load(context, "vkWaitSemaphoresKHR"); +#endif /* defined(VK_KHR_timeline_semaphore) */ +#if defined(VK_KHR_video_decode_queue) + vkCmdDecodeVideoKHR = (PFN_vkCmdDecodeVideoKHR)load(context, "vkCmdDecodeVideoKHR"); +#endif /* defined(VK_KHR_video_decode_queue) */ +#if defined(VK_KHR_video_encode_queue) + vkCmdEncodeVideoKHR = (PFN_vkCmdEncodeVideoKHR)load(context, "vkCmdEncodeVideoKHR"); +#endif /* defined(VK_KHR_video_encode_queue) */ +#if defined(VK_KHR_video_queue) + vkBindVideoSessionMemoryKHR = (PFN_vkBindVideoSessionMemoryKHR)load(context, "vkBindVideoSessionMemoryKHR"); + vkCmdBeginVideoCodingKHR = (PFN_vkCmdBeginVideoCodingKHR)load(context, "vkCmdBeginVideoCodingKHR"); + vkCmdControlVideoCodingKHR = (PFN_vkCmdControlVideoCodingKHR)load(context, "vkCmdControlVideoCodingKHR"); + vkCmdEndVideoCodingKHR = (PFN_vkCmdEndVideoCodingKHR)load(context, "vkCmdEndVideoCodingKHR"); + vkCreateVideoSessionKHR = (PFN_vkCreateVideoSessionKHR)load(context, "vkCreateVideoSessionKHR"); + vkCreateVideoSessionParametersKHR = (PFN_vkCreateVideoSessionParametersKHR)load(context, "vkCreateVideoSessionParametersKHR"); + vkDestroyVideoSessionKHR = (PFN_vkDestroyVideoSessionKHR)load(context, "vkDestroyVideoSessionKHR"); + vkDestroyVideoSessionParametersKHR = (PFN_vkDestroyVideoSessionParametersKHR)load(context, "vkDestroyVideoSessionParametersKHR"); + vkGetVideoSessionMemoryRequirementsKHR = (PFN_vkGetVideoSessionMemoryRequirementsKHR)load(context, "vkGetVideoSessionMemoryRequirementsKHR"); + vkUpdateVideoSessionParametersKHR = (PFN_vkUpdateVideoSessionParametersKHR)load(context, "vkUpdateVideoSessionParametersKHR"); +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_NVX_binary_import) + vkCmdCuLaunchKernelNVX = (PFN_vkCmdCuLaunchKernelNVX)load(context, "vkCmdCuLaunchKernelNVX"); + vkCreateCuFunctionNVX = (PFN_vkCreateCuFunctionNVX)load(context, "vkCreateCuFunctionNVX"); + vkCreateCuModuleNVX = (PFN_vkCreateCuModuleNVX)load(context, "vkCreateCuModuleNVX"); + vkDestroyCuFunctionNVX = (PFN_vkDestroyCuFunctionNVX)load(context, "vkDestroyCuFunctionNVX"); + vkDestroyCuModuleNVX = (PFN_vkDestroyCuModuleNVX)load(context, "vkDestroyCuModuleNVX"); +#endif /* defined(VK_NVX_binary_import) */ +#if defined(VK_NVX_image_view_handle) + vkGetImageViewAddressNVX = (PFN_vkGetImageViewAddressNVX)load(context, "vkGetImageViewAddressNVX"); + vkGetImageViewHandleNVX = (PFN_vkGetImageViewHandleNVX)load(context, "vkGetImageViewHandleNVX"); +#endif /* defined(VK_NVX_image_view_handle) */ +#if defined(VK_NV_clip_space_w_scaling) + vkCmdSetViewportWScalingNV = (PFN_vkCmdSetViewportWScalingNV)load(context, "vkCmdSetViewportWScalingNV"); +#endif /* defined(VK_NV_clip_space_w_scaling) */ +#if defined(VK_NV_device_diagnostic_checkpoints) + vkCmdSetCheckpointNV = (PFN_vkCmdSetCheckpointNV)load(context, "vkCmdSetCheckpointNV"); + vkGetQueueCheckpointDataNV = (PFN_vkGetQueueCheckpointDataNV)load(context, "vkGetQueueCheckpointDataNV"); +#endif /* defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_NV_device_generated_commands) + vkCmdBindPipelineShaderGroupNV = (PFN_vkCmdBindPipelineShaderGroupNV)load(context, "vkCmdBindPipelineShaderGroupNV"); + vkCmdExecuteGeneratedCommandsNV = (PFN_vkCmdExecuteGeneratedCommandsNV)load(context, "vkCmdExecuteGeneratedCommandsNV"); + vkCmdPreprocessGeneratedCommandsNV = (PFN_vkCmdPreprocessGeneratedCommandsNV)load(context, "vkCmdPreprocessGeneratedCommandsNV"); + vkCreateIndirectCommandsLayoutNV = (PFN_vkCreateIndirectCommandsLayoutNV)load(context, "vkCreateIndirectCommandsLayoutNV"); + vkDestroyIndirectCommandsLayoutNV = (PFN_vkDestroyIndirectCommandsLayoutNV)load(context, "vkDestroyIndirectCommandsLayoutNV"); + vkGetGeneratedCommandsMemoryRequirementsNV = (PFN_vkGetGeneratedCommandsMemoryRequirementsNV)load(context, "vkGetGeneratedCommandsMemoryRequirementsNV"); +#endif /* defined(VK_NV_device_generated_commands) */ +#if defined(VK_NV_external_memory_rdma) + vkGetMemoryRemoteAddressNV = (PFN_vkGetMemoryRemoteAddressNV)load(context, "vkGetMemoryRemoteAddressNV"); +#endif /* defined(VK_NV_external_memory_rdma) */ +#if defined(VK_NV_external_memory_win32) + vkGetMemoryWin32HandleNV = (PFN_vkGetMemoryWin32HandleNV)load(context, "vkGetMemoryWin32HandleNV"); +#endif /* defined(VK_NV_external_memory_win32) */ +#if defined(VK_NV_fragment_shading_rate_enums) + vkCmdSetFragmentShadingRateEnumNV = (PFN_vkCmdSetFragmentShadingRateEnumNV)load(context, "vkCmdSetFragmentShadingRateEnumNV"); +#endif /* defined(VK_NV_fragment_shading_rate_enums) */ +#if defined(VK_NV_mesh_shader) + vkCmdDrawMeshTasksIndirectCountNV = (PFN_vkCmdDrawMeshTasksIndirectCountNV)load(context, "vkCmdDrawMeshTasksIndirectCountNV"); + vkCmdDrawMeshTasksIndirectNV = (PFN_vkCmdDrawMeshTasksIndirectNV)load(context, "vkCmdDrawMeshTasksIndirectNV"); + vkCmdDrawMeshTasksNV = (PFN_vkCmdDrawMeshTasksNV)load(context, "vkCmdDrawMeshTasksNV"); +#endif /* defined(VK_NV_mesh_shader) */ +#if defined(VK_NV_ray_tracing) + vkBindAccelerationStructureMemoryNV = (PFN_vkBindAccelerationStructureMemoryNV)load(context, "vkBindAccelerationStructureMemoryNV"); + vkCmdBuildAccelerationStructureNV = (PFN_vkCmdBuildAccelerationStructureNV)load(context, "vkCmdBuildAccelerationStructureNV"); + vkCmdCopyAccelerationStructureNV = (PFN_vkCmdCopyAccelerationStructureNV)load(context, "vkCmdCopyAccelerationStructureNV"); + vkCmdTraceRaysNV = (PFN_vkCmdTraceRaysNV)load(context, "vkCmdTraceRaysNV"); + vkCmdWriteAccelerationStructuresPropertiesNV = (PFN_vkCmdWriteAccelerationStructuresPropertiesNV)load(context, "vkCmdWriteAccelerationStructuresPropertiesNV"); + vkCompileDeferredNV = (PFN_vkCompileDeferredNV)load(context, "vkCompileDeferredNV"); + vkCreateAccelerationStructureNV = (PFN_vkCreateAccelerationStructureNV)load(context, "vkCreateAccelerationStructureNV"); + vkCreateRayTracingPipelinesNV = (PFN_vkCreateRayTracingPipelinesNV)load(context, "vkCreateRayTracingPipelinesNV"); + vkDestroyAccelerationStructureNV = (PFN_vkDestroyAccelerationStructureNV)load(context, "vkDestroyAccelerationStructureNV"); + vkGetAccelerationStructureHandleNV = (PFN_vkGetAccelerationStructureHandleNV)load(context, "vkGetAccelerationStructureHandleNV"); + vkGetAccelerationStructureMemoryRequirementsNV = (PFN_vkGetAccelerationStructureMemoryRequirementsNV)load(context, "vkGetAccelerationStructureMemoryRequirementsNV"); + vkGetRayTracingShaderGroupHandlesNV = (PFN_vkGetRayTracingShaderGroupHandlesNV)load(context, "vkGetRayTracingShaderGroupHandlesNV"); +#endif /* defined(VK_NV_ray_tracing) */ +#if defined(VK_NV_scissor_exclusive) + vkCmdSetExclusiveScissorNV = (PFN_vkCmdSetExclusiveScissorNV)load(context, "vkCmdSetExclusiveScissorNV"); +#endif /* defined(VK_NV_scissor_exclusive) */ +#if defined(VK_NV_shading_rate_image) + vkCmdBindShadingRateImageNV = (PFN_vkCmdBindShadingRateImageNV)load(context, "vkCmdBindShadingRateImageNV"); + vkCmdSetCoarseSampleOrderNV = (PFN_vkCmdSetCoarseSampleOrderNV)load(context, "vkCmdSetCoarseSampleOrderNV"); + vkCmdSetViewportShadingRatePaletteNV = (PFN_vkCmdSetViewportShadingRatePaletteNV)load(context, "vkCmdSetViewportShadingRatePaletteNV"); +#endif /* defined(VK_NV_shading_rate_image) */ +#if defined(VK_VALVE_descriptor_set_host_mapping) + vkGetDescriptorSetHostMappingVALVE = (PFN_vkGetDescriptorSetHostMappingVALVE)load(context, "vkGetDescriptorSetHostMappingVALVE"); + vkGetDescriptorSetLayoutHostMappingInfoVALVE = (PFN_vkGetDescriptorSetLayoutHostMappingInfoVALVE)load(context, "vkGetDescriptorSetLayoutHostMappingInfoVALVE"); +#endif /* defined(VK_VALVE_descriptor_set_host_mapping) */ +#if (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) + vkGetDeviceGroupSurfacePresentModes2EXT = (PFN_vkGetDeviceGroupSurfacePresentModes2EXT)load(context, "vkGetDeviceGroupSurfacePresentModes2EXT"); +#endif /* (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) + vkCmdPushDescriptorSetWithTemplateKHR = (PFN_vkCmdPushDescriptorSetWithTemplateKHR)load(context, "vkCmdPushDescriptorSetWithTemplateKHR"); +#endif /* (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + vkGetDeviceGroupPresentCapabilitiesKHR = (PFN_vkGetDeviceGroupPresentCapabilitiesKHR)load(context, "vkGetDeviceGroupPresentCapabilitiesKHR"); + vkGetDeviceGroupSurfacePresentModesKHR = (PFN_vkGetDeviceGroupSurfacePresentModesKHR)load(context, "vkGetDeviceGroupSurfacePresentModesKHR"); +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + vkAcquireNextImage2KHR = (PFN_vkAcquireNextImage2KHR)load(context, "vkAcquireNextImage2KHR"); +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ + /* VOLK_GENERATE_LOAD_DEVICE */ +} + +static void volkGenLoadDeviceTable(struct VolkDeviceTable* table, void* context, PFN_vkVoidFunction (*load)(void*, const char*)) +{ + /* VOLK_GENERATE_LOAD_DEVICE_TABLE */ +#if defined(VK_VERSION_1_0) + table->vkAllocateCommandBuffers = (PFN_vkAllocateCommandBuffers)load(context, "vkAllocateCommandBuffers"); + table->vkAllocateDescriptorSets = (PFN_vkAllocateDescriptorSets)load(context, "vkAllocateDescriptorSets"); + table->vkAllocateMemory = (PFN_vkAllocateMemory)load(context, "vkAllocateMemory"); + table->vkBeginCommandBuffer = (PFN_vkBeginCommandBuffer)load(context, "vkBeginCommandBuffer"); + table->vkBindBufferMemory = (PFN_vkBindBufferMemory)load(context, "vkBindBufferMemory"); + table->vkBindImageMemory = (PFN_vkBindImageMemory)load(context, "vkBindImageMemory"); + table->vkCmdBeginQuery = (PFN_vkCmdBeginQuery)load(context, "vkCmdBeginQuery"); + table->vkCmdBeginRenderPass = (PFN_vkCmdBeginRenderPass)load(context, "vkCmdBeginRenderPass"); + table->vkCmdBindDescriptorSets = (PFN_vkCmdBindDescriptorSets)load(context, "vkCmdBindDescriptorSets"); + table->vkCmdBindIndexBuffer = (PFN_vkCmdBindIndexBuffer)load(context, "vkCmdBindIndexBuffer"); + table->vkCmdBindPipeline = (PFN_vkCmdBindPipeline)load(context, "vkCmdBindPipeline"); + table->vkCmdBindVertexBuffers = (PFN_vkCmdBindVertexBuffers)load(context, "vkCmdBindVertexBuffers"); + table->vkCmdBlitImage = (PFN_vkCmdBlitImage)load(context, "vkCmdBlitImage"); + table->vkCmdClearAttachments = (PFN_vkCmdClearAttachments)load(context, "vkCmdClearAttachments"); + table->vkCmdClearColorImage = (PFN_vkCmdClearColorImage)load(context, "vkCmdClearColorImage"); + table->vkCmdClearDepthStencilImage = (PFN_vkCmdClearDepthStencilImage)load(context, "vkCmdClearDepthStencilImage"); + table->vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)load(context, "vkCmdCopyBuffer"); + table->vkCmdCopyBufferToImage = (PFN_vkCmdCopyBufferToImage)load(context, "vkCmdCopyBufferToImage"); + table->vkCmdCopyImage = (PFN_vkCmdCopyImage)load(context, "vkCmdCopyImage"); + table->vkCmdCopyImageToBuffer = (PFN_vkCmdCopyImageToBuffer)load(context, "vkCmdCopyImageToBuffer"); + table->vkCmdCopyQueryPoolResults = (PFN_vkCmdCopyQueryPoolResults)load(context, "vkCmdCopyQueryPoolResults"); + table->vkCmdDispatch = (PFN_vkCmdDispatch)load(context, "vkCmdDispatch"); + table->vkCmdDispatchIndirect = (PFN_vkCmdDispatchIndirect)load(context, "vkCmdDispatchIndirect"); + table->vkCmdDraw = (PFN_vkCmdDraw)load(context, "vkCmdDraw"); + table->vkCmdDrawIndexed = (PFN_vkCmdDrawIndexed)load(context, "vkCmdDrawIndexed"); + table->vkCmdDrawIndexedIndirect = (PFN_vkCmdDrawIndexedIndirect)load(context, "vkCmdDrawIndexedIndirect"); + table->vkCmdDrawIndirect = (PFN_vkCmdDrawIndirect)load(context, "vkCmdDrawIndirect"); + table->vkCmdEndQuery = (PFN_vkCmdEndQuery)load(context, "vkCmdEndQuery"); + table->vkCmdEndRenderPass = (PFN_vkCmdEndRenderPass)load(context, "vkCmdEndRenderPass"); + table->vkCmdExecuteCommands = (PFN_vkCmdExecuteCommands)load(context, "vkCmdExecuteCommands"); + table->vkCmdFillBuffer = (PFN_vkCmdFillBuffer)load(context, "vkCmdFillBuffer"); + table->vkCmdNextSubpass = (PFN_vkCmdNextSubpass)load(context, "vkCmdNextSubpass"); + table->vkCmdPipelineBarrier = (PFN_vkCmdPipelineBarrier)load(context, "vkCmdPipelineBarrier"); + table->vkCmdPushConstants = (PFN_vkCmdPushConstants)load(context, "vkCmdPushConstants"); + table->vkCmdResetEvent = (PFN_vkCmdResetEvent)load(context, "vkCmdResetEvent"); + table->vkCmdResetQueryPool = (PFN_vkCmdResetQueryPool)load(context, "vkCmdResetQueryPool"); + table->vkCmdResolveImage = (PFN_vkCmdResolveImage)load(context, "vkCmdResolveImage"); + table->vkCmdSetBlendConstants = (PFN_vkCmdSetBlendConstants)load(context, "vkCmdSetBlendConstants"); + table->vkCmdSetDepthBias = (PFN_vkCmdSetDepthBias)load(context, "vkCmdSetDepthBias"); + table->vkCmdSetDepthBounds = (PFN_vkCmdSetDepthBounds)load(context, "vkCmdSetDepthBounds"); + table->vkCmdSetEvent = (PFN_vkCmdSetEvent)load(context, "vkCmdSetEvent"); + table->vkCmdSetLineWidth = (PFN_vkCmdSetLineWidth)load(context, "vkCmdSetLineWidth"); + table->vkCmdSetScissor = (PFN_vkCmdSetScissor)load(context, "vkCmdSetScissor"); + table->vkCmdSetStencilCompareMask = (PFN_vkCmdSetStencilCompareMask)load(context, "vkCmdSetStencilCompareMask"); + table->vkCmdSetStencilReference = (PFN_vkCmdSetStencilReference)load(context, "vkCmdSetStencilReference"); + table->vkCmdSetStencilWriteMask = (PFN_vkCmdSetStencilWriteMask)load(context, "vkCmdSetStencilWriteMask"); + table->vkCmdSetViewport = (PFN_vkCmdSetViewport)load(context, "vkCmdSetViewport"); + table->vkCmdUpdateBuffer = (PFN_vkCmdUpdateBuffer)load(context, "vkCmdUpdateBuffer"); + table->vkCmdWaitEvents = (PFN_vkCmdWaitEvents)load(context, "vkCmdWaitEvents"); + table->vkCmdWriteTimestamp = (PFN_vkCmdWriteTimestamp)load(context, "vkCmdWriteTimestamp"); + table->vkCreateBuffer = (PFN_vkCreateBuffer)load(context, "vkCreateBuffer"); + table->vkCreateBufferView = (PFN_vkCreateBufferView)load(context, "vkCreateBufferView"); + table->vkCreateCommandPool = (PFN_vkCreateCommandPool)load(context, "vkCreateCommandPool"); + table->vkCreateComputePipelines = (PFN_vkCreateComputePipelines)load(context, "vkCreateComputePipelines"); + table->vkCreateDescriptorPool = (PFN_vkCreateDescriptorPool)load(context, "vkCreateDescriptorPool"); + table->vkCreateDescriptorSetLayout = (PFN_vkCreateDescriptorSetLayout)load(context, "vkCreateDescriptorSetLayout"); + table->vkCreateEvent = (PFN_vkCreateEvent)load(context, "vkCreateEvent"); + table->vkCreateFence = (PFN_vkCreateFence)load(context, "vkCreateFence"); + table->vkCreateFramebuffer = (PFN_vkCreateFramebuffer)load(context, "vkCreateFramebuffer"); + table->vkCreateGraphicsPipelines = (PFN_vkCreateGraphicsPipelines)load(context, "vkCreateGraphicsPipelines"); + table->vkCreateImage = (PFN_vkCreateImage)load(context, "vkCreateImage"); + table->vkCreateImageView = (PFN_vkCreateImageView)load(context, "vkCreateImageView"); + table->vkCreatePipelineCache = (PFN_vkCreatePipelineCache)load(context, "vkCreatePipelineCache"); + table->vkCreatePipelineLayout = (PFN_vkCreatePipelineLayout)load(context, "vkCreatePipelineLayout"); + table->vkCreateQueryPool = (PFN_vkCreateQueryPool)load(context, "vkCreateQueryPool"); + table->vkCreateRenderPass = (PFN_vkCreateRenderPass)load(context, "vkCreateRenderPass"); + table->vkCreateSampler = (PFN_vkCreateSampler)load(context, "vkCreateSampler"); + table->vkCreateSemaphore = (PFN_vkCreateSemaphore)load(context, "vkCreateSemaphore"); + table->vkCreateShaderModule = (PFN_vkCreateShaderModule)load(context, "vkCreateShaderModule"); + table->vkDestroyBuffer = (PFN_vkDestroyBuffer)load(context, "vkDestroyBuffer"); + table->vkDestroyBufferView = (PFN_vkDestroyBufferView)load(context, "vkDestroyBufferView"); + table->vkDestroyCommandPool = (PFN_vkDestroyCommandPool)load(context, "vkDestroyCommandPool"); + table->vkDestroyDescriptorPool = (PFN_vkDestroyDescriptorPool)load(context, "vkDestroyDescriptorPool"); + table->vkDestroyDescriptorSetLayout = (PFN_vkDestroyDescriptorSetLayout)load(context, "vkDestroyDescriptorSetLayout"); + table->vkDestroyDevice = (PFN_vkDestroyDevice)load(context, "vkDestroyDevice"); + table->vkDestroyEvent = (PFN_vkDestroyEvent)load(context, "vkDestroyEvent"); + table->vkDestroyFence = (PFN_vkDestroyFence)load(context, "vkDestroyFence"); + table->vkDestroyFramebuffer = (PFN_vkDestroyFramebuffer)load(context, "vkDestroyFramebuffer"); + table->vkDestroyImage = (PFN_vkDestroyImage)load(context, "vkDestroyImage"); + table->vkDestroyImageView = (PFN_vkDestroyImageView)load(context, "vkDestroyImageView"); + table->vkDestroyPipeline = (PFN_vkDestroyPipeline)load(context, "vkDestroyPipeline"); + table->vkDestroyPipelineCache = (PFN_vkDestroyPipelineCache)load(context, "vkDestroyPipelineCache"); + table->vkDestroyPipelineLayout = (PFN_vkDestroyPipelineLayout)load(context, "vkDestroyPipelineLayout"); + table->vkDestroyQueryPool = (PFN_vkDestroyQueryPool)load(context, "vkDestroyQueryPool"); + table->vkDestroyRenderPass = (PFN_vkDestroyRenderPass)load(context, "vkDestroyRenderPass"); + table->vkDestroySampler = (PFN_vkDestroySampler)load(context, "vkDestroySampler"); + table->vkDestroySemaphore = (PFN_vkDestroySemaphore)load(context, "vkDestroySemaphore"); + table->vkDestroyShaderModule = (PFN_vkDestroyShaderModule)load(context, "vkDestroyShaderModule"); + table->vkDeviceWaitIdle = (PFN_vkDeviceWaitIdle)load(context, "vkDeviceWaitIdle"); + table->vkEndCommandBuffer = (PFN_vkEndCommandBuffer)load(context, "vkEndCommandBuffer"); + table->vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)load(context, "vkFlushMappedMemoryRanges"); + table->vkFreeCommandBuffers = (PFN_vkFreeCommandBuffers)load(context, "vkFreeCommandBuffers"); + table->vkFreeDescriptorSets = (PFN_vkFreeDescriptorSets)load(context, "vkFreeDescriptorSets"); + table->vkFreeMemory = (PFN_vkFreeMemory)load(context, "vkFreeMemory"); + table->vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)load(context, "vkGetBufferMemoryRequirements"); + table->vkGetDeviceMemoryCommitment = (PFN_vkGetDeviceMemoryCommitment)load(context, "vkGetDeviceMemoryCommitment"); + table->vkGetDeviceQueue = (PFN_vkGetDeviceQueue)load(context, "vkGetDeviceQueue"); + table->vkGetEventStatus = (PFN_vkGetEventStatus)load(context, "vkGetEventStatus"); + table->vkGetFenceStatus = (PFN_vkGetFenceStatus)load(context, "vkGetFenceStatus"); + table->vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)load(context, "vkGetImageMemoryRequirements"); + table->vkGetImageSparseMemoryRequirements = (PFN_vkGetImageSparseMemoryRequirements)load(context, "vkGetImageSparseMemoryRequirements"); + table->vkGetImageSubresourceLayout = (PFN_vkGetImageSubresourceLayout)load(context, "vkGetImageSubresourceLayout"); + table->vkGetPipelineCacheData = (PFN_vkGetPipelineCacheData)load(context, "vkGetPipelineCacheData"); + table->vkGetQueryPoolResults = (PFN_vkGetQueryPoolResults)load(context, "vkGetQueryPoolResults"); + table->vkGetRenderAreaGranularity = (PFN_vkGetRenderAreaGranularity)load(context, "vkGetRenderAreaGranularity"); + table->vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)load(context, "vkInvalidateMappedMemoryRanges"); + table->vkMapMemory = (PFN_vkMapMemory)load(context, "vkMapMemory"); + table->vkMergePipelineCaches = (PFN_vkMergePipelineCaches)load(context, "vkMergePipelineCaches"); + table->vkQueueBindSparse = (PFN_vkQueueBindSparse)load(context, "vkQueueBindSparse"); + table->vkQueueSubmit = (PFN_vkQueueSubmit)load(context, "vkQueueSubmit"); + table->vkQueueWaitIdle = (PFN_vkQueueWaitIdle)load(context, "vkQueueWaitIdle"); + table->vkResetCommandBuffer = (PFN_vkResetCommandBuffer)load(context, "vkResetCommandBuffer"); + table->vkResetCommandPool = (PFN_vkResetCommandPool)load(context, "vkResetCommandPool"); + table->vkResetDescriptorPool = (PFN_vkResetDescriptorPool)load(context, "vkResetDescriptorPool"); + table->vkResetEvent = (PFN_vkResetEvent)load(context, "vkResetEvent"); + table->vkResetFences = (PFN_vkResetFences)load(context, "vkResetFences"); + table->vkSetEvent = (PFN_vkSetEvent)load(context, "vkSetEvent"); + table->vkUnmapMemory = (PFN_vkUnmapMemory)load(context, "vkUnmapMemory"); + table->vkUpdateDescriptorSets = (PFN_vkUpdateDescriptorSets)load(context, "vkUpdateDescriptorSets"); + table->vkWaitForFences = (PFN_vkWaitForFences)load(context, "vkWaitForFences"); +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) + table->vkBindBufferMemory2 = (PFN_vkBindBufferMemory2)load(context, "vkBindBufferMemory2"); + table->vkBindImageMemory2 = (PFN_vkBindImageMemory2)load(context, "vkBindImageMemory2"); + table->vkCmdDispatchBase = (PFN_vkCmdDispatchBase)load(context, "vkCmdDispatchBase"); + table->vkCmdSetDeviceMask = (PFN_vkCmdSetDeviceMask)load(context, "vkCmdSetDeviceMask"); + table->vkCreateDescriptorUpdateTemplate = (PFN_vkCreateDescriptorUpdateTemplate)load(context, "vkCreateDescriptorUpdateTemplate"); + table->vkCreateSamplerYcbcrConversion = (PFN_vkCreateSamplerYcbcrConversion)load(context, "vkCreateSamplerYcbcrConversion"); + table->vkDestroyDescriptorUpdateTemplate = (PFN_vkDestroyDescriptorUpdateTemplate)load(context, "vkDestroyDescriptorUpdateTemplate"); + table->vkDestroySamplerYcbcrConversion = (PFN_vkDestroySamplerYcbcrConversion)load(context, "vkDestroySamplerYcbcrConversion"); + table->vkGetBufferMemoryRequirements2 = (PFN_vkGetBufferMemoryRequirements2)load(context, "vkGetBufferMemoryRequirements2"); + table->vkGetDescriptorSetLayoutSupport = (PFN_vkGetDescriptorSetLayoutSupport)load(context, "vkGetDescriptorSetLayoutSupport"); + table->vkGetDeviceGroupPeerMemoryFeatures = (PFN_vkGetDeviceGroupPeerMemoryFeatures)load(context, "vkGetDeviceGroupPeerMemoryFeatures"); + table->vkGetDeviceQueue2 = (PFN_vkGetDeviceQueue2)load(context, "vkGetDeviceQueue2"); + table->vkGetImageMemoryRequirements2 = (PFN_vkGetImageMemoryRequirements2)load(context, "vkGetImageMemoryRequirements2"); + table->vkGetImageSparseMemoryRequirements2 = (PFN_vkGetImageSparseMemoryRequirements2)load(context, "vkGetImageSparseMemoryRequirements2"); + table->vkTrimCommandPool = (PFN_vkTrimCommandPool)load(context, "vkTrimCommandPool"); + table->vkUpdateDescriptorSetWithTemplate = (PFN_vkUpdateDescriptorSetWithTemplate)load(context, "vkUpdateDescriptorSetWithTemplate"); +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_VERSION_1_2) + table->vkCmdBeginRenderPass2 = (PFN_vkCmdBeginRenderPass2)load(context, "vkCmdBeginRenderPass2"); + table->vkCmdDrawIndexedIndirectCount = (PFN_vkCmdDrawIndexedIndirectCount)load(context, "vkCmdDrawIndexedIndirectCount"); + table->vkCmdDrawIndirectCount = (PFN_vkCmdDrawIndirectCount)load(context, "vkCmdDrawIndirectCount"); + table->vkCmdEndRenderPass2 = (PFN_vkCmdEndRenderPass2)load(context, "vkCmdEndRenderPass2"); + table->vkCmdNextSubpass2 = (PFN_vkCmdNextSubpass2)load(context, "vkCmdNextSubpass2"); + table->vkCreateRenderPass2 = (PFN_vkCreateRenderPass2)load(context, "vkCreateRenderPass2"); + table->vkGetBufferDeviceAddress = (PFN_vkGetBufferDeviceAddress)load(context, "vkGetBufferDeviceAddress"); + table->vkGetBufferOpaqueCaptureAddress = (PFN_vkGetBufferOpaqueCaptureAddress)load(context, "vkGetBufferOpaqueCaptureAddress"); + table->vkGetDeviceMemoryOpaqueCaptureAddress = (PFN_vkGetDeviceMemoryOpaqueCaptureAddress)load(context, "vkGetDeviceMemoryOpaqueCaptureAddress"); + table->vkGetSemaphoreCounterValue = (PFN_vkGetSemaphoreCounterValue)load(context, "vkGetSemaphoreCounterValue"); + table->vkResetQueryPool = (PFN_vkResetQueryPool)load(context, "vkResetQueryPool"); + table->vkSignalSemaphore = (PFN_vkSignalSemaphore)load(context, "vkSignalSemaphore"); + table->vkWaitSemaphores = (PFN_vkWaitSemaphores)load(context, "vkWaitSemaphores"); +#endif /* defined(VK_VERSION_1_2) */ +#if defined(VK_VERSION_1_3) + table->vkCmdBeginRendering = (PFN_vkCmdBeginRendering)load(context, "vkCmdBeginRendering"); + table->vkCmdBindVertexBuffers2 = (PFN_vkCmdBindVertexBuffers2)load(context, "vkCmdBindVertexBuffers2"); + table->vkCmdBlitImage2 = (PFN_vkCmdBlitImage2)load(context, "vkCmdBlitImage2"); + table->vkCmdCopyBuffer2 = (PFN_vkCmdCopyBuffer2)load(context, "vkCmdCopyBuffer2"); + table->vkCmdCopyBufferToImage2 = (PFN_vkCmdCopyBufferToImage2)load(context, "vkCmdCopyBufferToImage2"); + table->vkCmdCopyImage2 = (PFN_vkCmdCopyImage2)load(context, "vkCmdCopyImage2"); + table->vkCmdCopyImageToBuffer2 = (PFN_vkCmdCopyImageToBuffer2)load(context, "vkCmdCopyImageToBuffer2"); + table->vkCmdEndRendering = (PFN_vkCmdEndRendering)load(context, "vkCmdEndRendering"); + table->vkCmdPipelineBarrier2 = (PFN_vkCmdPipelineBarrier2)load(context, "vkCmdPipelineBarrier2"); + table->vkCmdResetEvent2 = (PFN_vkCmdResetEvent2)load(context, "vkCmdResetEvent2"); + table->vkCmdResolveImage2 = (PFN_vkCmdResolveImage2)load(context, "vkCmdResolveImage2"); + table->vkCmdSetCullMode = (PFN_vkCmdSetCullMode)load(context, "vkCmdSetCullMode"); + table->vkCmdSetDepthBiasEnable = (PFN_vkCmdSetDepthBiasEnable)load(context, "vkCmdSetDepthBiasEnable"); + table->vkCmdSetDepthBoundsTestEnable = (PFN_vkCmdSetDepthBoundsTestEnable)load(context, "vkCmdSetDepthBoundsTestEnable"); + table->vkCmdSetDepthCompareOp = (PFN_vkCmdSetDepthCompareOp)load(context, "vkCmdSetDepthCompareOp"); + table->vkCmdSetDepthTestEnable = (PFN_vkCmdSetDepthTestEnable)load(context, "vkCmdSetDepthTestEnable"); + table->vkCmdSetDepthWriteEnable = (PFN_vkCmdSetDepthWriteEnable)load(context, "vkCmdSetDepthWriteEnable"); + table->vkCmdSetEvent2 = (PFN_vkCmdSetEvent2)load(context, "vkCmdSetEvent2"); + table->vkCmdSetFrontFace = (PFN_vkCmdSetFrontFace)load(context, "vkCmdSetFrontFace"); + table->vkCmdSetPrimitiveRestartEnable = (PFN_vkCmdSetPrimitiveRestartEnable)load(context, "vkCmdSetPrimitiveRestartEnable"); + table->vkCmdSetPrimitiveTopology = (PFN_vkCmdSetPrimitiveTopology)load(context, "vkCmdSetPrimitiveTopology"); + table->vkCmdSetRasterizerDiscardEnable = (PFN_vkCmdSetRasterizerDiscardEnable)load(context, "vkCmdSetRasterizerDiscardEnable"); + table->vkCmdSetScissorWithCount = (PFN_vkCmdSetScissorWithCount)load(context, "vkCmdSetScissorWithCount"); + table->vkCmdSetStencilOp = (PFN_vkCmdSetStencilOp)load(context, "vkCmdSetStencilOp"); + table->vkCmdSetStencilTestEnable = (PFN_vkCmdSetStencilTestEnable)load(context, "vkCmdSetStencilTestEnable"); + table->vkCmdSetViewportWithCount = (PFN_vkCmdSetViewportWithCount)load(context, "vkCmdSetViewportWithCount"); + table->vkCmdWaitEvents2 = (PFN_vkCmdWaitEvents2)load(context, "vkCmdWaitEvents2"); + table->vkCmdWriteTimestamp2 = (PFN_vkCmdWriteTimestamp2)load(context, "vkCmdWriteTimestamp2"); + table->vkCreatePrivateDataSlot = (PFN_vkCreatePrivateDataSlot)load(context, "vkCreatePrivateDataSlot"); + table->vkDestroyPrivateDataSlot = (PFN_vkDestroyPrivateDataSlot)load(context, "vkDestroyPrivateDataSlot"); + table->vkGetDeviceBufferMemoryRequirements = (PFN_vkGetDeviceBufferMemoryRequirements)load(context, "vkGetDeviceBufferMemoryRequirements"); + table->vkGetDeviceImageMemoryRequirements = (PFN_vkGetDeviceImageMemoryRequirements)load(context, "vkGetDeviceImageMemoryRequirements"); + table->vkGetDeviceImageSparseMemoryRequirements = (PFN_vkGetDeviceImageSparseMemoryRequirements)load(context, "vkGetDeviceImageSparseMemoryRequirements"); + table->vkGetPrivateData = (PFN_vkGetPrivateData)load(context, "vkGetPrivateData"); + table->vkQueueSubmit2 = (PFN_vkQueueSubmit2)load(context, "vkQueueSubmit2"); + table->vkSetPrivateData = (PFN_vkSetPrivateData)load(context, "vkSetPrivateData"); +#endif /* defined(VK_VERSION_1_3) */ +#if defined(VK_AMD_buffer_marker) + table->vkCmdWriteBufferMarkerAMD = (PFN_vkCmdWriteBufferMarkerAMD)load(context, "vkCmdWriteBufferMarkerAMD"); +#endif /* defined(VK_AMD_buffer_marker) */ +#if defined(VK_AMD_display_native_hdr) + table->vkSetLocalDimmingAMD = (PFN_vkSetLocalDimmingAMD)load(context, "vkSetLocalDimmingAMD"); +#endif /* defined(VK_AMD_display_native_hdr) */ +#if defined(VK_AMD_draw_indirect_count) + table->vkCmdDrawIndexedIndirectCountAMD = (PFN_vkCmdDrawIndexedIndirectCountAMD)load(context, "vkCmdDrawIndexedIndirectCountAMD"); + table->vkCmdDrawIndirectCountAMD = (PFN_vkCmdDrawIndirectCountAMD)load(context, "vkCmdDrawIndirectCountAMD"); +#endif /* defined(VK_AMD_draw_indirect_count) */ +#if defined(VK_AMD_shader_info) + table->vkGetShaderInfoAMD = (PFN_vkGetShaderInfoAMD)load(context, "vkGetShaderInfoAMD"); +#endif /* defined(VK_AMD_shader_info) */ +#if defined(VK_ANDROID_external_memory_android_hardware_buffer) + table->vkGetAndroidHardwareBufferPropertiesANDROID = (PFN_vkGetAndroidHardwareBufferPropertiesANDROID)load(context, "vkGetAndroidHardwareBufferPropertiesANDROID"); + table->vkGetMemoryAndroidHardwareBufferANDROID = (PFN_vkGetMemoryAndroidHardwareBufferANDROID)load(context, "vkGetMemoryAndroidHardwareBufferANDROID"); +#endif /* defined(VK_ANDROID_external_memory_android_hardware_buffer) */ +#if defined(VK_EXT_buffer_device_address) + table->vkGetBufferDeviceAddressEXT = (PFN_vkGetBufferDeviceAddressEXT)load(context, "vkGetBufferDeviceAddressEXT"); +#endif /* defined(VK_EXT_buffer_device_address) */ +#if defined(VK_EXT_calibrated_timestamps) + table->vkGetCalibratedTimestampsEXT = (PFN_vkGetCalibratedTimestampsEXT)load(context, "vkGetCalibratedTimestampsEXT"); +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_color_write_enable) + table->vkCmdSetColorWriteEnableEXT = (PFN_vkCmdSetColorWriteEnableEXT)load(context, "vkCmdSetColorWriteEnableEXT"); +#endif /* defined(VK_EXT_color_write_enable) */ +#if defined(VK_EXT_conditional_rendering) + table->vkCmdBeginConditionalRenderingEXT = (PFN_vkCmdBeginConditionalRenderingEXT)load(context, "vkCmdBeginConditionalRenderingEXT"); + table->vkCmdEndConditionalRenderingEXT = (PFN_vkCmdEndConditionalRenderingEXT)load(context, "vkCmdEndConditionalRenderingEXT"); +#endif /* defined(VK_EXT_conditional_rendering) */ +#if defined(VK_EXT_debug_marker) + table->vkCmdDebugMarkerBeginEXT = (PFN_vkCmdDebugMarkerBeginEXT)load(context, "vkCmdDebugMarkerBeginEXT"); + table->vkCmdDebugMarkerEndEXT = (PFN_vkCmdDebugMarkerEndEXT)load(context, "vkCmdDebugMarkerEndEXT"); + table->vkCmdDebugMarkerInsertEXT = (PFN_vkCmdDebugMarkerInsertEXT)load(context, "vkCmdDebugMarkerInsertEXT"); + table->vkDebugMarkerSetObjectNameEXT = (PFN_vkDebugMarkerSetObjectNameEXT)load(context, "vkDebugMarkerSetObjectNameEXT"); + table->vkDebugMarkerSetObjectTagEXT = (PFN_vkDebugMarkerSetObjectTagEXT)load(context, "vkDebugMarkerSetObjectTagEXT"); +#endif /* defined(VK_EXT_debug_marker) */ +#if defined(VK_EXT_discard_rectangles) + table->vkCmdSetDiscardRectangleEXT = (PFN_vkCmdSetDiscardRectangleEXT)load(context, "vkCmdSetDiscardRectangleEXT"); +#endif /* defined(VK_EXT_discard_rectangles) */ +#if defined(VK_EXT_display_control) + table->vkDisplayPowerControlEXT = (PFN_vkDisplayPowerControlEXT)load(context, "vkDisplayPowerControlEXT"); + table->vkGetSwapchainCounterEXT = (PFN_vkGetSwapchainCounterEXT)load(context, "vkGetSwapchainCounterEXT"); + table->vkRegisterDeviceEventEXT = (PFN_vkRegisterDeviceEventEXT)load(context, "vkRegisterDeviceEventEXT"); + table->vkRegisterDisplayEventEXT = (PFN_vkRegisterDisplayEventEXT)load(context, "vkRegisterDisplayEventEXT"); +#endif /* defined(VK_EXT_display_control) */ +#if defined(VK_EXT_extended_dynamic_state) + table->vkCmdBindVertexBuffers2EXT = (PFN_vkCmdBindVertexBuffers2EXT)load(context, "vkCmdBindVertexBuffers2EXT"); + table->vkCmdSetCullModeEXT = (PFN_vkCmdSetCullModeEXT)load(context, "vkCmdSetCullModeEXT"); + table->vkCmdSetDepthBoundsTestEnableEXT = (PFN_vkCmdSetDepthBoundsTestEnableEXT)load(context, "vkCmdSetDepthBoundsTestEnableEXT"); + table->vkCmdSetDepthCompareOpEXT = (PFN_vkCmdSetDepthCompareOpEXT)load(context, "vkCmdSetDepthCompareOpEXT"); + table->vkCmdSetDepthTestEnableEXT = (PFN_vkCmdSetDepthTestEnableEXT)load(context, "vkCmdSetDepthTestEnableEXT"); + table->vkCmdSetDepthWriteEnableEXT = (PFN_vkCmdSetDepthWriteEnableEXT)load(context, "vkCmdSetDepthWriteEnableEXT"); + table->vkCmdSetFrontFaceEXT = (PFN_vkCmdSetFrontFaceEXT)load(context, "vkCmdSetFrontFaceEXT"); + table->vkCmdSetPrimitiveTopologyEXT = (PFN_vkCmdSetPrimitiveTopologyEXT)load(context, "vkCmdSetPrimitiveTopologyEXT"); + table->vkCmdSetScissorWithCountEXT = (PFN_vkCmdSetScissorWithCountEXT)load(context, "vkCmdSetScissorWithCountEXT"); + table->vkCmdSetStencilOpEXT = (PFN_vkCmdSetStencilOpEXT)load(context, "vkCmdSetStencilOpEXT"); + table->vkCmdSetStencilTestEnableEXT = (PFN_vkCmdSetStencilTestEnableEXT)load(context, "vkCmdSetStencilTestEnableEXT"); + table->vkCmdSetViewportWithCountEXT = (PFN_vkCmdSetViewportWithCountEXT)load(context, "vkCmdSetViewportWithCountEXT"); +#endif /* defined(VK_EXT_extended_dynamic_state) */ +#if defined(VK_EXT_extended_dynamic_state2) + table->vkCmdSetDepthBiasEnableEXT = (PFN_vkCmdSetDepthBiasEnableEXT)load(context, "vkCmdSetDepthBiasEnableEXT"); + table->vkCmdSetLogicOpEXT = (PFN_vkCmdSetLogicOpEXT)load(context, "vkCmdSetLogicOpEXT"); + table->vkCmdSetPatchControlPointsEXT = (PFN_vkCmdSetPatchControlPointsEXT)load(context, "vkCmdSetPatchControlPointsEXT"); + table->vkCmdSetPrimitiveRestartEnableEXT = (PFN_vkCmdSetPrimitiveRestartEnableEXT)load(context, "vkCmdSetPrimitiveRestartEnableEXT"); + table->vkCmdSetRasterizerDiscardEnableEXT = (PFN_vkCmdSetRasterizerDiscardEnableEXT)load(context, "vkCmdSetRasterizerDiscardEnableEXT"); +#endif /* defined(VK_EXT_extended_dynamic_state2) */ +#if defined(VK_EXT_external_memory_host) + table->vkGetMemoryHostPointerPropertiesEXT = (PFN_vkGetMemoryHostPointerPropertiesEXT)load(context, "vkGetMemoryHostPointerPropertiesEXT"); +#endif /* defined(VK_EXT_external_memory_host) */ +#if defined(VK_EXT_full_screen_exclusive) + table->vkAcquireFullScreenExclusiveModeEXT = (PFN_vkAcquireFullScreenExclusiveModeEXT)load(context, "vkAcquireFullScreenExclusiveModeEXT"); + table->vkReleaseFullScreenExclusiveModeEXT = (PFN_vkReleaseFullScreenExclusiveModeEXT)load(context, "vkReleaseFullScreenExclusiveModeEXT"); +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_hdr_metadata) + table->vkSetHdrMetadataEXT = (PFN_vkSetHdrMetadataEXT)load(context, "vkSetHdrMetadataEXT"); +#endif /* defined(VK_EXT_hdr_metadata) */ +#if defined(VK_EXT_host_query_reset) + table->vkResetQueryPoolEXT = (PFN_vkResetQueryPoolEXT)load(context, "vkResetQueryPoolEXT"); +#endif /* defined(VK_EXT_host_query_reset) */ +#if defined(VK_EXT_image_compression_control) + table->vkGetImageSubresourceLayout2EXT = (PFN_vkGetImageSubresourceLayout2EXT)load(context, "vkGetImageSubresourceLayout2EXT"); +#endif /* defined(VK_EXT_image_compression_control) */ +#if defined(VK_EXT_image_drm_format_modifier) + table->vkGetImageDrmFormatModifierPropertiesEXT = (PFN_vkGetImageDrmFormatModifierPropertiesEXT)load(context, "vkGetImageDrmFormatModifierPropertiesEXT"); +#endif /* defined(VK_EXT_image_drm_format_modifier) */ +#if defined(VK_EXT_line_rasterization) + table->vkCmdSetLineStippleEXT = (PFN_vkCmdSetLineStippleEXT)load(context, "vkCmdSetLineStippleEXT"); +#endif /* defined(VK_EXT_line_rasterization) */ +#if defined(VK_EXT_multi_draw) + table->vkCmdDrawMultiEXT = (PFN_vkCmdDrawMultiEXT)load(context, "vkCmdDrawMultiEXT"); + table->vkCmdDrawMultiIndexedEXT = (PFN_vkCmdDrawMultiIndexedEXT)load(context, "vkCmdDrawMultiIndexedEXT"); +#endif /* defined(VK_EXT_multi_draw) */ +#if defined(VK_EXT_pageable_device_local_memory) + table->vkSetDeviceMemoryPriorityEXT = (PFN_vkSetDeviceMemoryPriorityEXT)load(context, "vkSetDeviceMemoryPriorityEXT"); +#endif /* defined(VK_EXT_pageable_device_local_memory) */ +#if defined(VK_EXT_pipeline_properties) + table->vkGetPipelinePropertiesEXT = (PFN_vkGetPipelinePropertiesEXT)load(context, "vkGetPipelinePropertiesEXT"); +#endif /* defined(VK_EXT_pipeline_properties) */ +#if defined(VK_EXT_private_data) + table->vkCreatePrivateDataSlotEXT = (PFN_vkCreatePrivateDataSlotEXT)load(context, "vkCreatePrivateDataSlotEXT"); + table->vkDestroyPrivateDataSlotEXT = (PFN_vkDestroyPrivateDataSlotEXT)load(context, "vkDestroyPrivateDataSlotEXT"); + table->vkGetPrivateDataEXT = (PFN_vkGetPrivateDataEXT)load(context, "vkGetPrivateDataEXT"); + table->vkSetPrivateDataEXT = (PFN_vkSetPrivateDataEXT)load(context, "vkSetPrivateDataEXT"); +#endif /* defined(VK_EXT_private_data) */ +#if defined(VK_EXT_sample_locations) + table->vkCmdSetSampleLocationsEXT = (PFN_vkCmdSetSampleLocationsEXT)load(context, "vkCmdSetSampleLocationsEXT"); +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_transform_feedback) + table->vkCmdBeginQueryIndexedEXT = (PFN_vkCmdBeginQueryIndexedEXT)load(context, "vkCmdBeginQueryIndexedEXT"); + table->vkCmdBeginTransformFeedbackEXT = (PFN_vkCmdBeginTransformFeedbackEXT)load(context, "vkCmdBeginTransformFeedbackEXT"); + table->vkCmdBindTransformFeedbackBuffersEXT = (PFN_vkCmdBindTransformFeedbackBuffersEXT)load(context, "vkCmdBindTransformFeedbackBuffersEXT"); + table->vkCmdDrawIndirectByteCountEXT = (PFN_vkCmdDrawIndirectByteCountEXT)load(context, "vkCmdDrawIndirectByteCountEXT"); + table->vkCmdEndQueryIndexedEXT = (PFN_vkCmdEndQueryIndexedEXT)load(context, "vkCmdEndQueryIndexedEXT"); + table->vkCmdEndTransformFeedbackEXT = (PFN_vkCmdEndTransformFeedbackEXT)load(context, "vkCmdEndTransformFeedbackEXT"); +#endif /* defined(VK_EXT_transform_feedback) */ +#if defined(VK_EXT_validation_cache) + table->vkCreateValidationCacheEXT = (PFN_vkCreateValidationCacheEXT)load(context, "vkCreateValidationCacheEXT"); + table->vkDestroyValidationCacheEXT = (PFN_vkDestroyValidationCacheEXT)load(context, "vkDestroyValidationCacheEXT"); + table->vkGetValidationCacheDataEXT = (PFN_vkGetValidationCacheDataEXT)load(context, "vkGetValidationCacheDataEXT"); + table->vkMergeValidationCachesEXT = (PFN_vkMergeValidationCachesEXT)load(context, "vkMergeValidationCachesEXT"); +#endif /* defined(VK_EXT_validation_cache) */ +#if defined(VK_EXT_vertex_input_dynamic_state) + table->vkCmdSetVertexInputEXT = (PFN_vkCmdSetVertexInputEXT)load(context, "vkCmdSetVertexInputEXT"); +#endif /* defined(VK_EXT_vertex_input_dynamic_state) */ +#if defined(VK_FUCHSIA_buffer_collection) + table->vkCreateBufferCollectionFUCHSIA = (PFN_vkCreateBufferCollectionFUCHSIA)load(context, "vkCreateBufferCollectionFUCHSIA"); + table->vkDestroyBufferCollectionFUCHSIA = (PFN_vkDestroyBufferCollectionFUCHSIA)load(context, "vkDestroyBufferCollectionFUCHSIA"); + table->vkGetBufferCollectionPropertiesFUCHSIA = (PFN_vkGetBufferCollectionPropertiesFUCHSIA)load(context, "vkGetBufferCollectionPropertiesFUCHSIA"); + table->vkSetBufferCollectionBufferConstraintsFUCHSIA = (PFN_vkSetBufferCollectionBufferConstraintsFUCHSIA)load(context, "vkSetBufferCollectionBufferConstraintsFUCHSIA"); + table->vkSetBufferCollectionImageConstraintsFUCHSIA = (PFN_vkSetBufferCollectionImageConstraintsFUCHSIA)load(context, "vkSetBufferCollectionImageConstraintsFUCHSIA"); +#endif /* defined(VK_FUCHSIA_buffer_collection) */ +#if defined(VK_FUCHSIA_external_memory) + table->vkGetMemoryZirconHandleFUCHSIA = (PFN_vkGetMemoryZirconHandleFUCHSIA)load(context, "vkGetMemoryZirconHandleFUCHSIA"); + table->vkGetMemoryZirconHandlePropertiesFUCHSIA = (PFN_vkGetMemoryZirconHandlePropertiesFUCHSIA)load(context, "vkGetMemoryZirconHandlePropertiesFUCHSIA"); +#endif /* defined(VK_FUCHSIA_external_memory) */ +#if defined(VK_FUCHSIA_external_semaphore) + table->vkGetSemaphoreZirconHandleFUCHSIA = (PFN_vkGetSemaphoreZirconHandleFUCHSIA)load(context, "vkGetSemaphoreZirconHandleFUCHSIA"); + table->vkImportSemaphoreZirconHandleFUCHSIA = (PFN_vkImportSemaphoreZirconHandleFUCHSIA)load(context, "vkImportSemaphoreZirconHandleFUCHSIA"); +#endif /* defined(VK_FUCHSIA_external_semaphore) */ +#if defined(VK_GOOGLE_display_timing) + table->vkGetPastPresentationTimingGOOGLE = (PFN_vkGetPastPresentationTimingGOOGLE)load(context, "vkGetPastPresentationTimingGOOGLE"); + table->vkGetRefreshCycleDurationGOOGLE = (PFN_vkGetRefreshCycleDurationGOOGLE)load(context, "vkGetRefreshCycleDurationGOOGLE"); +#endif /* defined(VK_GOOGLE_display_timing) */ +#if defined(VK_HUAWEI_invocation_mask) + table->vkCmdBindInvocationMaskHUAWEI = (PFN_vkCmdBindInvocationMaskHUAWEI)load(context, "vkCmdBindInvocationMaskHUAWEI"); +#endif /* defined(VK_HUAWEI_invocation_mask) */ +#if defined(VK_HUAWEI_subpass_shading) + table->vkCmdSubpassShadingHUAWEI = (PFN_vkCmdSubpassShadingHUAWEI)load(context, "vkCmdSubpassShadingHUAWEI"); + table->vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI = (PFN_vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI)load(context, "vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI"); +#endif /* defined(VK_HUAWEI_subpass_shading) */ +#if defined(VK_INTEL_performance_query) + table->vkAcquirePerformanceConfigurationINTEL = (PFN_vkAcquirePerformanceConfigurationINTEL)load(context, "vkAcquirePerformanceConfigurationINTEL"); + table->vkCmdSetPerformanceMarkerINTEL = (PFN_vkCmdSetPerformanceMarkerINTEL)load(context, "vkCmdSetPerformanceMarkerINTEL"); + table->vkCmdSetPerformanceOverrideINTEL = (PFN_vkCmdSetPerformanceOverrideINTEL)load(context, "vkCmdSetPerformanceOverrideINTEL"); + table->vkCmdSetPerformanceStreamMarkerINTEL = (PFN_vkCmdSetPerformanceStreamMarkerINTEL)load(context, "vkCmdSetPerformanceStreamMarkerINTEL"); + table->vkGetPerformanceParameterINTEL = (PFN_vkGetPerformanceParameterINTEL)load(context, "vkGetPerformanceParameterINTEL"); + table->vkInitializePerformanceApiINTEL = (PFN_vkInitializePerformanceApiINTEL)load(context, "vkInitializePerformanceApiINTEL"); + table->vkQueueSetPerformanceConfigurationINTEL = (PFN_vkQueueSetPerformanceConfigurationINTEL)load(context, "vkQueueSetPerformanceConfigurationINTEL"); + table->vkReleasePerformanceConfigurationINTEL = (PFN_vkReleasePerformanceConfigurationINTEL)load(context, "vkReleasePerformanceConfigurationINTEL"); + table->vkUninitializePerformanceApiINTEL = (PFN_vkUninitializePerformanceApiINTEL)load(context, "vkUninitializePerformanceApiINTEL"); +#endif /* defined(VK_INTEL_performance_query) */ +#if defined(VK_KHR_acceleration_structure) + table->vkBuildAccelerationStructuresKHR = (PFN_vkBuildAccelerationStructuresKHR)load(context, "vkBuildAccelerationStructuresKHR"); + table->vkCmdBuildAccelerationStructuresIndirectKHR = (PFN_vkCmdBuildAccelerationStructuresIndirectKHR)load(context, "vkCmdBuildAccelerationStructuresIndirectKHR"); + table->vkCmdBuildAccelerationStructuresKHR = (PFN_vkCmdBuildAccelerationStructuresKHR)load(context, "vkCmdBuildAccelerationStructuresKHR"); + table->vkCmdCopyAccelerationStructureKHR = (PFN_vkCmdCopyAccelerationStructureKHR)load(context, "vkCmdCopyAccelerationStructureKHR"); + table->vkCmdCopyAccelerationStructureToMemoryKHR = (PFN_vkCmdCopyAccelerationStructureToMemoryKHR)load(context, "vkCmdCopyAccelerationStructureToMemoryKHR"); + table->vkCmdCopyMemoryToAccelerationStructureKHR = (PFN_vkCmdCopyMemoryToAccelerationStructureKHR)load(context, "vkCmdCopyMemoryToAccelerationStructureKHR"); + table->vkCmdWriteAccelerationStructuresPropertiesKHR = (PFN_vkCmdWriteAccelerationStructuresPropertiesKHR)load(context, "vkCmdWriteAccelerationStructuresPropertiesKHR"); + table->vkCopyAccelerationStructureKHR = (PFN_vkCopyAccelerationStructureKHR)load(context, "vkCopyAccelerationStructureKHR"); + table->vkCopyAccelerationStructureToMemoryKHR = (PFN_vkCopyAccelerationStructureToMemoryKHR)load(context, "vkCopyAccelerationStructureToMemoryKHR"); + table->vkCopyMemoryToAccelerationStructureKHR = (PFN_vkCopyMemoryToAccelerationStructureKHR)load(context, "vkCopyMemoryToAccelerationStructureKHR"); + table->vkCreateAccelerationStructureKHR = (PFN_vkCreateAccelerationStructureKHR)load(context, "vkCreateAccelerationStructureKHR"); + table->vkDestroyAccelerationStructureKHR = (PFN_vkDestroyAccelerationStructureKHR)load(context, "vkDestroyAccelerationStructureKHR"); + table->vkGetAccelerationStructureBuildSizesKHR = (PFN_vkGetAccelerationStructureBuildSizesKHR)load(context, "vkGetAccelerationStructureBuildSizesKHR"); + table->vkGetAccelerationStructureDeviceAddressKHR = (PFN_vkGetAccelerationStructureDeviceAddressKHR)load(context, "vkGetAccelerationStructureDeviceAddressKHR"); + table->vkGetDeviceAccelerationStructureCompatibilityKHR = (PFN_vkGetDeviceAccelerationStructureCompatibilityKHR)load(context, "vkGetDeviceAccelerationStructureCompatibilityKHR"); + table->vkWriteAccelerationStructuresPropertiesKHR = (PFN_vkWriteAccelerationStructuresPropertiesKHR)load(context, "vkWriteAccelerationStructuresPropertiesKHR"); +#endif /* defined(VK_KHR_acceleration_structure) */ +#if defined(VK_KHR_bind_memory2) + table->vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2KHR)load(context, "vkBindBufferMemory2KHR"); + table->vkBindImageMemory2KHR = (PFN_vkBindImageMemory2KHR)load(context, "vkBindImageMemory2KHR"); +#endif /* defined(VK_KHR_bind_memory2) */ +#if defined(VK_KHR_buffer_device_address) + table->vkGetBufferDeviceAddressKHR = (PFN_vkGetBufferDeviceAddressKHR)load(context, "vkGetBufferDeviceAddressKHR"); + table->vkGetBufferOpaqueCaptureAddressKHR = (PFN_vkGetBufferOpaqueCaptureAddressKHR)load(context, "vkGetBufferOpaqueCaptureAddressKHR"); + table->vkGetDeviceMemoryOpaqueCaptureAddressKHR = (PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR)load(context, "vkGetDeviceMemoryOpaqueCaptureAddressKHR"); +#endif /* defined(VK_KHR_buffer_device_address) */ +#if defined(VK_KHR_copy_commands2) + table->vkCmdBlitImage2KHR = (PFN_vkCmdBlitImage2KHR)load(context, "vkCmdBlitImage2KHR"); + table->vkCmdCopyBuffer2KHR = (PFN_vkCmdCopyBuffer2KHR)load(context, "vkCmdCopyBuffer2KHR"); + table->vkCmdCopyBufferToImage2KHR = (PFN_vkCmdCopyBufferToImage2KHR)load(context, "vkCmdCopyBufferToImage2KHR"); + table->vkCmdCopyImage2KHR = (PFN_vkCmdCopyImage2KHR)load(context, "vkCmdCopyImage2KHR"); + table->vkCmdCopyImageToBuffer2KHR = (PFN_vkCmdCopyImageToBuffer2KHR)load(context, "vkCmdCopyImageToBuffer2KHR"); + table->vkCmdResolveImage2KHR = (PFN_vkCmdResolveImage2KHR)load(context, "vkCmdResolveImage2KHR"); +#endif /* defined(VK_KHR_copy_commands2) */ +#if defined(VK_KHR_create_renderpass2) + table->vkCmdBeginRenderPass2KHR = (PFN_vkCmdBeginRenderPass2KHR)load(context, "vkCmdBeginRenderPass2KHR"); + table->vkCmdEndRenderPass2KHR = (PFN_vkCmdEndRenderPass2KHR)load(context, "vkCmdEndRenderPass2KHR"); + table->vkCmdNextSubpass2KHR = (PFN_vkCmdNextSubpass2KHR)load(context, "vkCmdNextSubpass2KHR"); + table->vkCreateRenderPass2KHR = (PFN_vkCreateRenderPass2KHR)load(context, "vkCreateRenderPass2KHR"); +#endif /* defined(VK_KHR_create_renderpass2) */ +#if defined(VK_KHR_deferred_host_operations) + table->vkCreateDeferredOperationKHR = (PFN_vkCreateDeferredOperationKHR)load(context, "vkCreateDeferredOperationKHR"); + table->vkDeferredOperationJoinKHR = (PFN_vkDeferredOperationJoinKHR)load(context, "vkDeferredOperationJoinKHR"); + table->vkDestroyDeferredOperationKHR = (PFN_vkDestroyDeferredOperationKHR)load(context, "vkDestroyDeferredOperationKHR"); + table->vkGetDeferredOperationMaxConcurrencyKHR = (PFN_vkGetDeferredOperationMaxConcurrencyKHR)load(context, "vkGetDeferredOperationMaxConcurrencyKHR"); + table->vkGetDeferredOperationResultKHR = (PFN_vkGetDeferredOperationResultKHR)load(context, "vkGetDeferredOperationResultKHR"); +#endif /* defined(VK_KHR_deferred_host_operations) */ +#if defined(VK_KHR_descriptor_update_template) + table->vkCreateDescriptorUpdateTemplateKHR = (PFN_vkCreateDescriptorUpdateTemplateKHR)load(context, "vkCreateDescriptorUpdateTemplateKHR"); + table->vkDestroyDescriptorUpdateTemplateKHR = (PFN_vkDestroyDescriptorUpdateTemplateKHR)load(context, "vkDestroyDescriptorUpdateTemplateKHR"); + table->vkUpdateDescriptorSetWithTemplateKHR = (PFN_vkUpdateDescriptorSetWithTemplateKHR)load(context, "vkUpdateDescriptorSetWithTemplateKHR"); +#endif /* defined(VK_KHR_descriptor_update_template) */ +#if defined(VK_KHR_device_group) + table->vkCmdDispatchBaseKHR = (PFN_vkCmdDispatchBaseKHR)load(context, "vkCmdDispatchBaseKHR"); + table->vkCmdSetDeviceMaskKHR = (PFN_vkCmdSetDeviceMaskKHR)load(context, "vkCmdSetDeviceMaskKHR"); + table->vkGetDeviceGroupPeerMemoryFeaturesKHR = (PFN_vkGetDeviceGroupPeerMemoryFeaturesKHR)load(context, "vkGetDeviceGroupPeerMemoryFeaturesKHR"); +#endif /* defined(VK_KHR_device_group) */ +#if defined(VK_KHR_display_swapchain) + table->vkCreateSharedSwapchainsKHR = (PFN_vkCreateSharedSwapchainsKHR)load(context, "vkCreateSharedSwapchainsKHR"); +#endif /* defined(VK_KHR_display_swapchain) */ +#if defined(VK_KHR_draw_indirect_count) + table->vkCmdDrawIndexedIndirectCountKHR = (PFN_vkCmdDrawIndexedIndirectCountKHR)load(context, "vkCmdDrawIndexedIndirectCountKHR"); + table->vkCmdDrawIndirectCountKHR = (PFN_vkCmdDrawIndirectCountKHR)load(context, "vkCmdDrawIndirectCountKHR"); +#endif /* defined(VK_KHR_draw_indirect_count) */ +#if defined(VK_KHR_dynamic_rendering) + table->vkCmdBeginRenderingKHR = (PFN_vkCmdBeginRenderingKHR)load(context, "vkCmdBeginRenderingKHR"); + table->vkCmdEndRenderingKHR = (PFN_vkCmdEndRenderingKHR)load(context, "vkCmdEndRenderingKHR"); +#endif /* defined(VK_KHR_dynamic_rendering) */ +#if defined(VK_KHR_external_fence_fd) + table->vkGetFenceFdKHR = (PFN_vkGetFenceFdKHR)load(context, "vkGetFenceFdKHR"); + table->vkImportFenceFdKHR = (PFN_vkImportFenceFdKHR)load(context, "vkImportFenceFdKHR"); +#endif /* defined(VK_KHR_external_fence_fd) */ +#if defined(VK_KHR_external_fence_win32) + table->vkGetFenceWin32HandleKHR = (PFN_vkGetFenceWin32HandleKHR)load(context, "vkGetFenceWin32HandleKHR"); + table->vkImportFenceWin32HandleKHR = (PFN_vkImportFenceWin32HandleKHR)load(context, "vkImportFenceWin32HandleKHR"); +#endif /* defined(VK_KHR_external_fence_win32) */ +#if defined(VK_KHR_external_memory_fd) + table->vkGetMemoryFdKHR = (PFN_vkGetMemoryFdKHR)load(context, "vkGetMemoryFdKHR"); + table->vkGetMemoryFdPropertiesKHR = (PFN_vkGetMemoryFdPropertiesKHR)load(context, "vkGetMemoryFdPropertiesKHR"); +#endif /* defined(VK_KHR_external_memory_fd) */ +#if defined(VK_KHR_external_memory_win32) + table->vkGetMemoryWin32HandleKHR = (PFN_vkGetMemoryWin32HandleKHR)load(context, "vkGetMemoryWin32HandleKHR"); + table->vkGetMemoryWin32HandlePropertiesKHR = (PFN_vkGetMemoryWin32HandlePropertiesKHR)load(context, "vkGetMemoryWin32HandlePropertiesKHR"); +#endif /* defined(VK_KHR_external_memory_win32) */ +#if defined(VK_KHR_external_semaphore_fd) + table->vkGetSemaphoreFdKHR = (PFN_vkGetSemaphoreFdKHR)load(context, "vkGetSemaphoreFdKHR"); + table->vkImportSemaphoreFdKHR = (PFN_vkImportSemaphoreFdKHR)load(context, "vkImportSemaphoreFdKHR"); +#endif /* defined(VK_KHR_external_semaphore_fd) */ +#if defined(VK_KHR_external_semaphore_win32) + table->vkGetSemaphoreWin32HandleKHR = (PFN_vkGetSemaphoreWin32HandleKHR)load(context, "vkGetSemaphoreWin32HandleKHR"); + table->vkImportSemaphoreWin32HandleKHR = (PFN_vkImportSemaphoreWin32HandleKHR)load(context, "vkImportSemaphoreWin32HandleKHR"); +#endif /* defined(VK_KHR_external_semaphore_win32) */ +#if defined(VK_KHR_fragment_shading_rate) + table->vkCmdSetFragmentShadingRateKHR = (PFN_vkCmdSetFragmentShadingRateKHR)load(context, "vkCmdSetFragmentShadingRateKHR"); +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_memory_requirements2) + table->vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2KHR)load(context, "vkGetBufferMemoryRequirements2KHR"); + table->vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2KHR)load(context, "vkGetImageMemoryRequirements2KHR"); + table->vkGetImageSparseMemoryRequirements2KHR = (PFN_vkGetImageSparseMemoryRequirements2KHR)load(context, "vkGetImageSparseMemoryRequirements2KHR"); +#endif /* defined(VK_KHR_get_memory_requirements2) */ +#if defined(VK_KHR_maintenance1) + table->vkTrimCommandPoolKHR = (PFN_vkTrimCommandPoolKHR)load(context, "vkTrimCommandPoolKHR"); +#endif /* defined(VK_KHR_maintenance1) */ +#if defined(VK_KHR_maintenance3) + table->vkGetDescriptorSetLayoutSupportKHR = (PFN_vkGetDescriptorSetLayoutSupportKHR)load(context, "vkGetDescriptorSetLayoutSupportKHR"); +#endif /* defined(VK_KHR_maintenance3) */ +#if defined(VK_KHR_maintenance4) + table->vkGetDeviceBufferMemoryRequirementsKHR = (PFN_vkGetDeviceBufferMemoryRequirementsKHR)load(context, "vkGetDeviceBufferMemoryRequirementsKHR"); + table->vkGetDeviceImageMemoryRequirementsKHR = (PFN_vkGetDeviceImageMemoryRequirementsKHR)load(context, "vkGetDeviceImageMemoryRequirementsKHR"); + table->vkGetDeviceImageSparseMemoryRequirementsKHR = (PFN_vkGetDeviceImageSparseMemoryRequirementsKHR)load(context, "vkGetDeviceImageSparseMemoryRequirementsKHR"); +#endif /* defined(VK_KHR_maintenance4) */ +#if defined(VK_KHR_performance_query) + table->vkAcquireProfilingLockKHR = (PFN_vkAcquireProfilingLockKHR)load(context, "vkAcquireProfilingLockKHR"); + table->vkReleaseProfilingLockKHR = (PFN_vkReleaseProfilingLockKHR)load(context, "vkReleaseProfilingLockKHR"); +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_pipeline_executable_properties) + table->vkGetPipelineExecutableInternalRepresentationsKHR = (PFN_vkGetPipelineExecutableInternalRepresentationsKHR)load(context, "vkGetPipelineExecutableInternalRepresentationsKHR"); + table->vkGetPipelineExecutablePropertiesKHR = (PFN_vkGetPipelineExecutablePropertiesKHR)load(context, "vkGetPipelineExecutablePropertiesKHR"); + table->vkGetPipelineExecutableStatisticsKHR = (PFN_vkGetPipelineExecutableStatisticsKHR)load(context, "vkGetPipelineExecutableStatisticsKHR"); +#endif /* defined(VK_KHR_pipeline_executable_properties) */ +#if defined(VK_KHR_present_wait) + table->vkWaitForPresentKHR = (PFN_vkWaitForPresentKHR)load(context, "vkWaitForPresentKHR"); +#endif /* defined(VK_KHR_present_wait) */ +#if defined(VK_KHR_push_descriptor) + table->vkCmdPushDescriptorSetKHR = (PFN_vkCmdPushDescriptorSetKHR)load(context, "vkCmdPushDescriptorSetKHR"); +#endif /* defined(VK_KHR_push_descriptor) */ +#if defined(VK_KHR_ray_tracing_maintenance1) && defined(VK_KHR_ray_tracing_pipeline) + table->vkCmdTraceRaysIndirect2KHR = (PFN_vkCmdTraceRaysIndirect2KHR)load(context, "vkCmdTraceRaysIndirect2KHR"); +#endif /* defined(VK_KHR_ray_tracing_maintenance1) && defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_ray_tracing_pipeline) + table->vkCmdSetRayTracingPipelineStackSizeKHR = (PFN_vkCmdSetRayTracingPipelineStackSizeKHR)load(context, "vkCmdSetRayTracingPipelineStackSizeKHR"); + table->vkCmdTraceRaysIndirectKHR = (PFN_vkCmdTraceRaysIndirectKHR)load(context, "vkCmdTraceRaysIndirectKHR"); + table->vkCmdTraceRaysKHR = (PFN_vkCmdTraceRaysKHR)load(context, "vkCmdTraceRaysKHR"); + table->vkCreateRayTracingPipelinesKHR = (PFN_vkCreateRayTracingPipelinesKHR)load(context, "vkCreateRayTracingPipelinesKHR"); + table->vkGetRayTracingCaptureReplayShaderGroupHandlesKHR = (PFN_vkGetRayTracingCaptureReplayShaderGroupHandlesKHR)load(context, "vkGetRayTracingCaptureReplayShaderGroupHandlesKHR"); + table->vkGetRayTracingShaderGroupHandlesKHR = (PFN_vkGetRayTracingShaderGroupHandlesKHR)load(context, "vkGetRayTracingShaderGroupHandlesKHR"); + table->vkGetRayTracingShaderGroupStackSizeKHR = (PFN_vkGetRayTracingShaderGroupStackSizeKHR)load(context, "vkGetRayTracingShaderGroupStackSizeKHR"); +#endif /* defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_sampler_ycbcr_conversion) + table->vkCreateSamplerYcbcrConversionKHR = (PFN_vkCreateSamplerYcbcrConversionKHR)load(context, "vkCreateSamplerYcbcrConversionKHR"); + table->vkDestroySamplerYcbcrConversionKHR = (PFN_vkDestroySamplerYcbcrConversionKHR)load(context, "vkDestroySamplerYcbcrConversionKHR"); +#endif /* defined(VK_KHR_sampler_ycbcr_conversion) */ +#if defined(VK_KHR_shared_presentable_image) + table->vkGetSwapchainStatusKHR = (PFN_vkGetSwapchainStatusKHR)load(context, "vkGetSwapchainStatusKHR"); +#endif /* defined(VK_KHR_shared_presentable_image) */ +#if defined(VK_KHR_swapchain) + table->vkAcquireNextImageKHR = (PFN_vkAcquireNextImageKHR)load(context, "vkAcquireNextImageKHR"); + table->vkCreateSwapchainKHR = (PFN_vkCreateSwapchainKHR)load(context, "vkCreateSwapchainKHR"); + table->vkDestroySwapchainKHR = (PFN_vkDestroySwapchainKHR)load(context, "vkDestroySwapchainKHR"); + table->vkGetSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR)load(context, "vkGetSwapchainImagesKHR"); + table->vkQueuePresentKHR = (PFN_vkQueuePresentKHR)load(context, "vkQueuePresentKHR"); +#endif /* defined(VK_KHR_swapchain) */ +#if defined(VK_KHR_synchronization2) + table->vkCmdPipelineBarrier2KHR = (PFN_vkCmdPipelineBarrier2KHR)load(context, "vkCmdPipelineBarrier2KHR"); + table->vkCmdResetEvent2KHR = (PFN_vkCmdResetEvent2KHR)load(context, "vkCmdResetEvent2KHR"); + table->vkCmdSetEvent2KHR = (PFN_vkCmdSetEvent2KHR)load(context, "vkCmdSetEvent2KHR"); + table->vkCmdWaitEvents2KHR = (PFN_vkCmdWaitEvents2KHR)load(context, "vkCmdWaitEvents2KHR"); + table->vkCmdWriteTimestamp2KHR = (PFN_vkCmdWriteTimestamp2KHR)load(context, "vkCmdWriteTimestamp2KHR"); + table->vkQueueSubmit2KHR = (PFN_vkQueueSubmit2KHR)load(context, "vkQueueSubmit2KHR"); +#endif /* defined(VK_KHR_synchronization2) */ +#if defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) + table->vkCmdWriteBufferMarker2AMD = (PFN_vkCmdWriteBufferMarker2AMD)load(context, "vkCmdWriteBufferMarker2AMD"); +#endif /* defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) */ +#if defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) + table->vkGetQueueCheckpointData2NV = (PFN_vkGetQueueCheckpointData2NV)load(context, "vkGetQueueCheckpointData2NV"); +#endif /* defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_KHR_timeline_semaphore) + table->vkGetSemaphoreCounterValueKHR = (PFN_vkGetSemaphoreCounterValueKHR)load(context, "vkGetSemaphoreCounterValueKHR"); + table->vkSignalSemaphoreKHR = (PFN_vkSignalSemaphoreKHR)load(context, "vkSignalSemaphoreKHR"); + table->vkWaitSemaphoresKHR = (PFN_vkWaitSemaphoresKHR)load(context, "vkWaitSemaphoresKHR"); +#endif /* defined(VK_KHR_timeline_semaphore) */ +#if defined(VK_KHR_video_decode_queue) + table->vkCmdDecodeVideoKHR = (PFN_vkCmdDecodeVideoKHR)load(context, "vkCmdDecodeVideoKHR"); +#endif /* defined(VK_KHR_video_decode_queue) */ +#if defined(VK_KHR_video_encode_queue) + table->vkCmdEncodeVideoKHR = (PFN_vkCmdEncodeVideoKHR)load(context, "vkCmdEncodeVideoKHR"); +#endif /* defined(VK_KHR_video_encode_queue) */ +#if defined(VK_KHR_video_queue) + table->vkBindVideoSessionMemoryKHR = (PFN_vkBindVideoSessionMemoryKHR)load(context, "vkBindVideoSessionMemoryKHR"); + table->vkCmdBeginVideoCodingKHR = (PFN_vkCmdBeginVideoCodingKHR)load(context, "vkCmdBeginVideoCodingKHR"); + table->vkCmdControlVideoCodingKHR = (PFN_vkCmdControlVideoCodingKHR)load(context, "vkCmdControlVideoCodingKHR"); + table->vkCmdEndVideoCodingKHR = (PFN_vkCmdEndVideoCodingKHR)load(context, "vkCmdEndVideoCodingKHR"); + table->vkCreateVideoSessionKHR = (PFN_vkCreateVideoSessionKHR)load(context, "vkCreateVideoSessionKHR"); + table->vkCreateVideoSessionParametersKHR = (PFN_vkCreateVideoSessionParametersKHR)load(context, "vkCreateVideoSessionParametersKHR"); + table->vkDestroyVideoSessionKHR = (PFN_vkDestroyVideoSessionKHR)load(context, "vkDestroyVideoSessionKHR"); + table->vkDestroyVideoSessionParametersKHR = (PFN_vkDestroyVideoSessionParametersKHR)load(context, "vkDestroyVideoSessionParametersKHR"); + table->vkGetVideoSessionMemoryRequirementsKHR = (PFN_vkGetVideoSessionMemoryRequirementsKHR)load(context, "vkGetVideoSessionMemoryRequirementsKHR"); + table->vkUpdateVideoSessionParametersKHR = (PFN_vkUpdateVideoSessionParametersKHR)load(context, "vkUpdateVideoSessionParametersKHR"); +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_NVX_binary_import) + table->vkCmdCuLaunchKernelNVX = (PFN_vkCmdCuLaunchKernelNVX)load(context, "vkCmdCuLaunchKernelNVX"); + table->vkCreateCuFunctionNVX = (PFN_vkCreateCuFunctionNVX)load(context, "vkCreateCuFunctionNVX"); + table->vkCreateCuModuleNVX = (PFN_vkCreateCuModuleNVX)load(context, "vkCreateCuModuleNVX"); + table->vkDestroyCuFunctionNVX = (PFN_vkDestroyCuFunctionNVX)load(context, "vkDestroyCuFunctionNVX"); + table->vkDestroyCuModuleNVX = (PFN_vkDestroyCuModuleNVX)load(context, "vkDestroyCuModuleNVX"); +#endif /* defined(VK_NVX_binary_import) */ +#if defined(VK_NVX_image_view_handle) + table->vkGetImageViewAddressNVX = (PFN_vkGetImageViewAddressNVX)load(context, "vkGetImageViewAddressNVX"); + table->vkGetImageViewHandleNVX = (PFN_vkGetImageViewHandleNVX)load(context, "vkGetImageViewHandleNVX"); +#endif /* defined(VK_NVX_image_view_handle) */ +#if defined(VK_NV_clip_space_w_scaling) + table->vkCmdSetViewportWScalingNV = (PFN_vkCmdSetViewportWScalingNV)load(context, "vkCmdSetViewportWScalingNV"); +#endif /* defined(VK_NV_clip_space_w_scaling) */ +#if defined(VK_NV_device_diagnostic_checkpoints) + table->vkCmdSetCheckpointNV = (PFN_vkCmdSetCheckpointNV)load(context, "vkCmdSetCheckpointNV"); + table->vkGetQueueCheckpointDataNV = (PFN_vkGetQueueCheckpointDataNV)load(context, "vkGetQueueCheckpointDataNV"); +#endif /* defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_NV_device_generated_commands) + table->vkCmdBindPipelineShaderGroupNV = (PFN_vkCmdBindPipelineShaderGroupNV)load(context, "vkCmdBindPipelineShaderGroupNV"); + table->vkCmdExecuteGeneratedCommandsNV = (PFN_vkCmdExecuteGeneratedCommandsNV)load(context, "vkCmdExecuteGeneratedCommandsNV"); + table->vkCmdPreprocessGeneratedCommandsNV = (PFN_vkCmdPreprocessGeneratedCommandsNV)load(context, "vkCmdPreprocessGeneratedCommandsNV"); + table->vkCreateIndirectCommandsLayoutNV = (PFN_vkCreateIndirectCommandsLayoutNV)load(context, "vkCreateIndirectCommandsLayoutNV"); + table->vkDestroyIndirectCommandsLayoutNV = (PFN_vkDestroyIndirectCommandsLayoutNV)load(context, "vkDestroyIndirectCommandsLayoutNV"); + table->vkGetGeneratedCommandsMemoryRequirementsNV = (PFN_vkGetGeneratedCommandsMemoryRequirementsNV)load(context, "vkGetGeneratedCommandsMemoryRequirementsNV"); +#endif /* defined(VK_NV_device_generated_commands) */ +#if defined(VK_NV_external_memory_rdma) + table->vkGetMemoryRemoteAddressNV = (PFN_vkGetMemoryRemoteAddressNV)load(context, "vkGetMemoryRemoteAddressNV"); +#endif /* defined(VK_NV_external_memory_rdma) */ +#if defined(VK_NV_external_memory_win32) + table->vkGetMemoryWin32HandleNV = (PFN_vkGetMemoryWin32HandleNV)load(context, "vkGetMemoryWin32HandleNV"); +#endif /* defined(VK_NV_external_memory_win32) */ +#if defined(VK_NV_fragment_shading_rate_enums) + table->vkCmdSetFragmentShadingRateEnumNV = (PFN_vkCmdSetFragmentShadingRateEnumNV)load(context, "vkCmdSetFragmentShadingRateEnumNV"); +#endif /* defined(VK_NV_fragment_shading_rate_enums) */ +#if defined(VK_NV_mesh_shader) + table->vkCmdDrawMeshTasksIndirectCountNV = (PFN_vkCmdDrawMeshTasksIndirectCountNV)load(context, "vkCmdDrawMeshTasksIndirectCountNV"); + table->vkCmdDrawMeshTasksIndirectNV = (PFN_vkCmdDrawMeshTasksIndirectNV)load(context, "vkCmdDrawMeshTasksIndirectNV"); + table->vkCmdDrawMeshTasksNV = (PFN_vkCmdDrawMeshTasksNV)load(context, "vkCmdDrawMeshTasksNV"); +#endif /* defined(VK_NV_mesh_shader) */ +#if defined(VK_NV_ray_tracing) + table->vkBindAccelerationStructureMemoryNV = (PFN_vkBindAccelerationStructureMemoryNV)load(context, "vkBindAccelerationStructureMemoryNV"); + table->vkCmdBuildAccelerationStructureNV = (PFN_vkCmdBuildAccelerationStructureNV)load(context, "vkCmdBuildAccelerationStructureNV"); + table->vkCmdCopyAccelerationStructureNV = (PFN_vkCmdCopyAccelerationStructureNV)load(context, "vkCmdCopyAccelerationStructureNV"); + table->vkCmdTraceRaysNV = (PFN_vkCmdTraceRaysNV)load(context, "vkCmdTraceRaysNV"); + table->vkCmdWriteAccelerationStructuresPropertiesNV = (PFN_vkCmdWriteAccelerationStructuresPropertiesNV)load(context, "vkCmdWriteAccelerationStructuresPropertiesNV"); + table->vkCompileDeferredNV = (PFN_vkCompileDeferredNV)load(context, "vkCompileDeferredNV"); + table->vkCreateAccelerationStructureNV = (PFN_vkCreateAccelerationStructureNV)load(context, "vkCreateAccelerationStructureNV"); + table->vkCreateRayTracingPipelinesNV = (PFN_vkCreateRayTracingPipelinesNV)load(context, "vkCreateRayTracingPipelinesNV"); + table->vkDestroyAccelerationStructureNV = (PFN_vkDestroyAccelerationStructureNV)load(context, "vkDestroyAccelerationStructureNV"); + table->vkGetAccelerationStructureHandleNV = (PFN_vkGetAccelerationStructureHandleNV)load(context, "vkGetAccelerationStructureHandleNV"); + table->vkGetAccelerationStructureMemoryRequirementsNV = (PFN_vkGetAccelerationStructureMemoryRequirementsNV)load(context, "vkGetAccelerationStructureMemoryRequirementsNV"); + table->vkGetRayTracingShaderGroupHandlesNV = (PFN_vkGetRayTracingShaderGroupHandlesNV)load(context, "vkGetRayTracingShaderGroupHandlesNV"); +#endif /* defined(VK_NV_ray_tracing) */ +#if defined(VK_NV_scissor_exclusive) + table->vkCmdSetExclusiveScissorNV = (PFN_vkCmdSetExclusiveScissorNV)load(context, "vkCmdSetExclusiveScissorNV"); +#endif /* defined(VK_NV_scissor_exclusive) */ +#if defined(VK_NV_shading_rate_image) + table->vkCmdBindShadingRateImageNV = (PFN_vkCmdBindShadingRateImageNV)load(context, "vkCmdBindShadingRateImageNV"); + table->vkCmdSetCoarseSampleOrderNV = (PFN_vkCmdSetCoarseSampleOrderNV)load(context, "vkCmdSetCoarseSampleOrderNV"); + table->vkCmdSetViewportShadingRatePaletteNV = (PFN_vkCmdSetViewportShadingRatePaletteNV)load(context, "vkCmdSetViewportShadingRatePaletteNV"); +#endif /* defined(VK_NV_shading_rate_image) */ +#if defined(VK_VALVE_descriptor_set_host_mapping) + table->vkGetDescriptorSetHostMappingVALVE = (PFN_vkGetDescriptorSetHostMappingVALVE)load(context, "vkGetDescriptorSetHostMappingVALVE"); + table->vkGetDescriptorSetLayoutHostMappingInfoVALVE = (PFN_vkGetDescriptorSetLayoutHostMappingInfoVALVE)load(context, "vkGetDescriptorSetLayoutHostMappingInfoVALVE"); +#endif /* defined(VK_VALVE_descriptor_set_host_mapping) */ +#if (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) + table->vkGetDeviceGroupSurfacePresentModes2EXT = (PFN_vkGetDeviceGroupSurfacePresentModes2EXT)load(context, "vkGetDeviceGroupSurfacePresentModes2EXT"); +#endif /* (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) + table->vkCmdPushDescriptorSetWithTemplateKHR = (PFN_vkCmdPushDescriptorSetWithTemplateKHR)load(context, "vkCmdPushDescriptorSetWithTemplateKHR"); +#endif /* (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + table->vkGetDeviceGroupPresentCapabilitiesKHR = (PFN_vkGetDeviceGroupPresentCapabilitiesKHR)load(context, "vkGetDeviceGroupPresentCapabilitiesKHR"); + table->vkGetDeviceGroupSurfacePresentModesKHR = (PFN_vkGetDeviceGroupSurfacePresentModesKHR)load(context, "vkGetDeviceGroupSurfacePresentModesKHR"); +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + table->vkAcquireNextImage2KHR = (PFN_vkAcquireNextImage2KHR)load(context, "vkAcquireNextImage2KHR"); +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ + /* VOLK_GENERATE_LOAD_DEVICE_TABLE */ +} + +#ifdef __GNUC__ +#ifdef VOLK_DEFAULT_VISIBILITY +# pragma GCC visibility push(default) +#else +# pragma GCC visibility push(hidden) +#endif +#endif + +/* VOLK_GENERATE_PROTOTYPES_C */ +#if defined(VK_VERSION_1_0) +PFN_vkAllocateCommandBuffers vkAllocateCommandBuffers; +PFN_vkAllocateDescriptorSets vkAllocateDescriptorSets; +PFN_vkAllocateMemory vkAllocateMemory; +PFN_vkBeginCommandBuffer vkBeginCommandBuffer; +PFN_vkBindBufferMemory vkBindBufferMemory; +PFN_vkBindImageMemory vkBindImageMemory; +PFN_vkCmdBeginQuery vkCmdBeginQuery; +PFN_vkCmdBeginRenderPass vkCmdBeginRenderPass; +PFN_vkCmdBindDescriptorSets vkCmdBindDescriptorSets; +PFN_vkCmdBindIndexBuffer vkCmdBindIndexBuffer; +PFN_vkCmdBindPipeline vkCmdBindPipeline; +PFN_vkCmdBindVertexBuffers vkCmdBindVertexBuffers; +PFN_vkCmdBlitImage vkCmdBlitImage; +PFN_vkCmdClearAttachments vkCmdClearAttachments; +PFN_vkCmdClearColorImage vkCmdClearColorImage; +PFN_vkCmdClearDepthStencilImage vkCmdClearDepthStencilImage; +PFN_vkCmdCopyBuffer vkCmdCopyBuffer; +PFN_vkCmdCopyBufferToImage vkCmdCopyBufferToImage; +PFN_vkCmdCopyImage vkCmdCopyImage; +PFN_vkCmdCopyImageToBuffer vkCmdCopyImageToBuffer; +PFN_vkCmdCopyQueryPoolResults vkCmdCopyQueryPoolResults; +PFN_vkCmdDispatch vkCmdDispatch; +PFN_vkCmdDispatchIndirect vkCmdDispatchIndirect; +PFN_vkCmdDraw vkCmdDraw; +PFN_vkCmdDrawIndexed vkCmdDrawIndexed; +PFN_vkCmdDrawIndexedIndirect vkCmdDrawIndexedIndirect; +PFN_vkCmdDrawIndirect vkCmdDrawIndirect; +PFN_vkCmdEndQuery vkCmdEndQuery; +PFN_vkCmdEndRenderPass vkCmdEndRenderPass; +PFN_vkCmdExecuteCommands vkCmdExecuteCommands; +PFN_vkCmdFillBuffer vkCmdFillBuffer; +PFN_vkCmdNextSubpass vkCmdNextSubpass; +PFN_vkCmdPipelineBarrier vkCmdPipelineBarrier; +PFN_vkCmdPushConstants vkCmdPushConstants; +PFN_vkCmdResetEvent vkCmdResetEvent; +PFN_vkCmdResetQueryPool vkCmdResetQueryPool; +PFN_vkCmdResolveImage vkCmdResolveImage; +PFN_vkCmdSetBlendConstants vkCmdSetBlendConstants; +PFN_vkCmdSetDepthBias vkCmdSetDepthBias; +PFN_vkCmdSetDepthBounds vkCmdSetDepthBounds; +PFN_vkCmdSetEvent vkCmdSetEvent; +PFN_vkCmdSetLineWidth vkCmdSetLineWidth; +PFN_vkCmdSetScissor vkCmdSetScissor; +PFN_vkCmdSetStencilCompareMask vkCmdSetStencilCompareMask; +PFN_vkCmdSetStencilReference vkCmdSetStencilReference; +PFN_vkCmdSetStencilWriteMask vkCmdSetStencilWriteMask; +PFN_vkCmdSetViewport vkCmdSetViewport; +PFN_vkCmdUpdateBuffer vkCmdUpdateBuffer; +PFN_vkCmdWaitEvents vkCmdWaitEvents; +PFN_vkCmdWriteTimestamp vkCmdWriteTimestamp; +PFN_vkCreateBuffer vkCreateBuffer; +PFN_vkCreateBufferView vkCreateBufferView; +PFN_vkCreateCommandPool vkCreateCommandPool; +PFN_vkCreateComputePipelines vkCreateComputePipelines; +PFN_vkCreateDescriptorPool vkCreateDescriptorPool; +PFN_vkCreateDescriptorSetLayout vkCreateDescriptorSetLayout; +PFN_vkCreateDevice vkCreateDevice; +PFN_vkCreateEvent vkCreateEvent; +PFN_vkCreateFence vkCreateFence; +PFN_vkCreateFramebuffer vkCreateFramebuffer; +PFN_vkCreateGraphicsPipelines vkCreateGraphicsPipelines; +PFN_vkCreateImage vkCreateImage; +PFN_vkCreateImageView vkCreateImageView; +PFN_vkCreateInstance vkCreateInstance; +PFN_vkCreatePipelineCache vkCreatePipelineCache; +PFN_vkCreatePipelineLayout vkCreatePipelineLayout; +PFN_vkCreateQueryPool vkCreateQueryPool; +PFN_vkCreateRenderPass vkCreateRenderPass; +PFN_vkCreateSampler vkCreateSampler; +PFN_vkCreateSemaphore vkCreateSemaphore; +PFN_vkCreateShaderModule vkCreateShaderModule; +PFN_vkDestroyBuffer vkDestroyBuffer; +PFN_vkDestroyBufferView vkDestroyBufferView; +PFN_vkDestroyCommandPool vkDestroyCommandPool; +PFN_vkDestroyDescriptorPool vkDestroyDescriptorPool; +PFN_vkDestroyDescriptorSetLayout vkDestroyDescriptorSetLayout; +PFN_vkDestroyDevice vkDestroyDevice; +PFN_vkDestroyEvent vkDestroyEvent; +PFN_vkDestroyFence vkDestroyFence; +PFN_vkDestroyFramebuffer vkDestroyFramebuffer; +PFN_vkDestroyImage vkDestroyImage; +PFN_vkDestroyImageView vkDestroyImageView; +PFN_vkDestroyInstance vkDestroyInstance; +PFN_vkDestroyPipeline vkDestroyPipeline; +PFN_vkDestroyPipelineCache vkDestroyPipelineCache; +PFN_vkDestroyPipelineLayout vkDestroyPipelineLayout; +PFN_vkDestroyQueryPool vkDestroyQueryPool; +PFN_vkDestroyRenderPass vkDestroyRenderPass; +PFN_vkDestroySampler vkDestroySampler; +PFN_vkDestroySemaphore vkDestroySemaphore; +PFN_vkDestroyShaderModule vkDestroyShaderModule; +PFN_vkDeviceWaitIdle vkDeviceWaitIdle; +PFN_vkEndCommandBuffer vkEndCommandBuffer; +PFN_vkEnumerateDeviceExtensionProperties vkEnumerateDeviceExtensionProperties; +PFN_vkEnumerateDeviceLayerProperties vkEnumerateDeviceLayerProperties; +PFN_vkEnumerateInstanceExtensionProperties vkEnumerateInstanceExtensionProperties; +PFN_vkEnumerateInstanceLayerProperties vkEnumerateInstanceLayerProperties; +PFN_vkEnumeratePhysicalDevices vkEnumeratePhysicalDevices; +PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; +PFN_vkFreeCommandBuffers vkFreeCommandBuffers; +PFN_vkFreeDescriptorSets vkFreeDescriptorSets; +PFN_vkFreeMemory vkFreeMemory; +PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; +PFN_vkGetDeviceMemoryCommitment vkGetDeviceMemoryCommitment; +PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; +PFN_vkGetDeviceQueue vkGetDeviceQueue; +PFN_vkGetEventStatus vkGetEventStatus; +PFN_vkGetFenceStatus vkGetFenceStatus; +PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; +PFN_vkGetImageSparseMemoryRequirements vkGetImageSparseMemoryRequirements; +PFN_vkGetImageSubresourceLayout vkGetImageSubresourceLayout; +PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; +PFN_vkGetPhysicalDeviceFeatures vkGetPhysicalDeviceFeatures; +PFN_vkGetPhysicalDeviceFormatProperties vkGetPhysicalDeviceFormatProperties; +PFN_vkGetPhysicalDeviceImageFormatProperties vkGetPhysicalDeviceImageFormatProperties; +PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; +PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; +PFN_vkGetPhysicalDeviceQueueFamilyProperties vkGetPhysicalDeviceQueueFamilyProperties; +PFN_vkGetPhysicalDeviceSparseImageFormatProperties vkGetPhysicalDeviceSparseImageFormatProperties; +PFN_vkGetPipelineCacheData vkGetPipelineCacheData; +PFN_vkGetQueryPoolResults vkGetQueryPoolResults; +PFN_vkGetRenderAreaGranularity vkGetRenderAreaGranularity; +PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; +PFN_vkMapMemory vkMapMemory; +PFN_vkMergePipelineCaches vkMergePipelineCaches; +PFN_vkQueueBindSparse vkQueueBindSparse; +PFN_vkQueueSubmit vkQueueSubmit; +PFN_vkQueueWaitIdle vkQueueWaitIdle; +PFN_vkResetCommandBuffer vkResetCommandBuffer; +PFN_vkResetCommandPool vkResetCommandPool; +PFN_vkResetDescriptorPool vkResetDescriptorPool; +PFN_vkResetEvent vkResetEvent; +PFN_vkResetFences vkResetFences; +PFN_vkSetEvent vkSetEvent; +PFN_vkUnmapMemory vkUnmapMemory; +PFN_vkUpdateDescriptorSets vkUpdateDescriptorSets; +PFN_vkWaitForFences vkWaitForFences; +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) +PFN_vkBindBufferMemory2 vkBindBufferMemory2; +PFN_vkBindImageMemory2 vkBindImageMemory2; +PFN_vkCmdDispatchBase vkCmdDispatchBase; +PFN_vkCmdSetDeviceMask vkCmdSetDeviceMask; +PFN_vkCreateDescriptorUpdateTemplate vkCreateDescriptorUpdateTemplate; +PFN_vkCreateSamplerYcbcrConversion vkCreateSamplerYcbcrConversion; +PFN_vkDestroyDescriptorUpdateTemplate vkDestroyDescriptorUpdateTemplate; +PFN_vkDestroySamplerYcbcrConversion vkDestroySamplerYcbcrConversion; +PFN_vkEnumerateInstanceVersion vkEnumerateInstanceVersion; +PFN_vkEnumeratePhysicalDeviceGroups vkEnumeratePhysicalDeviceGroups; +PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; +PFN_vkGetDescriptorSetLayoutSupport vkGetDescriptorSetLayoutSupport; +PFN_vkGetDeviceGroupPeerMemoryFeatures vkGetDeviceGroupPeerMemoryFeatures; +PFN_vkGetDeviceQueue2 vkGetDeviceQueue2; +PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; +PFN_vkGetImageSparseMemoryRequirements2 vkGetImageSparseMemoryRequirements2; +PFN_vkGetPhysicalDeviceExternalBufferProperties vkGetPhysicalDeviceExternalBufferProperties; +PFN_vkGetPhysicalDeviceExternalFenceProperties vkGetPhysicalDeviceExternalFenceProperties; +PFN_vkGetPhysicalDeviceExternalSemaphoreProperties vkGetPhysicalDeviceExternalSemaphoreProperties; +PFN_vkGetPhysicalDeviceFeatures2 vkGetPhysicalDeviceFeatures2; +PFN_vkGetPhysicalDeviceFormatProperties2 vkGetPhysicalDeviceFormatProperties2; +PFN_vkGetPhysicalDeviceImageFormatProperties2 vkGetPhysicalDeviceImageFormatProperties2; +PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2; +PFN_vkGetPhysicalDeviceProperties2 vkGetPhysicalDeviceProperties2; +PFN_vkGetPhysicalDeviceQueueFamilyProperties2 vkGetPhysicalDeviceQueueFamilyProperties2; +PFN_vkGetPhysicalDeviceSparseImageFormatProperties2 vkGetPhysicalDeviceSparseImageFormatProperties2; +PFN_vkTrimCommandPool vkTrimCommandPool; +PFN_vkUpdateDescriptorSetWithTemplate vkUpdateDescriptorSetWithTemplate; +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_VERSION_1_2) +PFN_vkCmdBeginRenderPass2 vkCmdBeginRenderPass2; +PFN_vkCmdDrawIndexedIndirectCount vkCmdDrawIndexedIndirectCount; +PFN_vkCmdDrawIndirectCount vkCmdDrawIndirectCount; +PFN_vkCmdEndRenderPass2 vkCmdEndRenderPass2; +PFN_vkCmdNextSubpass2 vkCmdNextSubpass2; +PFN_vkCreateRenderPass2 