-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathale-dqn.py
140 lines (109 loc) · 4.68 KB
/
ale-dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 25 16:37:39 2018
@author: kelo
"""
#Libraries Declaration
import gym
import numpy as np
import matplotlib.pyplot as plt
from agentes.ArcadeDQN import ArcadeDQN
from helpers.DataFiles import DataFiles
resultsFolder = 'results/ale_dqn/irl_feed03/'
files = DataFiles()
def plotRewards(filename):
dataRL = np.genfromtxt(resultsFolder + filename + 'RL.csv', delimiter=',')
dataIRL = np.genfromtxt(resultsFolder + filename + 'IRL.csv', delimiter=',')
meansRL = np.mean(dataRL, axis=0)
meansIRL = np.mean(dataIRL, axis=0)
print('meansRL', np.average(meansRL), np.max(meansRL), np.min(meansRL), dataRL.shape)
print('meansIRL', np.average(meansIRL), np.max(meansIRL), np.min(meansIRL), dataIRL.shape)
convolveSet = 50
convolveRL = np.convolve(meansRL, np.ones(convolveSet)/convolveSet)
convolveIRL = np.convolve(meansIRL, np.ones(convolveSet)/convolveSet)
plt.rcParams['font.size'] = 16
plt.rc('xtick', labelsize=12)
plt.rc('ytick', labelsize=12)
plt.figure('Collected reward')
plt.suptitle('Collected reward')
plt.plot(meansIRL, label = 'Average reward IRL', linestyle = '--', color = 'r')
plt.plot(meansRL, label = 'Average reward RL', linestyle = '--', color = 'y' )
plt.plot(convolveIRL, linestyle = '-', color = '0.2')
plt.plot(convolveRL, linestyle = '-', color = '0.5' )
plt.legend(loc=4,prop={'size':12})
plt.xlabel('Episodes')
plt.ylabel('Reward')
plt.grid()
my_axis = plt.gca()
#my_axis.set_ylim(Variables.punishment-0.8, Variables.reward)
my_axis.set_xlim(convolveSet, len(meansRL))
plt.show()
#end of plotRewards method
def trainAgent(tries, episodes, scenario, teacherAgent=None, feedback=0):
if teacherAgent == None:
filenameSteps = resultsFolder + 'stepsRL.csv'
filenameRewards = resultsFolder + 'rewardsRL.csv'
filenameEpsilons = resultsFolder + 'epsilonsRL.csv'
filenameAlphas = resultsFolder + 'alphasRL.csv'
else:
filenameSteps = resultsFolder + 'stepsIRL.csv'
filenameRewards = resultsFolder + 'rewardsIRL.csv'
filenameEpsilons = resultsFolder + 'epsilonsIRL.csv'
filenameAlphas = resultsFolder + 'alphasIRL.csv'
files.createFile(filenameEpsilons)
files.createFile(filenameRewards)
files.createFile(filenameAlphas)
for i in range(tries):
print('Training agent number: ' + str(i+1))
# agente
agente = ArcadeDQN(entorno)
# agent = Agent(scenario)
[rewards, epsilons, alphas] = agente.entrenar(episodes, teacherAgent, feedback, resultsFolder, i)
recompensaPromedio = float(sum(rewards) / float(len(rewards)))
suffix = '_i' + str(i) + '_r' + str(recompensaPromedio)
if(teacherAgent is None):
agentPath = resultsFolder+'/agenteRL'+suffix+'.h5'
else:
agentPath = resultsFolder+'/agenteIRL'+suffix+'.h5'
agente.guardar(agentPath)
# files.addToFile(filenameSteps, steps)
files.addFloatToFile(filenameRewards, rewards)
files.addFloatToFile(filenameEpsilons, epsilons)
files.addFloatToFile(filenameAlphas, alphas)
#endfor
return agente
#end trainAgent method
if __name__ == "__main__":
print("Interactive RL for SpaceInvadersRam is running ... ")
tries = 10
episodes = 1500
feedbackProbability = 0.3
#entorno
# scenario = Scenario()
# entorno = gym.make("CartPole-v1")
entorno = gym.make("SpaceInvaders-ram-v0")
# entorno = gym.make("MsPacman-ram-v0")
#Training with autonomous RL
print('RL is now training the teacher agent with autonomous RL')
# teacherAgent = trainAgent(tries, episodes, entorno)
# teacherAgent.guardar(resultsFolder+'/agenteRL.h5')
# teacherAgent = CartpoleDiscreto(entorno)
# teacherAgent.cargar(resultsFolder+'/agente.npy')
#test
entorno = gym.wrappers.Monitor(entorno, # entorno cartpole discetizado
resultsFolder+'/videos', # carpeta de guardado
#video_callable=lambda x: True, # grabacion de video
force=True) # eliminacion de datos anteriores
teacherAgent = ArcadeDQN(entorno, epsilon=0.01)
teacherAgent.cargar(resultsFolder+'/agenteIRL_i9_r172.8825.h5')
teacherAgent.test(500)
# Training with interactive RL
print('IRL is now training the learner agent with interactive RL')
# learnerAgent = trainAgent(tries, episodes, entorno, teacherAgent, feedbackProbability)
# learnerAgent.guardar(resultsFolder + '/agenteIRL.npy')
plotRewards("rewards")
# plotRewards("epsilons")
# plotRewards("steps")
print("Fin")
# end of main method