-
Notifications
You must be signed in to change notification settings - Fork 2
/
blog-post.r
309 lines (246 loc) · 8.78 KB
/
blog-post.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#
# Simulate data with varying levels of sparseness to illustrate ROC and
# Precision-recall behavior.
#
setwd("~/Work/mireg-blogs-not-on-git/auc-pr")
library(ggplot2)
library(scales)
library(xtable)
# Latex code; skip
# \begin{table}[ht]
# \centering
# \begin{tabular}{r|c|c|}
# \multicolumn{1}{c}{} & \multicolumn{1}{c}{$p<\theta$} & \multicolumn{1}{c}{$p\geq\theta$} \\ \cline{2-3}
# Y=0 & True Neg. & False Pos. \\ \cline{2-3}
# Y=1 & False Neg. & True Pos. \\ \cline{2-3}
# \end{tabular}
# \end{table}
#
# \begin{table}[ht]
# \centering
# \begin{tabular}{r|c|c|}
# \multicolumn{1}{c}{} & \multicolumn{1}{c}{$p<\theta$} & \multicolumn{1}{c}{$p\geq\theta$} \\ \cline{2-3}
# Y=0 & 10,000 & 1,000 \\ \cline{2-3}
# Y=1 & 100 & 100 \\ \cline{2-3}
# \end{tabular}
# \end{table}
# Simulate binary data and predictions given wanted class imbalanc --------
#
# This is accomplished by mapping a vector of initial predictions to an
# outcome y so that P(p[positive outcome] > p[]
#
# The predictions for a given imbalance level are comparable accross specified
# AUC, i.e. they have the same distribution, just the mapping to outcomes is
# different.
#
# Probalistic, so different runs will give different results, especially for
# very imbalanced data.
#
sim_model <- function(pos_neg, a, n, shuffle=100, plot=FALSE) {
# Outcome
y <- rbinom(n, 1, pos_neg)
# Create predictions:
# Raw predictions are logistic distribution shifted so that `a` fraction
# of density is above 0
p <- plogis(rlogis(n, qlogis(pos_neg, lower.tail=TRUE), 1))
# We will compare all positives to a sample of negatives, and reassign
# probabilities with p = desired AUC (a)
#
# (Assumes n+ < n- (positive outcomes is minority), won't work otherwise)
idx_pos <- which(y==1)
# Not sure how to explain this part, result of trial and error
a <- qbeta(a, shape1=0.58, shape2=0.58)
# Initialize results; for checking
res <- data.frame(n=vector("integer", 20), auc_roc=vector("numeric", 20))
# Since n+ < n-, we need several iterations to shuffle probabilities around
for (n in 1:shuffle) {
# Sample p_{y=0} for pair comparison
idx_neg <- sample(which(y==0), sum(y))
prob <- runif(length(idx_pos))
# For each +/- pair, flip with probability `a`
for (i in 1:length(idx_pos)) {
if (p[idx_pos[i]] < p[idx_neg[i]] & prob[i] < a) {
temp <- p[idx_pos[i]]
p[idx_pos[i]] <- p[idx_neg[i]]
p[idx_neg[i]] <- temp
}
if (p[idx_pos[i]] > p[idx_neg[i]] & prob[i] > a) {
temp <- p[idx_pos[i]]
p[idx_pos[i]] <- p[idx_neg[i]]
p[idx_neg[i]] <- temp
}
}
res[n, 1] <- n
res[n, 2] <- auc_roc(y, p)
}
if (plot) {
print(qplot(data=res, x=n, y=auc_roc, ylim=c(0.5, 1)))
}
mod <- data.frame(y, p)
return(mod)
}
# Functions for AUC-ROC and AUC-PR ----------------------------------------
library(ROCR)
library(caTools)
#' Area under the ROC curve
#'
#' improt ROCR
auc_roc <- function(obs, pred) {
pred <- prediction(pred, obs)
auc <- performance(pred, "auc")@y.values[[1]]
return(auc)
}
#' Area under Precision-recall curve
#'
#' import ROCR
#' import caTools
auc_pr <- function(obs, pred) {
xx.df <- prediction(pred, obs)
perf <- performance(xx.df, "prec", "rec")
xy <- data.frame([email protected][[1]], [email protected][[1]])
# take out division by 0 for lowest threshold
xy <- subset(xy, !is.nan(xy$precision))
res <- trapz(xy$recall, xy$precision)
res
}
# # Beta beta;
# foo <- data.frame(a=seq(0.5, 1, by=0.01), ar=vector("numeric", 51))
# for (a in seq(0.5, 1, by=0.01)) {
# res <- sim_model(0.4, a, 1000, shuffle=50)
# foo[foo$a==a, 2] <- mean(res[25:50, 2])
# }
# qplot(foo$a, foo$ar) +
# stat_function(fun=pbeta, args=list(shape1=0.57, shape2=0.57))
# Run simulation ----------------------------------------------------------
set.seed(1235)
bal <- c(0.4, 0.1, 0.01)
auc_want <- c(0.8, 0.9, 0.95)
n_sims = 5000
for (b in seq_along(bal)) {
for (a in seq_along(auc_want)) {
cat(paste0("Balance ", bal[b], " AUC ", auc_want[a], "\n"))
sim_name <- paste0("s", 10*b + a)
assign(sim_name, sim_model(pos_neg=bal[b], a=auc_want[a], n=n_sims, shuffle=50))
}
}