vkCreateRenderPass2; +PFN_vkGetBufferDeviceAddress vkGetBufferDeviceAddress; +PFN_vkGetBufferOpaqueCaptureAddress vkGetBufferOpaqueCaptureAddress; +PFN_vkGetDeviceMemoryOpaqueCaptureAddress vkGetDeviceMemoryOpaqueCaptureAddress; +PFN_vkGetSemaphoreCounterValue vkGetSemaphoreCounterValue; +PFN_vkResetQueryPool vkResetQueryPool; +PFN_vkSignalSemaphore vkSignalSemaphore; +PFN_vkWaitSemaphores vkWaitSemaphores; +#endif /* defined(VK_VERSION_1_2) */ +#if defined(VK_VERSION_1_3) +PFN_vkCmdBeginRendering vkCmdBeginRendering; +PFN_vkCmdBindVertexBuffers2 vkCmdBindVertexBuffers2; +PFN_vkCmdBlitImage2 vkCmdBlitImage2; +PFN_vkCmdCopyBuffer2 vkCmdCopyBuffer2; +PFN_vkCmdCopyBufferToImage2 vkCmdCopyBufferToImage2; +PFN_vkCmdCopyImage2 vkCmdCopyImage2; +PFN_vkCmdCopyImageToBuffer2 vkCmdCopyImageToBuffer2; +PFN_vkCmdEndRendering vkCmdEndRendering; +PFN_vkCmdPipelineBarrier2 vkCmdPipelineBarrier2; +PFN_vkCmdResetEvent2 vkCmdResetEvent2; +PFN_vkCmdResolveImage2 vkCmdResolveImage2; +PFN_vkCmdSetCullMode vkCmdSetCullMode; +PFN_vkCmdSetDepthBiasEnable vkCmdSetDepthBiasEnable; +PFN_vkCmdSetDepthBoundsTestEnable vkCmdSetDepthBoundsTestEnable; +PFN_vkCmdSetDepthCompareOp vkCmdSetDepthCompareOp; +PFN_vkCmdSetDepthTestEnable vkCmdSetDepthTestEnable; +PFN_vkCmdSetDepthWriteEnable vkCmdSetDepthWriteEnable; +PFN_vkCmdSetEvent2 vkCmdSetEvent2; +PFN_vkCmdSetFrontFace vkCmdSetFrontFace; +PFN_vkCmdSetPrimitiveRestartEnable vkCmdSetPrimitiveRestartEnable; +PFN_vkCmdSetPrimitiveTopology vkCmdSetPrimitiveTopology; +PFN_vkCmdSetRasterizerDiscardEnable vkCmdSetRasterizerDiscardEnable; +PFN_vkCmdSetScissorWithCount vkCmdSetScissorWithCount; +PFN_vkCmdSetStencilOp vkCmdSetStencilOp; +PFN_vkCmdSetStencilTestEnable vkCmdSetStencilTestEnable; +PFN_vkCmdSetViewportWithCount vkCmdSetViewportWithCount; +PFN_vkCmdWaitEvents2 vkCmdWaitEvents2; +PFN_vkCmdWriteTimestamp2 vkCmdWriteTimestamp2; +PFN_vkCreatePrivateDataSlot vkCreatePrivateDataSlot; +PFN_vkDestroyPrivateDataSlot vkDestroyPrivateDataSlot; +PFN_vkGetDeviceBufferMemoryRequirements vkGetDeviceBufferMemoryRequirements; +PFN_vkGetDeviceImageMemoryRequirements vkGetDeviceImageMemoryRequirements; +PFN_vkGetDeviceImageSparseMemoryRequirements vkGetDeviceImageSparseMemoryRequirements; +PFN_vkGetPhysicalDeviceToolProperties vkGetPhysicalDeviceToolProperties; +PFN_vkGetPrivateData vkGetPrivateData; +PFN_vkQueueSubmit2 vkQueueSubmit2; +PFN_vkSetPrivateData vkSetPrivateData; +#endif /* defined(VK_VERSION_1_3) */ +#if defined(VK_AMD_buffer_marker) +PFN_vkCmdWriteBufferMarkerAMD vkCmdWriteBufferMarkerAMD; +#endif /* defined(VK_AMD_buffer_marker) */ +#if defined(VK_AMD_display_native_hdr) +PFN_vkSetLocalDimmingAMD vkSetLocalDimmingAMD; +#endif /* defined(VK_AMD_display_native_hdr) */ +#if defined(VK_AMD_draw_indirect_count) +PFN_vkCmdDrawIndexedIndirectCountAMD vkCmdDrawIndexedIndirectCountAMD; +PFN_vkCmdDrawIndirectCountAMD vkCmdDrawIndirectCountAMD; +#endif /* defined(VK_AMD_draw_indirect_count) */ +#if defined(VK_AMD_shader_info) +PFN_vkGetShaderInfoAMD vkGetShaderInfoAMD; +#endif /* defined(VK_AMD_shader_info) */ +#if defined(VK_ANDROID_external_memory_android_hardware_buffer) +PFN_vkGetAndroidHardwareBufferPropertiesANDROID vkGetAndroidHardwareBufferPropertiesANDROID; +PFN_vkGetMemoryAndroidHardwareBufferANDROID vkGetMemoryAndroidHardwareBufferANDROID; +#endif /* defined(VK_ANDROID_external_memory_android_hardware_buffer) */ +#if defined(VK_EXT_acquire_drm_display) +PFN_vkAcquireDrmDisplayEXT vkAcquireDrmDisplayEXT; +PFN_vkGetDrmDisplayEXT vkGetDrmDisplayEXT; +#endif /* defined(VK_EXT_acquire_drm_display) */ +#if defined(VK_EXT_acquire_xlib_display) +PFN_vkAcquireXlibDisplayEXT vkAcquireXlibDisplayEXT; +PFN_vkGetRandROutputDisplayEXT vkGetRandROutputDisplayEXT; +#endif /* defined(VK_EXT_acquire_xlib_display) */ +#if defined(VK_EXT_buffer_device_address) +PFN_vkGetBufferDeviceAddressEXT vkGetBufferDeviceAddressEXT; +#endif /* defined(VK_EXT_buffer_device_address) */ +#if defined(VK_EXT_calibrated_timestamps) +PFN_vkGetCalibratedTimestampsEXT vkGetCalibratedTimestampsEXT; +PFN_vkGetPhysicalDeviceCalibrateableTimeDomainsEXT vkGetPhysicalDeviceCalibrateableTimeDomainsEXT; +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_color_write_enable) +PFN_vkCmdSetColorWriteEnableEXT vkCmdSetColorWriteEnableEXT; +#endif /* defined(VK_EXT_color_write_enable) */ +#if defined(VK_EXT_conditional_rendering) +PFN_vkCmdBeginConditionalRenderingEXT vkCmdBeginConditionalRenderingEXT; +PFN_vkCmdEndConditionalRenderingEXT vkCmdEndConditionalRenderingEXT; +#endif /* defined(VK_EXT_conditional_rendering) */ +#if defined(VK_EXT_debug_marker) +PFN_vkCmdDebugMarkerBeginEXT vkCmdDebugMarkerBeginEXT; +PFN_vkCmdDebugMarkerEndEXT vkCmdDebugMarkerEndEXT; +PFN_vkCmdDebugMarkerInsertEXT vkCmdDebugMarkerInsertEXT; +PFN_vkDebugMarkerSetObjectNameEXT vkDebugMarkerSetObjectNameEXT; +PFN_vkDebugMarkerSetObjectTagEXT vkDebugMarkerSetObjectTagEXT; +#endif /* defined(VK_EXT_debug_marker) */ +#if defined(VK_EXT_debug_report) +PFN_vkCreateDebugReportCallbackEXT vkCreateDebugReportCallbackEXT; +PFN_vkDebugReportMessageEXT vkDebugReportMessageEXT; +PFN_vkDestroyDebugReportCallbackEXT vkDestroyDebugReportCallbackEXT; +#endif /* defined(VK_EXT_debug_report) */ +#if defined(VK_EXT_debug_utils) +PFN_vkCmdBeginDebugUtilsLabelEXT vkCmdBeginDebugUtilsLabelEXT; +PFN_vkCmdEndDebugUtilsLabelEXT vkCmdEndDebugUtilsLabelEXT; +PFN_vkCmdInsertDebugUtilsLabelEXT vkCmdInsertDebugUtilsLabelEXT; +PFN_vkCreateDebugUtilsMessengerEXT vkCreateDebugUtilsMessengerEXT; +PFN_vkDestroyDebugUtilsMessengerEXT vkDestroyDebugUtilsMessengerEXT; +PFN_vkQueueBeginDebugUtilsLabelEXT vkQueueBeginDebugUtilsLabelEXT; +PFN_vkQueueEndDebugUtilsLabelEXT vkQueueEndDebugUtilsLabelEXT; +PFN_vkQueueInsertDebugUtilsLabelEXT vkQueueInsertDebugUtilsLabelEXT; +PFN_vkSetDebugUtilsObjectNameEXT vkSetDebugUtilsObjectNameEXT; +PFN_vkSetDebugUtilsObjectTagEXT vkSetDebugUtilsObjectTagEXT; +PFN_vkSubmitDebugUtilsMessageEXT vkSubmitDebugUtilsMessageEXT; +#endif /* defined(VK_EXT_debug_utils) */ +#if defined(VK_EXT_direct_mode_display) +PFN_vkReleaseDisplayEXT vkReleaseDisplayEXT; +#endif /* defined(VK_EXT_direct_mode_display) */ +#if defined(VK_EXT_directfb_surface) +PFN_vkCreateDirectFBSurfaceEXT vkCreateDirectFBSurfaceEXT; +PFN_vkGetPhysicalDeviceDirectFBPresentationSupportEXT vkGetPhysicalDeviceDirectFBPresentationSupportEXT; +#endif /* defined(VK_EXT_directfb_surface) */ +#if defined(VK_EXT_discard_rectangles) +PFN_vkCmdSetDiscardRectangleEXT vkCmdSetDiscardRectangleEXT; +#endif /* defined(VK_EXT_discard_rectangles) */ +#if defined(VK_EXT_display_control) +PFN_vkDisplayPowerControlEXT vkDisplayPowerControlEXT; +PFN_vkGetSwapchainCounterEXT vkGetSwapchainCounterEXT; +PFN_vkRegisterDeviceEventEXT vkRegisterDeviceEventEXT; +PFN_vkRegisterDisplayEventEXT vkRegisterDisplayEventEXT; +#endif /* defined(VK_EXT_display_control) */ +#if defined(VK_EXT_display_surface_counter) +PFN_vkGetPhysicalDeviceSurfaceCapabilities2EXT vkGetPhysicalDeviceSurfaceCapabilities2EXT; +#endif /* defined(VK_EXT_display_surface_counter) */ +#if defined(VK_EXT_extended_dynamic_state) +PFN_vkCmdBindVertexBuffers2EXT vkCmdBindVertexBuffers2EXT; +PFN_vkCmdSetCullModeEXT vkCmdSetCullModeEXT; +PFN_vkCmdSetDepthBoundsTestEnableEXT vkCmdSetDepthBoundsTestEnableEXT; +PFN_vkCmdSetDepthCompareOpEXT vkCmdSetDepthCompareOpEXT; +PFN_vkCmdSetDepthTestEnableEXT vkCmdSetDepthTestEnableEXT; +PFN_vkCmdSetDepthWriteEnableEXT vkCmdSetDepthWriteEnableEXT; +PFN_vkCmdSetFrontFaceEXT vkCmdSetFrontFaceEXT; +PFN_vkCmdSetPrimitiveTopologyEXT vkCmdSetPrimitiveTopologyEXT; +PFN_vkCmdSetScissorWithCountEXT vkCmdSetScissorWithCountEXT; +PFN_vkCmdSetStencilOpEXT vkCmdSetStencilOpEXT; +PFN_vkCmdSetStencilTestEnableEXT vkCmdSetStencilTestEnableEXT; +PFN_vkCmdSetViewportWithCountEXT vkCmdSetViewportWithCountEXT; +#endif /* defined(VK_EXT_extended_dynamic_state) */ +#if defined(VK_EXT_extended_dynamic_state2) +PFN_vkCmdSetDepthBiasEnableEXT vkCmdSetDepthBiasEnableEXT; +PFN_vkCmdSetLogicOpEXT vkCmdSetLogicOpEXT; +PFN_vkCmdSetPatchControlPointsEXT vkCmdSetPatchControlPointsEXT; +PFN_vkCmdSetPrimitiveRestartEnableEXT vkCmdSetPrimitiveRestartEnableEXT; +PFN_vkCmdSetRasterizerDiscardEnableEXT vkCmdSetRasterizerDiscardEnableEXT; +#endif /* defined(VK_EXT_extended_dynamic_state2) */ +#if defined(VK_EXT_external_memory_host) +PFN_vkGetMemoryHostPointerPropertiesEXT vkGetMemoryHostPointerPropertiesEXT; +#endif /* defined(VK_EXT_external_memory_host) */ +#if defined(VK_EXT_full_screen_exclusive) +PFN_vkAcquireFullScreenExclusiveModeEXT vkAcquireFullScreenExclusiveModeEXT; +PFN_vkGetPhysicalDeviceSurfacePresentModes2EXT vkGetPhysicalDeviceSurfacePresentModes2EXT; +PFN_vkReleaseFullScreenExclusiveModeEXT vkReleaseFullScreenExclusiveModeEXT; +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_hdr_metadata) +PFN_vkSetHdrMetadataEXT vkSetHdrMetadataEXT; +#endif /* defined(VK_EXT_hdr_metadata) */ +#if defined(VK_EXT_headless_surface) +PFN_vkCreateHeadlessSurfaceEXT vkCreateHeadlessSurfaceEXT; +#endif /* defined(VK_EXT_headless_surface) */ +#if defined(VK_EXT_host_query_reset) +PFN_vkResetQueryPoolEXT vkResetQueryPoolEXT; +#endif /* defined(VK_EXT_host_query_reset) */ +#if defined(VK_EXT_image_compression_control) +PFN_vkGetImageSubresourceLayout2EXT vkGetImageSubresourceLayout2EXT; +#endif /* defined(VK_EXT_image_compression_control) */ +#if defined(VK_EXT_image_drm_format_modifier) +PFN_vkGetImageDrmFormatModifierPropertiesEXT vkGetImageDrmFormatModifierPropertiesEXT; +#endif /* defined(VK_EXT_image_drm_format_modifier) */ +#if defined(VK_EXT_line_rasterization) +PFN_vkCmdSetLineStippleEXT vkCmdSetLineStippleEXT; +#endif /* defined(VK_EXT_line_rasterization) */ +#if defined(VK_EXT_metal_surface) +PFN_vkCreateMetalSurfaceEXT vkCreateMetalSurfaceEXT; +#endif /* defined(VK_EXT_metal_surface) */ +#if defined(VK_EXT_multi_draw) +PFN_vkCmdDrawMultiEXT vkCmdDrawMultiEXT; +PFN_vkCmdDrawMultiIndexedEXT vkCmdDrawMultiIndexedEXT; +#endif /* defined(VK_EXT_multi_draw) */ +#if defined(VK_EXT_pageable_device_local_memory) +PFN_vkSetDeviceMemoryPriorityEXT vkSetDeviceMemoryPriorityEXT; +#endif /* defined(VK_EXT_pageable_device_local_memory) */ +#if defined(VK_EXT_pipeline_properties) +PFN_vkGetPipelinePropertiesEXT vkGetPipelinePropertiesEXT; +#endif /* defined(VK_EXT_pipeline_properties) */ +#if defined(VK_EXT_private_data) +PFN_vkCreatePrivateDataSlotEXT vkCreatePrivateDataSlotEXT; +PFN_vkDestroyPrivateDataSlotEXT vkDestroyPrivateDataSlotEXT; +PFN_vkGetPrivateDataEXT vkGetPrivateDataEXT; +PFN_vkSetPrivateDataEXT vkSetPrivateDataEXT; +#endif /* defined(VK_EXT_private_data) */ +#if defined(VK_EXT_sample_locations) +PFN_vkCmdSetSampleLocationsEXT vkCmdSetSampleLocationsEXT; +PFN_vkGetPhysicalDeviceMultisamplePropertiesEXT vkGetPhysicalDeviceMultisamplePropertiesEXT; +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_tooling_info) +PFN_vkGetPhysicalDeviceToolPropertiesEXT vkGetPhysicalDeviceToolPropertiesEXT; +#endif /* defined(VK_EXT_tooling_info) */ +#if defined(VK_EXT_transform_feedback) +PFN_vkCmdBeginQueryIndexedEXT vkCmdBeginQueryIndexedEXT; +PFN_vkCmdBeginTransformFeedbackEXT vkCmdBeginTransformFeedbackEXT; +PFN_vkCmdBindTransformFeedbackBuffersEXT vkCmdBindTransformFeedbackBuffersEXT; +PFN_vkCmdDrawIndirectByteCountEXT vkCmdDrawIndirectByteCountEXT; +PFN_vkCmdEndQueryIndexedEXT vkCmdEndQueryIndexedEXT; +PFN_vkCmdEndTransformFeedbackEXT vkCmdEndTransformFeedbackEXT; +#endif /* defined(VK_EXT_transform_feedback) */ +#if defined(VK_EXT_validation_cache) +PFN_vkCreateValidationCacheEXT vkCreateValidationCacheEXT; +PFN_vkDestroyValidationCacheEXT vkDestroyValidationCacheEXT; +PFN_vkGetValidationCacheDataEXT vkGetValidationCacheDataEXT; +PFN_vkMergeValidationCachesEXT vkMergeValidationCachesEXT; +#endif /* defined(VK_EXT_validation_cache) */ +#if defined(VK_EXT_vertex_input_dynamic_state) +PFN_vkCmdSetVertexInputEXT vkCmdSetVertexInputEXT; +#endif /* defined(VK_EXT_vertex_input_dynamic_state) */ +#if defined(VK_FUCHSIA_buffer_collection) +PFN_vkCreateBufferCollectionFUCHSIA vkCreateBufferCollectionFUCHSIA; +PFN_vkDestroyBufferCollectionFUCHSIA vkDestroyBufferCollectionFUCHSIA; +PFN_vkGetBufferCollectionPropertiesFUCHSIA vkGetBufferCollectionPropertiesFUCHSIA; +PFN_vkSetBufferCollectionBufferConstraintsFUCHSIA vkSetBufferCollectionBufferConstraintsFUCHSIA; +PFN_vkSetBufferCollectionImageConstraintsFUCHSIA vkSetBufferCollectionImageConstraintsFUCHSIA; +#endif /* defined(VK_FUCHSIA_buffer_collection) */ +#if defined(VK_FUCHSIA_external_memory) +PFN_vkGetMemoryZirconHandleFUCHSIA vkGetMemoryZirconHandleFUCHSIA; +PFN_vkGetMemoryZirconHandlePropertiesFUCHSIA vkGetMemoryZirconHandlePropertiesFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_memory) */ +#if defined(VK_FUCHSIA_external_semaphore) +PFN_vkGetSemaphoreZirconHandleFUCHSIA vkGetSemaphoreZirconHandleFUCHSIA; +PFN_vkImportSemaphoreZirconHandleFUCHSIA vkImportSemaphoreZirconHandleFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_semaphore) */ +#if defined(VK_FUCHSIA_imagepipe_surface) +PFN_vkCreateImagePipeSurfaceFUCHSIA vkCreateImagePipeSurfaceFUCHSIA; +#endif /* defined(VK_FUCHSIA_imagepipe_surface) */ +#if defined(VK_GGP_stream_descriptor_surface) +PFN_vkCreateStreamDescriptorSurfaceGGP vkCreateStreamDescriptorSurfaceGGP; +#endif /* defined(VK_GGP_stream_descriptor_surface) */ +#if defined(VK_GOOGLE_display_timing) +PFN_vkGetPastPresentationTimingGOOGLE vkGetPastPresentationTimingGOOGLE; +PFN_vkGetRefreshCycleDurationGOOGLE vkGetRefreshCycleDurationGOOGLE; +#endif /* defined(VK_GOOGLE_display_timing) */ +#if defined(VK_HUAWEI_invocation_mask) +PFN_vkCmdBindInvocationMaskHUAWEI vkCmdBindInvocationMaskHUAWEI; +#endif /* defined(VK_HUAWEI_invocation_mask) */ +#if defined(VK_HUAWEI_subpass_shading) +PFN_vkCmdSubpassShadingHUAWEI vkCmdSubpassShadingHUAWEI; +PFN_vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI; +#endif /* defined(VK_HUAWEI_subpass_shading) */ +#if defined(VK_INTEL_performance_query) +PFN_vkAcquirePerformanceConfigurationINTEL vkAcquirePerformanceConfigurationINTEL; +PFN_vkCmdSetPerformanceMarkerINTEL vkCmdSetPerformanceMarkerINTEL; +PFN_vkCmdSetPerformanceOverrideINTEL vkCmdSetPerformanceOverrideINTEL; +PFN_vkCmdSetPerformanceStreamMarkerINTEL vkCmdSetPerformanceStreamMarkerINTEL; +PFN_vkGetPerformanceParameterINTEL vkGetPerformanceParameterINTEL; +PFN_vkInitializePerformanceApiINTEL vkInitializePerformanceApiINTEL; +PFN_vkQueueSetPerformanceConfigurationINTEL vkQueueSetPerformanceConfigurationINTEL; +PFN_vkReleasePerformanceConfigurationINTEL vkReleasePerformanceConfigurationINTEL; +PFN_vkUninitializePerformanceApiINTEL vkUninitializePerformanceApiINTEL; +#endif /* defined(VK_INTEL_performance_query) */ +#if defined(VK_KHR_acceleration_structure) +PFN_vkBuildAccelerationStructuresKHR vkBuildAccelerationStructuresKHR; +PFN_vkCmdBuildAccelerationStructuresIndirectKHR vkCmdBuildAccelerationStructuresIndirectKHR; +PFN_vkCmdBuildAccelerationStructuresKHR vkCmdBuildAccelerationStructuresKHR; +PFN_vkCmdCopyAccelerationStructureKHR vkCmdCopyAccelerationStructureKHR; +PFN_vkCmdCopyAccelerationStructureToMemoryKHR vkCmdCopyAccelerationStructureToMemoryKHR; +PFN_vkCmdCopyMemoryToAccelerationStructureKHR vkCmdCopyMemoryToAccelerationStructureKHR; +PFN_vkCmdWriteAccelerationStructuresPropertiesKHR vkCmdWriteAccelerationStructuresPropertiesKHR; +PFN_vkCopyAccelerationStructureKHR vkCopyAccelerationStructureKHR; +PFN_vkCopyAccelerationStructureToMemoryKHR vkCopyAccelerationStructureToMemoryKHR; +PFN_vkCopyMemoryToAccelerationStructureKHR vkCopyMemoryToAccelerationStructureKHR; +PFN_vkCreateAccelerationStructureKHR vkCreateAccelerationStructureKHR; +PFN_vkDestroyAccelerationStructureKHR vkDestroyAccelerationStructureKHR; +PFN_vkGetAccelerationStructureBuildSizesKHR vkGetAccelerationStructureBuildSizesKHR; +PFN_vkGetAccelerationStructureDeviceAddressKHR vkGetAccelerationStructureDeviceAddressKHR; +PFN_vkGetDeviceAccelerationStructureCompatibilityKHR vkGetDeviceAccelerationStructureCompatibilityKHR; +PFN_vkWriteAccelerationStructuresPropertiesKHR vkWriteAccelerationStructuresPropertiesKHR; +#endif /* defined(VK_KHR_acceleration_structure) */ +#if defined(VK_KHR_android_surface) +PFN_vkCreateAndroidSurfaceKHR vkCreateAndroidSurfaceKHR; +#endif /* defined(VK_KHR_android_surface) */ +#if defined(VK_KHR_bind_memory2) +PFN_vkBindBufferMemory2KHR vkBindBufferMemory2KHR; +PFN_vkBindImageMemory2KHR vkBindImageMemory2KHR; +#endif /* defined(VK_KHR_bind_memory2) */ +#if defined(VK_KHR_buffer_device_address) +PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR; +PFN_vkGetBufferOpaqueCaptureAddressKHR vkGetBufferOpaqueCaptureAddressKHR; +PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR vkGetDeviceMemoryOpaqueCaptureAddressKHR; +#endif /* defined(VK_KHR_buffer_device_address) */ +#if defined(VK_KHR_copy_commands2) +PFN_vkCmdBlitImage2KHR vkCmdBlitImage2KHR; +PFN_vkCmdCopyBuffer2KHR vkCmdCopyBuffer2KHR; +PFN_vkCmdCopyBufferToImage2KHR vkCmdCopyBufferToImage2KHR; +PFN_vkCmdCopyImage2KHR vkCmdCopyImage2KHR; +PFN_vkCmdCopyImageToBuffer2KHR vkCmdCopyImageToBuffer2KHR; +PFN_vkCmdResolveImage2KHR vkCmdResolveImage2KHR; +#endif /* defined(VK_KHR_copy_commands2) */ +#if defined(VK_KHR_create_renderpass2) +PFN_vkCmdBeginRenderPass2KHR vkCmdBeginRenderPass2KHR; +PFN_vkCmdEndRenderPass2KHR vkCmdEndRenderPass2KHR; +PFN_vkCmdNextSubpass2KHR vkCmdNextSubpass2KHR; +PFN_vkCreateRenderPass2KHR vkCreateRenderPass2KHR; +#endif /* defined(VK_KHR_create_renderpass2) */ +#if defined(VK_KHR_deferred_host_operations) +PFN_vkCreateDeferredOperationKHR vkCreateDeferredOperationKHR; +PFN_vkDeferredOperationJoinKHR vkDeferredOperationJoinKHR; +PFN_vkDestroyDeferredOperationKHR vkDestroyDeferredOperationKHR; +PFN_vkGetDeferredOperationMaxConcurrencyKHR vkGetDeferredOperationMaxConcurrencyKHR; +PFN_vkGetDeferredOperationResultKHR vkGetDeferredOperationResultKHR; +#endif /* defined(VK_KHR_deferred_host_operations) */ +#if defined(VK_KHR_descriptor_update_template) +PFN_vkCreateDescriptorUpdateTemplateKHR vkCreateDescriptorUpdateTemplateKHR; +PFN_vkDestroyDescriptorUpdateTemplateKHR vkDestroyDescriptorUpdateTemplateKHR; +PFN_vkUpdateDescriptorSetWithTemplateKHR vkUpdateDescriptorSetWithTemplateKHR; +#endif /* defined(VK_KHR_descriptor_update_template) */ +#if defined(VK_KHR_device_group) +PFN_vkCmdDispatchBaseKHR vkCmdDispatchBaseKHR; +PFN_vkCmdSetDeviceMaskKHR vkCmdSetDeviceMaskKHR; +PFN_vkGetDeviceGroupPeerMemoryFeaturesKHR vkGetDeviceGroupPeerMemoryFeaturesKHR; +#endif /* defined(VK_KHR_device_group) */ +#if defined(VK_KHR_device_group_creation) +PFN_vkEnumeratePhysicalDeviceGroupsKHR vkEnumeratePhysicalDeviceGroupsKHR; +#endif /* defined(VK_KHR_device_group_creation) */ +#if defined(VK_KHR_display) +PFN_vkCreateDisplayModeKHR vkCreateDisplayModeKHR; +PFN_vkCreateDisplayPlaneSurfaceKHR vkCreateDisplayPlaneSurfaceKHR; +PFN_vkGetDisplayModePropertiesKHR vkGetDisplayModePropertiesKHR; +PFN_vkGetDisplayPlaneCapabilitiesKHR vkGetDisplayPlaneCapabilitiesKHR; +PFN_vkGetDisplayPlaneSupportedDisplaysKHR vkGetDisplayPlaneSupportedDisplaysKHR; +PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR vkGetPhysicalDeviceDisplayPlanePropertiesKHR; +PFN_vkGetPhysicalDeviceDisplayPropertiesKHR vkGetPhysicalDeviceDisplayPropertiesKHR; +#endif /* defined(VK_KHR_display) */ +#if defined(VK_KHR_display_swapchain) +PFN_vkCreateSharedSwapchainsKHR vkCreateSharedSwapchainsKHR; +#endif /* defined(VK_KHR_display_swapchain) */ +#if defined(VK_KHR_draw_indirect_count) +PFN_vkCmdDrawIndexedIndirectCountKHR vkCmdDrawIndexedIndirectCountKHR; +PFN_vkCmdDrawIndirectCountKHR vkCmdDrawIndirectCountKHR; +#endif /* defined(VK_KHR_draw_indirect_count) */ +#if defined(VK_KHR_dynamic_rendering) +PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR; +PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR; +#endif /* defined(VK_KHR_dynamic_rendering) */ +#if defined(VK_KHR_external_fence_capabilities) +PFN_vkGetPhysicalDeviceExternalFencePropertiesKHR vkGetPhysicalDeviceExternalFencePropertiesKHR; +#endif /* defined(VK_KHR_external_fence_capabilities) */ +#if defined(VK_KHR_external_fence_fd) +PFN_vkGetFenceFdKHR vkGetFenceFdKHR; +PFN_vkImportFenceFdKHR vkImportFenceFdKHR; +#endif /* defined(VK_KHR_external_fence_fd) */ +#if defined(VK_KHR_external_fence_win32) +PFN_vkGetFenceWin32HandleKHR vkGetFenceWin32HandleKHR; +PFN_vkImportFenceWin32HandleKHR vkImportFenceWin32HandleKHR; +#endif /* defined(VK_KHR_external_fence_win32) */ +#if defined(VK_KHR_external_memory_capabilities) +PFN_vkGetPhysicalDeviceExternalBufferPropertiesKHR vkGetPhysicalDeviceExternalBufferPropertiesKHR; +#endif /* defined(VK_KHR_external_memory_capabilities) */ +#if defined(VK_KHR_external_memory_fd) +PFN_vkGetMemoryFdKHR vkGetMemoryFdKHR; +PFN_vkGetMemoryFdPropertiesKHR vkGetMemoryFdPropertiesKHR; +#endif /* defined(VK_KHR_external_memory_fd) */ +#if defined(VK_KHR_external_memory_win32) +PFN_vkGetMemoryWin32HandleKHR vkGetMemoryWin32HandleKHR; +PFN_vkGetMemoryWin32HandlePropertiesKHR vkGetMemoryWin32HandlePropertiesKHR; +#endif /* defined(VK_KHR_external_memory_win32) */ +#if defined(VK_KHR_external_semaphore_capabilities) +PFN_vkGetPhysicalDeviceExternalSemaphorePropertiesKHR vkGetPhysicalDeviceExternalSemaphorePropertiesKHR; +#endif /* defined(VK_KHR_external_semaphore_capabilities) */ +#if defined(VK_KHR_external_semaphore_fd) +PFN_vkGetSemaphoreFdKHR vkGetSemaphoreFdKHR; +PFN_vkImportSemaphoreFdKHR vkImportSemaphoreFdKHR; +#endif /* defined(VK_KHR_external_semaphore_fd) */ +#if defined(VK_KHR_external_semaphore_win32) +PFN_vkGetSemaphoreWin32HandleKHR vkGetSemaphoreWin32HandleKHR; +PFN_vkImportSemaphoreWin32HandleKHR vkImportSemaphoreWin32HandleKHR; +#endif /* defined(VK_KHR_external_semaphore_win32) */ +#if defined(VK_KHR_fragment_shading_rate) +PFN_vkCmdSetFragmentShadingRateKHR vkCmdSetFragmentShadingRateKHR; +PFN_vkGetPhysicalDeviceFragmentShadingRatesKHR vkGetPhysicalDeviceFragmentShadingRatesKHR; +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_display_properties2) +PFN_vkGetDisplayModeProperties2KHR vkGetDisplayModeProperties2KHR; +PFN_vkGetDisplayPlaneCapabilities2KHR vkGetDisplayPlaneCapabilities2KHR; +PFN_vkGetPhysicalDeviceDisplayPlaneProperties2KHR vkGetPhysicalDeviceDisplayPlaneProperties2KHR; +PFN_vkGetPhysicalDeviceDisplayProperties2KHR vkGetPhysicalDeviceDisplayProperties2KHR; +#endif /* defined(VK_KHR_get_display_properties2) */ +#if defined(VK_KHR_get_memory_requirements2) +PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR; +PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR; +PFN_vkGetImageSparseMemoryRequirements2KHR vkGetImageSparseMemoryRequirements2KHR; +#endif /* defined(VK_KHR_get_memory_requirements2) */ +#if defined(VK_KHR_get_physical_device_properties2) +PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR; +PFN_vkGetPhysicalDeviceFormatProperties2KHR vkGetPhysicalDeviceFormatProperties2KHR; +PFN_vkGetPhysicalDeviceImageFormatProperties2KHR vkGetPhysicalDeviceImageFormatProperties2KHR; +PFN_vkGetPhysicalDeviceMemoryProperties2KHR vkGetPhysicalDeviceMemoryProperties2KHR; +PFN_vkGetPhysicalDeviceProperties2KHR vkGetPhysicalDeviceProperties2KHR; +PFN_vkGetPhysicalDeviceQueueFamilyProperties2KHR vkGetPhysicalDeviceQueueFamilyProperties2KHR; +PFN_vkGetPhysicalDeviceSparseImageFormatProperties2KHR vkGetPhysicalDeviceSparseImageFormatProperties2KHR; +#endif /* defined(VK_KHR_get_physical_device_properties2) */ +#if defined(VK_KHR_get_surface_capabilities2) +PFN_vkGetPhysicalDeviceSurfaceCapabilities2KHR vkGetPhysicalDeviceSurfaceCapabilities2KHR; +PFN_vkGetPhysicalDeviceSurfaceFormats2KHR vkGetPhysicalDeviceSurfaceFormats2KHR; +#endif /* defined(VK_KHR_get_surface_capabilities2) */ +#if defined(VK_KHR_maintenance1) +PFN_vkTrimCommandPoolKHR vkTrimCommandPoolKHR; +#endif /* defined(VK_KHR_maintenance1) */ +#if defined(VK_KHR_maintenance3) +PFN_vkGetDescriptorSetLayoutSupportKHR vkGetDescriptorSetLayoutSupportKHR; +#endif /* defined(VK_KHR_maintenance3) */ +#if defined(VK_KHR_maintenance4) +PFN_vkGetDeviceBufferMemoryRequirementsKHR vkGetDeviceBufferMemoryRequirementsKHR; +PFN_vkGetDeviceImageMemoryRequirementsKHR vkGetDeviceImageMemoryRequirementsKHR; +PFN_vkGetDeviceImageSparseMemoryRequirementsKHR vkGetDeviceImageSparseMemoryRequirementsKHR; +#endif /* defined(VK_KHR_maintenance4) */ +#if defined(VK_KHR_performance_query) +PFN_vkAcquireProfilingLockKHR vkAcquireProfilingLockKHR; +PFN_vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR; +PFN_vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR; +PFN_vkReleaseProfilingLockKHR vkReleaseProfilingLockKHR; +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_pipeline_executable_properties) +PFN_vkGetPipelineExecutableInternalRepresentationsKHR vkGetPipelineExecutableInternalRepresentationsKHR; +PFN_vkGetPipelineExecutablePropertiesKHR vkGetPipelineExecutablePropertiesKHR; +PFN_vkGetPipelineExecutableStatisticsKHR vkGetPipelineExecutableStatisticsKHR; +#endif /* defined(VK_KHR_pipeline_executable_properties) */ +#if defined(VK_KHR_present_wait) +PFN_vkWaitForPresentKHR vkWaitForPresentKHR; +#endif /* defined(VK_KHR_present_wait) */ +#if defined(VK_KHR_push_descriptor) +PFN_vkCmdPushDescriptorSetKHR