forked from tatz1101/Edge-AI-Platform-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_dpu_runtime_accuracy.py
132 lines (95 loc) · 4 KB
/
check_dpu_runtime_accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# USAGE
# python /home/ML/cifar10/caffe/code/check_dpu_runtime_accuracy.py -i /home/ML/cifar10/deephi/miniVggNet/quantiz/zcu102/rpt/logfile_top5_miniVggNet.txt
# It checks the top-1 and top-5 accuracy obtained at runtime by DeePhi DPU, by analysis of the related logfile
# by [email protected]
# ##################################################################################################
import warnings
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
import numpy as np
from datetime import datetime
import os
import argparse
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--file", required=True, help="input logfile")
ap.add_argument("-n", "--numel", default="1000", help="number of test images")
args = vars(ap.parse_args())
logfile = args["file"] # root path name of dataset
try:
f = open(logfile, "r")
except IOError:
print 'cannot open ', logfile
else:
lines = f.readlines()
tot_lines = len(lines)
print logfile, ' has ', tot_lines, ' lines'
#f.seek(0)
f.close()
# ##################################################################################################
NUMEL = int(args["numel"]) #1000
# initialize the label names for the CIFAR-10 dataset
labelNames = {"airplane" :0 , "automobile" :1, "bird" :2, "cat" :3, "deer" :4, "dog" :5,
"frog" :6, "horse" :7, "ship" :8 , "truck" :9 }
# ##################################################################################################
top1_true = 0
top1_false = 0
top5_true = 0
top5_false = 0
img_count = 0
false_pred = 0
test_ids = np.zeros(([NUMEL,1]))
preds = np.zeros(([NUMEL, 1]))
idx = 0
for ln in range(0, tot_lines):
if "DBG" in lines[ln]:
top5_lines = lines[ln:ln+6]
filename= top5_lines[0].split("images/")[1]
s2 = filename.index("_")
class_name = filename[: s2].strip()
#print 'DBG: found class ', class_name, ' in line ', ln, ': ', lines[ln]
predicted = top5_lines[1].split("name = ")[1].strip()
if class_name in top5_lines[1]:
top1_true += 1
top5_true += 1
elif class_name in top5_lines[2]:
top5_true += 1
top1_false +=1
elif class_name in top5_lines[3]:
top5_true += 1
top1_false +=1
elif class_name in top5_lines[4]:
top5_true += 1
top1_false +=1
elif class_name in top5_lines[5]:
top5_true += 1
top1_false +=1
else:
top5_false += 1
top1_false +=1
test_ids[idx] = labelNames[class_name] # ground truth
preds[idx] = labelNames[predicted ] # actual prediction
if (predicted != class_name) :
print "LINE: ", filename #top5_lines[0].split("./")[1].strip()
print "PREDICTED: ", preds[idx], predicted
print "EXPECTED : ", test_ids[idx], class_name
for k in range(1, 6):
print top5_lines[k].strip()
print "\n"
img_count +=1
idx += 1
if ( idx == (NUMEL-1) ):
break
else:
continue
assert (top1_true+top1_false) == img_count, "ERROR: top1 true+false not equal to the number of images"
assert (top5_true+top5_false) == img_count, "ERROR: top5 true+false not equal to the number of images"
print 'number of total images predicted ', img_count
print 'number of top1 false predictions ', top1_false
print 'number of top1 right predictions ', top1_true
print 'number of top5 false predictions ', top5_false
print 'number of top5 right predictions ', top5_true
top1_accuracy = float(top1_true)/(top1_true+top1_false)
top5_accuracy = float(top5_true)/(top5_true+top5_false)
print('top1 accuracy = %.2f' % top1_accuracy)
print('top5 accuracy = %.2f' % top5_accuracy)