# Example ROC curve and data ----------------------------------------------
#
# We'll just use the first simulation from above, `s11`, loop through all
# possible treshold values (which are equivalent to the unique p values),
# and record the ROC space x-y coordinates associated with it
# (i.e. true and false positive rates for each treshold)
#
theta <- rev(sort(c(unique(s11$p), 0)))
roc_ex <- matrix(NA, nrow=length(theta), ncol=4, dimnames=list(NULL, c("theta", "tpr", "fpr", "prec")))
for (t in seq_along(theta)) {
# Confusion matrix
# with(s11, table(y, factor(p>theta[t], levels=c(FALSE, TRUE))))
p_bin <- as.numeric(s11$p > theta[t])
roc_ex[t, ] <- c(
theta[t],
sum(s11$y==1 & p_bin==1) / sum(s11$y==1),
sum(s11$y==0 & p_bin==1) / sum(s11$y==0),
sum(s11$y==1 & p_bin==1) / sum(p_bin==1)
)
}
print(xtable(head(roc_ex), digits=5), type="html", include.rownames=FALSE)
# ROC curve
p <- ggplot(as.data.frame(roc_ex)) +
geom_line(aes(x=fpr, y=tpr), show_guide=TRUE, alpha=0.7) +
geom_abline(slope=1, color="gray", alpha=0.5) +
scale_x_continuous(expand = c(0.01, 0.01)) +
scale_y_continuous(expand = c(0.01, 0.01)) +
labs(x="FPR", y="TPR") +
theme_bw()
ggsave(filename="graphics/roc-example.png", plot=p, width=2.2, height=2, units="in",
dpi=400, scale=1.5)
# Instead of FPR, plot precision to make a precision-recall curve
p <- ggplot(as.data.frame(roc_ex)) +
geom_line(aes(x=tpr, y=prec), alpha=0.7) +
scale_x_continuous(expand = c(0.01, 0.01)) +
scale_y_continuous(expand = c(0.01, 0.01)) +
labs(x="Recall (TPR)", y="Precision") +
theme_bw()
ggsave(filename="graphics/pr-example.png", plot=p, width=2.2, height=2, units="in",
dpi=400, scale=1.5)
# Plot results ------------------------------------------------------------
# For a vector of observed and predicted, creates x-y coordinates for a ROC
# or PR curve.
rocdf <- function(pred, obs, data=NULL, type=NULL) {
# plot_type is "roc" or "rp"
if (!is.null(data)) {
pred <- eval(substitute(pred), envir=data)
obs <- eval(substitute(obs), envir=data)
}
rocr_xy <- switch(type, roc=c("tpr", "fpr"), pr=c("prec", "rec"))
rocr_df <- prediction(pred, obs)
rocr_pr <- performance(rocr_df, rocr_xy[1], rocr_xy[2])
xy <- data.frame([email protected][[1]], [email protected][[1]])
colnames(xy) <- switch(type, roc=c("tpr", "fpr"), pr=c("rec", "prec"))
return(xy)
}
# Combine xy coords for simulation ROC curves
roc_xy <- data.frame(NULL)
for (sim in ls()[grep("s[0-9]", ls())]) {
sim_res <- get(sim)
xy <- cbind(data.frame(
balance = bal[as.numeric(substr(sim, 2, 2))],
auc_roc = auc_want[as.numeric(substr(sim, 3, 3))]),
rocdf(p, y, sim_res, type="roc")
)
roc_xy <- rbind(roc_xy, xy)
}
rm(sim_res, xy)
roc_xy$balance <- factor(roc_xy$balance, levels=rev(sort(bal)))
roc_xy$auc_roc <- factor(roc_xy$auc_roc, levels=rev(sort(auc_want)))
# ROC curves
p1 <- ggplot(data=roc_xy, aes(x=tpr, y=fpr, color=factor(auc_roc))) +
facet_wrap(~ balance) +
scale_x_continuous(expand = c(0.01, 0.01)) +
scale_y_continuous(expand = c(0.01, 0.01)) +
geom_line(show_guide=TRUE, alpha=0.7) +
geom_abline(slope=1, color="gray", alpha=0.5) +
labs(x="FPR", y="TPR") +
scale_color_discrete(name="Approx.\nAUC") +
theme_bw()
p1
ggsave(filename="graphics/roc.png", plot=p1, width=6.4, height=2, units="in",
dpi=400, scale=1.5)
# Combine xy coords for simulation PR curves
pr_xy <- data.frame(NULL)
for (sim in ls()[grep("s[0-9]", ls())]) {
sim_res <- get(sim)
xy <- cbind(data.frame(
balance = bal[as.numeric(substr(sim, 2, 2))],
auc_roc = auc_want[as.numeric(substr(sim, 3, 3))]),
rocdf(p, y, sim_res, type="pr")
)
pr_xy <- rbind(pr_xy, xy)
}
rm(sim_res, xy)
pr_xy$balance <- factor(pr_xy$balance, levels=rev(sort(bal)))
pr_xy$auc_roc <- factor(pr_xy$auc_roc, levels=rev(sort(auc_want)))
# Precision-recall curves
p2 <- ggplot(data=pr_xy, aes(x=rec, y=prec, col=auc_roc)) +
facet_wrap(~ balance) +
geom_line(show_guide=TRUE, alpha=0.7) +
scale_x_continuous(expand = c(0.01, 0.01)) +
scale_y_continuous(expand = c(0.01, 0.01)) +
labs(x="Recall", y="Precision") +
scale_color_discrete(name="Approx.\nAUC") +
theme_bw()
p2
ggsave(filename="graphics/rpc.png", plot=p2, width=6.4, height=2, units="in",
dpi=400, scale=1.5)
# Separation plots for all 9 models
library(separationplot)
png("graphics/all-seps.png", width=1800, height=1800)
par(mfrow=c(3, 3))
for (b in 1:3) {
for (a in 1:3) {
dat <- get(paste0("s", a, b))
p_title <- paste0()
separationplot(dat[, "p"], dat[, "y"], newplot=FALSE, heading=paste0(a, b))
}
}
dev.off()