vkCmdPushDescriptorSetKHR; +#endif /* defined(VK_KHR_push_descriptor) */ +#if defined(VK_KHR_ray_tracing_maintenance1) && defined(VK_KHR_ray_tracing_pipeline) +PFN_vkCmdTraceRaysIndirect2KHR vkCmdTraceRaysIndirect2KHR; +#endif /* defined(VK_KHR_ray_tracing_maintenance1) && defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_ray_tracing_pipeline) +PFN_vkCmdSetRayTracingPipelineStackSizeKHR vkCmdSetRayTracingPipelineStackSizeKHR; +PFN_vkCmdTraceRaysIndirectKHR vkCmdTraceRaysIndirectKHR; +PFN_vkCmdTraceRaysKHR vkCmdTraceRaysKHR; +PFN_vkCreateRayTracingPipelinesKHR vkCreateRayTracingPipelinesKHR; +PFN_vkGetRayTracingCaptureReplayShaderGroupHandlesKHR vkGetRayTracingCaptureReplayShaderGroupHandlesKHR; +PFN_vkGetRayTracingShaderGroupHandlesKHR vkGetRayTracingShaderGroupHandlesKHR; +PFN_vkGetRayTracingShaderGroupStackSizeKHR vkGetRayTracingShaderGroupStackSizeKHR; +#endif /* defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_sampler_ycbcr_conversion) +PFN_vkCreateSamplerYcbcrConversionKHR vkCreateSamplerYcbcrConversionKHR; +PFN_vkDestroySamplerYcbcrConversionKHR vkDestroySamplerYcbcrConversionKHR; +#endif /* defined(VK_KHR_sampler_ycbcr_conversion) */ +#if defined(VK_KHR_shared_presentable_image) +PFN_vkGetSwapchainStatusKHR vkGetSwapchainStatusKHR; +#endif /* defined(VK_KHR_shared_presentable_image) */ +#if defined(VK_KHR_surface) +PFN_vkDestroySurfaceKHR vkDestroySurfaceKHR; +PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR vkGetPhysicalDeviceSurfaceCapabilitiesKHR; +PFN_vkGetPhysicalDeviceSurfaceFormatsKHR vkGetPhysicalDeviceSurfaceFormatsKHR; +PFN_vkGetPhysicalDeviceSurfacePresentModesKHR vkGetPhysicalDeviceSurfacePresentModesKHR; +PFN_vkGetPhysicalDeviceSurfaceSupportKHR vkGetPhysicalDeviceSurfaceSupportKHR; +#endif /* defined(VK_KHR_surface) */ +#if defined(VK_KHR_swapchain) +PFN_vkAcquireNextImageKHR vkAcquireNextImageKHR; +PFN_vkCreateSwapchainKHR vkCreateSwapchainKHR; +PFN_vkDestroySwapchainKHR vkDestroySwapchainKHR; +PFN_vkGetSwapchainImagesKHR vkGetSwapchainImagesKHR; +PFN_vkQueuePresentKHR vkQueuePresentKHR; +#endif /* defined(VK_KHR_swapchain) */ +#if defined(VK_KHR_synchronization2) +PFN_vkCmdPipelineBarrier2KHR vkCmdPipelineBarrier2KHR; +PFN_vkCmdResetEvent2KHR vkCmdResetEvent2KHR; +PFN_vkCmdSetEvent2KHR vkCmdSetEvent2KHR; +PFN_vkCmdWaitEvents2KHR vkCmdWaitEvents2KHR; +PFN_vkCmdWriteTimestamp2KHR vkCmdWriteTimestamp2KHR; +PFN_vkQueueSubmit2KHR vkQueueSubmit2KHR; +#endif /* defined(VK_KHR_synchronization2) */ +#if defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) +PFN_vkCmdWriteBufferMarker2AMD vkCmdWriteBufferMarker2AMD; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) */ +#if defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) +PFN_vkGetQueueCheckpointData2NV vkGetQueueCheckpointData2NV; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_KHR_timeline_semaphore) +PFN_vkGetSemaphoreCounterValueKHR vkGetSemaphoreCounterValueKHR; +PFN_vkSignalSemaphoreKHR vkSignalSemaphoreKHR; +PFN_vkWaitSemaphoresKHR vkWaitSemaphoresKHR; +#endif /* defined(VK_KHR_timeline_semaphore) */ +#if defined(VK_KHR_video_decode_queue) +PFN_vkCmdDecodeVideoKHR vkCmdDecodeVideoKHR; +#endif /* defined(VK_KHR_video_decode_queue) */ +#if defined(VK_KHR_video_encode_queue) +PFN_vkCmdEncodeVideoKHR vkCmdEncodeVideoKHR; +#endif /* defined(VK_KHR_video_encode_queue) */ +#if defined(VK_KHR_video_queue) +PFN_vkBindVideoSessionMemoryKHR vkBindVideoSessionMemoryKHR; +PFN_vkCmdBeginVideoCodingKHR vkCmdBeginVideoCodingKHR; +PFN_vkCmdControlVideoCodingKHR vkCmdControlVideoCodingKHR; +PFN_vkCmdEndVideoCodingKHR vkCmdEndVideoCodingKHR; +PFN_vkCreateVideoSessionKHR vkCreateVideoSessionKHR; +PFN_vkCreateVideoSessionParametersKHR vkCreateVideoSessionParametersKHR; +PFN_vkDestroyVideoSessionKHR vkDestroyVideoSessionKHR; +PFN_vkDestroyVideoSessionParametersKHR vkDestroyVideoSessionParametersKHR; +PFN_vkGetPhysicalDeviceVideoCapabilitiesKHR vkGetPhysicalDeviceVideoCapabilitiesKHR; +PFN_vkGetPhysicalDeviceVideoFormatPropertiesKHR vkGetPhysicalDeviceVideoFormatPropertiesKHR; +PFN_vkGetVideoSessionMemoryRequirementsKHR vkGetVideoSessionMemoryRequirementsKHR; +PFN_vkUpdateVideoSessionParametersKHR vkUpdateVideoSessionParametersKHR; +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_KHR_wayland_surface) +PFN_vkCreateWaylandSurfaceKHR vkCreateWaylandSurfaceKHR; +PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR vkGetPhysicalDeviceWaylandPresentationSupportKHR; +#endif /* defined(VK_KHR_wayland_surface) */ +#if defined(VK_KHR_win32_surface) +PFN_vkCreateWin32SurfaceKHR vkCreateWin32SurfaceKHR; +PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR vkGetPhysicalDeviceWin32PresentationSupportKHR; +#endif /* defined(VK_KHR_win32_surface) */ +#if defined(VK_KHR_xcb_surface) +PFN_vkCreateXcbSurfaceKHR vkCreateXcbSurfaceKHR; +PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR vkGetPhysicalDeviceXcbPresentationSupportKHR; +#endif /* defined(VK_KHR_xcb_surface) */ +#if defined(VK_KHR_xlib_surface) +PFN_vkCreateXlibSurfaceKHR vkCreateXlibSurfaceKHR; +PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR vkGetPhysicalDeviceXlibPresentationSupportKHR; +#endif /* defined(VK_KHR_xlib_surface) */ +#if defined(VK_MVK_ios_surface) +PFN_vkCreateIOSSurfaceMVK vkCreateIOSSurfaceMVK; +#endif /* defined(VK_MVK_ios_surface) */ +#if defined(VK_MVK_macos_surface) +PFN_vkCreateMacOSSurfaceMVK vkCreateMacOSSurfaceMVK; +#endif /* defined(VK_MVK_macos_surface) */ +#if defined(VK_NN_vi_surface) +PFN_vkCreateViSurfaceNN vkCreateViSurfaceNN; +#endif /* defined(VK_NN_vi_surface) */ +#if defined(VK_NVX_binary_import) +PFN_vkCmdCuLaunchKernelNVX vkCmdCuLaunchKernelNVX; +PFN_vkCreateCuFunctionNVX vkCreateCuFunctionNVX; +PFN_vkCreateCuModuleNVX vkCreateCuModuleNVX; +PFN_vkDestroyCuFunctionNVX vkDestroyCuFunctionNVX; +PFN_vkDestroyCuModuleNVX vkDestroyCuModuleNVX; +#endif /* defined(VK_NVX_binary_import) */ +#if defined(VK_NVX_image_view_handle) +PFN_vkGetImageViewAddressNVX vkGetImageViewAddressNVX; +PFN_vkGetImageViewHandleNVX vkGetImageViewHandleNVX; +#endif /* defined(VK_NVX_image_view_handle) */ +#if defined(VK_NV_acquire_winrt_display) +PFN_vkAcquireWinrtDisplayNV vkAcquireWinrtDisplayNV; +PFN_vkGetWinrtDisplayNV vkGetWinrtDisplayNV; +#endif /* defined(VK_NV_acquire_winrt_display) */ +#if defined(VK_NV_clip_space_w_scaling) +PFN_vkCmdSetViewportWScalingNV vkCmdSetViewportWScalingNV; +#endif /* defined(VK_NV_clip_space_w_scaling) */ +#if defined(VK_NV_cooperative_matrix) +PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesNV vkGetPhysicalDeviceCooperativeMatrixPropertiesNV; +#endif /* defined(VK_NV_cooperative_matrix) */ +#if defined(VK_NV_coverage_reduction_mode) +PFN_vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV; +#endif /* defined(VK_NV_coverage_reduction_mode) */ +#if defined(VK_NV_device_diagnostic_checkpoints) +PFN_vkCmdSetCheckpointNV vkCmdSetCheckpointNV; +PFN_vkGetQueueCheckpointDataNV vkGetQueueCheckpointDataNV; +#endif /* defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_NV_device_generated_commands) +PFN_vkCmdBindPipelineShaderGroupNV vkCmdBindPipelineShaderGroupNV; +PFN_vkCmdExecuteGeneratedCommandsNV vkCmdExecuteGeneratedCommandsNV; +PFN_vkCmdPreprocessGeneratedCommandsNV vkCmdPreprocessGeneratedCommandsNV; +PFN_vkCreateIndirectCommandsLayoutNV vkCreateIndirectCommandsLayoutNV; +PFN_vkDestroyIndirectCommandsLayoutNV vkDestroyIndirectCommandsLayoutNV; +PFN_vkGetGeneratedCommandsMemoryRequirementsNV vkGetGeneratedCommandsMemoryRequirementsNV; +#endif /* defined(VK_NV_device_generated_commands) */ +#if defined(VK_NV_external_memory_capabilities) +PFN_vkGetPhysicalDeviceExternalImageFormatPropertiesNV vkGetPhysicalDeviceExternalImageFormatPropertiesNV; +#endif /* defined(VK_NV_external_memory_capabilities) */ +#if defined(VK_NV_external_memory_rdma) +PFN_vkGetMemoryRemoteAddressNV vkGetMemoryRemoteAddressNV; +#endif /* defined(VK_NV_external_memory_rdma) */ +#if defined(VK_NV_external_memory_win32) +PFN_vkGetMemoryWin32HandleNV vkGetMemoryWin32HandleNV; +#endif /* defined(VK_NV_external_memory_win32) */ +#if defined(VK_NV_fragment_shading_rate_enums) +PFN_vkCmdSetFragmentShadingRateEnumNV vkCmdSetFragmentShadingRateEnumNV; +#endif /* defined(VK_NV_fragment_shading_rate_enums) */ +#if defined(VK_NV_mesh_shader) +PFN_vkCmdDrawMeshTasksIndirectCountNV vkCmdDrawMeshTasksIndirectCountNV; +PFN_vkCmdDrawMeshTasksIndirectNV vkCmdDrawMeshTasksIndirectNV; +PFN_vkCmdDrawMeshTasksNV vkCmdDrawMeshTasksNV; +#endif /* defined(VK_NV_mesh_shader) */ +#if defined(VK_NV_ray_tracing) +PFN_vkBindAccelerationStructureMemoryNV vkBindAccelerationStructureMemoryNV; +PFN_vkCmdBuildAccelerationStructureNV vkCmdBuildAccelerationStructureNV; +PFN_vkCmdCopyAccelerationStructureNV vkCmdCopyAccelerationStructureNV; +PFN_vkCmdTraceRaysNV vkCmdTraceRaysNV; +PFN_vkCmdWriteAccelerationStructuresPropertiesNV vkCmdWriteAccelerationStructuresPropertiesNV; +PFN_vkCompileDeferredNV vkCompileDeferredNV; +PFN_vkCreateAccelerationStructureNV vkCreateAccelerationStructureNV; +PFN_vkCreateRayTracingPipelinesNV vkCreateRayTracingPipelinesNV; +PFN_vkDestroyAccelerationStructureNV vkDestroyAccelerationStructureNV; +PFN_vkGetAccelerationStructureHandleNV vkGetAccelerationStructureHandleNV; +PFN_vkGetAccelerationStructureMemoryRequirementsNV vkGetAccelerationStructureMemoryRequirementsNV; +PFN_vkGetRayTracingShaderGroupHandlesNV vkGetRayTracingShaderGroupHandlesNV; +#endif /* defined(VK_NV_ray_tracing) */ +#if defined(VK_NV_scissor_exclusive) +PFN_vkCmdSetExclusiveScissorNV vkCmdSetExclusiveScissorNV; +#endif /* defined(VK_NV_scissor_exclusive) */ +#if defined(VK_NV_shading_rate_image) +PFN_vkCmdBindShadingRateImageNV vkCmdBindShadingRateImageNV; +PFN_vkCmdSetCoarseSampleOrderNV vkCmdSetCoarseSampleOrderNV; +PFN_vkCmdSetViewportShadingRatePaletteNV vkCmdSetViewportShadingRatePaletteNV; +#endif /* defined(VK_NV_shading_rate_image) */ +#if defined(VK_QNX_screen_surface) +PFN_vkCreateScreenSurfaceQNX vkCreateScreenSurfaceQNX; +PFN_vkGetPhysicalDeviceScreenPresentationSupportQNX vkGetPhysicalDeviceScreenPresentationSupportQNX; +#endif /* defined(VK_QNX_screen_surface) */ +#if defined(VK_VALVE_descriptor_set_host_mapping) +PFN_vkGetDescriptorSetHostMappingVALVE vkGetDescriptorSetHostMappingVALVE; +PFN_vkGetDescriptorSetLayoutHostMappingInfoVALVE vkGetDescriptorSetLayoutHostMappingInfoVALVE; +#endif /* defined(VK_VALVE_descriptor_set_host_mapping) */ +#if (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) +PFN_vkGetDeviceGroupSurfacePresentModes2EXT vkGetDeviceGroupSurfacePresentModes2EXT; +#endif /* (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) +PFN_vkCmdPushDescriptorSetWithTemplateKHR vkCmdPushDescriptorSetWithTemplateKHR; +#endif /* (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) +PFN_vkGetDeviceGroupPresentCapabilitiesKHR vkGetDeviceGroupPresentCapabilitiesKHR; +PFN_vkGetDeviceGroupSurfacePresentModesKHR vkGetDeviceGroupSurfacePresentModesKHR; +PFN_vkGetPhysicalDevicePresentRectanglesKHR vkGetPhysicalDevicePresentRectanglesKHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) +PFN_vkAcquireNextImage2KHR vkAcquireNextImage2KHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +/* VOLK_GENERATE_PROTOTYPES_C */ + +#ifdef __GNUC__ +# pragma GCC visibility pop +#endif + +#ifdef __cplusplus +} +#endif +/* clang-format on */ diff --git a/include/vku/volk/volk.h b/include/vku/volk/volk.h new file mode 100644 index 0000000..a367d83 --- /dev/null +++ b/include/vku/volk/volk.h @@ -0,0 +1,1604 @@ +/** + * volk + * + * Copyright (C) 2018-2019, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com) + * Report bugs and download new versions at https://github.com/zeux/volk + * + * This library is distributed under the MIT License. See notice at the end of this file. + */ +/* clang-format off */ +#ifndef VOLK_H_ +#define VOLK_H_ + +#if defined(VULKAN_H_) && !defined(VK_NO_PROTOTYPES) +# error To use volk, you need to define VK_NO_PROTOTYPES before including vulkan.h +#endif + +/* VOLK_GENERATE_VERSION_DEFINE */ +#define VOLK_HEADER_VERSION 216 +/* VOLK_GENERATE_VERSION_DEFINE */ + +#ifndef VK_NO_PROTOTYPES +# define VK_NO_PROTOTYPES +#endif + +#ifndef VULKAN_H_ +# ifdef VOLK_VULKAN_H_PATH +# include VOLK_VULKAN_H_PATH +# elif defined(VK_USE_PLATFORM_WIN32_KHR) +# include +# include + + /* When VK_USE_PLATFORM_WIN32_KHR is defined, instead of including vulkan.h directly, we include individual parts of the SDK + * This is necessary to avoid including which is very heavy - it takes 200ms to parse without WIN32_LEAN_AND_MEAN + * and 100ms to parse with it. vulkan_win32.h only needs a few symbols that are easy to redefine ourselves. + */ + typedef unsigned long DWORD; + typedef const wchar_t* LPCWSTR; + typedef void* HANDLE; + typedef struct HINSTANCE__* HINSTANCE; + typedef struct HWND__* HWND; + typedef struct HMONITOR__* HMONITOR; + typedef struct _SECURITY_ATTRIBUTES SECURITY_ATTRIBUTES; + +# include + +# ifdef VK_ENABLE_BETA_EXTENSIONS +# include +# endif +# else +# include +# endif +#endif + +/* Disable several extensions on earlier SDKs because later SDKs introduce a backwards incompatible change to function signatures */ +#if VK_HEADER_VERSION < 140 +# undef VK_NVX_image_view_handle +#endif +#if VK_HEADER_VERSION < 184 +# undef VK_HUAWEI_subpass_shading +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +struct VolkDeviceTable; + +/** + * Initialize library by loading Vulkan loader; call this function before creating the Vulkan instance. + * + * Returns VK_SUCCESS on success and VK_ERROR_INITIALIZATION_FAILED otherwise. + */ +VkResult volkInitialize(void); + +/** + * Initialize library by providing a custom handler to load global symbols. + * + * This function can be used instead of volkInitialize. + * The handler function pointer will be asked to load global Vulkan symbols which require no instance + * (such as vkCreateInstance, vkEnumerateInstance* and vkEnumerateInstanceVersion if available). + */ +void volkInitializeCustom(PFN_vkGetInstanceProcAddr handler); + +/** + * Get Vulkan instance version supported by the Vulkan loader, or 0 if Vulkan isn't supported + * + * Returns 0 if volkInitialize wasn't called or failed. + */ +uint32_t volkGetInstanceVersion(void); + +/** + * Load global function pointers using application-created VkInstance; call this function after creating the Vulkan instance. + */ +void volkLoadInstance(VkInstance instance); + +/** + * Load global function pointers using application-created VkInstance; call this function after creating the Vulkan instance. + * Skips loading device-based function pointers, requires usage of volkLoadDevice afterwards. + */ +void volkLoadInstanceOnly(VkInstance instance); + +/** + * Load global function pointers using application-created VkDevice; call this function after creating the Vulkan device. + * + * Note: this is not suitable for applications that want to use multiple VkDevice objects concurrently. + */ +void volkLoadDevice(VkDevice device); + +/** + * Return last VkInstance for which global function pointers have been loaded via volkLoadInstance(), + * or VK_NULL_HANDLE if volkLoadInstance() has not been called. + */ +VkInstance volkGetLoadedInstance(void); + +/** + * Return last VkDevice for which global function pointers have been loaded via volkLoadDevice(), + * or VK_NULL_HANDLE if volkLoadDevice() has not been called. + */ +VkDevice volkGetLoadedDevice(void); + +/** + * Load function pointers using application-created VkDevice into a table. + * Application should use function pointers from that table instead of using global function pointers. + */ +void volkLoadDeviceTable(struct VolkDeviceTable* table, VkDevice device); + +/** + * Device-specific function pointer table + */ +struct VolkDeviceTable +{ + /* VOLK_GENERATE_DEVICE_TABLE */ +#if defined(VK_VERSION_1_0) + PFN_vkAllocateCommandBuffers vkAllocateCommandBuffers; + PFN_vkAllocateDescriptorSets vkAllocateDescriptorSets; + PFN_vkAllocateMemory vkAllocateMemory; + PFN_vkBeginCommandBuffer vkBeginCommandBuffer; + PFN_vkBindBufferMemory vkBindBufferMemory; + PFN_vkBindImageMemory vkBindImageMemory; + PFN_vkCmdBeginQuery vkCmdBeginQuery; + PFN_vkCmdBeginRenderPass vkCmdBeginRenderPass; + PFN_vkCmdBindDescriptorSets vkCmdBindDescriptorSets; + PFN_vkCmdBindIndexBuffer vkCmdBindIndexBuffer; + PFN_vkCmdBindPipeline vkCmdBindPipeline; + PFN_vkCmdBindVertexBuffers vkCmdBindVertexBuffers; + PFN_vkCmdBlitImage vkCmdBlitImage; + PFN_vkCmdClearAttachments vkCmdClearAttachments; + PFN_vkCmdClearColorImage vkCmdClearColorImage; + PFN_vkCmdClearDepthStencilImage vkCmdClearDepthStencilImage; + PFN_vkCmdCopyBuffer vkCmdCopyBuffer; + PFN_vkCmdCopyBufferToImage vkCmdCopyBufferToImage; + PFN_vkCmdCopyImage vkCmdCopyImage; + PFN_vkCmdCopyImageToBuffer vkCmdCopyImageToBuffer; + PFN_vkCmdCopyQueryPoolResults vkCmdCopyQueryPoolResults; + PFN_vkCmdDispatch vkCmdDispatch; + PFN_vkCmdDispatchIndirect vkCmdDispatchIndirect; + PFN_vkCmdDraw vkCmdDraw; + PFN_vkCmdDrawIndexed vkCmdDrawIndexed; + PFN_vkCmdDrawIndexedIndirect vkCmdDrawIndexedIndirect; + PFN_vkCmdDrawIndirect vkCmdDrawIndirect; + PFN_vkCmdEndQuery vkCmdEndQuery; + PFN_vkCmdEndRenderPass vkCmdEndRenderPass; + PFN_vkCmdExecuteCommands vkCmdExecuteCommands; + PFN_vkCmdFillBuffer vkCmdFillBuffer; + PFN_vkCmdNextSubpass vkCmdNextSubpass; + PFN_vkCmdPipelineBarrier vkCmdPipelineBarrier; + PFN_vkCmdPushConstants vkCmdPushConstants; + PFN_vkCmdResetEvent vkCmdResetEvent; + PFN_vkCmdResetQueryPool vkCmdResetQueryPool; + PFN_vkCmdResolveImage vkCmdResolveImage; + PFN_vkCmdSetBlendConstants vkCmdSetBlendConstants; + PFN_vkCmdSetDepthBias vkCmdSetDepthBias; + PFN_vkCmdSetDepthBounds vkCmdSetDepthBounds; + PFN_vkCmdSetEvent vkCmdSetEvent; + PFN_vkCmdSetLineWidth vkCmdSetLineWidth; + PFN_vkCmdSetScissor vkCmdSetScissor; + PFN_vkCmdSetStencilCompareMask vkCmdSetStencilCompareMask; + PFN_vkCmdSetStencilReference vkCmdSetStencilReference; + PFN_vkCmdSetStencilWriteMask vkCmdSetStencilWriteMask; + PFN_vkCmdSetViewport vkCmdSetViewport; + PFN_vkCmdUpdateBuffer vkCmdUpdateBuffer; + PFN_vkCmdWaitEvents vkCmdWaitEvents; + PFN_vkCmdWriteTimestamp vkCmdWriteTimestamp; + PFN_vkCreateBuffer vkCreateBuffer; + PFN_vkCreateBufferView vkCreateBufferView; + PFN_vkCreateCommandPool vkCreateCommandPool; + PFN_vkCreateComputePipelines vkCreateComputePipelines; + PFN_vkCreateDescriptorPool vkCreateDescriptorPool; + PFN_vkCreateDescriptorSetLayout vkCreateDescriptorSetLayout; + PFN_vkCreateEvent vkCreateEvent; + PFN_vkCreateFence vkCreateFence; + PFN_vkCreateFramebuffer vkCreateFramebuffer; + PFN_vkCreateGraphicsPipelines vkCreateGraphicsPipelines; + PFN_vkCreateImage vkCreateImage; + PFN_vkCreateImageView vkCreateImageView; + PFN_vkCreatePipelineCache vkCreatePipelineCache; + PFN_vkCreatePipelineLayout vkCreatePipelineLayout; + PFN_vkCreateQueryPool vkCreateQueryPool; + PFN_vkCreateRenderPass vkCreateRenderPass; + PFN_vkCreateSampler vkCreateSampler; + PFN_vkCreateSemaphore vkCreateSemaphore; + PFN_vkCreateShaderModule vkCreateShaderModule; + PFN_vkDestroyBuffer vkDestroyBuffer; + PFN_vkDestroyBufferView vkDestroyBufferView; + PFN_vkDestroyCommandPool vkDestroyCommandPool; + PFN_vkDestroyDescriptorPool vkDestroyDescriptorPool; + PFN_vkDestroyDescriptorSetLayout vkDestroyDescriptorSetLayout; + PFN_vkDestroyDevice vkDestroyDevice; + PFN_vkDestroyEvent vkDestroyEvent; + PFN_vkDestroyFence vkDestroyFence; + PFN_vkDestroyFramebuffer vkDestroyFramebuffer; + PFN_vkDestroyImage vkDestroyImage; + PFN_vkDestroyImageView vkDestroyImageView; + PFN_vkDestroyPipeline vkDestroyPipeline; + PFN_vkDestroyPipelineCache vkDestroyPipelineCache; + PFN_vkDestroyPipelineLayout vkDestroyPipelineLayout; + PFN_vkDestroyQueryPool vkDestroyQueryPool; + PFN_vkDestroyRenderPass vkDestroyRenderPass; + PFN_vkDestroySampler vkDestroySampler; + PFN_vkDestroySemaphore vkDestroySemaphore; + PFN_vkDestroyShaderModule vkDestroyShaderModule; + PFN_vkDeviceWaitIdle vkDeviceWaitIdle; + PFN_vkEndCommandBuffer vkEndCommandBuffer; + PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; + PFN_vkFreeCommandBuffers vkFreeCommandBuffers; + PFN_vkFreeDescriptorSets vkFreeDescriptorSets; + PFN_vkFreeMemory vkFreeMemory; + PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; + PFN_vkGetDeviceMemoryCommitment vkGetDeviceMemoryCommitment; + PFN_vkGetDeviceQueue vkGetDeviceQueue; + PFN_vkGetEventStatus vkGetEventStatus; + PFN_vkGetFenceStatus vkGetFenceStatus; + PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; + PFN_vkGetImageSparseMemoryRequirements vkGetImageSparseMemoryRequirements; + PFN_vkGetImageSubresourceLayout vkGetImageSubresourceLayout; + PFN_vkGetPipelineCacheData vkGetPipelineCacheData; + PFN_vkGetQueryPoolResults vkGetQueryPoolResults; + PFN_vkGetRenderAreaGranularity vkGetRenderAreaGranularity; + PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; + PFN_vkMapMemory vkMapMemory; + PFN_vkMergePipelineCaches vkMergePipelineCaches; + PFN_vkQueueBindSparse vkQueueBindSparse; + PFN_vkQueueSubmit vkQueueSubmit; + PFN_vkQueueWaitIdle vkQueueWaitIdle; + PFN_vkResetCommandBuffer vkResetCommandBuffer; + PFN_vkResetCommandPool vkResetCommandPool; + PFN_vkResetDescriptorPool vkResetDescriptorPool; + PFN_vkResetEvent vkResetEvent; + PFN_vkResetFences vkResetFences; + PFN_vkSetEvent vkSetEvent; + PFN_vkUnmapMemory vkUnmapMemory; + PFN_vkUpdateDescriptorSets vkUpdateDescriptorSets; + PFN_vkWaitForFences vkWaitForFences; +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) + PFN_vkBindBufferMemory2 vkBindBufferMemory2; + PFN_vkBindImageMemory2 vkBindImageMemory2; + PFN_vkCmdDispatchBase vkCmdDispatchBase; + PFN_vkCmdSetDeviceMask vkCmdSetDeviceMask; + PFN_vkCreateDescriptorUpdateTemplate vkCreateDescriptorUpdateTemplate; + PFN_vkCreateSamplerYcbcrConversion vkCreateSamplerYcbcrConversion; + PFN_vkDestroyDescriptorUpdateTemplate vkDestroyDescriptorUpdateTemplate; + PFN_vkDestroySamplerYcbcrConversion vkDestroySamplerYcbcrConversion; + PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; + PFN_vkGetDescriptorSetLayoutSupport vkGetDescriptorSetLayoutSupport; + PFN_vkGetDeviceGroupPeerMemoryFeatures vkGetDeviceGroupPeerMemoryFeatures; + PFN_vkGetDeviceQueue2 vkGetDeviceQueue2; + PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; + PFN_vkGetImageSparseMemoryRequirements2 vkGetImageSparseMemoryRequirements2; + PFN_vkTrimCommandPool vkTrimCommandPool; + PFN_vkUpdateDescriptorSetWithTemplate vkUpdateDescriptorSetWithTemplate; +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_VERSION_1_2) + PFN_vkCmdBeginRenderPass2 vkCmdBeginRenderPass2; + PFN_vkCmdDrawIndexedIndirectCount vkCmdDrawIndexedIndirectCount; + PFN_vkCmdDrawIndirectCount vkCmdDrawIndirectCount; + PFN_vkCmdEndRenderPass2 vkCmdEndRenderPass2; + PFN_vkCmdNextSubpass2 vkCmdNextSubpass2; + PFN_vkCreateRenderPass2 vkCreateRenderPass2; + PFN_vkGetBufferDeviceAddress vkGetBufferDeviceAddress; + PFN_vkGetBufferOpaqueCaptureAddress vkGetBufferOpaqueCaptureAddress; + PFN_vkGetDeviceMemoryOpaqueCaptureAddress vkGetDeviceMemoryOpaqueCaptureAddress; + PFN_vkGetSemaphoreCounterValue vkGetSemaphoreCounterValue; + PFN_vkResetQueryPool vkResetQueryPool; + PFN_vkSignalSemaphore vkSignalSemaphore; + PFN_vkWaitSemaphores vkWaitSemaphores; +#endif /* defined(VK_VERSION_1_2) */ +#if defined(VK_VERSION_1_3) + PFN_vkCmdBeginRendering vkCmdBeginRendering; + PFN_vkCmdBindVertexBuffers2 vkCmdBindVertexBuffers2; + PFN_vkCmdBlitImage2 vkCmdBlitImage2; + PFN_vkCmdCopyBuffer2 vkCmdCopyBuffer2; + PFN_vkCmdCopyBufferToImage2 vkCmdCopyBufferToImage2; + PFN_vkCmdCopyImage2 vkCmdCopyImage2; + PFN_vkCmdCopyImageToBuffer2 vkCmdCopyImageToBuffer2; + PFN_vkCmdEndRendering vkCmdEndRendering; + PFN_vkCmdPipelineBarrier2 vkCmdPipelineBarrier2; + PFN_vkCmdResetEvent2 vkCmdResetEvent2; + PFN_vkCmdResolveImage2 vkCmdResolveImage2; + PFN_vkCmdSetCullMode vkCmdSetCullMode; + PFN_vkCmdSetDepthBiasEnable vkCmdSetDepthBiasEnable; + PFN_vkCmdSetDepthBoundsTestEnable vkCmdSetDepthBoundsTestEnable; + PFN_vkCmdSetDepthCompareOp vkCmdSetDepthCompareOp; + PFN_vkCmdSetDepthTestEnable vkCmdSetDepthTestEnable; + PFN_vkCmdSetDepthWriteEnable vkCmdSetDepthWriteEnable; + PFN_vkCmdSetEvent2 vkCmdSetEvent2; + PFN_vkCmdSetFrontFace vkCmdSetFrontFace; + PFN_vkCmdSetPrimitiveRestartEnable vkCmdSetPrimitiveRestartEnable; + PFN_vkCmdSetPrimitiveTopology vkCmdSetPrimitiveTopology; + PFN_vkCmdSetRasterizerDiscardEnable vkCmdSetRasterizerDiscardEnable; + PFN_vkCmdSetScissorWithCount vkCmdSetScissorWithCount; + PFN_vkCmdSetStencilOp vkCmdSetStencilOp; + PFN_vkCmdSetStencilTestEnable vkCmdSetStencilTestEnable; + PFN_vkCmdSetViewportWithCount vkCmdSetViewportWithCount; + PFN_vkCmdWaitEvents2 vkCmdWaitEvents2; + PFN_vkCmdWriteTimestamp2 vkCmdWriteTimestamp2; + PFN_vkCreatePrivateDataSlot vkCreatePrivateDataSlot; + PFN_vkDestroyPrivateDataSlot vkDestroyPrivateDataSlot; + PFN_vkGetDeviceBufferMemoryRequirements vkGetDeviceBufferMemoryRequirements; + PFN_vkGetDeviceImageMemoryRequirements vkGetDeviceImageMemoryRequirements; + PFN_vkGetDeviceImageSparseMemoryRequirements vkGetDeviceImageSparseMemoryRequirements; + PFN_vkGetPrivateData vkGetPrivateData; + PFN_vkQueueSubmit2 