-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
executable file
·195 lines (185 loc) · 6.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import theano as th
import theano.tensor as tt
import theano.tensor.slinalg as ts
import scipy.optimize
import numpy as np
import time
def extract(var):
return th.function([], var, mode=th.compile.Mode(linker='py'))()
def shape(var):
return extract(var.shape)
def vector(n):
return th.shared(np.zeros(n))
def matrix(n, m):
return tt.shared(np.zeros((n, m)))
def grad(f, x, constants=[]):
ret = th.gradient.grad(f, x, consider_constant=constants, disconnected_inputs='warn')
if isinstance(ret, list):
ret = tt.concatenate(ret)
return ret
def jacobian(f, x, constants=[]):
sz = shape(f)
return tt.stacklists([grad(f[i], x) for i in range(sz)])
ret = th.gradient.jacobian(f, x, consider_constant=constants)
if isinstance(ret, list):
ret = tt.concatenate(ret, axis=1)
return ret
def hessian(f, x, constants=[]):
return jacobian(grad(f, x, constants=constants), x, constants=constants)
class NestedMaximizer(object):
def __init__(self, f1, vs1, f2, vs2):
self.f1 = f1
self.f2 = f2
self.vs1 = vs1
self.vs2 = vs2
self.sz1 = [shape(v)[0] for v in self.vs1]
self.sz2 = [shape(v)[0] for v in self.vs2]
for i in range(1, len(self.sz1)):
self.sz1[i] += self.sz1[i-1]
self.sz1 = [(0 if i==0 else self.sz1[i-1], self.sz1[i]) for i in range(len(self.sz1))]
for i in range(1, len(self.sz2)):
self.sz2[i] += self.sz2[i-1]
self.sz2 = [(0 if i==0 else self.sz2[i-1], self.sz2[i]) for i in range(len(self.sz2))]
self.df1 = grad(self.f1, vs1)
self.new_vs1 = [tt.vector() for v in self.vs1]
self.func1 = th.function(self.new_vs1, [-self.f1, -self.df1], givens=zip(self.vs1, self.new_vs1))
def f1_and_df1(x0):
return self.func1(*[x0[a:b] for a, b in self.sz1])
self.f1_and_df1 = f1_and_df1
J = jacobian(grad(f1, vs2), vs1)
H = hessian(f1, vs1)
g = grad(f2, vs1)
self.df2 = -tt.dot(J, ts.solve(H, g))+grad(f2, vs2)
self.func2 = th.function([], [-self.f2, -self.df2])
def f2_and_df2(x0):
for v, (a, b) in zip(self.vs2, self.sz2):
v.set_value(x0[a:b])
self.maximize1()
return self.func2()
self.f2_and_df2 = f2_and_df2
def maximize1(self):
x0 = np.hstack([v.get_value() for v in self.vs1])
opt = scipy.optimize.fmin_l_bfgs_b(self.f1_and_df1, x0=x0)[0]
for v, (a, b) in zip(self.vs1, self.sz1):
v.set_value(opt[a:b])
def maximize(self, bounds={}):
t0 = time.time()
if not isinstance(bounds, dict):
bounds = {v: bounds for v in self.vs2}
B = []
for v, (a, b) in zip(self.vs2, self.sz2):
if v in bounds:
B += bounds[v]
else:
B += [(None, None)]*(b-a)
x0 = np.hstack([v.get_value() for v in self.vs2])
def f(x0):
#if time.time()-t0>60:
# raise Exception('Too long')
return self.f2_and_df2(x0)
opt = scipy.optimize.fmin_l_bfgs_b(f, x0=x0, bounds=B)
diag = opt[2]['task']
opt = opt[0]
for v, (a, b) in zip(self.vs2, self.sz2):
v.set_value(opt[a:b])
self.maximize1()
class Maximizer(object):
def __init__(self, f, vs, g={}, pre=None, gen=None, method='bfgs', eps=1, iters=1, debug=False, inf_ignore=np.inf):
self.inf_ignore = inf_ignore
self.debug = debug
self.iters = iters
self.eps = eps
self.method = method
def one_gen():
yield
self.gen = gen
if self.gen is None:
self.gen = one_gen
self.pre = pre
self.f = f
self.vs = vs
self.sz = [shape(v)[0] for v in self.vs]
for i in range(1,len(self.sz)):
self.sz[i] += self.sz[i-1]
self.sz = [(0 if i==0 else self.sz[i-1], self.sz[i]) for i in range(len(self.sz))]
if isinstance(g, dict):
self.df = tt.concatenate([g[v] if v in g else grad(f, v) for v in self.vs])
else:
self.df = g
self.new_vs = [tt.vector() for v in self.vs]
self.func = th.function(self.new_vs, [-self.f, -self.df], givens=zip(self.vs, self.new_vs))
def f_and_df(x0):
if self.debug:
print x0
s = None
N = 0
res = None # should definitely be reassigned
print sum(1 for _ in self.gen())
for _ in self.gen():
if self.pre:
for v, (a, b) in zip(self.vs, self.sz):
v.set_value(x0[a:b])
self.pre()
res = self.func(*[x0[a:b] for a, b in self.sz])
if np.isnan(res[0]).any() or np.isnan(res[1]).any() or (np.abs(res[0])>self.inf_ignore).any() or (np.abs(res[1])>self.inf_ignore).any():
continue
if s is None:
s = res
N = 1
else:
s[0] += res[0]
s[1] += res[1]
N += 1
if N==0:
print 'WARN: gradient not found, passing random value'
N = 1
s = [np.array([0]), np.random.rand(len(res[1]))*5]
s[0]/=N
s[1]/=N
print s[0], s[1].tolist()
return s
self.f_and_df = f_and_df
def argmax(self, vals={}, bounds={}):
if not isinstance(bounds, dict):
bounds = {v: bounds for v in self.vs}
B = []
for v, (a, b) in zip(self.vs, self.sz):
if v in bounds:
B += bounds[v]
else:
B += [(None, None)]*(b-a)
x0 = np.hstack([np.asarray(vals[v]) if v in vals else v.get_value() for v in self.vs])
if self.method=='bfgs':
opt = scipy.optimize.fmin_l_bfgs_b(self.f_and_df, x0=x0, bounds=B)[0]
elif self.method=='gd':
opt = x0
for _ in range(self.iters):
opt -= self.f_and_df(opt)[1]*self.eps
else:
opt = scipy.optimize.minimize(self.f_and_df, x0=x0, method=self.method, jac=True).x
return {v: opt[a:b] for v, (a, b) in zip(self.vs, self.sz)}
def maximize(self, *args, **vargs):
result = self.argmax(*args, **vargs)
for v, res in result.iteritems():
v.set_value(res)
if __name__ == '__main__':
x = vector(1)
y = vector(1)
f = -(x[0]-y[0])**2
def gen():
for i in range(10):
y.set_value([i])
yield
y.set_value([10.])
optimizer = Maximizer(f, [x], gen=gen, method='CG')
optimizer.maximize()
print x.get_value()
quit()
x1 = vector(2)
x2 = vector(1)
f1 = -((x1[0]-x2[0]-1)**2+(x1[1]-x2[0])**2)-100.*tt.exp(40.*(x1[0]-4))
f2 = -((x1[0]-2.)**2+(x1[1]-4.)**2)-(x2[0]-6.)**2
optimizer = NestedMaximizer(f1, [x1], f2, [x2])
optimizer.maximize(bounds=[(0., 10.)])
print x2.get_value()
print x1.get_value()