forked from explosion/spacy-course
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution_02_15.py
35 lines (28 loc) · 1.1 KB
/
solution_02_15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import spacy
from spacy.matcher import PhraseMatcher
from spacy.tokens import Span
import json
with open("exercises/es/countries.json", encoding="utf8") as f:
COUNTRIES = json.loads(f.read())
with open("exercises/es/country_text.txt", encoding="utf8") as f:
TEXT = f.read()
nlp = spacy.load("es_core_news_sm")
matcher = PhraseMatcher(nlp.vocab)
patterns = list(nlp.pipe(COUNTRIES))
matcher.add("COUNTRY", None, *patterns)
# Crea un doc y restablece las entidades existentes
doc = nlp(TEXT)
doc.ents = []
# Itera sobre los resultados
for match_id, start, end in matcher(doc):
# Crea un Span con la etiqueta para "LOC"
span = Span(doc, start, end, label="LOC")
# Sobrescribe el doc.ents y añade el span
doc.ents = list(doc.ents) + [span]
# Obtén el token cabeza de la raíz del span
span_root_head = span.root.head
# Imprime en pantalla el texto del token cabeza de
# la raíz del span y el texto del span
print(span_root_head.text, "-->", span.text)
# Imprime en pantalla las entidades del documento
print([(ent.text, ent.label_) for ent in doc.ents if ent.label_ == "LOC"])