vkQueueSubmit2; + PFN_vkSetPrivateData vkSetPrivateData; +#endif /* defined(VK_VERSION_1_3) */ +#if defined(VK_AMD_buffer_marker) + PFN_vkCmdWriteBufferMarkerAMD vkCmdWriteBufferMarkerAMD; +#endif /* defined(VK_AMD_buffer_marker) */ +#if defined(VK_AMD_display_native_hdr) + PFN_vkSetLocalDimmingAMD vkSetLocalDimmingAMD; +#endif /* defined(VK_AMD_display_native_hdr) */ +#if defined(VK_AMD_draw_indirect_count) + PFN_vkCmdDrawIndexedIndirectCountAMD vkCmdDrawIndexedIndirectCountAMD; + PFN_vkCmdDrawIndirectCountAMD vkCmdDrawIndirectCountAMD; +#endif /* defined(VK_AMD_draw_indirect_count) */ +#if defined(VK_AMD_shader_info) + PFN_vkGetShaderInfoAMD vkGetShaderInfoAMD; +#endif /* defined(VK_AMD_shader_info) */ +#if defined(VK_ANDROID_external_memory_android_hardware_buffer) + PFN_vkGetAndroidHardwareBufferPropertiesANDROID vkGetAndroidHardwareBufferPropertiesANDROID; + PFN_vkGetMemoryAndroidHardwareBufferANDROID vkGetMemoryAndroidHardwareBufferANDROID; +#endif /* defined(VK_ANDROID_external_memory_android_hardware_buffer) */ +#if defined(VK_EXT_buffer_device_address) + PFN_vkGetBufferDeviceAddressEXT vkGetBufferDeviceAddressEXT; +#endif /* defined(VK_EXT_buffer_device_address) */ +#if defined(VK_EXT_calibrated_timestamps) + PFN_vkGetCalibratedTimestampsEXT vkGetCalibratedTimestampsEXT; +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_color_write_enable) + PFN_vkCmdSetColorWriteEnableEXT vkCmdSetColorWriteEnableEXT; +#endif /* defined(VK_EXT_color_write_enable) */ +#if defined(VK_EXT_conditional_rendering) + PFN_vkCmdBeginConditionalRenderingEXT vkCmdBeginConditionalRenderingEXT; + PFN_vkCmdEndConditionalRenderingEXT vkCmdEndConditionalRenderingEXT; +#endif /* defined(VK_EXT_conditional_rendering) */ +#if defined(VK_EXT_debug_marker) + PFN_vkCmdDebugMarkerBeginEXT vkCmdDebugMarkerBeginEXT; + PFN_vkCmdDebugMarkerEndEXT vkCmdDebugMarkerEndEXT; + PFN_vkCmdDebugMarkerInsertEXT vkCmdDebugMarkerInsertEXT; + PFN_vkDebugMarkerSetObjectNameEXT vkDebugMarkerSetObjectNameEXT; + PFN_vkDebugMarkerSetObjectTagEXT vkDebugMarkerSetObjectTagEXT; +#endif /* defined(VK_EXT_debug_marker) */ +#if defined(VK_EXT_discard_rectangles) + PFN_vkCmdSetDiscardRectangleEXT vkCmdSetDiscardRectangleEXT; +#endif /* defined(VK_EXT_discard_rectangles) */ +#if defined(VK_EXT_display_control) + PFN_vkDisplayPowerControlEXT vkDisplayPowerControlEXT; + PFN_vkGetSwapchainCounterEXT vkGetSwapchainCounterEXT; + PFN_vkRegisterDeviceEventEXT vkRegisterDeviceEventEXT; + PFN_vkRegisterDisplayEventEXT vkRegisterDisplayEventEXT; +#endif /* defined(VK_EXT_display_control) */ +#if defined(VK_EXT_extended_dynamic_state) + PFN_vkCmdBindVertexBuffers2EXT vkCmdBindVertexBuffers2EXT; + PFN_vkCmdSetCullModeEXT vkCmdSetCullModeEXT; + PFN_vkCmdSetDepthBoundsTestEnableEXT vkCmdSetDepthBoundsTestEnableEXT; + PFN_vkCmdSetDepthCompareOpEXT vkCmdSetDepthCompareOpEXT; + PFN_vkCmdSetDepthTestEnableEXT vkCmdSetDepthTestEnableEXT; + PFN_vkCmdSetDepthWriteEnableEXT vkCmdSetDepthWriteEnableEXT; + PFN_vkCmdSetFrontFaceEXT vkCmdSetFrontFaceEXT; + PFN_vkCmdSetPrimitiveTopologyEXT vkCmdSetPrimitiveTopologyEXT; + PFN_vkCmdSetScissorWithCountEXT vkCmdSetScissorWithCountEXT; + PFN_vkCmdSetStencilOpEXT vkCmdSetStencilOpEXT; + PFN_vkCmdSetStencilTestEnableEXT vkCmdSetStencilTestEnableEXT; + PFN_vkCmdSetViewportWithCountEXT vkCmdSetViewportWithCountEXT; +#endif /* defined(VK_EXT_extended_dynamic_state) */ +#if defined(VK_EXT_extended_dynamic_state2) + PFN_vkCmdSetDepthBiasEnableEXT vkCmdSetDepthBiasEnableEXT; + PFN_vkCmdSetLogicOpEXT vkCmdSetLogicOpEXT; + PFN_vkCmdSetPatchControlPointsEXT vkCmdSetPatchControlPointsEXT; + PFN_vkCmdSetPrimitiveRestartEnableEXT vkCmdSetPrimitiveRestartEnableEXT; + PFN_vkCmdSetRasterizerDiscardEnableEXT vkCmdSetRasterizerDiscardEnableEXT; +#endif /* defined(VK_EXT_extended_dynamic_state2) */ +#if defined(VK_EXT_external_memory_host) + PFN_vkGetMemoryHostPointerPropertiesEXT vkGetMemoryHostPointerPropertiesEXT; +#endif /* defined(VK_EXT_external_memory_host) */ +#if defined(VK_EXT_full_screen_exclusive) + PFN_vkAcquireFullScreenExclusiveModeEXT vkAcquireFullScreenExclusiveModeEXT; + PFN_vkReleaseFullScreenExclusiveModeEXT vkReleaseFullScreenExclusiveModeEXT; +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_hdr_metadata) + PFN_vkSetHdrMetadataEXT vkSetHdrMetadataEXT; +#endif /* defined(VK_EXT_hdr_metadata) */ +#if defined(VK_EXT_host_query_reset) + PFN_vkResetQueryPoolEXT vkResetQueryPoolEXT; +#endif /* defined(VK_EXT_host_query_reset) */ +#if defined(VK_EXT_image_compression_control) + PFN_vkGetImageSubresourceLayout2EXT vkGetImageSubresourceLayout2EXT; +#endif /* defined(VK_EXT_image_compression_control) */ +#if defined(VK_EXT_image_drm_format_modifier) + PFN_vkGetImageDrmFormatModifierPropertiesEXT vkGetImageDrmFormatModifierPropertiesEXT; +#endif /* defined(VK_EXT_image_drm_format_modifier) */ +#if defined(VK_EXT_line_rasterization) + PFN_vkCmdSetLineStippleEXT vkCmdSetLineStippleEXT; +#endif /* defined(VK_EXT_line_rasterization) */ +#if defined(VK_EXT_multi_draw) + PFN_vkCmdDrawMultiEXT vkCmdDrawMultiEXT; + PFN_vkCmdDrawMultiIndexedEXT vkCmdDrawMultiIndexedEXT; +#endif /* defined(VK_EXT_multi_draw) */ +#if defined(VK_EXT_pageable_device_local_memory) + PFN_vkSetDeviceMemoryPriorityEXT vkSetDeviceMemoryPriorityEXT; +#endif /* defined(VK_EXT_pageable_device_local_memory) */ +#if defined(VK_EXT_pipeline_properties) + PFN_vkGetPipelinePropertiesEXT vkGetPipelinePropertiesEXT; +#endif /* defined(VK_EXT_pipeline_properties) */ +#if defined(VK_EXT_private_data) + PFN_vkCreatePrivateDataSlotEXT vkCreatePrivateDataSlotEXT; + PFN_vkDestroyPrivateDataSlotEXT vkDestroyPrivateDataSlotEXT; + PFN_vkGetPrivateDataEXT vkGetPrivateDataEXT; + PFN_vkSetPrivateDataEXT vkSetPrivateDataEXT; +#endif /* defined(VK_EXT_private_data) */ +#if defined(VK_EXT_sample_locations) + PFN_vkCmdSetSampleLocationsEXT vkCmdSetSampleLocationsEXT; +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_transform_feedback) + PFN_vkCmdBeginQueryIndexedEXT vkCmdBeginQueryIndexedEXT; + PFN_vkCmdBeginTransformFeedbackEXT vkCmdBeginTransformFeedbackEXT; + PFN_vkCmdBindTransformFeedbackBuffersEXT vkCmdBindTransformFeedbackBuffersEXT; + PFN_vkCmdDrawIndirectByteCountEXT vkCmdDrawIndirectByteCountEXT; + PFN_vkCmdEndQueryIndexedEXT vkCmdEndQueryIndexedEXT; + PFN_vkCmdEndTransformFeedbackEXT vkCmdEndTransformFeedbackEXT; +#endif /* defined(VK_EXT_transform_feedback) */ +#if defined(VK_EXT_validation_cache) + PFN_vkCreateValidationCacheEXT vkCreateValidationCacheEXT; + PFN_vkDestroyValidationCacheEXT vkDestroyValidationCacheEXT; + PFN_vkGetValidationCacheDataEXT vkGetValidationCacheDataEXT; + PFN_vkMergeValidationCachesEXT vkMergeValidationCachesEXT; +#endif /* defined(VK_EXT_validation_cache) */ +#if defined(VK_EXT_vertex_input_dynamic_state) + PFN_vkCmdSetVertexInputEXT vkCmdSetVertexInputEXT; +#endif /* defined(VK_EXT_vertex_input_dynamic_state) */ +#if defined(VK_FUCHSIA_buffer_collection) + PFN_vkCreateBufferCollectionFUCHSIA vkCreateBufferCollectionFUCHSIA; + PFN_vkDestroyBufferCollectionFUCHSIA vkDestroyBufferCollectionFUCHSIA; + PFN_vkGetBufferCollectionPropertiesFUCHSIA vkGetBufferCollectionPropertiesFUCHSIA; + PFN_vkSetBufferCollectionBufferConstraintsFUCHSIA vkSetBufferCollectionBufferConstraintsFUCHSIA; + PFN_vkSetBufferCollectionImageConstraintsFUCHSIA vkSetBufferCollectionImageConstraintsFUCHSIA; +#endif /* defined(VK_FUCHSIA_buffer_collection) */ +#if defined(VK_FUCHSIA_external_memory) + PFN_vkGetMemoryZirconHandleFUCHSIA vkGetMemoryZirconHandleFUCHSIA; + PFN_vkGetMemoryZirconHandlePropertiesFUCHSIA vkGetMemoryZirconHandlePropertiesFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_memory) */ +#if defined(VK_FUCHSIA_external_semaphore) + PFN_vkGetSemaphoreZirconHandleFUCHSIA vkGetSemaphoreZirconHandleFUCHSIA; + PFN_vkImportSemaphoreZirconHandleFUCHSIA vkImportSemaphoreZirconHandleFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_semaphore) */ +#if defined(VK_GOOGLE_display_timing) + PFN_vkGetPastPresentationTimingGOOGLE vkGetPastPresentationTimingGOOGLE; + PFN_vkGetRefreshCycleDurationGOOGLE vkGetRefreshCycleDurationGOOGLE; +#endif /* defined(VK_GOOGLE_display_timing) */ +#if defined(VK_HUAWEI_invocation_mask) + PFN_vkCmdBindInvocationMaskHUAWEI vkCmdBindInvocationMaskHUAWEI; +#endif /* defined(VK_HUAWEI_invocation_mask) */ +#if defined(VK_HUAWEI_subpass_shading) + PFN_vkCmdSubpassShadingHUAWEI vkCmdSubpassShadingHUAWEI; + PFN_vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI; +#endif /* defined(VK_HUAWEI_subpass_shading) */ +#if defined(VK_INTEL_performance_query) + PFN_vkAcquirePerformanceConfigurationINTEL vkAcquirePerformanceConfigurationINTEL; + PFN_vkCmdSetPerformanceMarkerINTEL vkCmdSetPerformanceMarkerINTEL; + PFN_vkCmdSetPerformanceOverrideINTEL vkCmdSetPerformanceOverrideINTEL; + PFN_vkCmdSetPerformanceStreamMarkerINTEL vkCmdSetPerformanceStreamMarkerINTEL; + PFN_vkGetPerformanceParameterINTEL vkGetPerformanceParameterINTEL; + PFN_vkInitializePerformanceApiINTEL vkInitializePerformanceApiINTEL; + PFN_vkQueueSetPerformanceConfigurationINTEL vkQueueSetPerformanceConfigurationINTEL; + PFN_vkReleasePerformanceConfigurationINTEL vkReleasePerformanceConfigurationINTEL; + PFN_vkUninitializePerformanceApiINTEL vkUninitializePerformanceApiINTEL; +#endif /* defined(VK_INTEL_performance_query) */ +#if defined(VK_KHR_acceleration_structure) + PFN_vkBuildAccelerationStructuresKHR vkBuildAccelerationStructuresKHR; + PFN_vkCmdBuildAccelerationStructuresIndirectKHR vkCmdBuildAccelerationStructuresIndirectKHR; + PFN_vkCmdBuildAccelerationStructuresKHR vkCmdBuildAccelerationStructuresKHR; + PFN_vkCmdCopyAccelerationStructureKHR vkCmdCopyAccelerationStructureKHR; + PFN_vkCmdCopyAccelerationStructureToMemoryKHR vkCmdCopyAccelerationStructureToMemoryKHR; + PFN_vkCmdCopyMemoryToAccelerationStructureKHR vkCmdCopyMemoryToAccelerationStructureKHR; + PFN_vkCmdWriteAccelerationStructuresPropertiesKHR vkCmdWriteAccelerationStructuresPropertiesKHR; + PFN_vkCopyAccelerationStructureKHR vkCopyAccelerationStructureKHR; + PFN_vkCopyAccelerationStructureToMemoryKHR vkCopyAccelerationStructureToMemoryKHR; + PFN_vkCopyMemoryToAccelerationStructureKHR vkCopyMemoryToAccelerationStructureKHR; + PFN_vkCreateAccelerationStructureKHR vkCreateAccelerationStructureKHR; + PFN_vkDestroyAccelerationStructureKHR vkDestroyAccelerationStructureKHR; + PFN_vkGetAccelerationStructureBuildSizesKHR vkGetAccelerationStructureBuildSizesKHR; + PFN_vkGetAccelerationStructureDeviceAddressKHR vkGetAccelerationStructureDeviceAddressKHR; + PFN_vkGetDeviceAccelerationStructureCompatibilityKHR vkGetDeviceAccelerationStructureCompatibilityKHR; + PFN_vkWriteAccelerationStructuresPropertiesKHR vkWriteAccelerationStructuresPropertiesKHR; +#endif /* defined(VK_KHR_acceleration_structure) */ +#if defined(VK_KHR_bind_memory2) + PFN_vkBindBufferMemory2KHR vkBindBufferMemory2KHR; + PFN_vkBindImageMemory2KHR vkBindImageMemory2KHR; +#endif /* defined(VK_KHR_bind_memory2) */ +#if defined(VK_KHR_buffer_device_address) + PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR; + PFN_vkGetBufferOpaqueCaptureAddressKHR vkGetBufferOpaqueCaptureAddressKHR; + PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR vkGetDeviceMemoryOpaqueCaptureAddressKHR; +#endif /* defined(VK_KHR_buffer_device_address) */ +#if defined(VK_KHR_copy_commands2) + PFN_vkCmdBlitImage2KHR vkCmdBlitImage2KHR; + PFN_vkCmdCopyBuffer2KHR vkCmdCopyBuffer2KHR; + PFN_vkCmdCopyBufferToImage2KHR vkCmdCopyBufferToImage2KHR; + PFN_vkCmdCopyImage2KHR vkCmdCopyImage2KHR; + PFN_vkCmdCopyImageToBuffer2KHR vkCmdCopyImageToBuffer2KHR; + PFN_vkCmdResolveImage2KHR vkCmdResolveImage2KHR; +#endif /* defined(VK_KHR_copy_commands2) */ +#if defined(VK_KHR_create_renderpass2) + PFN_vkCmdBeginRenderPass2KHR vkCmdBeginRenderPass2KHR; + PFN_vkCmdEndRenderPass2KHR vkCmdEndRenderPass2KHR; + PFN_vkCmdNextSubpass2KHR vkCmdNextSubpass2KHR; + PFN_vkCreateRenderPass2KHR vkCreateRenderPass2KHR; +#endif /* defined(VK_KHR_create_renderpass2) */ +#if defined(VK_KHR_deferred_host_operations) + PFN_vkCreateDeferredOperationKHR vkCreateDeferredOperationKHR; + PFN_vkDeferredOperationJoinKHR vkDeferredOperationJoinKHR; + PFN_vkDestroyDeferredOperationKHR vkDestroyDeferredOperationKHR; + PFN_vkGetDeferredOperationMaxConcurrencyKHR vkGetDeferredOperationMaxConcurrencyKHR; + PFN_vkGetDeferredOperationResultKHR vkGetDeferredOperationResultKHR; +#endif /* defined(VK_KHR_deferred_host_operations) */ +#if defined(VK_KHR_descriptor_update_template) + PFN_vkCreateDescriptorUpdateTemplateKHR vkCreateDescriptorUpdateTemplateKHR; + PFN_vkDestroyDescriptorUpdateTemplateKHR vkDestroyDescriptorUpdateTemplateKHR; + PFN_vkUpdateDescriptorSetWithTemplateKHR vkUpdateDescriptorSetWithTemplateKHR; +#endif /* defined(VK_KHR_descriptor_update_template) */ +#if defined(VK_KHR_device_group) + PFN_vkCmdDispatchBaseKHR vkCmdDispatchBaseKHR; + PFN_vkCmdSetDeviceMaskKHR vkCmdSetDeviceMaskKHR; + PFN_vkGetDeviceGroupPeerMemoryFeaturesKHR vkGetDeviceGroupPeerMemoryFeaturesKHR; +#endif /* defined(VK_KHR_device_group) */ +#if defined(VK_KHR_display_swapchain) + PFN_vkCreateSharedSwapchainsKHR vkCreateSharedSwapchainsKHR; +#endif /* defined(VK_KHR_display_swapchain) */ +#if defined(VK_KHR_draw_indirect_count) + PFN_vkCmdDrawIndexedIndirectCountKHR vkCmdDrawIndexedIndirectCountKHR; + PFN_vkCmdDrawIndirectCountKHR vkCmdDrawIndirectCountKHR; +#endif /* defined(VK_KHR_draw_indirect_count) */ +#if defined(VK_KHR_dynamic_rendering) + PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR; + PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR; +#endif /* defined(VK_KHR_dynamic_rendering) */ +#if defined(VK_KHR_external_fence_fd) + PFN_vkGetFenceFdKHR vkGetFenceFdKHR; + PFN_vkImportFenceFdKHR vkImportFenceFdKHR; +#endif /* defined(VK_KHR_external_fence_fd) */ +#if defined(VK_KHR_external_fence_win32) + PFN_vkGetFenceWin32HandleKHR vkGetFenceWin32HandleKHR; + PFN_vkImportFenceWin32HandleKHR vkImportFenceWin32HandleKHR; +#endif /* defined(VK_KHR_external_fence_win32) */ +#if defined(VK_KHR_external_memory_fd) + PFN_vkGetMemoryFdKHR vkGetMemoryFdKHR; + PFN_vkGetMemoryFdPropertiesKHR vkGetMemoryFdPropertiesKHR; +#endif /* defined(VK_KHR_external_memory_fd) */ +#if defined(VK_KHR_external_memory_win32) + PFN_vkGetMemoryWin32HandleKHR vkGetMemoryWin32HandleKHR; + PFN_vkGetMemoryWin32HandlePropertiesKHR vkGetMemoryWin32HandlePropertiesKHR; +#endif /* defined(VK_KHR_external_memory_win32) */ +#if defined(VK_KHR_external_semaphore_fd) + PFN_vkGetSemaphoreFdKHR vkGetSemaphoreFdKHR; + PFN_vkImportSemaphoreFdKHR vkImportSemaphoreFdKHR; +#endif /* defined(VK_KHR_external_semaphore_fd) */ +#if defined(VK_KHR_external_semaphore_win32) + PFN_vkGetSemaphoreWin32HandleKHR vkGetSemaphoreWin32HandleKHR; + PFN_vkImportSemaphoreWin32HandleKHR vkImportSemaphoreWin32HandleKHR; +#endif /* defined(VK_KHR_external_semaphore_win32) */ +#if defined(VK_KHR_fragment_shading_rate) + PFN_vkCmdSetFragmentShadingRateKHR vkCmdSetFragmentShadingRateKHR; +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_memory_requirements2) + PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR; + PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR; + PFN_vkGetImageSparseMemoryRequirements2KHR vkGetImageSparseMemoryRequirements2KHR; +#endif /* defined(VK_KHR_get_memory_requirements2) */ +#if defined(VK_KHR_maintenance1) + PFN_vkTrimCommandPoolKHR vkTrimCommandPoolKHR; +#endif /* defined(VK_KHR_maintenance1) */ +#if defined(VK_KHR_maintenance3) + PFN_vkGetDescriptorSetLayoutSupportKHR vkGetDescriptorSetLayoutSupportKHR; +#endif /* defined(VK_KHR_maintenance3) */ +#if defined(VK_KHR_maintenance4) + PFN_vkGetDeviceBufferMemoryRequirementsKHR vkGetDeviceBufferMemoryRequirementsKHR; + PFN_vkGetDeviceImageMemoryRequirementsKHR vkGetDeviceImageMemoryRequirementsKHR; + PFN_vkGetDeviceImageSparseMemoryRequirementsKHR vkGetDeviceImageSparseMemoryRequirementsKHR; +#endif /* defined(VK_KHR_maintenance4) */ +#if defined(VK_KHR_performance_query) + PFN_vkAcquireProfilingLockKHR vkAcquireProfilingLockKHR; + PFN_vkReleaseProfilingLockKHR vkReleaseProfilingLockKHR; +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_pipeline_executable_properties) + PFN_vkGetPipelineExecutableInternalRepresentationsKHR vkGetPipelineExecutableInternalRepresentationsKHR; + PFN_vkGetPipelineExecutablePropertiesKHR vkGetPipelineExecutablePropertiesKHR; + PFN_vkGetPipelineExecutableStatisticsKHR vkGetPipelineExecutableStatisticsKHR; +#endif /* defined(VK_KHR_pipeline_executable_properties) */ +#if defined(VK_KHR_present_wait) + PFN_vkWaitForPresentKHR vkWaitForPresentKHR; +#endif /* defined(VK_KHR_present_wait) */ +#if defined(VK_KHR_push_descriptor) + PFN_vkCmdPushDescriptorSetKHR vkCmdPushDescriptorSetKHR; +#endif /* defined(VK_KHR_push_descriptor) */ +#if defined(VK_KHR_ray_tracing_maintenance1) && defined(VK_KHR_ray_tracing_pipeline) + PFN_vkCmdTraceRaysIndirect2KHR vkCmdTraceRaysIndirect2KHR; +#endif /* defined(VK_KHR_ray_tracing_maintenance1) && defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_ray_tracing_pipeline) + PFN_vkCmdSetRayTracingPipelineStackSizeKHR vkCmdSetRayTracingPipelineStackSizeKHR; + PFN_vkCmdTraceRaysIndirectKHR vkCmdTraceRaysIndirectKHR; + PFN_vkCmdTraceRaysKHR vkCmdTraceRaysKHR; + PFN_vkCreateRayTracingPipelinesKHR vkCreateRayTracingPipelinesKHR; + PFN_vkGetRayTracingCaptureReplayShaderGroupHandlesKHR vkGetRayTracingCaptureReplayShaderGroupHandlesKHR; + PFN_vkGetRayTracingShaderGroupHandlesKHR vkGetRayTracingShaderGroupHandlesKHR; + PFN_vkGetRayTracingShaderGroupStackSizeKHR vkGetRayTracingShaderGroupStackSizeKHR; +#endif /* defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_sampler_ycbcr_conversion) + PFN_vkCreateSamplerYcbcrConversionKHR vkCreateSamplerYcbcrConversionKHR; + PFN_vkDestroySamplerYcbcrConversionKHR vkDestroySamplerYcbcrConversionKHR; +#endif /* defined(VK_KHR_sampler_ycbcr_conversion) */ +#if defined(VK_KHR_shared_presentable_image) + PFN_vkGetSwapchainStatusKHR vkGetSwapchainStatusKHR; +#endif /* defined(VK_KHR_shared_presentable_image) */ +#if defined(VK_KHR_swapchain) + PFN_vkAcquireNextImageKHR vkAcquireNextImageKHR; + PFN_vkCreateSwapchainKHR vkCreateSwapchainKHR; + PFN_vkDestroySwapchainKHR vkDestroySwapchainKHR; + PFN_vkGetSwapchainImagesKHR vkGetSwapchainImagesKHR; + PFN_vkQueuePresentKHR vkQueuePresentKHR; +#endif /* defined(VK_KHR_swapchain) */ +#if defined(VK_KHR_synchronization2) + PFN_vkCmdPipelineBarrier2KHR vkCmdPipelineBarrier2KHR; + PFN_vkCmdResetEvent2KHR vkCmdResetEvent2KHR; + PFN_vkCmdSetEvent2KHR vkCmdSetEvent2KHR; + PFN_vkCmdWaitEvents2KHR vkCmdWaitEvents2KHR; + PFN_vkCmdWriteTimestamp2KHR vkCmdWriteTimestamp2KHR; + PFN_vkQueueSubmit2KHR vkQueueSubmit2KHR; +#endif /* defined(VK_KHR_synchronization2) */ +#if defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) + PFN_vkCmdWriteBufferMarker2AMD vkCmdWriteBufferMarker2AMD; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) */ +#if defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) + PFN_vkGetQueueCheckpointData2NV vkGetQueueCheckpointData2NV; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_KHR_timeline_semaphore) + PFN_vkGetSemaphoreCounterValueKHR vkGetSemaphoreCounterValueKHR; + PFN_vkSignalSemaphoreKHR vkSignalSemaphoreKHR; + PFN_vkWaitSemaphoresKHR vkWaitSemaphoresKHR; +#endif /* defined(VK_KHR_timeline_semaphore) */ +#if defined(VK_KHR_video_decode_queue) + PFN_vkCmdDecodeVideoKHR vkCmdDecodeVideoKHR; +#endif /* defined(VK_KHR_video_decode_queue) */ +#if defined(VK_KHR_video_encode_queue) + PFN_vkCmdEncodeVideoKHR vkCmdEncodeVideoKHR; +#endif /* defined(VK_KHR_video_encode_queue) */ +#if defined(VK_KHR_video_queue) + PFN_vkBindVideoSessionMemoryKHR vkBindVideoSessionMemoryKHR; + PFN_vkCmdBeginVideoCodingKHR vkCmdBeginVideoCodingKHR; + PFN_vkCmdControlVideoCodingKHR vkCmdControlVideoCodingKHR; + PFN_vkCmdEndVideoCodingKHR vkCmdEndVideoCodingKHR; + PFN_vkCreateVideoSessionKHR vkCreateVideoSessionKHR; + PFN_vkCreateVideoSessionParametersKHR vkCreateVideoSessionParametersKHR; + PFN_vkDestroyVideoSessionKHR vkDestroyVideoSessionKHR; + PFN_vkDestroyVideoSessionParametersKHR vkDestroyVideoSessionParametersKHR; + PFN_vkGetVideoSessionMemoryRequirementsKHR vkGetVideoSessionMemoryRequirementsKHR; + PFN_vkUpdateVideoSessionParametersKHR vkUpdateVideoSessionParametersKHR; +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_NVX_binary_import) + PFN_vkCmdCuLaunchKernelNVX vkCmdCuLaunchKernelNVX; + PFN_vkCreateCuFunctionNVX vkCreateCuFunctionNVX; + PFN_vkCreateCuModuleNVX vkCreateCuModuleNVX; + PFN_vkDestroyCuFunctionNVX vkDestroyCuFunctionNVX; + PFN_vkDestroyCuModuleNVX vkDestroyCuModuleNVX; +#endif /* defined(VK_NVX_binary_import) */ +#if defined(VK_NVX_image_view_handle) + PFN_vkGetImageViewAddressNVX vkGetImageViewAddressNVX; + PFN_vkGetImageViewHandleNVX vkGetImageViewHandleNVX; +#endif /* defined(VK_NVX_image_view_handle) */ +#if defined(VK_NV_clip_space_w_scaling) + PFN_vkCmdSetViewportWScalingNV vkCmdSetViewportWScalingNV; +#endif /* defined(VK_NV_clip_space_w_scaling) */ +#if defined(VK_NV_device_diagnostic_checkpoints) + PFN_vkCmdSetCheckpointNV vkCmdSetCheckpointNV; + PFN_vkGetQueueCheckpointDataNV vkGetQueueCheckpointDataNV; +#endif /* defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_NV_device_generated_commands) + PFN_vkCmdBindPipelineShaderGroupNV vkCmdBindPipelineShaderGroupNV; + PFN_vkCmdExecuteGeneratedCommandsNV vkCmdExecuteGeneratedCommandsNV; + PFN_vkCmdPreprocessGeneratedCommandsNV vkCmdPreprocessGeneratedCommandsNV; + PFN_vkCreateIndirectCommandsLayoutNV vkCreateIndirectCommandsLayoutNV; + PFN_vkDestroyIndirectCommandsLayoutNV vkDestroyIndirectCommandsLayoutNV; + PFN_vkGetGeneratedCommandsMemoryRequirementsNV vkGetGeneratedCommandsMemoryRequirementsNV; +#endif /* defined(VK_NV_device_generated_commands) */ +#if defined(VK_NV_external_memory_rdma) + PFN_vkGetMemoryRemoteAddressNV vkGetMemoryRemoteAddressNV; +#endif /* defined(VK_NV_external_memory_rdma) */ +#if defined(VK_NV_external_memory_win32) + PFN_vkGetMemoryWin32HandleNV vkGetMemoryWin32HandleNV; +#endif /* defined(VK_NV_external_memory_win32) */ +#if defined(VK_NV_fragment_shading_rate_enums) + PFN_vkCmdSetFragmentShadingRateEnumNV vkCmdSetFragmentShadingRateEnumNV; +#endif /* defined(VK_NV_fragment_shading_rate_enums) */ +#if defined(VK_NV_mesh_shader) + PFN_vkCmdDrawMeshTasksIndirectCountNV vkCmdDrawMeshTasksIndirectCountNV; + PFN_vkCmdDrawMeshTasksIndirectNV vkCmdDrawMeshTasksIndirectNV; + PFN_vkCmdDrawMeshTasksNV vkCmdDrawMeshTasksNV; +#endif /* defined(VK_NV_mesh_shader) */ +#if defined(VK_NV_ray_tracing) + PFN_vkBindAccelerationStructureMemoryNV vkBindAccelerationStructureMemoryNV; + PFN_vkCmdBuildAccelerationStructureNV vkCmdBuildAccelerationStructureNV; + PFN_vkCmdCopyAccelerationStructureNV vkCmdCopyAccelerationStructureNV; + PFN_vkCmdTraceRaysNV vkCmdTraceRaysNV; + PFN_vkCmdWriteAccelerationStructuresPropertiesNV vkCmdWriteAccelerationStructuresPropertiesNV; + PFN_vkCompileDeferredNV vkCompileDeferredNV; + PFN_vkCreateAccelerationStructureNV vkCreateAccelerationStructureNV; + PFN_vkCreateRayTracingPipelinesNV vkCreateRayTracingPipelinesNV; + PFN_vkDestroyAccelerationStructureNV vkDestroyAccelerationStructureNV; + PFN_vkGetAccelerationStructureHandleNV vkGetAccelerationStructureHandleNV; + PFN_vkGetAccelerationStructureMemoryRequirementsNV vkGetAccelerationStructureMemoryRequirementsNV; + PFN_vkGetRayTracingShaderGroupHandlesNV vkGetRayTracingShaderGroupHandlesNV; +#endif /* defined(VK_NV_ray_tracing) */ +#if defined(VK_NV_scissor_exclusive) + PFN_vkCmdSetExclusiveScissorNV vkCmdSetExclusiveScissorNV; +#endif /* defined(VK_NV_scissor_exclusive) */ +#if defined(VK_NV_shading_rate_image) + PFN_vkCmdBindShadingRateImageNV vkCmdBindShadingRateImageNV; + PFN_vkCmdSetCoarseSampleOrderNV vkCmdSetCoarseSampleOrderNV; + PFN_vkCmdSetViewportShadingRatePaletteNV vkCmdSetViewportShadingRatePaletteNV; +#endif /* defined(VK_NV_shading_rate_image) */ +#if defined(VK_VALVE_descriptor_set_host_mapping) + PFN_vkGetDescriptorSetHostMappingVALVE vkGetDescriptorSetHostMappingVALVE; + PFN_vkGetDescriptorSetLayoutHostMappingInfoVALVE vkGetDescriptorSetLayoutHostMappingInfoVALVE; +#endif /* defined(VK_VALVE_descriptor_set_host_mapping) */ +#if (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) + PFN_vkGetDeviceGroupSurfacePresentModes2EXT vkGetDeviceGroupSurfacePresentModes2EXT; +#endif /* (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) + PFN_vkCmdPushDescriptorSetWithTemplateKHR vkCmdPushDescriptorSetWithTemplateKHR; +#endif /* (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + PFN_vkGetDeviceGroupPresentCapabilitiesKHR vkGetDeviceGroupPresentCapabilitiesKHR; + PFN_vkGetDeviceGroupSurfacePresentModesKHR vkGetDeviceGroupSurfacePresentModesKHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) + PFN_vkAcquireNextImage2KHR vkAcquireNextImage2KHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ + /* VOLK_GENERATE_DEVICE_TABLE */ +}; + +/* VOLK_GENERATE_PROTOTYPES_H */ +#if defined(VK_VERSION_1_0) +extern PFN_vkAllocateCommandBuffers vkAllocateCommandBuffers; +extern PFN_vkAllocateDescriptorSets vkAllocateDescriptorSets; +extern PFN_vkAllocateMemory vkAllocateMemory; +extern PFN_vkBeginCommandBuffer vkBeginCommandBuffer; +extern PFN_vkBindBufferMemory vkBindBufferMemory; +extern PFN_vkBindImageMemory vkBindImageMemory; +extern PFN_vkCmdBeginQuery vkCmdBeginQuery; +extern PFN_vkCmdBeginRenderPass vkCmdBeginRenderPass; +extern PFN_vkCmdBindDescriptorSets vkCmdBindDescriptorSets; +extern PFN_vkCmdBindIndexBuffer vkCmdBindIndexBuffer; +extern PFN_vkCmdBindPipeline vkCmdBindPipeline; +extern PFN_vkCmdBindVertexBuffers vkCmdBindVertexBuffers; +extern PFN_vkCmdBlitImage vkCmdBlitImage; +extern PFN_vkCmdClearAttachments vkCmdClearAttachments; +extern PFN_vkCmdClearColorImage vkCmdClearColorImage; +extern PFN_vkCmdClearDepthStencilImage vkCmdClearDepthStencilImage; +extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer; +extern PFN_vkCmdCopyBufferToImage vkCmdCopyBufferToImage; +extern PFN_vkCmdCopyImage vkCmdCopyImage; +extern PFN_vkCmdCopyImageToBuffer vkCmdCopyImageToBuffer; +extern PFN_vkCmdCopyQueryPoolResults vkCmdCopyQueryPoolResults; +extern PFN_vkCmdDispatch vkCmdDispatch; +extern PFN_vkCmdDispatchIndirect vkCmdDispatchIndirect; +extern PFN_vkCmdDraw vkCmdDraw; +extern PFN_vkCmdDrawIndexed vkCmdDrawIndexed; +extern PFN_vkCmdDrawIndexedIndirect vkCmdDrawIndexedIndirect; +extern PFN_vkCmdDrawIndirect vkCmdDrawIndirect; +extern PFN_vkCmdEndQuery vkCmdEndQuery; +extern PFN_vkCmdEndRenderPass vkCmdEndRenderPass; +extern PFN_vkCmdExecuteCommands vkCmdExecuteCommands; +extern PFN_vkCmdFillBuffer vkCmdFillBuffer; +extern PFN_vkCmdNextSubpass vkCmdNextSubpass; +extern PFN_vkCmdPipelineBarrier vkCmdPipelineBarrier; +extern PFN_vkCmdPushConstants vkCmdPushConstants; +extern PFN_vkCmdResetEvent vkCmdResetEvent; +extern PFN_vkCmdResetQueryPool vkCmdResetQueryPool; +extern PFN_vkCmdResolveImage vkCmdResolveImage; +extern PFN_vkCmdSetBlendConstants vkCmdSetBlendConstants; +extern PFN_vkCmdSetDepthBias vkCmdSetDepthBias; +extern PFN_vkCmdSetDepthBounds vkCmdSetDepthBounds; +extern PFN_vkCmdSetEvent vkCmdSetEvent; +extern PFN_vkCmdSetLineWidth vkCmdSetLineWidth; +extern PFN_vkCmdSetScissor vkCmdSetScissor; +extern PFN_vkCmdSetStencilCompareMask vkCmdSetStencilCompareMask; +extern PFN_vkCmdSetStencilReference vkCmdSetStencilReference; +extern PFN_vkCmdSetStencilWriteMask vkCmdSetStencilWriteMask; +extern PFN_vkCmdSetViewport vkCmdSetViewport; +extern PFN_vkCmdUpdateBuffer vkCmdUpdateBuffer; +extern PFN_vkCmdWaitEvents vkCmdWaitEvents; +extern PFN_vkCmdWriteTimestamp vkCmdWriteTimestamp; +extern PFN_vkCreateBuffer vkCreateBuffer; +extern PFN_vkCreateBufferView vkCreateBufferView; +extern PFN_vkCreateCommandPool vkCreateCommandPool; +extern PFN_vkCreateComputePipelines vkCreateComputePipelines; +extern PFN_vkCreateDescriptorPool vkCreateDescriptorPool; +extern PFN_vkCreateDescriptorSetLayout vkCreateDescriptorSetLayout; +extern PFN_vkCreateDevice vkCreateDevice; +extern PFN_vkCreateEvent vkCreateEvent; +extern PFN_vkCreateFence vkCreateFence; +extern PFN_vkCreateFramebuffer vkCreateFramebuffer; +extern PFN_vkCreateGraphicsPipelines vkCreateGraphicsPipelines; +extern PFN_vkCreateImage vkCreateImage; +extern PFN_vkCreateImageView vkCreateImageView; +extern PFN_vkCreateInstance vkCreateInstance; +extern PFN_vkCreatePipelineCache vkCreatePipelineCache; +extern PFN_vkCreatePipelineLayout vkCreatePipelineLayout; +extern PFN_vkCreateQueryPool vkCreateQueryPool; +extern PFN_vkCreateRenderPass vkCreateRenderPass; +extern PFN_vkCreateSampler vkCreateSampler; +extern PFN_vkCreateSemaphore vkCreateSemaphore; +extern PFN_vkCreateShaderModule vkCreateShaderModule; +extern PFN_vkDestroyBuffer vkDestroyBuffer; +extern PFN_vkDestroyBufferView vkDestroyBufferView; +extern PFN_vkDestroyCommandPool vkDestroyCommandPool; +extern PFN_vkDestroyDescriptorPool vkDestroyDescriptorPool; +extern PFN_vkDestroyDescriptorSetLayout vkDestroyDescriptorSetLayout; +extern PFN_vkDestroyDevice vkDestroyDevice; +extern PFN_vkDestroyEvent vkDestroyEvent; +extern PFN_vkDestroyFence vkDestroyFence; +extern PFN_vkDestroyFramebuffer vkDestroyFramebuffer; +extern PFN_vkDestroyImage vkDestroyImage; +extern PFN_vkDestroyImageView vkDestroyImageView; +extern PFN_vkDestroyInstance vkDestroyInstance; +extern PFN_vkDestroyPipeline vkDestroyPipeline; +extern PFN_vkDestroyPipelineCache vkDestroyPipelineCache; +extern PFN_vkDestroyPipelineLayout vkDestroyPipelineLayout; +extern PFN_vkDestroyQueryPool vkDestroyQueryPool; +extern PFN_vkDestroyRenderPass vkDestroyRenderPass; +extern PFN_vkDestroySampler vkDestroySampler; +extern PFN_vkDestroySemaphore vkDestroySemaphore; +extern PFN_vkDestroyShaderModule vkDestroyShaderModule; +extern PFN_vkDeviceWaitIdle vkDeviceWaitIdle; +extern PFN_vkEndCommandBuffer vkEndCommandBuffer; +extern PFN_vkEnumerateDeviceExtensionProperties vkEnumerateDeviceExtensionProperties; +extern PFN_vkEnumerateDeviceLayerProperties vkEnumerateDeviceLayerProperties; +extern PFN_vkEnumerateInstanceExtensionProperties vkEnumerateInstanceExtensionProperties; +extern PFN_vkEnumerateInstanceLayerProperties vkEnumerateInstanceLayerProperties; +extern PFN_vkEnumeratePhysicalDevices vkEnumeratePhysicalDevices; +extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; +extern PFN_vkFreeCommandBuffers vkFreeCommandBuffers; +extern PFN_vkFreeDescriptorSets vkFreeDescriptorSets; +extern PFN_vkFreeMemory vkFreeMemory; +extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; +extern PFN_vkGetDeviceMemoryCommitment vkGetDeviceMemoryCommitment; +extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; +extern PFN_vkGetDeviceQueue vkGetDeviceQueue; +extern PFN_vkGetEventStatus vkGetEventStatus; +extern PFN_vkGetFenceStatus vkGetFenceStatus; +extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; +extern PFN_vkGetImageSparseMemoryRequirements vkGetImageSparseMemoryRequirements; +extern PFN_vkGetImageSubresourceLayout vkGetImageSubresourceLayout; +extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; +extern PFN_vkGetPhysicalDeviceFeatures vkGetPhysicalDeviceFeatures; +extern PFN_vkGetPhysicalDeviceFormatProperties vkGetPhysicalDeviceFormatProperties; +extern PFN_vkGetPhysicalDeviceImageFormatProperties vkGetPhysicalDeviceImageFormatProperties; +extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; +extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; +extern PFN_vkGetPhysicalDeviceQueueFamilyProperties vkGetPhysicalDeviceQueueFamilyProperties; +extern PFN_vkGetPhysicalDeviceSparseImageFormatProperties vkGetPhysicalDeviceSparseImageFormatProperties; +extern PFN_vkGetPipelineCacheData vkGetPipelineCacheData; +extern PFN_vkGetQueryPoolResults vkGetQueryPoolResults; +extern PFN_vkGetRenderAreaGranularity vkGetRenderAreaGranularity; +extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; +extern PFN_vkMapMemory vkMapMemory; +extern PFN_vkMergePipelineCaches vkMergePipelineCaches; +extern PFN_vkQueueBindSparse vkQueueBindSparse; +extern PFN_vkQueueSubmit vkQueueSubmit; +extern PFN_vkQueueWaitIdle vkQueueWaitIdle; +extern PFN_vkResetCommandBuffer vkResetCommandBuffer; +extern PFN_vkResetCommandPool vkResetCommandPool; +extern PFN_vkResetDescriptorPool vkResetDescriptorPool; +extern PFN_vkResetEvent vkResetEvent; +extern PFN_vkResetFences vkResetFences; +extern PFN_vkSetEvent vkSetEvent; +extern PFN_vkUnmapMemory vkUnmapMemory; +extern PFN_vkUpdateDescriptorSets vkUpdateDescriptorSets; +extern PFN_vkWaitForFences vkWaitForFences; +#endif /* defined(VK_VERSION_1_0) */ +#if defined(VK_VERSION_1_1) +extern PFN_vkBindBufferMemory2 vkBindBufferMemory2; +extern PFN_vkBindImageMemory2 vkBindImageMemory2; +extern PFN_vkCmdDispatchBase vkCmdDispatchBase; +extern PFN_vkCmdSetDeviceMask vkCmdSetDeviceMask; +extern PFN_vkCreateDescriptorUpdateTemplate vkCreateDescriptorUpdateTemplate; +extern PFN_vkCreateSamplerYcbcrConversion vkCreateSamplerYcbcrConversion; +extern PFN_vkDestroyDescriptorUpdateTemplate vkDestroyDescriptorUpdateTemplate; +extern PFN_vkDestroySamplerYcbcrConversion vkDestroySamplerYcbcrConversion; +extern PFN_vkEnumerateInstanceVersion vkEnumerateInstanceVersion; +extern PFN_vkEnumeratePhysicalDeviceGroups vkEnumeratePhysicalDeviceGroups; +extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; +extern PFN_vkGetDescriptorSetLayoutSupport vkGetDescriptorSetLayoutSupport; +extern PFN_vkGetDeviceGroupPeerMemoryFeatures vkGetDeviceGroupPeerMemoryFeatures; +extern PFN_vkGetDeviceQueue2 vkGetDeviceQueue2; +extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; +extern PFN_vkGetImageSparseMemoryRequirements2 vkGetImageSparseMemoryRequirements2; +extern PFN_vkGetPhysicalDeviceExternalBufferProperties vkGetPhysicalDeviceExternalBufferProperties; +extern PFN_vkGetPhysicalDeviceExternalFenceProperties vkGetPhysicalDeviceExternalFenceProperties; +extern PFN_vkGetPhysicalDeviceExternalSemaphoreProperties vkGetPhysicalDeviceExternalSemaphoreProperties; +extern PFN_vkGetPhysicalDeviceFeatures2 vkGetPhysicalDeviceFeatures2; +extern PFN_vkGetPhysicalDeviceFormatProperties2 vkGetPhysicalDeviceFormatProperties2; +extern PFN_vkGetPhysicalDeviceImageFormatProperties2 vkGetPhysicalDeviceImageFormatProperties2; +extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2; +extern PFN_vkGetPhysicalDeviceProperties2 vkGetPhysicalDeviceProperties2; +extern PFN_vkGetPhysicalDeviceQueueFamilyProperties2 vkGetPhysicalDeviceQueueFamilyProperties2; +extern PFN_vkGetPhysicalDeviceSparseImageFormatProperties2 vkGetPhysicalDeviceSparseImageFormatProperties2; +extern PFN_vkTrimCommandPool vkTrimCommandPool; +extern PFN_vkUpdateDescriptorSetWithTemplate vkUpdateDescriptorSetWithTemplate; +#endif /* defined(VK_VERSION_1_1) */ +#if defined(VK_VERSION_1_2) +extern PFN_vkCmdBeginRenderPass2 vkCmdBeginRenderPass2; +extern PFN_vkCmdDrawIndexedIndirectCount vkCmdDrawIndexedIndirectCount; +extern PFN_vkCmdDrawIndirectCount vkCmdDrawIndirectCount; +extern PFN_vkCmdEndRenderPass2 vkCmdEndRenderPass2; +extern PFN_vkCmdNextSubpass2 vkCmdNextSubpass2; +extern PFN_vkCreateRenderPass2 vkCreateRenderPass2; +extern PFN_vkGetBufferDeviceAddress vkGetBufferDeviceAddress; +extern PFN_vkGetBufferOpaqueCaptureAddress vkGetBufferOpaqueCaptureAddress; +extern PFN_vkGetDeviceMemoryOpaqueCaptureAddress vkGetDeviceMemoryOpaqueCaptureAddress; +extern PFN_vkGetSemaphoreCounterValue vkGetSemaphoreCounterValue; +extern PFN_vkResetQueryPool vkResetQueryPool; +extern PFN_vkSignalSemaphore vkSignalSemaphore; +extern PFN_vkWaitSemaphores vkWaitSemaphores; +#endif /* defined(VK_VERSION_1_2) */ +#if defined(VK_VERSION_1_3) +extern PFN_vkCmdBeginRendering vkCmdBeginRendering; +extern PFN_vkCmdBindVertexBuffers2 vkCmdBindVertexBuffers2; +extern PFN_vkCmdBlitImage2 vkCmdBlitImage2; +extern PFN_vkCmdCopyBuffer2 vkCmdCopyBuffer2; +extern PFN_vkCmdCopyBufferToImage2 vkCmdCopyBufferToImage2; +extern PFN_vkCmdCopyImage2 vkCmdCopyImage2; +extern PFN_vkCmdCopyImageToBuffer2 vkCmdCopyImageToBuffer2; +extern PFN_vkCmdEndRendering vkCmdEndRendering; +extern PFN_vkCmdPipelineBarrier2 vkCmdPipelineBarrier2; +extern PFN_vkCmdResetEvent2 vkCmdResetEvent2; +extern PFN_vkCmdResolveImage2 vkCmdResolveImage2; +extern PFN_vkCmdSetCullMode vkCmdSetCullMode; +extern PFN_vkCmdSetDepthBiasEnable vkCmdSetDepthBiasEnable; +extern PFN_vkCmdSetDepthBoundsTestEnable vkCmdSetDepthBoundsTestEnable; +extern PFN_vkCmdSetDepthCompareOp vkCmdSetDepthCompareOp; +extern PFN_vkCmdSetDepthTestEnable vkCmdSetDepthTestEnable; +extern PFN_vkCmdSetDepthWriteEnable vkCmdSetDepthWriteEnable; +extern PFN_vkCmdSetEvent2 vkCmdSetEvent2; +extern PFN_vkCmdSetFrontFace vkCmdSetFrontFace; +extern PFN_vkCmdSetPrimitiveRestartEnable vkCmdSetPrimitiveRestartEnable; +extern PFN_vkCmdSetPrimitiveTopology vkCmdSetPrimitiveTopology; +extern PFN_vkCmdSetRasterizerDiscardEnable vkCmdSetRasterizerDiscardEnable; +extern PFN_vkCmdSetScissorWithCount vkCmdSetScissorWithCount; +extern PFN_vkCmdSetStencilOp vkCmdSetStencilOp; +extern PFN_vkCmdSetStencilTestEnable vkCmdSetStencilTestEnable; +extern PFN_vkCmdSetViewportWithCount vkCmdSetViewportWithCount; +extern PFN_vkCmdWaitEvents2 vkCmdWaitEvents2; +extern PFN_vkCmdWriteTimestamp2 vkCmdWriteTimestamp2; +extern PFN_vkCreatePrivateDataSlot vkCreatePrivateDataSlot; +extern PFN_vkDestroyPrivateDataSlot vkDestroyPrivateDataSlot; +extern PFN_vkGetDeviceBufferMemoryRequirements vkGetDeviceBufferMemoryRequirements; +extern PFN_vkGetDeviceImageMemoryRequirements vkGetDeviceImageMemoryRequirements; +extern PFN_vkGetDeviceImageSparseMemoryRequirements vkGetDeviceImageSparseMemoryRequirements; +extern PFN_vkGetPhysicalDeviceToolProperties vkGetPhysicalDeviceToolProperties; +extern PFN_vkGetPrivateData vkGetPrivateData; +extern PFN_vkQueueSubmit2 vkQueueSubmit2; +extern PFN_vkSetPrivateData vkSetPrivateData; +#endif /* defined(VK_VERSION_1_3) */ +#if defined(VK_AMD_buffer_marker) +extern PFN_vkCmdWriteBufferMarkerAMD vkCmdWriteBufferMarkerAMD; +#endif /* defined(VK_AMD_buffer_marker) */ +#if defined(VK_AMD_display_native_hdr) +extern PFN_vkSetLocalDimmingAMD vkSetLocalDimmingAMD; +#endif /* defined(VK_AMD_display_native_hdr) */ +#if defined(VK_AMD_draw_indirect_count) +extern PFN_vkCmdDrawIndexedIndirectCountAMD vkCmdDrawIndexedIndirectCountAMD; +extern PFN_vkCmdDrawIndirectCountAMD vkCmdDrawIndirectCountAMD; +#endif /* defined(VK_AMD_draw_indirect_count) */ +#if defined(VK_AMD_shader_info) +extern PFN_vkGetShaderInfoAMD vkGetShaderInfoAMD; +#endif /* defined(VK_AMD_shader_info) */ +#if defined(VK_ANDROID_external_memory_android_hardware_buffer) +extern PFN_vkGetAndroidHardwareBufferPropertiesANDROID vkGetAndroidHardwareBufferPropertiesANDROID; +extern PFN_vkGetMemoryAndroidHardwareBufferANDROID vkGetMemoryAndroidHardwareBufferANDROID; +#endif /* defined(VK_ANDROID_external_memory_android_hardware_buffer) */ +#if defined(VK_EXT_acquire_drm_display) +extern PFN_vkAcquireDrmDisplayEXT vkAcquireDrmDisplayEXT; +extern PFN_vkGetDrmDisplayEXT vkGetDrmDisplayEXT; +#endif /* defined(VK_EXT_acquire_drm_display) */ +#if defined(VK_EXT_acquire_xlib_display) +extern PFN_vkAcquireXlibDisplayEXT vkAcquireXlibDisplayEXT; +extern PFN_vkGetRandROutputDisplayEXT vkGetRandROutputDisplayEXT; +#endif /* defined(VK_EXT_acquire_xlib_display) */ +#if defined(VK_EXT_buffer_device_address) +extern PFN_vkGetBufferDeviceAddressEXT vkGetBufferDeviceAddressEXT; +#endif /* defined(VK_EXT_buffer_device_address) */ +#if defined(VK_EXT_calibrated_timestamps) +extern PFN_vkGetCalibratedTimestampsEXT vkGetCalibratedTimestampsEXT; +extern PFN_vkGetPhysicalDeviceCalibrateableTimeDomainsEXT vkGetPhysicalDeviceCalibrateableTimeDomainsEXT; +#endif /* defined(VK_EXT_calibrated_timestamps) */ +#if defined(VK_EXT_color_write_enable) +extern PFN_vkCmdSetColorWriteEnableEXT vkCmdSetColorWriteEnableEXT; +#endif /* defined(VK_EXT_color_write_enable) */ +#if defined(VK_EXT_conditional_rendering) +extern PFN_vkCmdBeginConditionalRenderingEXT vkCmdBeginConditionalRenderingEXT; +extern PFN_vkCmdEndConditionalRenderingEXT vkCmdEndConditionalRenderingEXT; +#endif /* defined(VK_EXT_conditional_rendering) */ +#if defined(VK_EXT_debug_marker) +extern PFN_vkCmdDebugMarkerBeginEXT vkCmdDebugMarkerBeginEXT; +extern PFN_vkCmdDebugMarkerEndEXT vkCmdDebugMarkerEndEXT; +extern PFN_vkCmdDebugMarkerInsertEXT vkCmdDebugMarkerInsertEXT; +extern PFN_vkDebugMarkerSetObjectNameEXT vkDebugMarkerSetObjectNameEXT; +extern PFN_vkDebugMarkerSetObjectTagEXT vkDebugMarkerSetObjectTagEXT; +#endif /* defined(VK_EXT_debug_marker) */ +#if defined(VK_EXT_debug_report) +extern PFN_vkCreateDebugReportCallbackEXT vkCreateDebugReportCallbackEXT; +extern PFN_vkDebugReportMessageEXT vkDebugReportMessageEXT; +extern PFN_vkDestroyDebugReportCallbackEXT vkDestroyDebugReportCallbackEXT; +#endif /* defined(VK_EXT_debug_report) */ +#if defined(VK_EXT_debug_utils) +extern PFN_vkCmdBeginDebugUtilsLabelEXT vkCmdBeginDebugUtilsLabelEXT; +extern PFN_vkCmdEndDebugUtilsLabelEXT vkCmdEndDebugUtilsLabelEXT; +extern PFN_vkCmdInsertDebugUtilsLabelEXT vkCmdInsertDebugUtilsLabelEXT; +extern PFN_vkCreateDebugUtilsMessengerEXT vkCreateDebugUtilsMessengerEXT; +extern PFN_vkDestroyDebugUtilsMessengerEXT vkDestroyDebugUtilsMessengerEXT; +extern PFN_vkQueueBeginDebugUtilsLabelEXT vkQueueBeginDebugUtilsLabelEXT; +extern PFN_vkQueueEndDebugUtilsLabelEXT vkQueueEndDebugUtilsLabelEXT; +extern PFN_vkQueueInsertDebugUtilsLabelEXT vkQueueInsertDebugUtilsLabelEXT; +extern PFN_vkSetDebugUtilsObjectNameEXT vkSetDebugUtilsObjectNameEXT; +extern PFN_vkSetDebugUtilsObjectTagEXT vkSetDebugUtilsObjectTagEXT; +extern PFN_vkSubmitDebugUtilsMessageEXT vkSubmitDebugUtilsMessageEXT; +#endif /* defined(VK_EXT_debug_utils) */ +#if defined(VK_EXT_direct_mode_display) +extern PFN_vkReleaseDisplayEXT vkReleaseDisplayEXT; +#endif /* defined(VK_EXT_direct_mode_display) */ +#if defined(VK_EXT_directfb_surface) +extern PFN_vkCreateDirectFBSurfaceEXT vkCreateDirectFBSurfaceEXT; +extern PFN_vkGetPhysicalDeviceDirectFBPresentationSupportEXT vkGetPhysicalDeviceDirectFBPresentationSupportEXT; +#endif /* defined(VK_EXT_directfb_surface) */ +#if defined(VK_EXT_discard_rectangles) +extern PFN_vkCmdSetDiscardRectangleEXT vkCmdSetDiscardRectangleEXT; +#endif /* defined(VK_EXT_discard_rectangles) */ +#if defined(VK_EXT_display_control) +extern PFN_vkDisplayPowerControlEXT vkDisplayPowerControlEXT; +extern PFN_vkGetSwapchainCounterEXT vkGetSwapchainCounterEXT; +extern PFN_vkRegisterDeviceEventEXT vkRegisterDeviceEventEXT; +extern PFN_vkRegisterDisplayEventEXT vkRegisterDisplayEventEXT; +#endif /* defined(VK_EXT_display_control) */ +#if defined(VK_EXT_display_surface_counter) +extern PFN_vkGetPhysicalDeviceSurfaceCapabilities2EXT vkGetPhysicalDeviceSurfaceCapabilities2EXT; +#endif /* defined(VK_EXT_display_surface_counter) */ +#if defined(VK_EXT_extended_dynamic_state) +extern PFN_vkCmdBindVertexBuffers2EXT vkCmdBindVertexBuffers2EXT; +extern PFN_vkCmdSetCullModeEXT vkCmdSetCullModeEXT; +extern PFN_vkCmdSetDepthBoundsTestEnableEXT vkCmdSetDepthBoundsTestEnableEXT; +extern PFN_vkCmdSetDepthCompareOpEXT vkCmdSetDepthCompareOpEXT; +extern PFN_vkCmdSetDepthTestEnableEXT vkCmdSetDepthTestEnableEXT; +extern PFN_vkCmdSetDepthWriteEnableEXT vkCmdSetDepthWriteEnableEXT; +extern PFN_vkCmdSetFrontFaceEXT vkCmdSetFrontFaceEXT; +extern PFN_vkCmdSetPrimitiveTopologyEXT vkCmdSetPrimitiveTopologyEXT; +extern PFN_vkCmdSetScissorWithCountEXT vkCmdSetScissorWithCountEXT; +extern PFN_vkCmdSetStencilOpEXT vkCmdSetStencilOpEXT; +extern PFN_vkCmdSetStencilTestEnableEXT vkCmdSetStencilTestEnableEXT; +extern PFN_vkCmdSetViewportWithCountEXT vkCmdSetViewportWithCountEXT; +#endif /* defined(VK_EXT_extended_dynamic_state) */ +#if defined(VK_EXT_extended_dynamic_state2) +extern PFN_vkCmdSetDepthBiasEnableEXT vkCmdSetDepthBiasEnableEXT; +extern PFN_vkCmdSetLogicOpEXT vkCmdSetLogicOpEXT; +extern PFN_vkCmdSetPatchControlPointsEXT vkCmdSetPatchControlPointsEXT; +extern PFN_vkCmdSetPrimitiveRestartEnableEXT vkCmdSetPrimitiveRestartEnableEXT; +extern PFN_vkCmdSetRasterizerDiscardEnableEXT vkCmdSetRasterizerDiscardEnableEXT; +#endif /* defined(VK_EXT_extended_dynamic_state2) */ +#if defined(VK_EXT_external_memory_host) +extern PFN_vkGetMemoryHostPointerPropertiesEXT vkGetMemoryHostPointerPropertiesEXT; +#endif /* defined(VK_EXT_external_memory_host) */ +#if defined(VK_EXT_full_screen_exclusive) +extern PFN_vkAcquireFullScreenExclusiveModeEXT vkAcquireFullScreenExclusiveModeEXT; +extern PFN_vkGetPhysicalDeviceSurfacePresentModes2EXT vkGetPhysicalDeviceSurfacePresentModes2EXT; +extern PFN_vkReleaseFullScreenExclusiveModeEXT vkReleaseFullScreenExclusiveModeEXT; +#endif /* defined(VK_EXT_full_screen_exclusive) */ +#if defined(VK_EXT_hdr_metadata) +extern PFN_vkSetHdrMetadataEXT vkSetHdrMetadataEXT; +#endif /* defined(VK_EXT_hdr_metadata) */ +#if defined(VK_EXT_headless_surface) +extern PFN_vkCreateHeadlessSurfaceEXT vkCreateHeadlessSurfaceEXT; +#endif /* defined(VK_EXT_headless_surface) */ +#if defined(VK_EXT_host_query_reset) +extern PFN_vkResetQueryPoolEXT vkResetQueryPoolEXT; +#endif /* defined(VK_EXT_host_query_reset) */ +#if defined(VK_EXT_image_compression_control) +extern PFN_vkGetImageSubresourceLayout2EXT vkGetImageSubresourceLayout2EXT; +#endif /* defined(VK_EXT_image_compression_control) */ +#if defined(VK_EXT_image_drm_format_modifier) +extern PFN_vkGetImageDrmFormatModifierPropertiesEXT vkGetImageDrmFormatModifierPropertiesEXT; +#endif /* defined(VK_EXT_image_drm_format_modifier) */ +#if defined(VK_EXT_line_rasterization) +extern PFN_vkCmdSetLineStippleEXT vkCmdSetLineStippleEXT; +#endif /* defined(VK_EXT_line_rasterization) */ +#if defined(VK_EXT_metal_surface) +extern PFN_vkCreateMetalSurfaceEXT vkCreateMetalSurfaceEXT; +#endif /* defined(VK_EXT_metal_surface) */ +#if defined(VK_EXT_multi_draw) +extern PFN_vkCmdDrawMultiEXT vkCmdDrawMultiEXT; +extern PFN_vkCmdDrawMultiIndexedEXT vkCmdDrawMultiIndexedEXT; +#endif /* defined(VK_EXT_multi_draw) */ +#if defined(VK_EXT_pageable_device_local_memory) +extern PFN_vkSetDeviceMemoryPriorityEXT vkSetDeviceMemoryPriorityEXT; +#endif /* defined(VK_EXT_pageable_device_local_memory) */ +#if defined(VK_EXT_pipeline_properties) +extern PFN_vkGetPipelinePropertiesEXT vkGetPipelinePropertiesEXT; +#endif /* defined(VK_EXT_pipeline_properties) */ +#if defined(VK_EXT_private_data) +extern PFN_vkCreatePrivateDataSlotEXT vkCreatePrivateDataSlotEXT; +extern PFN_vkDestroyPrivateDataSlotEXT vkDestroyPrivateDataSlotEXT; +extern PFN_vkGetPrivateDataEXT vkGetPrivateDataEXT; +extern PFN_vkSetPrivateDataEXT vkSetPrivateDataEXT; +#endif /* defined(VK_EXT_private_data) */ +#if defined(VK_EXT_sample_locations) +extern PFN_vkCmdSetSampleLocationsEXT vkCmdSetSampleLocationsEXT; +extern PFN_vkGetPhysicalDeviceMultisamplePropertiesEXT vkGetPhysicalDeviceMultisamplePropertiesEXT; +#endif /* defined(VK_EXT_sample_locations) */ +#if defined(VK_EXT_tooling_info) +extern PFN_vkGetPhysicalDeviceToolPropertiesEXT vkGetPhysicalDeviceToolPropertiesEXT; +#endif /* defined(VK_EXT_tooling_info) */ +#if defined(VK_EXT_transform_feedback) +extern PFN_vkCmdBeginQueryIndexedEXT vkCmdBeginQueryIndexedEXT; +extern PFN_vkCmdBeginTransformFeedbackEXT vkCmdBeginTransformFeedbackEXT; +extern PFN_vkCmdBindTransformFeedbackBuffersEXT vkCmdBindTransformFeedbackBuffersEXT; +extern PFN_vkCmdDrawIndirectByteCountEXT vkCmdDrawIndirectByteCountEXT; +extern PFN_vkCmdEndQueryIndexedEXT vkCmdEndQueryIndexedEXT; +extern PFN_vkCmdEndTransformFeedbackEXT vkCmdEndTransformFeedbackEXT; +#endif /* defined(VK_EXT_transform_feedback) */ +#if defined(VK_EXT_validation_cache) +extern PFN_vkCreateValidationCacheEXT vkCreateValidationCacheEXT; +extern PFN_vkDestroyValidationCacheEXT vkDestroyValidationCacheEXT; +extern PFN_vkGetValidationCacheDataEXT vkGetValidationCacheDataEXT; +extern PFN_vkMergeValidationCachesEXT vkMergeValidationCachesEXT; +#endif /* defined(VK_EXT_validation_cache) */ +#if defined(VK_EXT_vertex_input_dynamic_state) +extern PFN_vkCmdSetVertexInputEXT vkCmdSetVertexInputEXT; +#endif /* defined(VK_EXT_vertex_input_dynamic_state) */ +#if defined(VK_FUCHSIA_buffer_collection) +extern PFN_vkCreateBufferCollectionFUCHSIA vkCreateBufferCollectionFUCHSIA; +extern PFN_vkDestroyBufferCollectionFUCHSIA vkDestroyBufferCollectionFUCHSIA; +extern PFN_vkGetBufferCollectionPropertiesFUCHSIA vkGetBufferCollectionPropertiesFUCHSIA; +extern PFN_vkSetBufferCollectionBufferConstraintsFUCHSIA vkSetBufferCollectionBufferConstraintsFUCHSIA; +extern PFN_vkSetBufferCollectionImageConstraintsFUCHSIA vkSetBufferCollectionImageConstraintsFUCHSIA; +#endif /* defined(VK_FUCHSIA_buffer_collection) */ +#if defined(VK_FUCHSIA_external_memory) +extern PFN_vkGetMemoryZirconHandleFUCHSIA vkGetMemoryZirconHandleFUCHSIA; +extern PFN_vkGetMemoryZirconHandlePropertiesFUCHSIA vkGetMemoryZirconHandlePropertiesFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_memory) */ +#if defined(VK_FUCHSIA_external_semaphore) +extern PFN_vkGetSemaphoreZirconHandleFUCHSIA vkGetSemaphoreZirconHandleFUCHSIA; +extern PFN_vkImportSemaphoreZirconHandleFUCHSIA vkImportSemaphoreZirconHandleFUCHSIA; +#endif /* defined(VK_FUCHSIA_external_semaphore) */ +#if defined(VK_FUCHSIA_imagepipe_surface) +extern PFN_vkCreateImagePipeSurfaceFUCHSIA vkCreateImagePipeSurfaceFUCHSIA; +#endif /* defined(VK_FUCHSIA_imagepipe_surface) */ +#if defined(VK_GGP_stream_descriptor_surface) +extern PFN_vkCreateStreamDescriptorSurfaceGGP vkCreateStreamDescriptorSurfaceGGP; +#endif /* defined(VK_GGP_stream_descriptor_surface) */ +#if defined(VK_GOOGLE_display_timing) +extern PFN_vkGetPastPresentationTimingGOOGLE vkGetPastPresentationTimingGOOGLE; +extern PFN_vkGetRefreshCycleDurationGOOGLE vkGetRefreshCycleDurationGOOGLE; +#endif /* defined(VK_GOOGLE_display_timing) */ +#if defined(VK_HUAWEI_invocation_mask) +extern PFN_vkCmdBindInvocationMaskHUAWEI vkCmdBindInvocationMaskHUAWEI; +#endif /* defined(VK_HUAWEI_invocation_mask) */ +#if defined(VK_HUAWEI_subpass_shading) +extern PFN_vkCmdSubpassShadingHUAWEI vkCmdSubpassShadingHUAWEI; +extern PFN_vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI vkGetDeviceSubpassShadingMaxWorkgroupSizeHUAWEI; +#endif /* defined(VK_HUAWEI_subpass_shading) */ +#if defined(VK_INTEL_performance_query) +extern PFN_vkAcquirePerformanceConfigurationINTEL vkAcquirePerformanceConfigurationINTEL; +extern PFN_vkCmdSetPerformanceMarkerINTEL vkCmdSetPerformanceMarkerINTEL; +extern PFN_vkCmdSetPerformanceOverrideINTEL vkCmdSetPerformanceOverrideINTEL; +extern PFN_vkCmdSetPerformanceStreamMarkerINTEL vkCmdSetPerformanceStreamMarkerINTEL; +extern PFN_vkGetPerformanceParameterINTEL vkGetPerformanceParameterINTEL; +extern PFN_vkInitializePerformanceApiINTEL vkInitializePerformanceApiINTEL; +extern PFN_vkQueueSetPerformanceConfigurationINTEL vkQueueSetPerformanceConfigurationINTEL; +extern PFN_vkReleasePerformanceConfigurationINTEL vkReleasePerformanceConfigurationINTEL; +extern PFN_vkUninitializePerformanceApiINTEL vkUninitializePerformanceApiINTEL; +#endif /* defined(VK_INTEL_performance_query) */ +#if defined(VK_KHR_acceleration_structure) +extern PFN_vkBuildAccelerationStructuresKHR vkBuildAccelerationStructuresKHR; +extern PFN_vkCmdBuildAccelerationStructuresIndirectKHR vkCmdBuildAccelerationStructuresIndirectKHR; +extern PFN_vkCmdBuildAccelerationStructuresKHR vkCmdBuildAccelerationStructuresKHR; +extern PFN_vkCmdCopyAccelerationStructureKHR vkCmdCopyAccelerationStructureKHR; +extern PFN_vkCmdCopyAccelerationStructureToMemoryKHR vkCmdCopyAccelerationStructureToMemoryKHR; +extern PFN_vkCmdCopyMemoryToAccelerationStructureKHR vkCmdCopyMemoryToAccelerationStructureKHR; +extern PFN_vkCmdWriteAccelerationStructuresPropertiesKHR vkCmdWriteAccelerationStructuresPropertiesKHR; +extern PFN_vkCopyAccelerationStructureKHR vkCopyAccelerationStructureKHR; +extern PFN_vkCopyAccelerationStructureToMemoryKHR vkCopyAccelerationStructureToMemoryKHR; +extern PFN_vkCopyMemoryToAccelerationStructureKHR vkCopyMemoryToAccelerationStructureKHR; +extern PFN_vkCreateAccelerationStructureKHR vkCreateAccelerationStructureKHR; +extern PFN_vkDestroyAccelerationStructureKHR vkDestroyAccelerationStructureKHR; +extern PFN_vkGetAccelerationStructureBuildSizesKHR vkGetAccelerationStructureBuildSizesKHR; +extern PFN_vkGetAccelerationStructureDeviceAddressKHR vkGetAccelerationStructureDeviceAddressKHR; +extern PFN_vkGetDeviceAccelerationStructureCompatibilityKHR vkGetDeviceAccelerationStructureCompatibilityKHR; +extern PFN_vkWriteAccelerationStructuresPropertiesKHR vkWriteAccelerationStructuresPropertiesKHR; +#endif /* defined(VK_KHR_acceleration_structure) */ +#if defined(VK_KHR_android_surface) +extern PFN_vkCreateAndroidSurfaceKHR vkCreateAndroidSurfaceKHR; +#endif /* defined(VK_KHR_android_surface) */ +#if defined(VK_KHR_bind_memory2) +extern PFN_vkBindBufferMemory2KHR vkBindBufferMemory2KHR; +extern PFN_vkBindImageMemory2KHR vkBindImageMemory2KHR; +#endif /* defined(VK_KHR_bind_memory2) */ +#if defined(VK_KHR_buffer_device_address) +extern PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR; +extern PFN_vkGetBufferOpaqueCaptureAddressKHR vkGetBufferOpaqueCaptureAddressKHR; +extern PFN_vkGetDeviceMemoryOpaqueCaptureAddressKHR vkGetDeviceMemoryOpaqueCaptureAddressKHR; +#endif /* defined(VK_KHR_buffer_device_address) */ +#if defined(VK_KHR_copy_commands2) +extern PFN_vkCmdBlitImage2KHR vkCmdBlitImage2KHR; +extern PFN_vkCmdCopyBuffer2KHR vkCmdCopyBuffer2KHR; +extern PFN_vkCmdCopyBufferToImage2KHR vkCmdCopyBufferToImage2KHR; +extern PFN_vkCmdCopyImage2KHR vkCmdCopyImage2KHR; +extern PFN_vkCmdCopyImageToBuffer2KHR vkCmdCopyImageToBuffer2KHR; +extern PFN_vkCmdResolveImage2KHR vkCmdResolveImage2KHR; +#endif /* defined(VK_KHR_copy_commands2) */ +#if defined(VK_KHR_create_renderpass2) +extern PFN_vkCmdBeginRenderPass2KHR vkCmdBeginRenderPass2KHR; +extern PFN_vkCmdEndRenderPass2KHR vkCmdEndRenderPass2KHR; +extern PFN_vkCmdNextSubpass2KHR vkCmdNextSubpass2KHR; +extern PFN_vkCreateRenderPass2KHR vkCreateRenderPass2KHR; +#endif /* defined(VK_KHR_create_renderpass2) */ +#if defined(VK_KHR_deferred_host_operations) +extern PFN_vkCreateDeferredOperationKHR vkCreateDeferredOperationKHR; +extern PFN_vkDeferredOperationJoinKHR vkDeferredOperationJoinKHR; +extern PFN_vkDestroyDeferredOperationKHR vkDestroyDeferredOperationKHR; +extern PFN_vkGetDeferredOperationMaxConcurrencyKHR vkGetDeferredOperationMaxConcurrencyKHR; +extern PFN_vkGetDeferredOperationResultKHR vkGetDeferredOperationResultKHR; +#endif /* defined(VK_KHR_deferred_host_operations) */ +#if defined(VK_KHR_descriptor_update_template) +extern PFN_vkCreateDescriptorUpdateTemplateKHR vkCreateDescriptorUpdateTemplateKHR; +extern PFN_vkDestroyDescriptorUpdateTemplateKHR vkDestroyDescriptorUpdateTemplateKHR; +extern PFN_vkUpdateDescriptorSetWithTemplateKHR vkUpdateDescriptorSetWithTemplateKHR; +#endif /* defined(VK_KHR_descriptor_update_template) */ +#if defined(VK_KHR_device_group) +extern PFN_vkCmdDispatchBaseKHR vkCmdDispatchBaseKHR; +extern PFN_vkCmdSetDeviceMaskKHR vkCmdSetDeviceMaskKHR; +extern PFN_vkGetDeviceGroupPeerMemoryFeaturesKHR vkGetDeviceGroupPeerMemoryFeaturesKHR; +#endif /* defined(VK_KHR_device_group) */ +#if defined(VK_KHR_device_group_creation) +extern PFN_vkEnumeratePhysicalDeviceGroupsKHR vkEnumeratePhysicalDeviceGroupsKHR; +#endif /* defined(VK_KHR_device_group_creation) */ +#if defined(VK_KHR_display) +extern PFN_vkCreateDisplayModeKHR vkCreateDisplayModeKHR; +extern PFN_vkCreateDisplayPlaneSurfaceKHR vkCreateDisplayPlaneSurfaceKHR; +extern PFN_vkGetDisplayModePropertiesKHR vkGetDisplayModePropertiesKHR; +extern PFN_vkGetDisplayPlaneCapabilitiesKHR vkGetDisplayPlaneCapabilitiesKHR; +extern PFN_vkGetDisplayPlaneSupportedDisplaysKHR vkGetDisplayPlaneSupportedDisplaysKHR; +extern PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR vkGetPhysicalDeviceDisplayPlanePropertiesKHR; +extern PFN_vkGetPhysicalDeviceDisplayPropertiesKHR vkGetPhysicalDeviceDisplayPropertiesKHR; +#endif /* defined(VK_KHR_display) */ +#if defined(VK_KHR_display_swapchain) +extern PFN_vkCreateSharedSwapchainsKHR vkCreateSharedSwapchainsKHR; +#endif /* defined(VK_KHR_display_swapchain) */ +#if defined(VK_KHR_draw_indirect_count) +extern PFN_vkCmdDrawIndexedIndirectCountKHR vkCmdDrawIndexedIndirectCountKHR; +extern PFN_vkCmdDrawIndirectCountKHR vkCmdDrawIndirectCountKHR; +#endif /* defined(VK_KHR_draw_indirect_count) */ +#if defined(VK_KHR_dynamic_rendering) +extern PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR; +extern PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR; +#endif /* defined(VK_KHR_dynamic_rendering) */ +#if defined(VK_KHR_external_fence_capabilities) +extern PFN_vkGetPhysicalDeviceExternalFencePropertiesKHR vkGetPhysicalDeviceExternalFencePropertiesKHR; +#endif /* defined(VK_KHR_external_fence_capabilities) */ +#if defined(VK_KHR_external_fence_fd) +extern PFN_vkGetFenceFdKHR vkGetFenceFdKHR; +extern PFN_vkImportFenceFdKHR vkImportFenceFdKHR; +#endif /* defined(VK_KHR_external_fence_fd) */ +#if defined(VK_KHR_external_fence_win32) +extern PFN_vkGetFenceWin32HandleKHR vkGetFenceWin32HandleKHR; +extern PFN_vkImportFenceWin32HandleKHR vkImportFenceWin32HandleKHR; +#endif /* defined(VK_KHR_external_fence_win32) */ +#if defined(VK_KHR_external_memory_capabilities) +extern PFN_vkGetPhysicalDeviceExternalBufferPropertiesKHR vkGetPhysicalDeviceExternalBufferPropertiesKHR; +#endif /* defined(VK_KHR_external_memory_capabilities) */ +#if defined(VK_KHR_external_memory_fd) +extern PFN_vkGetMemoryFdKHR vkGetMemoryFdKHR; +extern PFN_vkGetMemoryFdPropertiesKHR vkGetMemoryFdPropertiesKHR; +#endif /* defined(VK_KHR_external_memory_fd) */ +#if defined(VK_KHR_external_memory_win32) +extern PFN_vkGetMemoryWin32HandleKHR vkGetMemoryWin32HandleKHR; +extern PFN_vkGetMemoryWin32HandlePropertiesKHR vkGetMemoryWin32HandlePropertiesKHR; +#endif /* defined(VK_KHR_external_memory_win32) */ +#if defined(VK_KHR_external_semaphore_capabilities) +extern PFN_vkGetPhysicalDeviceExternalSemaphorePropertiesKHR vkGetPhysicalDeviceExternalSemaphorePropertiesKHR; +#endif /* defined(VK_KHR_external_semaphore_capabilities) */ +#if defined(VK_KHR_external_semaphore_fd) +extern PFN_vkGetSemaphoreFdKHR vkGetSemaphoreFdKHR; +extern PFN_vkImportSemaphoreFdKHR vkImportSemaphoreFdKHR; +#endif /* defined(VK_KHR_external_semaphore_fd) */ +#if defined(VK_KHR_external_semaphore_win32) +extern PFN_vkGetSemaphoreWin32HandleKHR vkGetSemaphoreWin32HandleKHR; +extern PFN_vkImportSemaphoreWin32HandleKHR vkImportSemaphoreWin32HandleKHR; +#endif /* defined(VK_KHR_external_semaphore_win32) */ +#if defined(VK_KHR_fragment_shading_rate) +extern PFN_vkCmdSetFragmentShadingRateKHR vkCmdSetFragmentShadingRateKHR; +extern PFN_vkGetPhysicalDeviceFragmentShadingRatesKHR vkGetPhysicalDeviceFragmentShadingRatesKHR; +#endif /* defined(VK_KHR_fragment_shading_rate) */ +#if defined(VK_KHR_get_display_properties2) +extern PFN_vkGetDisplayModeProperties2KHR vkGetDisplayModeProperties2KHR; +extern PFN_vkGetDisplayPlaneCapabilities2KHR vkGetDisplayPlaneCapabilities2KHR; +extern PFN_vkGetPhysicalDeviceDisplayPlaneProperties2KHR vkGetPhysicalDeviceDisplayPlaneProperties2KHR; +extern PFN_vkGetPhysicalDeviceDisplayProperties2KHR vkGetPhysicalDeviceDisplayProperties2KHR; +#endif /* defined(VK_KHR_get_display_properties2) */ +#if defined(VK_KHR_get_memory_requirements2) +extern PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR; +extern PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR; +extern PFN_vkGetImageSparseMemoryRequirements2KHR vkGetImageSparseMemoryRequirements2KHR; +#endif /* defined(VK_KHR_get_memory_requirements2) */ +#if defined(VK_KHR_get_physical_device_properties2) +extern PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR; +extern PFN_vkGetPhysicalDeviceFormatProperties2KHR vkGetPhysicalDeviceFormatProperties2KHR; +extern PFN_vkGetPhysicalDeviceImageFormatProperties2KHR vkGetPhysicalDeviceImageFormatProperties2KHR; +extern PFN_vkGetPhysicalDeviceMemoryProperties2KHR vkGetPhysicalDeviceMemoryProperties2KHR; +extern PFN_vkGetPhysicalDeviceProperties2KHR vkGetPhysicalDeviceProperties2KHR; +extern PFN_vkGetPhysicalDeviceQueueFamilyProperties2KHR vkGetPhysicalDeviceQueueFamilyProperties2KHR; +extern PFN_vkGetPhysicalDeviceSparseImageFormatProperties2KHR vkGetPhysicalDeviceSparseImageFormatProperties2KHR; +#endif /* defined(VK_KHR_get_physical_device_properties2) */ +#if defined(VK_KHR_get_surface_capabilities2) +extern PFN_vkGetPhysicalDeviceSurfaceCapabilities2KHR vkGetPhysicalDeviceSurfaceCapabilities2KHR; +extern PFN_vkGetPhysicalDeviceSurfaceFormats2KHR vkGetPhysicalDeviceSurfaceFormats2KHR; +#endif /* defined(VK_KHR_get_surface_capabilities2) */ +#if defined(VK_KHR_maintenance1) +extern PFN_vkTrimCommandPoolKHR vkTrimCommandPoolKHR; +#endif /* defined(VK_KHR_maintenance1) */ +#if defined(VK_KHR_maintenance3) +extern PFN_vkGetDescriptorSetLayoutSupportKHR vkGetDescriptorSetLayoutSupportKHR; +#endif /* defined(VK_KHR_maintenance3) */ +#if defined(VK_KHR_maintenance4) +extern PFN_vkGetDeviceBufferMemoryRequirementsKHR vkGetDeviceBufferMemoryRequirementsKHR; +extern PFN_vkGetDeviceImageMemoryRequirementsKHR vkGetDeviceImageMemoryRequirementsKHR; +extern PFN_vkGetDeviceImageSparseMemoryRequirementsKHR vkGetDeviceImageSparseMemoryRequirementsKHR; +#endif /* defined(VK_KHR_maintenance4) */ +#if defined(VK_KHR_performance_query) +extern PFN_vkAcquireProfilingLockKHR vkAcquireProfilingLockKHR; +extern PFN_vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR; +extern PFN_vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR vkGetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR; +extern PFN_vkReleaseProfilingLockKHR vkReleaseProfilingLockKHR; +#endif /* defined(VK_KHR_performance_query) */ +#if defined(VK_KHR_pipeline_executable_properties) +extern PFN_vkGetPipelineExecutableInternalRepresentationsKHR vkGetPipelineExecutableInternalRepresentationsKHR; +extern PFN_vkGetPipelineExecutablePropertiesKHR vkGetPipelineExecutablePropertiesKHR; +extern PFN_vkGetPipelineExecutableStatisticsKHR vkGetPipelineExecutableStatisticsKHR; +#endif /* defined(VK_KHR_pipeline_executable_properties) */ +#if defined(VK_KHR_present_wait) +extern PFN_vkWaitForPresentKHR vkWaitForPresentKHR; +#endif /* defined(VK_KHR_present_wait) */ +#if defined(VK_KHR_push_descriptor) +extern PFN_vkCmdPushDescriptorSetKHR vkCmdPushDescriptorSetKHR; +#endif /* defined(VK_KHR_push_descriptor) */ +#if defined(VK_KHR_ray_tracing_maintenance1) && defined(VK_KHR_ray_tracing_pipeline) +extern PFN_vkCmdTraceRaysIndirect2KHR vkCmdTraceRaysIndirect2KHR; +#endif /* defined(VK_KHR_ray_tracing_maintenance1) && defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_ray_tracing_pipeline) +extern PFN_vkCmdSetRayTracingPipelineStackSizeKHR vkCmdSetRayTracingPipelineStackSizeKHR; +extern PFN_vkCmdTraceRaysIndirectKHR vkCmdTraceRaysIndirectKHR; +extern PFN_vkCmdTraceRaysKHR vkCmdTraceRaysKHR; +extern PFN_vkCreateRayTracingPipelinesKHR vkCreateRayTracingPipelinesKHR; +extern PFN_vkGetRayTracingCaptureReplayShaderGroupHandlesKHR vkGetRayTracingCaptureReplayShaderGroupHandlesKHR; +extern PFN_vkGetRayTracingShaderGroupHandlesKHR vkGetRayTracingShaderGroupHandlesKHR; +extern PFN_vkGetRayTracingShaderGroupStackSizeKHR vkGetRayTracingShaderGroupStackSizeKHR; +#endif /* defined(VK_KHR_ray_tracing_pipeline) */ +#if defined(VK_KHR_sampler_ycbcr_conversion) +extern PFN_vkCreateSamplerYcbcrConversionKHR vkCreateSamplerYcbcrConversionKHR; +extern PFN_vkDestroySamplerYcbcrConversionKHR vkDestroySamplerYcbcrConversionKHR; +#endif /* defined(VK_KHR_sampler_ycbcr_conversion) */ +#if defined(VK_KHR_shared_presentable_image) +extern PFN_vkGetSwapchainStatusKHR vkGetSwapchainStatusKHR; +#endif /* defined(VK_KHR_shared_presentable_image) */ +#if defined(VK_KHR_surface) +extern PFN_vkDestroySurfaceKHR vkDestroySurfaceKHR; +extern PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR vkGetPhysicalDeviceSurfaceCapabilitiesKHR; +extern PFN_vkGetPhysicalDeviceSurfaceFormatsKHR vkGetPhysicalDeviceSurfaceFormatsKHR; +extern PFN_vkGetPhysicalDeviceSurfacePresentModesKHR vkGetPhysicalDeviceSurfacePresentModesKHR; +extern PFN_vkGetPhysicalDeviceSurfaceSupportKHR vkGetPhysicalDeviceSurfaceSupportKHR; +#endif /* defined(VK_KHR_surface) */ +#if defined(VK_KHR_swapchain) +extern PFN_vkAcquireNextImageKHR vkAcquireNextImageKHR; +extern PFN_vkCreateSwapchainKHR vkCreateSwapchainKHR; +extern PFN_vkDestroySwapchainKHR vkDestroySwapchainKHR; +extern PFN_vkGetSwapchainImagesKHR vkGetSwapchainImagesKHR; +extern PFN_vkQueuePresentKHR vkQueuePresentKHR; +#endif /* defined(VK_KHR_swapchain) */ +#if defined(VK_KHR_synchronization2) +extern PFN_vkCmdPipelineBarrier2KHR vkCmdPipelineBarrier2KHR; +extern PFN_vkCmdResetEvent2KHR vkCmdResetEvent2KHR; +extern PFN_vkCmdSetEvent2KHR vkCmdSetEvent2KHR; +extern PFN_vkCmdWaitEvents2KHR vkCmdWaitEvents2KHR; +extern PFN_vkCmdWriteTimestamp2KHR vkCmdWriteTimestamp2KHR; +extern PFN_vkQueueSubmit2KHR vkQueueSubmit2KHR; +#endif /* defined(VK_KHR_synchronization2) */ +#if defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) +extern PFN_vkCmdWriteBufferMarker2AMD vkCmdWriteBufferMarker2AMD; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_AMD_buffer_marker) */ +#if defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) +extern PFN_vkGetQueueCheckpointData2NV vkGetQueueCheckpointData2NV; +#endif /* defined(VK_KHR_synchronization2) && defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_KHR_timeline_semaphore) +extern PFN_vkGetSemaphoreCounterValueKHR vkGetSemaphoreCounterValueKHR; +extern PFN_vkSignalSemaphoreKHR vkSignalSemaphoreKHR; +extern PFN_vkWaitSemaphoresKHR vkWaitSemaphoresKHR; +#endif /* defined(VK_KHR_timeline_semaphore) */ +#if defined(VK_KHR_video_decode_queue) +extern PFN_vkCmdDecodeVideoKHR vkCmdDecodeVideoKHR; +#endif /* defined(VK_KHR_video_decode_queue) */ +#if defined(VK_KHR_video_encode_queue) +extern PFN_vkCmdEncodeVideoKHR vkCmdEncodeVideoKHR; +#endif /* defined(VK_KHR_video_encode_queue) */ +#if defined(VK_KHR_video_queue) +extern PFN_vkBindVideoSessionMemoryKHR vkBindVideoSessionMemoryKHR; +extern PFN_vkCmdBeginVideoCodingKHR vkCmdBeginVideoCodingKHR; +extern PFN_vkCmdControlVideoCodingKHR vkCmdControlVideoCodingKHR; +extern PFN_vkCmdEndVideoCodingKHR vkCmdEndVideoCodingKHR; +extern PFN_vkCreateVideoSessionKHR vkCreateVideoSessionKHR; +extern PFN_vkCreateVideoSessionParametersKHR vkCreateVideoSessionParametersKHR; +extern PFN_vkDestroyVideoSessionKHR vkDestroyVideoSessionKHR; +extern PFN_vkDestroyVideoSessionParametersKHR vkDestroyVideoSessionParametersKHR; +extern PFN_vkGetPhysicalDeviceVideoCapabilitiesKHR vkGetPhysicalDeviceVideoCapabilitiesKHR; +extern PFN_vkGetPhysicalDeviceVideoFormatPropertiesKHR vkGetPhysicalDeviceVideoFormatPropertiesKHR; +extern PFN_vkGetVideoSessionMemoryRequirementsKHR vkGetVideoSessionMemoryRequirementsKHR; +extern PFN_vkUpdateVideoSessionParametersKHR vkUpdateVideoSessionParametersKHR; +#endif /* defined(VK_KHR_video_queue) */ +#if defined(VK_KHR_wayland_surface) +extern PFN_vkCreateWaylandSurfaceKHR vkCreateWaylandSurfaceKHR; +extern PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR vkGetPhysicalDeviceWaylandPresentationSupportKHR; +#endif /* defined(VK_KHR_wayland_surface) */ +#if defined(VK_KHR_win32_surface) +extern PFN_vkCreateWin32SurfaceKHR vkCreateWin32SurfaceKHR; +extern PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR vkGetPhysicalDeviceWin32PresentationSupportKHR; +#endif /* defined(VK_KHR_win32_surface) */ +#if defined(VK_KHR_xcb_surface) +extern PFN_vkCreateXcbSurfaceKHR vkCreateXcbSurfaceKHR; +extern PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR vkGetPhysicalDeviceXcbPresentationSupportKHR; +#endif /* defined(VK_KHR_xcb_surface) */ +#if defined(VK_KHR_xlib_surface) +extern PFN_vkCreateXlibSurfaceKHR vkCreateXlibSurfaceKHR; +extern PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR vkGetPhysicalDeviceXlibPresentationSupportKHR; +#endif /* defined(VK_KHR_xlib_surface) */ +#if defined(VK_MVK_ios_surface) +extern PFN_vkCreateIOSSurfaceMVK vkCreateIOSSurfaceMVK; +#endif /* defined(VK_MVK_ios_surface) */ +#if defined(VK_MVK_macos_surface) +extern PFN_vkCreateMacOSSurfaceMVK vkCreateMacOSSurfaceMVK; +#endif /* defined(VK_MVK_macos_surface) */ +#if defined(VK_NN_vi_surface) +extern PFN_vkCreateViSurfaceNN vkCreateViSurfaceNN; +#endif /* defined(VK_NN_vi_surface) */ +#if defined(VK_NVX_binary_import) +extern PFN_vkCmdCuLaunchKernelNVX vkCmdCuLaunchKernelNVX; +extern PFN_vkCreateCuFunctionNVX vkCreateCuFunctionNVX; +extern PFN_vkCreateCuModuleNVX vkCreateCuModuleNVX; +extern PFN_vkDestroyCuFunctionNVX vkDestroyCuFunctionNVX; +extern PFN_vkDestroyCuModuleNVX vkDestroyCuModuleNVX; +#endif /* defined(VK_NVX_binary_import) */ +#if defined(VK_NVX_image_view_handle) +extern PFN_vkGetImageViewAddressNVX vkGetImageViewAddressNVX; +extern PFN_vkGetImageViewHandleNVX vkGetImageViewHandleNVX; +#endif /* defined(VK_NVX_image_view_handle) */ +#if defined(VK_NV_acquire_winrt_display) +extern PFN_vkAcquireWinrtDisplayNV vkAcquireWinrtDisplayNV; +extern PFN_vkGetWinrtDisplayNV vkGetWinrtDisplayNV; +#endif /* defined(VK_NV_acquire_winrt_display) */ +#if defined(VK_NV_clip_space_w_scaling) +extern PFN_vkCmdSetViewportWScalingNV vkCmdSetViewportWScalingNV; +#endif /* defined(VK_NV_clip_space_w_scaling) */ +#if defined(VK_NV_cooperative_matrix) +extern PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesNV vkGetPhysicalDeviceCooperativeMatrixPropertiesNV; +#endif /* defined(VK_NV_cooperative_matrix) */ +#if defined(VK_NV_coverage_reduction_mode) +extern PFN_vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV vkGetPhysicalDeviceSupportedFramebufferMixedSamplesCombinationsNV; +#endif /* defined(VK_NV_coverage_reduction_mode) */ +#if defined(VK_NV_device_diagnostic_checkpoints) +extern PFN_vkCmdSetCheckpointNV vkCmdSetCheckpointNV; +extern PFN_vkGetQueueCheckpointDataNV vkGetQueueCheckpointDataNV; +#endif /* defined(VK_NV_device_diagnostic_checkpoints) */ +#if defined(VK_NV_device_generated_commands) +extern PFN_vkCmdBindPipelineShaderGroupNV vkCmdBindPipelineShaderGroupNV; +extern PFN_vkCmdExecuteGeneratedCommandsNV vkCmdExecuteGeneratedCommandsNV; +extern PFN_vkCmdPreprocessGeneratedCommandsNV vkCmdPreprocessGeneratedCommandsNV; +extern PFN_vkCreateIndirectCommandsLayoutNV vkCreateIndirectCommandsLayoutNV; +extern PFN_vkDestroyIndirectCommandsLayoutNV vkDestroyIndirectCommandsLayoutNV; +extern PFN_vkGetGeneratedCommandsMemoryRequirementsNV vkGetGeneratedCommandsMemoryRequirementsNV; +#endif /* defined(VK_NV_device_generated_commands) */ +#if defined(VK_NV_external_memory_capabilities) +extern PFN_vkGetPhysicalDeviceExternalImageFormatPropertiesNV vkGetPhysicalDeviceExternalImageFormatPropertiesNV; +#endif /* defined(VK_NV_external_memory_capabilities) */ +#if defined(VK_NV_external_memory_rdma) +extern PFN_vkGetMemoryRemoteAddressNV vkGetMemoryRemoteAddressNV; +#endif /* defined(VK_NV_external_memory_rdma) */ +#if defined(VK_NV_external_memory_win32) +extern PFN_vkGetMemoryWin32HandleNV vkGetMemoryWin32HandleNV; +#endif /* defined(VK_NV_external_memory_win32) */ +#if defined(VK_NV_fragment_shading_rate_enums) +extern PFN_vkCmdSetFragmentShadingRateEnumNV vkCmdSetFragmentShadingRateEnumNV; +#endif /* defined(VK_NV_fragment_shading_rate_enums) */ +#if defined(VK_NV_mesh_shader) +extern PFN_vkCmdDrawMeshTasksIndirectCountNV vkCmdDrawMeshTasksIndirectCountNV; +extern PFN_vkCmdDrawMeshTasksIndirectNV vkCmdDrawMeshTasksIndirectNV; +extern PFN_vkCmdDrawMeshTasksNV vkCmdDrawMeshTasksNV; +#endif /* defined(VK_NV_mesh_shader) */ +#if defined(VK_NV_ray_tracing) +extern PFN_vkBindAccelerationStructureMemoryNV vkBindAccelerationStructureMemoryNV; +extern PFN_vkCmdBuildAccelerationStructureNV vkCmdBuildAccelerationStructureNV; +extern PFN_vkCmdCopyAccelerationStructureNV vkCmdCopyAccelerationStructureNV; +extern PFN_vkCmdTraceRaysNV vkCmdTraceRaysNV; +extern PFN_vkCmdWriteAccelerationStructuresPropertiesNV vkCmdWriteAccelerationStructuresPropertiesNV; +extern PFN_vkCompileDeferredNV vkCompileDeferredNV; +extern PFN_vkCreateAccelerationStructureNV vkCreateAccelerationStructureNV; +extern PFN_vkCreateRayTracingPipelinesNV vkCreateRayTracingPipelinesNV; +extern PFN_vkDestroyAccelerationStructureNV vkDestroyAccelerationStructureNV; +extern PFN_vkGetAccelerationStructureHandleNV vkGetAccelerationStructureHandleNV; +extern PFN_vkGetAccelerationStructureMemoryRequirementsNV vkGetAccelerationStructureMemoryRequirementsNV; +extern PFN_vkGetRayTracingShaderGroupHandlesNV vkGetRayTracingShaderGroupHandlesNV; +#endif /* defined(VK_NV_ray_tracing) */ +#if defined(VK_NV_scissor_exclusive) +extern PFN_vkCmdSetExclusiveScissorNV vkCmdSetExclusiveScissorNV; +#endif /* defined(VK_NV_scissor_exclusive) */ +#if defined(VK_NV_shading_rate_image) +extern PFN_vkCmdBindShadingRateImageNV vkCmdBindShadingRateImageNV; +extern PFN_vkCmdSetCoarseSampleOrderNV vkCmdSetCoarseSampleOrderNV; +extern PFN_vkCmdSetViewportShadingRatePaletteNV vkCmdSetViewportShadingRatePaletteNV; +#endif /* defined(VK_NV_shading_rate_image) */ +#if defined(VK_QNX_screen_surface) +extern PFN_vkCreateScreenSurfaceQNX vkCreateScreenSurfaceQNX; +extern PFN_vkGetPhysicalDeviceScreenPresentationSupportQNX vkGetPhysicalDeviceScreenPresentationSupportQNX; +#endif /* defined(VK_QNX_screen_surface) */ +#if defined(VK_VALVE_descriptor_set_host_mapping) +extern PFN_vkGetDescriptorSetHostMappingVALVE vkGetDescriptorSetHostMappingVALVE; +extern PFN_vkGetDescriptorSetLayoutHostMappingInfoVALVE vkGetDescriptorSetLayoutHostMappingInfoVALVE; +#endif /* defined(VK_VALVE_descriptor_set_host_mapping) */ +#if (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) +extern PFN_vkGetDeviceGroupSurfacePresentModes2EXT vkGetDeviceGroupSurfacePresentModes2EXT; +#endif /* (defined(VK_EXT_full_screen_exclusive) && defined(VK_KHR_device_group)) || (defined(VK_EXT_full_screen_exclusive) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) +extern PFN_vkCmdPushDescriptorSetWithTemplateKHR vkCmdPushDescriptorSetWithTemplateKHR; +#endif /* (defined(VK_KHR_descriptor_update_template) && defined(VK_KHR_push_descriptor)) || (defined(VK_KHR_push_descriptor) && defined(VK_VERSION_1_1)) || (defined(VK_KHR_push_descriptor) && defined(VK_KHR_descriptor_update_template)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) +extern PFN_vkGetDeviceGroupPresentCapabilitiesKHR vkGetDeviceGroupPresentCapabilitiesKHR; +extern PFN_vkGetDeviceGroupSurfacePresentModesKHR vkGetDeviceGroupSurfacePresentModesKHR; +extern PFN_vkGetPhysicalDevicePresentRectanglesKHR vkGetPhysicalDevicePresentRectanglesKHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_surface)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +#if (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) +extern PFN_vkAcquireNextImage2KHR vkAcquireNextImage2KHR; +#endif /* (defined(VK_KHR_device_group) && defined(VK_KHR_swapchain)) || (defined(VK_KHR_swapchain) && defined(VK_VERSION_1_1)) */ +/* VOLK_GENERATE_PROTOTYPES_H */ + +#ifdef __cplusplus +} +#endif + +#endif + +#ifdef VOLK_IMPLEMENTATION +#undef VOLK_IMPLEMENTATION +// Prevent tools like dependency checkers that don't evaluate +// macros from detecting a cyclic dependency. +#define VOLK_SOURCE "volk.c" +#include VOLK_SOURCE +#endif + +/** + * Copyright (c) 2018-2019 Arseny Kapoulkine + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. +*/ +/* clang-format on */